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Abstract001

Forecasting weather and climate events is cru-002
cial for making appropriate measures to mit-003
igate environmental hazards and minimize004
losses. However, existing environmental fore-005
casting research focuses narrowly on predicting006
numerical meteorological variables (e.g., tem-007
perature), neglecting the translation of these008
variables into actionable textual narratives of009
events and their consequences. To bridge this010
gap, we proposed Weather and Climate Event011
Forecasting (WCEF), a new task that leverages012
numerical meteorological raster data and tex-013
tual event data to predict weather and climate014
events. This task is challenging to accomplish015
due to difficulties in aligning multimodal data016
and the lack of supervised datasets. To address017
these challenges, we present CLLMate, the first018
multimodal dataset for WCEF, using 26,156 en-019
vironmental news articles aligned with ERA5020
reanalysis data. We systematically benchmark021
32 existing models on CLLMate, including022
closed-source, open-source, and our fine-tuned023
models. Our experiments reveal the advantages024
and limitations of existing MLLMs and the025
value of CLLMate for the training and bench-026
marking of the WCEF task.027

1 Introduction028

Weather and climate events, namely discrete029

episodes of extreme weather or abnormal climate030

conditions (Hurrell, 2013), pose a significant risk031

to human society, resulting in potential harm to032

property, infrastructure, injuries, and even loss of033

life (Stephenson et al., 2008). Such events (e.g.,034

heatwaves, floods, droughts) have experienced a035

noticeable surge in frequency, intensity, and du-036

ration in recent years due to climate change (Ac-037

carino et al., 2023). Significant concerns have been038

raised among human society. Appropriate mea-039

sures and optimal strategies are urgently needed040

to forecast these events and mitigate their negative041

impacts. Considerable researchers have studied042

weather forecasting for years. For example, Kang 043

et al. (2020) used factors such as temperature, wind, 044

and pressure data to forecast precipitation. Simi- 045

larly, Huang et al. (2021) relied on historical radia- 046

tion data to forecast future radiation. 047

However, those works only focus on meteoro- 048

logical variables forecasting, missing forecasting 049

textual weather and climate events or mapping the 050

relationship between meteorology and its textual 051

consequence. In the real world, there exists a wide 052

array of weather and climate events, also includ- 053

ing their cascading secondary and tertiary conse- 054

quences. For example, heavy rainfall can lead to 055

waterlogging, infrastructure degradation (e.g., road 056

collapse), traffic disruptions, and human casual- 057

ties when urban systems lack adaptive resilience 058

to climate change. A critical challenge lies in the 059

disparity between heterogeneous numerical mete- 060

orological data and textual descriptions of such 061

events and their consequences. The gap hinders the 062

accurate forecasting of real-world textual events 063

and their downstream impacts based solely on me- 064

teorological variables. 065

To address this critical gap, we propose the 066

Weather and Climate Event Forecasting (WCEF), 067

a novel task in environmental forecasting. Unlike 068

traditional approaches that predict numerical me- 069

teorological variables (e.g., precipitation) (Kang 070

et al., 2020; Yang et al., 2024), WCEF pioneers the 071

relationship between numerical meteorology and 072

weather and climate events. This represents a fun- 073

damental paradigm shift, as it replaces the conven- 074

tional workflow, where domain experts manually 075

interpret numerical predictions to infer potential 076

events, a process that is labor-intensive, subjective, 077

and lacking geographical adaptability, with an au- 078

tomated, context-aware framework. 079

The complexity of WCEF stems from its dual 080

departure from existing methods: (1) its output 081

requires generating textual events rather than nu- 082

merical variables, and (2) its input demands mul- 083
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timodal integration of numeric, text, and image.084

Prior efforts, which focus solely on single-modal085

numerical predictions, fail to address these chal-086

lenges (Schultz et al., 2021). They do not automate087

the translation of raw climate data into location-088

specific events, leaving critical gaps in forecasting089

precision and practical utility.090

The emergence of LLMs and multimodal LLMs091

(MLLMs) presents significant potential for bench-092

marking and addressing the WCEF task. To bench-093

mark this task, we collect weather and climate094

events from environmental news articles, which095

serve as a valuable complement to meteorological096

data. These articles provide detailed descriptions097

of weather and climate events (Roberts, 2023), in-098

cluding temporal and spatial information that can099

support precise event prediction. However, the100

sheer volume of unstructured environmental news101

conceals task-critical information. Additionally,102

the scarcity of supervised datasets, exacerbated by103

the novelty of the task and the complexity of curat-104

ing aligned multimodal pairs (numerical data and105

event descriptions), requires significant domain ex-106

pertise. The recent advancements in LLMs (Brown107

et al., 2020) offer a promising solution. They en-108

able the extraction of structured information from109

vast amounts of unstructured documents (Dagdelen110

et al., 2024; Biswas and Talukdar, 2024). Specifi-111

cally, we utilize GPT-4o-mini (OpenAI, 2025) to112

process 26,156 news articles, generating structured113

event representations (e.g., event A, cause, event114

B, location, and date) from unstructured text. To115

ensure accuracy, domain experts manually vali-116

date the outputs, resulting in the construction of a117

high-fidelity, spatiotemporally aligned multimodal118

dataset, CLLMate.119

To address the WCEF task, bridging the modal-120

ity gap between meteorological raster data (high-121

dimensional spatiotemporal grids) and textual de-122

scriptions remains a significant challenge (Liu et al.,123

2023; Jiang et al., 2024). MLLMs, in particular,124

offer an opportunity to integrate and align textual125

narratives with spatiotemporal data for the WCEF126

task (Xu et al., 2023). To evaluate current MLLM’s127

capabilities, we conduct extensive experiments on128

our constructed dataset using 32 models. The re-129

sults demonstrate that while these models show130

potential, they remain constrained in their perfor-131

mance on the WCEF task. It underscores the need132

for further work to achieve accurate weather and133

climate event forecasting.134

In summary, the contributions can be outlined:135

• We propose the WCEF task to build the rela- 136

tionship between textual events and numerical 137

meteorological raster data, which differs from 138

traditional meteorological data forecasting. 139

• We leverage domain knowledge extracted from 140

the news corpus to establish the first multimodal 141

dataset1 to connect events and meteorology. 142

• We conduct extensive experiments to evaluate 143

existing MLLMs and our fine-tuned models on 144

the WCEF task, benchmarking their capability in 145

forecasting textual weather and climate events. 146

2 Related Work 147

Weather and climate forecasting has long been a 148

research problem in the field of the environment. 149

In this paper, we proposed a more challenging task 150

to predict textual events using MLLMs. 151

2.1 Weather and Climate Events Forecasting 152

In the era preceding modern weather prediction, 153

human experience connects diverse natural signs, 154

such as cloud patterns and animal behavior, with 155

weather and their subsequent effects (Risiro et al., 156

2012). The start of modern weather forecasting was 157

marked with the first modern weather chart (Allaby, 158

2009; Young and Grahame, 2022). In contempo- 159

rary studies, a shift towards efficiency has occurred 160

by consolidating various numerical variables into 161

a unified numerical framework. Two primary nu- 162

merical methodologies are commonly employed: 163

numerical weather prediction, which utilizes nu- 164

merical simulation methods (Bauer et al., 2015; 165

Lynch, 2008), and AI-based forecasting, which 166

leverages data-driven approaches (Bi et al., 2023; 167

Hewage et al., 2021). Soichiro et al. explored mod- 168

els designed to generate textual comments for four 169

specific weather conditions: sunny, rainy, cloudy, 170

and snowy (Murakami et al., 2021). However, their 171

work is limited by the restricted range of weather 172

conditions and the subjective nature of the com- 173

ments. In contrast, our study represents the first 174

attempt to address the WCEF task. We construct 175

a valuable dataset containing the numerical meteo- 176

rology and its corresponding events, aimed at the 177

relationship between numerical meteorology and 178

its consequential events. 179

2.2 Multimodal LLM 180

With the advancement of LLMs, there’s been a 181

surge of research on building multimodal LLMs. 182

1The dataset will be publicly released.
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Dataset Meteorological Variables Textual Events
Not Post Records Post Records

SEVIR (Veillette et al., 2020) Satellite × ×
Mesogeos (Kondylatos et al., 2024) ERA5 × ×

Digital Typhoon (Kitamoto et al., 2024) Satellite × ×
Vaid et al.’s work (Vaid et al., 2022) × × Social Media

NeuralNERE (Mishra and Mittal, 2021) × × News
ClimateIQA (Chen et al., 2024a) ERA5 QA generated by LLM ×

WeatherQA (Ma et al., 2024) ERA5 Expert’s pre-analysis ×
CLLMate ERA5 × News, verified by experts

Table 1: Comparison with CLLMate with the existing datasets. CLLMate uniquely integrates ERA5 reanalysis data
with expert-verified textual events, addressing the scarcity of aligned multimodal datasets for weather and climate
event forecasting. ERA5: the fifth generation ECMWF atmospheric reanalysis dataset of the global climate.

Their studies (Wu et al., 2023; Zhan et al., 2024)183

try to incorporate multiple types of data beyond184

just natural language, such as images, audio, and185

video. BLIP-2 (Li et al., 2023) has developed186

a large-scale image captioning dataset, combin-187

ing a language model with a vision encoder to188

create a multimodal model. Building on this,189

LLaVA (Liu et al., 2023) introduces a more cost-190

effective method for training multimodal models191

through visual instruction tuning. The following192

multimodal LLMs, including QwenVL2 (Wang193

et al., 2024a), CogVLM (Wang et al., 2023a),194

deepseek-vl (Lu et al., 2024), Intern-vl (Chen et al.,195

2024b; Dong et al., 2024), etc., all follow a similar196

architecture of LLaVA. Following them, our work197

focuses on meteorology.198

2.3 Existing Similar Dataset199

Prior efforts to model meteorological events fall200

into three categories (Table 1):201

Single-Modality Physical Datasets. Works like202

SEVIR (storm imagery) (Veillette et al., 2020),203

Mesogeos (wildfire-related variables) (Kondylatos204

et al., 2024), and Digital Typhoon (typhoon trajec-205

tories) (Kitamoto et al., 2024) focus on meteorolog-206

ical measurements but lack textual event narratives.207

While valuable for physical modeling, they omit208

explicit linkages to real-world impacts.209

Text-centric datasets. Text-centric datasets210

such as Vaid et al.’s work (social media211

events) (Vaid et al., 2022) and NeuralNERE (news-212

derived knowledge graphs) (Mishra and Mittal,213

2021) catalog climate-related events but fail to link214

them to corresponding meteorological data. This215

disconnect leaves the causal chain between weather216

patterns (e.g., extreme rainfall) and societal conse-217

quences (e.g., floods) unquantified.218

Multimodal Approaches with Limitations.219

Several other meteorological multimodal dataset220

construction efforts were conducted around the 221

same time as CLLMate. However, they remain 222

limited by data quality and scope. ClimateIQA 223

(Chen et al., 2024a) pairs ERA5 data with LLM- 224

generated QA pairs but lacks verified event records 225

and impact descriptions. WeatherQA (Ma et al., 226

2024) aligns ERA5 with expert pre-analysis texts, 227

yet it focuses on meteorological forecasts rather 228

than post-event records and excludes societal im- 229

pacts. Both datasets prioritize meteorological phe- 230

nomena over downstream consequences and rely 231

on synthetic or non-verified textual data, limiting 232

their utility for impact-driven research. 233

CLLMate bridges these gaps by integrating 234

expert-verified post-event records from authorita- 235

tive news sources with spatiotemporally matched 236

meteorological raster data. Unlike prior works, 237

CLLMate (1) captures both meteorological phe- 238

nomena (e.g., rainfall) and their downstream con- 239

sequences (e.g., flooding, infrastructure damage), 240

(2) establishes explicit cross-modal mappings be- 241

tween textual event descriptions (including time 242

and location) and meteorological variables, and (3) 243

ensures reliability through domain expert valida- 244

tion of event reports. 245

3 Problem Formulation 246

In this section, we provide an introduction to the 247

data type in our dataset, CLLMate, and outline the 248

formulation of the WCEF task (Figure 1). 249

3.1 Spatio-Temporal Data 250

Two types of spatio-temporal data are utilized: me- 251

teorological raster data and event data. 252

3.1.1 Meteorological Raster Data 253

Meteorological raster data is commonly employed 254

in the environmental domain to depict meteoro- 255

logical variables. For instance, one global mete- 256
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Event A{location, time, category}

Event B{location, time, category}
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Figure 1: The CLLMate framework is designed to ex-
tract textual weather and climate events and align them
with meteorological raster data for the WCEF task.

orological variable can be represented as a three-257

dimensional tensor R ∈ RT×Λ×Φ, where T de-258

notes the time dimension, and Λ and Φ represent259

the longitude and latitude dimensions, respectively.260

Each element rt,λ,ϕ corresponds to the variable261

value at a specific time t and location (λ, ϕ).262

3.1.2 Event Data263

On the other hand, event data E are occurrences of264

interest at specific points in space and time with the265

shape of T × Λ× Φ. For example, a single event266

can be represented using textual information et,λ,ϕ,267

indicating the occurrence at a particular time t and268

location (λ, ϕ).269

Two distinctions exist between raster and event270

data. First, raster data is numerical, while event271

data is textual. Next, raster data is dense, whereas272

event data is sparse, featuring specific instances at273

discrete locations and times.274

3.2 WCEF Task275

The existing weather forecasting task involves pre-276

dicting the future target meteorology variable using277

either the same or more variables. This task can be278

formulated as follows:279

RC+1:C+F = f(RC−H+1:C) (1)280

where f(·) is the forecasting model, RC denotes281

the numerical meteorological variables at the cur-282

rent time, F represents the length of the forecasting283

data, and H is the length of historical data used.284

In contrast, the objective of the proposed WCEF285

task is to predict textual events using numerical286

data (Figure 1). These events can be defined based287

on meteorological characteristics, such as heat-288

waves and the subsequent consequences they en-289

tail. The scope of events encompasses primary290

occurrences like heatwaves and droughts, as well291

as secondary and tertiary events (consequences)292

like landslides and human casualties that arise as a293

result of the primary events. These examples illus-294

trate the complexity of deriving such events solely295

Figure 2: Spatial distribution of extracted events. Each
rectangle represents an extracted event. The events span
most global regions.
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Figure 3: Temporal distribution of extracted events. The
events span a long time period, from 2015 to 2023. A
notable outlier in the number of events occurred due to
the catastrophic flooding in Zhengzhou in July 2021.

from numerical data. It highlights the significance 296

of the historical events and the valuable knowledge 297

they offer. The WECF task can be formulated: 298

EC:C+F−1 = fϕ(RC−H+1:C , Instruction) (2) 299

where fϕ(·) denotes the LLM model and EC is the 300

textual events happening at the current time. It is 301

worth emphasizing that, unlike existing forecasting 302

tasks utilizing the same source data, we employ C 303

in both the forecasting and historical data. This is 304

because EC and RC hold distinct meanings. 305

4 Dataset Construction Process 306

In this section, we introduce the meteorological 307

raster dataset and environmental news dataset we 308

used to construct the multimodal instruction dataset 309

for the WCEF task. Then, we explain the pipeline 310

to create the multimodal dataset (appendix A.1). 311

4.1 Dataset Used to Construct CLLMate 312

Meteorological Raster Dataset. We use the open 313

and free ERA5 reanalysis dataset (Hersbach et al., 314

2020) to obtain the meteorology data (Copernicus 315

License). Its usage in climate research has been 316

widely acknowledged for its quality (Sun et al., 317

2022). Four variables, namely “2m temperature,” 318

“10m u-component of wind,” “10m v-component 319
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of wind,” and “total precipitation,” were selected to320

forecast the following textual weather and climate321

events. The dataset consists of hourly data span-322

ning from July 2015 to July 2023, with a spatial323

resolution of 27.75 km×27.75 km. To derive daily324

data for each variable, the average of the 24-hour325

values (in hours UTC) within a day was utilized.326

Environmental News Dataset. We acquired en-327

vironmental news from Wisers (Wisers, 2024)328

through a procurement process, which consisted329

of highly environment-related news articles from330

news publishers. The dataset spans from July 2015331

to June 2023. Each news article contains the title,332

content, character statistics, date, publisher, and333

media type. The media types encompass both web334

and publication resources while excluding internet-335

based media sources primarily reliant on aggregat-336

ing news reports from official news agencies.337

4.2 The Multimodal Dataset338

We construct the first multimodal dataset for the339

WCEF task through three steps.340

4.2.1 Event Extraction341

Weather and climate events exist within a vast342

amount of news articles. Research has demon-343

strated the efficacy of utilizing LLMs for extracting344

structured information from text (Dagdelen et al.,345

2024). The initial step of our pipeline is to identify346

and extract these events and their relationships from347

each news document. First, we employed GPT-4o-348

mini to analyze 26,156 environmental news arti-349

cles, extracting weather and climate event knowl-350

edge in structured triples with spatiotemporal meta-351

data (e.g., high temperature causes heatwave, Hong352

Kong, 2022-08-16). The details of the prompt for353

extracting events can be found in appendix B.1.354

Initial automated labeling identified 6,352 news355

containing potential event relationships. These356

articles, along with their extracted triples, loca-357

tions, and dates, underwent rigorous manual val-358

idation by three meteorological domain experts.359

Events, which are not meteorological events, or360

lack clear spatial information, or temporal details,361

will be excluded. Following verification, 2,575362

news were confirmed to contain accurate event363

knowledge, yielding a final curated dataset of 7,747364

spatiotemporally grounded events. Please refer to365

appendix B.2 for the agreement scores.366

Specifically, as for the spatial aspect, there are367

1,049 distinct regions in the dataset. To derive368

geospatial bounds for these locations, we con-369

tinue to employ GPT-4o-mini to generate latitude- 370

longitude coordinates, which are subsequently val- 371

idated by humans to ensure alignment with real- 372

world geographical boundaries by visualizing them 373

on the map. Additionally, we expand the geograph- 374

ical range, with a minimum of 5 degrees, to incor- 375

porate surrounding meteorological conditions. 376

Spatial Distribution. The dataset exhibits a broad 377

geographical representation, covering most global 378

regions (Figure 2). Events are notably concentrated 379

in East Asia, North America, and Europe. The 380

spatial distribution is decided by the database’s 381

distribution since we didn’t apply filters, avoiding 382

introducing biases. It reflects socioeconomic dis- 383

parities in environmental reporting infrastructure 384

and media coverage biases, which is an interesting 385

topic for future research. 386

Temporal Distribution. The temporal coverage 387

spans July 2015 to July 2023, with marked sea- 388

sonal patterns: event frequency peaks during sum- 389

mer and winter months (Figure 3). A signif- 390

icant outlier occurred in July 2021, coinciding 391

with catastrophic flooding since extreme rainfall in 392

Zhengzhou, China, which caused hundreds of fatal- 393

ities and widespread infrastructure damage. This 394

event garnered exceptional media attention. 395

4.2.2 Event Categorization 396

We observe that current MLLMs cannot predict 397

meaningful weather and climate events using 398

zero-shot methods (see the experiment in subsec- 399

tion D.1). To address the limitation in predicting 400

weather and climate events, we collaborated with 401

domain experts to design a predefined hierarchi- 402

cal categorization of weather and climate events 403

(appendix A.2) as part of the prompt for MLLMs. 404

This approach aligns with practices in both the NLP 405

domain (Hendrycks et al., 2020; Yue et al., 2024) 406

and meteorology (Ma et al., 2024). By providing 407

this hierarchical categorization for MLLMs to ref- 408

erence, we enhance their ability to forecast extreme 409

weather events more reliably and with greater prac- 410

tical relevance. 411

The categorization combines a bottom-up ap- 412

proach to clustering (using semantic similarity) 413

with a top-down approach (using the taxonomy 414

in the environmental domain) (Gaiteri et al., 415

2015). Events are classified into two primary cat- 416

egories: meteorological phenomena (3979/7747 417

events, Figure 4) and their cascading consequences 418

(3768/7747 events, Figure 5). Each category is 419

further divided into fine-grained subclasses, which 420
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serve as candidate options for model selection. In421

the benchmarking, MLLMs are required to select422

the most probable predefined fine-grained subclass.423

For more information about the category distribu-424

tion, please refer to appendix A.3.425

4.2.3 Event-Meteorology Alignment426

Multimodal dataset construction relies on precise427

spatiotemporal alignment between events and their428

meteorological conditions (Figure 1). For each429

event (appendix A.1), we integrate: (1) textual430

event, (2) meteorological raster data for the event’s431

specific date and region, and (3) regional statistical432

context (e.g., max) from the same spatiotemporal433

origin. Meteorological inputs are preprocessed into434

RGB-like grids (normalized to [0, 1]):435

• Channel 1: 2m temperature.436

• Channel 2: 10m wind speed (u- and v-437

components combined via magnitude norm).438

• Channel 3: total precipitation.439

This representation enables MLLMs to process spa-440

tial climate patterns as visual inputs.441

5 Benchmarking Results442

5.1 Benchmarked Models443

The dataset is partitioned chronologically into train-444

ing (90%) and testing (10%) sets. We conducted445

extensive experiments with 32 multimodal models446

and traditional AI models (after removing multi-447

modal inputs) on the test set, encompassing closed-448

source, open-source, and our fine-tuned models:449

5.1.1 Closed-Source Models450

• GPT Series (OpenAI, 2025): OpenAI’s flagship451

MLLM with integrated vision capabilities. We452

evaluated variants of OpenAI’s GPT architecture453

optimized for multimodal reasoning: GPT-4o-454

mini, GPT-4o, GPT-o1/3, and GPT-o4-mini.455

• Gemini (Team et al., 2023): Google’s MLLM456

with enhanced context window and optimized for457

high-speed processing of text-image inputs. We458

evaluated Gemini-1.5-pro and Gemini-2.0-flash.459

• Claude-3.5/3.7-Sonnet (Anthropic, 2025): An-460

thropic’s MLLM with improved analytical capa-461

bilities, supporting text and image inputs.462

5.1.2 Open-Source Models463

• Deepseek-Janus-Pro-7B (Chen et al., 2025):464

Deepseek’s MLLM with both multimodal un-465

derstanding and text-to-image capabilities.466

• InternVL2/3-8B/38B/78B (Chen et al., 2024b): 467

A vision-language foundation model with capa- 468

bilities in handling complex multimodal data. 469

• Cambrian-1-8B (Tong et al., 2024): A fully 470

open multimodal LLM designed with a vision- 471

centric approach. 472

• LLaVA-1.5/1.6 (Liu et al., 2023, 2024): Ver- 473

sions of the widely adopted open-source MLLM 474

framework: LLaVA-1.5-7B/13B: MLLMs with 475

standard vision-language alignment. LLaVA-1.6- 476

7B/13B/34B: Enhanced variants MLLMs for fine- 477

grained visual grounding. 478

• Qwen2/2.5 (Wang et al., 2024b) utilize dynamic 479

resolution and frame rate training for video un- 480

derstanding. We evaluate Qwen2-VL-7B and 481

Qwen2.5-VL-7/72B. 482

5.1.3 Fine-tuned Models 483

We trained the traditional classifier as the baseline. 484

To evaluate the performance of conventional vi- 485

sual models, we fine-tuned traditional AI models 486

that rely solely on meteorological images. These 487

models include ResNet50 (He et al., 2016) (IMA- 488

GENET1K_V2) and ViT (Dosovitskiy et al., 2020) 489

(vit-base-patch16-224-in21k). 490

Additionally, we evaluated the performance of 491

CLIP (Radford et al., 2021) as a classifier. For this, 492

we computed image embeddings using meteorolog- 493

ical images and text embeddings based on all event 494

descriptions and their contextual information. The 495

event with the highest correspondence to the image 496

was selected as the prediction. 497

Moreover, we fine-tuned a series of LLaVA 498

models using the training set of the CLLMate 499

to evaluate the value of the dataset and the effi- 500

ciency of MLLMs in solving the WCEF task. The 501

fine-tuned models include LLaVA-1.5-7B/13B and 502

LLaVA-1.6-vicuna-7B/13B. They are trained on 503

8 A800×GPUs for one epoch. Please refer to ap- 504

pendix C for more details. 505

5.2 Prompt Design 506

We design specialized prompts for MLLMs to fore- 507

cast meteorological phenomena and their conse- 508

quences. The prompts consist of “System Prompt,” 509

“Location Information,” “Meteorological Parame- 510

ters,” “Meteorological Image,” “Category Knowl- 511

edge,” and “Zero-Shot CoT (Kojima et al., 2022).” 512

As for the Zero-Shot CoT, we use (1) analysis of 513

statistical data, (2) analysis of spatial patterns in 514

the image, and (3) synthesis of findings to select 515

the most probable fine-grained category. Refer to 516
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Models
Primary

Category of
Phenomena

Subordinate
Category of
Phenomena

Primary
Category of

Consequence

Subordinate
Category of

Consequence
Random guess 33.33% 12.50% 20.00% 5.56%
Majority guess 40.12% 26.07% 40.11% 4.90%

cl
os

ed
-s

ou
rc

e

GPT-4o-mini (OpenAI, 2025) 30.28% 13.62% 34.63% 14.13%
GPT-4o (OpenAI, 2025) 32.11% 15.65% 39.22% 12.01%
GPT-o1 (OpenAI, 2025) 32.93% 10.97% 17.67% 10.60%
GPT-o3 (OpenAI, 2025) 30.89% 10.57% 17.67% 2.83%
GPT-o4-mini (OpenAI, 2025) 30.28% 10.16% 20.49% 2.47%
Gemini-1.5-pro (Team et al., 2023) 20.12% 8.74% 28.98% 10.25%
Gemini-2.0-flash (Team et al., 2023) 37.80% 19.72% 30.39% 13.43%
Claude-3.5-Sonnet (Anthropic, 2025) 37.60% 19.72% 40.28% 15.90%
Claude-3.7-Sonnet (Anthropic, 2025) 40.04% 20.93% 42.05% 15.55%

op
en

-s
ou

rc
e

Janus-Pro-7B (Chen et al., 2025) 31.31% 2.64% 21.20% 2.83%
InternVL2-8B (Chen et al., 2024b) 29.27% 10.37% 21.91% 5.30%
InternVL3-8B (Chen et al., 2024b) 29.67% 13.62% 20.49% 6.00%
InternVL3-38B (Chen et al., 2024b) 39.63% 19.51% 33.22% 12.70%
InternVL3-78B (Chen et al., 2024b) 36.79% 18.09% 42.05% 17.31%
Cambrian-1-8B (Tong et al., 2024) 31.10% 9.56% 31.80% 4.59%
LLaVA-1.5-7B (Liu et al., 2023) 31.30% 14.02% 20.85% 3.89%
LLaVA-1.6-vicuna-7B (Liu et al., 2024) 31.30% 13.82% 20.85% 3.89%
LLaVA-1.6-mistral-7B (Liu et al., 2024) 32.93% 17.28% 39.22% 12.01%
LLaVA-1.5-13B (Liu et al., 2023) 31.32% 15.04% 28.27% 7.77%
LLaVA-1.6-vicuna-13B (Liu et al., 2024) 29.47% 14.63% 21.91% 7.42%
LLaVA-1.6-vicuna-34B (Liu et al., 2024) 42.28% 15.45% 17.67% 3.89%
Qwen2-VL-7B (Wang et al., 2024b) 32.72% 11.38% 25.80% 5.30%
Qwen2.5-VL-7B (QwenTeam, 2025) 42.27% 17.48% 21.91% 7.78%
Qwen2.5-VL-72B (QwenTeam, 2025) 40.85% 20.73% 39.58% 16.25%

fin
e-

tu
ne

d

Fine-tuned-ResNet50 (He et al., 2016) 38.01% 24.34% 19.08% 6.36%
Fine-tuned-ViT (Dosovitskiy et al., 2020) 39.43% 23.46% 20.14% 6.48%
Fine-tuned-Clip (Radford et al., 2021) 42.89% 19.11% 36.40% 6.00%
Fine-tuned-LLaVA-1.5-7B 45.93% 23.37% 43.46% 9.89%
Fine-tuned-LLaVA-1.6-vicuna-7B 44.91% 29.67% 44.17% 8.48%
Fine-tuned-LLaVA-1.6-mistral-7B 45.53% 25.61% 43.82% 8.13%
Fine-tuned-LLaVA-1.5-13B 44.92% 23.78% 43.46% 6.36%
Fine-tuned-LLaVA-1.6-vicuna-13B 45.54% 27.03% 42.40% 9.19%

Table 2: The accuracy of benchmarked multimodal models and traditional AI models (after removing multimodal
inputs) across two granularity levels: primary category classification and subordinate category identification for
both meteorological phenomena and their cascading consequence.

appendix B.3 and appendix B.4 for more details.517

5.3 Evaluation Metric518

For the benchmarking of multi-choice questions,519

we employ accuracy as the metric, following the520

previous research, such as Ge et al.’s work (Ge521

et al., 2022). Accuracy is a straightforward metric522

that measures the proportion of correct answers out523

of the total number of questions.524

5.4 Heuristic Baselines525

We implement two heuristic baselines:526

• Random Guess: Answers are selected uniformly527

at random from all valid events, reflecting chance-528

level performance.529

• Majority Guess: The most frequent category/-530

subcategory in the training set (Precipitation/Liq-531

uid Precipitation and Disaster/Flood, Figure 6)532

is chosen for all test instances. Thus, the dis-533

tribution of them in the test set will be used534

(40.12%/26.07% and 40.11%/4.90%). It serves535

two purposes: (1) quantifying the advantage of 536

leveraging dataset biases, and (2) contextualiz- 537

ing model performance relative to empirically 538

informed predictions. 539

5.5 Main Results 540

Table 2 summarizes the performance of the bench- 541

marking across two granularity levels: primary cat- 542

egory (coarse-grained) and subordinate category 543

(fine-grained) for meteorological phenomena and 544

their consequences. 545

5.5.1 Meteorological Phenomena Forecasting 546

Primary Category: Most closed-source and 547

open-source models perform near random guess 548

(30.28–37.80%), with the exception of LLaVA- 549

1.6-vicuna-34B and Qwen2.5 (40.85%-42.28%), 550

which exceed the majority guess baseline (40.12%). 551

Fine-tuned models achieve substantial gains, with 552

Fine-tuned-LLaVA-1.5-7B attaining the highest ac- 553

curacy (45.93%). 554
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Subordinate Category: While most existing555

models surpass random guessing, none exceed the556

majority guess baseline (26.07%). Fine-tuning557

yields significant improvements (e.g., Fine-tuned-558

LLaVA-1.6-vicuna-7B: 29.67% vs. 13.82% for its559

untrained counterpart).560

5.5.2 Consequence Forecasting561

Primary Category: Claude-3.7-Sonnet and562

InternVL3-78B lead among untrained models563

(42.25%), while fine-tuned variants dominate, no-564

tably Fine-tuned-LLaVA-1.6-vicuna-7B (44.17%),565

surpassing the random guess (20.00%) and major-566

ity guess baseline (40.11%). This demonstrates the567

learnability of meteorology-to-impact mappings568

when models are task-adapted.569

Subordinate Category: InternVL3-78B570

achieves the highest accuracy (17.31%), marginally571

exceeding the heuristic baselines (5.56%/4.90%),572

while fine-tuned models show limited gains.573

6 Performance Analysis574

We show some findings of the benchmarking. For575

more analysis, such as case study, ablation study,576

and scale analysis, please refer to appendix D.577

6.1 MLLMs vs. Heuristic Baselines578

While MLLMs outperform the random guessing579

baseline, some of them often fall short of the major-580

ity guess baseline, a pattern attributable to an inher-581

ent class imbalance in the dataset. The imbalance582

provides a competitive advantage for naive reliance583

on prior knowledge of the category distribution.584

However, fine-tuned models such as Fine-tuned-585

LLaVA-1.5-7B surpass the majority guess baseline586

in phenomena prediction (45.93% vs.40.12%) and587

in consequence forecasting (43.46% vs. 40.11%).588

Critically, this demonstrates that MLLMs can learn589

meteorology-to-event mappings, achieving gains590

through pattern recognition.591

6.2 MLLMs vs. Simpler Models592

Even after training, traditional models like ResNet593

perform significantly worse than many untrained594

MLLMs, not to mention fine-tuned MLLMs. This595

highlights the necessity of MLLMs for effectively596

learn the relationships between numerical meteoro-597

logical data and their corresponding events.598

6.3 Closed-Source and Open-Source Models599

Among closed-source models, Claude-3.7-Sonnet600

achieves the highest forecasting accuracy. Surpris-601

ingly, GPT-o3’s performance is lower than that of 602

other models. Open-source models exhibit signif- 603

icant performance fragmentation. While LLaVA- 604

1.6-34B achieves competitive primary phenomena 605

accuracy (42.28%), its consequence forecasting 606

decreases to 17.67%, worse than random guess- 607

ing (20%). Qwen2.5-VL-72B and InternVL3-78B 608

show an advantage in consequence forecasting (see 609

subsection D.4 for the scale analysis). The perfor- 610

mance of the best closed-source model is compara- 611

ble to that of the best open-source model. 612

6.4 Effectiveness of Task-Specific Fine-tuning 613

Fine-tuning on CLLMate yields dramatic im- 614

provements: Fine-tuned-LLaVA-1.5-7B surpasses 615

Claude-3.7-Sonnet in primary phenomena accuracy 616

(45.93% vs. 40.04%) and consequences (43.46% 617

vs. 42.05%). Subordinate category performance 618

improves by 9–15 percentage points for phenom- 619

ena (e.g., 23.37% vs. 14.02% in LLaVA-1.5-7B), 620

though subordinate consequence forecasting re- 621

mains challenging (<10% accuracy). This demon- 622

strates that while MLLMs lack weather reasoning 623

capabilities, task-specific adaptation enables com- 624

petitive forecasting, demonstrating the dataset’s 625

value for climate-aware MLLM adaptation. 626

6.5 Limited Performance 627

While existing or fine-tuned MLLMs outperform 628

the heuristic baselines, they have relatively low ac- 629

curacy (< 50%), suggesting current models have 630

the advantage, however, limited, in distinguishing 631

different coarse-grained event types (e.g., Precipi- 632

tation vs. Wind) and fine-grained event types (e.g., 633

General wind vs. Typhoon). It highlights the need 634

for future work to forecast meteorological events 635

more accurately. 636

7 Conclusion 637

We propose the WCEF task, which forecasts 638

weather and climate events using meteorological 639

raster data. To support this task, we construct CLL- 640

Mate, the first supervised multimodal dataset that 641

aligns spatiotemporally grounded event descrip- 642

tions with corresponding meteorological numerical 643

data. We conducted extensive experiments to assess 644

the performance of 32 models on the dataset. The 645

results demonstrate the dataset’s value for climate- 646

aware MLLM adaptation. CLLMate establishes a 647

foundational benchmark for WCEF, revealing both 648

the feasibility of event forecasting and the pressing 649

need for domain-optimized architectures. 650
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Limitation651

We identify some limitations exist in this study and652

future research directions in this emerging field:653

First, the inclusion of additional modalities to654

offer supplementary insights for forecasting is es-655

sential. While this study initially delves into modal-656

ities encompassing numerical spatiotemporal data657

and text, there exist other meteorological data658

modalities like satellite imagery and time series659

data (Jin et al., 2023) from global meteorological660

stations that could contribute to longer-term, more661

precise forecasting. These data can be easily in-662

tegrated into the events in CLLMate according to663

the spatiotemporal information. Further research is664

warranted to enrich the forecasting capabilities.665

Second, since we extracted a large number of666

triples (event A causes event B), the incorpora-667

tion of the knowledge graph necessitates addi-668

tional exploration. Employing more sophisticated669

techniques to equip the MLLM with prior world670

knowledge (Do et al., 2024; Wang et al., 2024c)671

of weather and climate for the events understand-672

ing (Wang et al., 2022, 2023b), could potentially673

enhance the performance.674

Last, the events are concentrated in East Asia,675

North America, and Europe (Figure 2). It re-676

flects socioeconomic disparities in environmental677

reporting infrastructure and media coverage biases,678

which is an interesting topic for future research.679
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A Dataset Release and License 997

A.1 CLLMate License and Availability. 998

999
1 The CLLMate dataset will be publicly available after the review phase 1000

and use the CC BY 4.0 license. 1001

2 { 1002

3 ... 1003

4 "6973": { 1004

5 "caused by": "None", 1005

6 "cause": "6970", 1006

7 "news_id": "5838681", 1007

8 "event": "high temperature", 1008

9 "category_name": "phenomena.atmospheric.high temperature", 1009

10 "category_index": "A.A.A", 1010

11 "time": "2022/07/25", 1011

12 "location": "Guangzhou City", 1012

13 "coordinate": "[20.69, 110.88, 25.69, 115.88]", 1013

14 "image_path": "./ image/6973.png", 1014

15 "temperature": { 1015

16 "max": "302.75", "min": "302.00", "mean": "302.50"}, 1016

17 "wind speed": { 1017

18 "max": "6.56", "min": "4.09", "mean": "5.51"}, 1018

19 "precipitation": { 1019

20 "max": "0.00", "min": "0.00", "mean": "0.00"} 1020

21 }, 1021

22 "6974": { 1022

23 "caused by": "6979", 1023

24 "cause": "None", 1024

25 "news_id": "5677320", 1025

26 "event": "increased wildfire severity", 1026

27 "category_name": "consequence.disaster.fire", 1027

28 "category_index": "B.A.D", 1028

29 "time": "2022/07/25", 1029

30 "location": "California State", 1030

31 "coordinate": "[32.5288, -124.4096, 42.0095, -114.1312]", 1031

32 "image_path": "./ image/6974.png", 1032

33 "temperature": { 1033

34 "max": "312.50", "min": "295.00", "mean": "306.00"}, 1034

35 "wind speed": { 1035

36 "max": "12.07", "min": "0.00", "mean": "4.01"}, 1036

37 "precipitation": { 1037

38 "max": "0.00", "min": "0.00", "mean": "0.00"} 1038

39 }, 1039

40 ... 1040

41 } 10411042
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A.2 Category1043

Weather and
Climate Events

Consequence

Transportation

Impacted Maritime

Impacted Road Traffic

Impacted Train

Impacted Flight

Society Impact
Impacted activity

Impacted resource

Damage

Equipment Damage

Vehicle Damage

Building Damage

Infrastructure Damage

Organisms Impact

Impacted Plant

Impacted Animal

Impacted Human

Disaster

Pollution

Fire

Earthquake &
Landslide

Drought

Flood

Meteorological
Phenomena

Wind

Tornado

Typhoon

General Wind

Precipitation
Solid Precipitation

Liquid Precipitation

Atmospheric

Low Visibility

Low Temperature

High Temperature

1044
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A.3 Category Distribution1045

The dataset is partitioned chronologically into train-1046

ing (90%) and test (10%) sets. The category distri-1047

butions of the entire dataset are displayed in Fig-1048

ure 5 and Figure 4. There are imbalances in the cat-1049

egory distribution, such as for the primary category1050

of meteorological phenomena, there are 43.7%1051

events are atmospheric-related, 40.5% events are1052

precipitation-related, and only 15.8% events are1053

wind-related. That is because all events are ex-1054

tracted from the news and follow the distribution1055

of the recording of events. We also present the cat-1056

egory distribution of training (Figure 6) and testing1057

(Figure 7) sets.1058

25.7%

12.1%

5.9%
31.3%

9.2%

2.8%
15.8%

11.9%
1.1%

43.7%

40.5%

Atmospheric
High Temperature
Low Temperature

Liquid Precipitation
Solid Precipitation

Low Visibility

General Wind
Typhoon
Tornado

Precipitation

Wind

Categories

Figure 4: Distribution of categories within the meteoro-
logical phenomena category (3,979/7747 events). The
distribution is imbalanced, reflecting the nature of event
reporting in the news.

9.9%

3.6%

6.6%

4.0%

2.2%

2.9%

8.1%

5.1%

2.8%

9.0%

6.2%

9.8%

6.5%

4.6%

8.3% 37.2%

17.2%

16.4%

11.0%

18.2%
7.9%

Society Impact
Impacted resource
Impacted activity

Organisms Impact
Impacted Human
Impacted Animal
Impacted Plant

Damage
Infrastructure Damage
Building Damage
Vehicle Damage
Equipment Damage

Transportation Impact
Impacted Flight
Impacted Train
Impacted Road Traffic
Impacted Maritime

Disaster
Flood
Drought
Earthquake & Landslide
Fire
Pollution

Categories

Figure 5: Distribution of categories within the conse-
quences category (3,768/7747 events). The distribution
is imbalanced, reflecting the nature of event reporting
in the news.

A.4 Generalizability of CLLMate1059

While the CLLMate benchmark is structured for hi-1060

erarchical categorization via multiple-choice evalu-1061

ation, its design inherently supports other discrimi-1062

native or generative tasks, such as open-ended gen-1063

eration tasks. The inclusion of raw textual event1064

descriptions (subsection A.1) alongside aligned me- 1065

teorological data enables applications beyond con- 1066

strained categorization. For example: 1067

• Free-form event narrative generation: Training or 1068

evaluating MLLMs to produce human-readable 1069

weather/climate event summaries from numerical 1070

inputs. 1071

• Causal reasoning exploration: Probing model ca- 1072

pabilities to infer and articulate chains of causal- 1073

ity between meteorological drivers and societal 1074

impacts. 1075

• Automated report drafting: Generating local- 1076

ized risk assessments or mitigation advisories 1077

grounded in spatio-temporal climate patterns. 1078

• Open for integrating additional meteorological 1079

data (e.g., more meteorological variables) and 1080

more modalities (e.g., satellite images). For each 1081

event, we provide the location and date, making 1082

it easy to align future data. 1083

The generalizability of CLLMate ensures com- 1084

patibility with both discriminative and generative 1085

evaluation paradigms, broadening its utility for re- 1086

search in meteorology-informed language model- 1087

ing and operational forecasting systems. 1088

A.5 ERA5 Reanalysis Dataset 1089

The link to the ERA5 dataset is https: 1090

//cds.climate.copernicus.eu/datasets/ 1091

reanalysis-era5-single-levels?tab= 1092

overview. The ERA5 dataset uses a license of 1093

Copernicus products. This license permits access 1094

to Copernicus Products for any lawful purpose. 1095

Authorized uses include, but are not limited to, 1096

reproduction, distribution, public dissemination, 1097

adaptation, modification, and integration with 1098

other data and information. 1099

The meteorological variables of ERA5 used in 1100

CLLMate are: 1101

ERA5 Varaibles

• 2m temperature: This parameter is the
temperature of air at 2m above the sur-
face of land, sea or inland waters. 2m
temperature is calculated by interpolat-
ing between the lowest model level and
the Earth’s surface, taking account of the
atmospheric conditions. This parameter
has units of kelvin (K). Temperature mea-
sured in kelvin can be converted to de-
grees Celsius (°C) by subtracting 273.15.

1102
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Figure 6: Distribution of categories of the training set. A: meteorological phenomena categories (3487/7747 events).
B: consequences categories (3485/7747 events).
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Figure 7: Distribution of categories of the testing set. A: meteorological phenomena categories (492/7747 events).
B: consequences categories (283/7747 events).

• 10m u-component of wind: This parame-
ter is the eastward component of the 10m
wind. It is the horizontal speed of air mov-
ing towards the east, at a height of ten
metres above the surface of the Earth, in
metres per second. This parameter can be
combined with the V component of 10m
wind to give the speed and direction of
the horizontal 10m wind. This parameter
has units of metre per second (m/s).

• 10m v-component of wind: This param-
eter is the northward component of the
10m wind. It is the horizontal speed of air
moving towards the north, at a height of
ten metres above the surface of the Earth,
in metres per second. This parameter can
be combined with the U component of
10m wind to give the speed and direction
of the horizontal 10m wind. his parameter
has units of metre per second (m/s).

• Total precipitation: This parameter is
the accumulated liquid and frozen water,
comprising rain and snow, that falls to
the Earth’s surface. It is the sum of large-
scale precipitation and convective precipi-
tation. Large-scale precipitation is gener-

1103

ated by the cloud scheme in the ECMWF
Integrated Forecasting System (IFS). This
parameter has units of meter (m).

1104

A.6 The environmental news dataset. 1105

The environmental news dataset used to extract 1106

meteorological events was acquired through a pro- 1107

curement process from Wisers (Wisers, 2024). 1108

B Prompt and Annotation 1109

B.1 Prompt for Extracting Events 1110

System Prompt

You are an AI assistant with expertise in ex-
tracting environmental events. Your task is
to analyze the given news article and iden-
tify environmental events (and their conse-
quences) and their corresponding locations
and time that have actually occurred and
are explicitly mentioned in the text. Only
extract triples if they pertain to environmen-
tal events and actual events. Do not make
inferences.

1111
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Output Definition

In the extracted triples, the first element
should represent the subject, the second ele-
ment should be the constrained verb ’cause,’
and the third element should represent the
object. Both the subject and object should
relate to environmental events or risks. If
the geographic location is not provided, in-
dicate ’no’. If the date is provided, output
YYYY/MM/DD. If the date is not provided,
indicate ’no’.

1112

Zero-Shot CoT

Initially, evaluate if the news article dis-
cusses environmental events. Next, deter-
mine if the associated geographic location
and time are specified. If both conditions
are met, output the list [subject, cause, ob-
ject, location, time]. The output should be
in English.

1113

Few-shot

If the news is <news article containing en-
vironmental events>, the output should be
<correct events with location and time>. If
the news is <news article containing no en-
vironmental events>, the output should be
“No”. Now, the news is: <news to be ana-
lyzed>

1114

B.2 Annotation Details1115

We presented the original news articles along with1116

the extracted events to three domain experts for1117

annotation. The experts are postdoc and PhD can-1118

didates in the domain. Each expert assessed the1119

extracted events based on the corresponding news1120

article, assigning a label of 1 (accurate) or 0 (in-1121

accurate). The final annotation for each event1122

was determined by majority vote. Out of 6,3521123

news articles, the extracted events from 2,575 ar-1124

ticles (40.54%) were deemed accurate. The inter-1125

annotator agreement (IAA) score, measured by the1126

pairwise agreement proportion, was 81.83%, and1127

Fleiss’s κ (Fleiss, 1971) was calculated to be 0.63.1128

B.3 Prompt for Phenomena Forecasting 1129

1130

System Prompt

You are an AI assistant with expertise in
weather analysis. Your task is to interpret
meteorological data and figures, analyze
weather variables, and provide accurate in-
sights into weather conditions.

1131

Location Information

The provided figure corresponds to
<city_name> city, covering the geographic
area defined by:Latitude: [<lat_min>,
<lat_max>], Longitude: [<lon_min>,
<lon_max>].

1132

Meteorological Parameters

The daily mean meteorological parameters
I provided are as follows:
The 2m temperature: the temperature of air
at 2m above the surface of land, sea or in-
land waters. This parameter has units of
kelvin (K). Average daily mean tempera-
ture of that area: <t_mean> K. Max daily
mean temperature of that area: <t_max> K.
Min daily mean temperature of that area:
<t_min> K.
The 10m wind: the speed of air moving
towards the north, at a height of ten metres
above the surface of the Earth, in metres
per second. Average daily mean wind speed
of that area: <w_mean> m/s. Max daily
mean wind speed of that area: <w_max>
m/s. Min daily mean wind speed of that
area: <w_min> m/s.
Precipitation: the accumulated liquid and
frozen water, comprising rain and snow, that
falls to the Earth’s surface. The units of
this parameter are depth in metres of water
equivalent. Average daily mean precipita-
tion of that area: <p_mean> m. Max daily
mean precipitation of that area: <p_max> m.
Min daily mean precipitation of that area:
<p_min> m.

1133

Meteorological Image

The figure provided is an RGB image de-
rived from spatiotemporal meteorological

1134
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data for the region. Each channel represents:
channel 1: Temperature. channel 2: Wind
Speed. channel 3: Precipitation.

1135

Category Knowledge

The possible answers are structured into
main categories with sub-options:
• A: Atmospheric

– A.1: High Temperature
– A.2: Low Temperature
– A.3: Low Visibility

• B: Wind
– B.1: General Wind
– B.2: Tornado
– B.3: Typhoon

• C: Precipitation
– C.1: Solid Precipitation
– C.2: Liquid Precipitation

1136

Zero-Shot CoT

To determine the most likely meteorolog-
ical scenario, follow these steps: 1. Ana-
lyze Statistical Data: Evaluate the statistical
information (mean, max, and min values)
for temperature, wind speed, and precipita-
tion. Identify any conditions that suggest
extreme weather or notable patterns. 2. An-
alyze Spatial Patterns in the Image: Exam-
ine the RGB image for regional variations in
temperature, wind, and precipitation. Con-
sider the spatial distribution of these vari-
ables to identify meteorological phenomena.
3. Synthesize Findings: Combine insights
from the statistical data and image analy-
sis. Choose the only most appropriate sub-
option from the given categories based on
your analysis. You must output the serial
number of the option.

1137

B.4 Prompt for Consequences Forecasting1138

For the prompt for the consequences forecasting,
we will change the “System Prompt” and “Category
Knowledge” sections by using the corresponding
categories.

1139

System Prompt

You are an AI assistant with expertise in
weather analysis. Your task is to interpret

1140

meteorological data and figures, analyze
weather variables, and provide accurate in-
sights into meteorological consequences.

1141

Category Knowledge

The possible answers are structured into
main categories with sub-options:
• A: Disaster

– A.1: Flood
– A.2: Drought
– A.3: Earthquake & Landslide
– A.4: Fire
– A.5: Pollution, including Air Pollution,

Water Pollution, Solid Pollution
• B: Organisms Impact

– B.1: Impacted Human, including Trap,
Injury, Death

– B.2: Impacted Animal
– B.3: Impacted Plant

• C: Damage
– C.1: Infrastructure Damage
– C.2: Building Damage
– C.3: Vehicle Damage
– C.4: Equipment Damage

• Society Impact
– D.1: Impacted resource, including

Food Shortage, Power Shortage
– D.2: Impacted activity, including Work

Activity, School Activity
• Transportation Impact

– E.1: Impacted Flight
– E.2: Impacted Train
– E.3: Impacted Road Traffic
– E.4: Impacted Maritime

1142

C Visual Instruction Tuning Models 1143

We fine-tuned the LLaVA models on the train- 1144

ing set of CLLMate. The fine-tuned models in- 1145

clude LLaVA-1.5-7B/13B and LLaVA-1.6-vicuna- 1146

7B/13B. 1147

C.1 Vision Encoder and Adapter 1148

We maintain consistency with LLaVA on the vision 1149

encoder and adapter. For the vision encoder, we 1150

utilized CLIP ViT-L/14 (Radford et al., 2021) to 1151

extract the spatial patterns of meteorological im- 1152

ages. For the vision-language adapter, we used the 1153

two-layer MLP vision-language adapter provided 1154

by LLaVA. The vision encoder and the adapter are 1155
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frozen during the fine-tuning.1156

C.2 Training Configuration1157

In terms of MLLMs, we fine-tuned LLaVA-7B and1158

13B models for one epoch using DeepSpeed ZeRO-1159

3 on 8×A800 GPUs, with a learning rate of 2e-51160

and batch size of 16. Training required 1 hour1161

(7B) and 2 hours (13B) for one epoch. For the1162

traditional AI models, the training parameters are:1163

epochs: 50, batch Size: 32, optimizer: AdamW,1164

learning Rate: 3e-4, loss Function: Cross Entropy.1165

As for traditional AI models, we trained them using1166

1x4090 GPUs. The total API cost for closed-source1167

models amounts to approximately $200.1168

D More Evaluation1169

D.1 Zero-shot Generation Study1170

We conducted experiments to directly generate me-1171

teorological events without providing predefined1172

categories. To evaluate performance, domain ex-1173

perts manually compared the generated events with1174

the labeled ones. The results (Table 3) indicate1175

that MLLMs currently lack the ability to directly1176

predict extreme weather events. This highlights1177

the necessity of providing comprehensive event1178

categories as a reference for MLLMs.1179

D.2 Case Study1180

To illustrate the model’s capabilities on the WCEF1181

task, we analyze the representative examples (event1182

6973 and event 6974 in subsection A.1) with the1183

original news article and MLLMs’ output.1184

D.2.1 Case 1: Phenomena Forecasting (Event1185

6973)1186

We present some typical MLLMs’s output in sub-1187

section A.1, with correct analyses highlighted in1188

blue and incorrect ones in red, as assessed by a1189

domain expert.1190

Current MLLMs all provide structured, human-1191

aligned rationales and identify meteorological1192

thresholds (e.g., 29.35°C). All models correctly ex-1193

cluded precipitation (C.1/C.2) and wind extremes1194

(B.2/B.3); however, only Claude-3.5-Sonnet ex-1195

plicitly justified these exclusions using statistical1196

ranges. The fine-tuned model, Fine-Tuned-LLaVA-1197

1.6-vicuna-7B, provided direct answers without of-1198

fering reasoning.1199

Regarding multimodal data, these models1200

demonstrated accurate analysis of meteorological1201

images. For instance, QWen2.5-VL-72B uniquely1202

interpreted the meaning of colors, while LLaVA- 1203

34B concentrated on analyzing spatial uniformity. 1204

Case 1: Event 6973 (shown in subsection
A.1)

The news article:
Guangzhou issued its first high temperature
red warning this year. Guangzhou will
continue to be sunny and hot in the next
three days.
Southern Metropolis Daily
Original Report | July 25, 2022, 16:24

Guangzhou has issued its first red high-
temperature warning of the year. As of
4 p.m., seven districts in Guangzhou, ex-
cluding Conghua, Zengcheng, Nansha, and
Panyu, have issued red warnings for high
temperatures. The highest temperatures in
these districts are expected to reach around
39°C today and tomorrow. According to the
provincial government’s defense guidelines,
outdoor activities should be minimized dur-
ing the daytime, and outdoor work in open
areas should be suspended, except for spe-
cial industries.
Under the influence of a strong subtrop-
ical high-pressure system, Guangzhou
is expected to experience widespread
sunny and hot weather with high tem-
peratures over the next three days.

Ground Truth: A.1: High
Temperature
Event: high temperature
Category_name: phe-
nomena.atmospheric.high
temperature
Category_index: A.A.A
Time: 2022/07/25
Location: Guangzhou City

GPT-4o’s output:
• 1. Analyze Statistical Data:

– Temperature: Average daily mean
temperature is 302.50 K, with a max
of 302.75 K and a min of 302.00 K.
These values suggest relatively high
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Models Phenomena Consequence

Gemini-2.0-flash (Team et al., 2023) 1.42% 1.77%
LLaVA-1.6-mistral-7B (Liu et al., 2024) 1.02% 4.59%

Table 3: The accuracy of MLLMs in directly forecasting meteorological events without providing predefined
categories.

temperatures.
– Wind Speed: Average daily mean

wind speed is 5.51 m/s, with a max
of 6.56 m/s and a min of 4.09 m/s.
These figures suggest moderate wind
speeds.

– Precipitation: All values show 0.00
m, indicating no precipitation.

• 2. Analyze Spatial Patterns in the Image:
The image predominantly shows a strong
red hue, indicating high temperatures.
There is also a noticeable green compo-
nent, indicating the presence of notable
wind speeds.

• 3. Synthesize Findings:
The data indicates high temperatures with-
out any precipitation and moderate winds.

Conclusion: The most appropriate option
based on the analysis is: A.1: High Temper-
ature.

Claude-3.5-Sonnet’s output:

Let me analyze the meteorological data and
image systematically:
• 1. Statistical Data Analysis:

– Temperature: 302.5K (29.35°C)
with small variation (0.75K range)

– Wind speed: Average 5.51 m/s with
moderate variation (2.47 m/s range)

– Precipitation: 0.00m (no precipita-
tion)

• 2. Image Analysis: The image shows a
predominantly yellow/orange color. High
intensity in the red channel (tempera-
ture). Moderate intensity in green channel
(wind). No visible blue component (con-
firming zero precipitation).

• 3. Synthesis: The high temperature
(302.5K/29.35°C) and uniform yellow/o-
range coloring indicates hot conditions.
Wind speeds are moderate but not ex-

1206

treme. No precipitation is present. The
spatial pattern shows consistent high tem-
perature across the region. Based on these
observations: The dominant feature is
the high temperature. No extreme wind
events (ruling out B options). No precipi-
tation (ruling out C options). The uniform
high temperature pattern best matches
A.1.

Therefore, I select option A.1 (High Temper-
ature) as the most appropriate classification
for these conditions. Answer: A.1

LLaVA-1.6-vicuna-34B’s output:

Based on the provided meteorological data
and the RGB image, the most likely me-
teorological scenario for the region is: A:
Atmospheric. A.1: High Temperature. The
average daily mean temperature of 302.50
K (29.50°C) is relatively high, and the max-
imum daily mean temperature of 302.75 K
(29.75°C) is even higher. The image shows
a uniform distribution of high temperatures
across the region, with no significant varia-
tions in temperature. The wind speed and
precipitation are relatively low and do not
show any extreme patterns. The high tem-
peratures suggest a warm and sunny climate,
which is consistent with the image’s depic-
tion of high temperatures.

Qwen2.5-VL-72B’s output:

A.1. Analysis:

• Step 1: Analyze Statistical Data
– Temperature: Average daily mean

temperature: 302.50 K (approxi-
mately 29.35°C). Max daily mean
temperature: 302.75 K (approxi-
mately 29.60°C). Min daily mean
temperature: 302.00 K (approxi-
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mately 28.85°C). These tempera-
tures indicate relatively high and
consistent warmth across the region,
suggesting a hot day.

– Wind Speed: Average daily mean
wind speed: 5.51 m/s. Max daily
mean wind speed: 6.56 m/s. Min
daily mean wind speed: 4.09 m/s.
The wind speeds are moderate but
not indicative of extreme weather
like tornadoes or typhoons.

– Precipitation: Average daily mean
precipitation: 0.00 m. Max daily
mean precipitation: 0.00 m. Min
daily mean precipitation: 0.00 m.
There is no recorded precipitation,
indicating dry conditions.

• Step 2: Analyze Spatial Patterns in the
Image. The image is uniformly yellow,
which suggests a consistent pattern across
the region. Given the color coding: Red
(Temperature): The yellow hue indicates
a high temperature since red is associated
with temperature. Green (Wind Speed):
The lack of green suggests moderate wind
speeds, consistent with the statistical data.
Blue (Precipitation): The absence of blue
confirms the lack of precipitation.

• Step 3: Synthesize Findings. Combin-
ing the statistical data and the spatial pat-
terns observed in the image, it is clear
that the region experienced high tempera-
tures with no significant precipitation and
moderate wind speeds.

Therefore, the most appropriate sub-option
is A.1: High Temperature.

Fine-Tuned-LLaVA-1.6-vicuna-7B’s out-

put:
A.1: High Temperature
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D.2.2 Case 2: Consequence Forecasting1209

(Event 6974)1210

We present some typical MLLMs’s output in sub-1211

section A.1, with correct analyses highlighted in1212

blue and incorrect ones in red, as assessed by a1213

domain expert.1214

This case demonstrates critical disparities in mul-1215

timodal causal reasoning for fire risk prediction.1216

While GPT-4o and Claude-3.5-Sonnet identified1217

fire-prone conditions (high temperatures, moderate 1218

winds (should be strong wind), and zero precip- 1219

itation), both erroneously selected A.4: Drought 1220

rather than A.5: Fire. In contrast, Qwen2.5-VL- 1221

72B successfully synthesized all variables, espe- 1222

cially interpreting wind spikes as fire accelerants, 1223

to correctly predict A.5: Fire. 1224

Case 2: Event 6974 (shown in subsection
A.1)

The news article:
Wildfire spreads near Yosemite National
Park in the United States

On July 25 local time, the spread of a wild-
fire near Yosemite National Park in Cali-
fornia slowed down, the containment rate
increased, and firefighting efforts showed
signs of progress.
The California Department of Forestry and
Fire Protection (Cal Fire) stated on the
evening of the 25th that it was a "successful
day" for firefighting efforts. From morning
to evening, strong winds caused the burned
area to expand from 16,791 acres (approx-
imately 68 square kilometers) to 17,241
acres (approximately 70 square kilometers),
while the containment rate rose from 10%
to 16%. The agency reported that the fire
had destroyed 55 structures. As firefighting
efforts advanced, evacuation orders in some
areas were downgraded to evacuation warn-
ings, and certain roads were reopened for
local residents.
On the 25th, a China News Service reporter
observed at the fire site that firefighters had
cleared a large number of firebreaks through
the forested areas. In areas near major roads,
the fire was no longer severe, but thick
smoke continued to rise from the hillsides
and mountain tops. Several aircraft took
turns dropping water or fire retardants onto
larger hotspots, while fire trucks were dis-
persed across various locations to respond
to potential flare-ups. On the charred land,
small groups of firefighters were extinguish-
ing smaller fires.
According to Cal Fire, as of the evening
of the 25th, nearly 3,000 firefighters, 24
helicopters, 302 fire engines, and 68 water
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trucks had been deployed to the fire site. On
that day alone, helicopters dropped 300,000
gallons (approximately 1.136 million liters)
of water onto the fire.
With climate change causing increasingly
hotter and drier conditions in the west-
ern United States, wildfires in California
have become more severe. This wildfire
near Yosemite National Park started in the
Midpines area of Mariposa County and
spread rapidly due to strong winds, be-
coming California’s largest wildfire so far
this year. U.S. media have reported that
this wildfire is likely the beginning of an-
other severe wildfire season in California.

Ground Truth: A.5: Fire
(option in the question)
Event: increased wildfire
severity
Category_name:consequence.disaster.fire
Category_index: B.A.D
Time: 2022/07/25
Location: California State

GPT-4o’s output: To determine the most
likely meteorological scenario, let’s analyze
the provided data and image:
• 1. Analyze Statistical Data:

– Temperature: The average daily
mean temperature is 306.00 K, with
a max of 312.50 K. This indicates
high temperatures, potentially in-
dicative of heat waves.

– Wind Speed: The average daily
mean wind speed is 4.01 m/s with
peaks at 12.07 m/s. This suggests
mild to moderate winds, with occa-
sional stronger gusts.

– Precipitation: There is no precipi-
tation recorded (0.00 m), indicating
very dry conditions.

• 2. Analyze Spatial Patterns in the Im-
age: The image is predominantly yellow
with reddish tones, indicating high tem-
peratures (red channel is for temperature).
This suggests a uniform region of warm
temperatures. The lack of blue and green
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tones indicates negligible precipitation
and moderate to minimal wind activity.

• 3. Synthesize Findings: Temperature and
Precipitation: The very high temperature
coupled with the lack of precipitation sug-
gests a dry heat scenario. Impact Analy-
sis: The conditions are suggestive of po-
tential drought and fire risks due to high
temperatures and no rainfall. Considering
the provided categories: Drought (A.4):
Prolonged high temperatures and no pre-
cipitation are indicative of drought condi-
tions, impacting water availability, agri-
culture, and potentially leading to wild-
fires.

Given this analysis, the most appropriate
sub-option based on the scenario is: A.4:
Drought.

Claude-3.5-Sonnet’s output:

Let me analyze the meteorological data and
image systematically:
• 1. Statistical Data Analysis:

– Mean: 306.00 K (32.85°C). Max:
312.50 K (39.35°C). Min: 295.00 K
(21.85°C). These are very high tem-
peratures, indicating extreme heat
conditions.

– Wind: Mean: 4.01 m/s. Max: 12.07
m/s. Min: 0.00 m/s. Moderate to
high wind speeds present.

– Precipitation: All values at 0.00 m.
Indicating completely dry conditions
with no rainfall.

• 2. Image Analysis: Dominant yellow-
orange coloring indicates high tempera-
tures. Some variations in green suggest-
ing wind speed variations. No blue tinting,
confirming zero precipitation.

• 3. Synthesis: The combination of: Ex-
tremely high temperatures (approaching
40°C). Complete absence of precipitation.
Presence of wind. Geographic location
(California). These conditions strongly
indicate a severe drought situation with
high fire risk. The complete lack of pre-
cipitation, combined with high tempera-
tures and wind, creates perfect conditions
for drought conditions.
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Based on the given options and this analysis,
the most appropriate classification would be:
A.4 (Drought). The conditions present clear
indicators of drought conditions, which can
lead to water shortages and increased fire
risk. This is supported by both the statis-
tical data showing zero precipitation and
very high temperatures, as well as the im-
age showing warm conditions across the
region.

LLaVA-1.6-vicuna-34B’s output:
Based on the provided meteorological data
and the RGB image, I will analyze the situ-
ation and provide the most appropriate sub-
option from the given categories.

• 1. Analyze Statistical Data: The av-
erage daily mean temperature of the
area is 306.00 K, which is equivalent to
32.83 degrees Celsius. The max daily
mean temperature is 312.50 K (34.38
degrees Celsius), and the min daily
mean temperature is 295.00 K (27.27
degrees Celsius). The average daily
mean wind speed is 4.01 m/s, with a
max daily mean wind speed of 12.07
m/s and a min daily mean wind speed
of 0.00 m/s. The average daily mean
precipitation is 0.00 m, with a max
daily mean precipitation of 0.00 m and
a min daily mean precipitation of 0.00
m. From the statistical data, we can
observe that the area experiences rela-
tively high temperatures, with a range
of 7.56 degrees Celsius between the
max and min daily mean temperatures.
The wind speeds are relatively low,
with a range of 12.07 m/s between the
max and min daily mean wind speeds.
The precipitation levels are very low,
with no precipitation recorded.

• 2. Analyze Spatial Patterns in the Im-
age: The RGB image shows variations
in temperature, wind speed, and pre-
cipitation across the region. The red
channel (temperature) shows a gradi-
ent of temperature, with warmer areas
in the south and cooler areas in the
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north. The green channel (wind speed)
shows a gradient of wind speed, with
higher wind speeds in the south and
lower wind speeds in the north. The
blue channel (precipitation) shows no
precipitation across the region. From
the image analysis, we can observe
that the region experiences a gradient
of temperature and wind speed, with
warmer and windier conditions in the
south and cooler and calmer conditions
in the north. However, there is no pre-
cipitation recorded in the image.

• 3. Synthesize Findings: Based on the
statistical data and image analysis, the
most appropriate sub-option from the
given categories is: D: Organisms Im-
pact D.1: Impacted Plant. The reason
for this choice is that the region expe-
riences high temperatures and low pre-
cipitation, which can lead to drought
conditions. Drought can have a sig-
nificant impact on plant life, as it can
cause stress, wilting, and even death.
The lack of precipitation in the image
further supports this conclusion.

Therefore, the serial number of the most
appropriate sub-option is: D.1.

Qwen2.5-VL-72B’s output:

Based on the provided meteorological data
and the analysis of the RGB image:

• Step 1: Analyze Statistical Data
– Temperature: Average daily mean

temperature: 306.00 K (approxi-
mately 32.85°C). Maximum daily
mean temperature: 312.50 K (ap-
proximately 39.35°C). Minimum
daily mean temperature: 295.00 K
(approximately 21.85°C). These tem-
peratures indicate relatively warm
conditions, with some areas experi-
encing high temperatures.

– Wind Speed: Average daily mean
wind speed: 4.01 m/s. Maximum
daily mean wind speed: 12.07 m/s.
Minimum daily mean wind speed:
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0.00 m/s. The average wind speed
is moderate, but there are areas with
higher wind speeds, which could be
significant.

– Precipitation: Average daily mean
precipitation: 0.00 m. Maximum
daily mean precipitation: 0.00 m.
Minimum daily mean precipitation:
0.00 m. There is no recorded precip-
itation, indicating dry conditions.

• Step 2: Analyze Spatial Patterns in the
Image. Temperature (Red Channel): The
red color dominates the image, suggest-
ing widespread high temperatures across
the region. Wind Speed (Green Channel):
The green color is present but less dom-
inant compared to red, indicating vari-
able wind speeds with some areas experi-
encing higher wind speeds. Precipitation
(Blue Channel): The absence of blue sug-
gests no precipitation across the region.

• Step 3: Synthesize Findings. Given the
high temperatures, lack of precipitation,
and variable wind speeds, the most likely
meteorological scenario is one associated
with dry and hot conditions. The combi-
nation of high temperatures and wind can
lead to increased risk of wildfires.

Conclusion: The most appropriate sub-
option based on the analysis is: A.5: Fire.

Fine-Tuned-LLaVA-1.6-vicuna-7B’s out-

put:
A.2: Earthquake & Landslide
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D.3 Ablation Study1231

To quantify the contribution of multimodal inputs,1232

we conducted an ablation study with Gemini-2.0-1233

flash (closed-source) and LLaVA-1.6-mistral-7B1234

(open-source) for their good performance (e.g.,1235

LLaVA-1.6-mistral-7B has the best performance1236

among 7/8B open-source MLLMs). We ablated1237

three components: meteorological images, statisti-1238

cal summaries, and Zero-Shot CoT prompting. The1239

results are displayed in Table 4.1240

D.3.1 Closed-Source Models1241

(Gemini-2.0-Flash)1242

Image Removal: Eliminating meteorological1243

raster data catastrophically degrades phenom-1244

ena forecasting (37.80% → 25.81%, 19.72% → 1245

14.63%), but marginally improves consequence 1246

subordinate accuracy (30.39% → 30.74%, 13.43% 1247

→ 14.84%). This suggests Gemini-2.0-flash relies 1248

heavily on spatial patterns for phenomena forecast- 1249

ing. 1250

Statistics Removal: Removing statistics surpris- 1251

ingly does not significantly impact performance, 1252

improving overall accuracy from 30.39% to 38.87% 1253

of primary consequence forecasting. This indicates 1254

a redundancy between statistical summaries and 1255

raster data for Gemini-2.0-flash. 1256

Zero-Shot CoT Removal: Disabling Zero-Shot 1257

CoT harms event forecasting, especially for conse- 1258

quence forecasting for Gemini-2.0-flash, underscor- 1259

ing its necessity for causal event differentiation. 1260

D.3.2 Open-Source Models 1261

(LLaVA-1.6-Mistral-7B) 1262

Image Removal: Degrades performance univer- 1263

sally and largely, with catastrophic drops in conse- 1264

quence forecasting (39.22% → 13.78%). Unlike 1265

Gemini-2.0-flash, LLaVA-1.6-mistral-7B cannot 1266

compensate for missing spatial data via text-based 1267

statistics. 1268

Statistics Removal: Improves primary conse- 1269

quence accuracy (39.22% → 44.52%) while harm- 1270

ing phenomena prediction (32.93% → 26.22%), 1271

suggesting statistical summaries introduce noise 1272

for impact forecasting but aid event detection for 1273

LLaVA-1.6-mistral-7B. 1274

Zero-Shot CoT Removal: Erases Zero-Shot CoT, 1275

reducing the performance of LLaVA-1.6-mistral- 1276

7B with the exception of primary phenomena fore- 1277

casting. 1278

D.3.3 Key Insights 1279

Modality Asymmetry: MLLMs exhibit flexible 1280

modality compensation (e.g., statistics → images) 1281

in part of tasks but fail to compensate for all tasks. 1282

For example, LLaVA-1.6-mistral-7B has a perfor- 1283

mance drop for primary phenomena forecasting 1284

but not for consequence forecasting when ablating 1285

statistics. 1286

Reasoning Bottleneck: Zero-Shot CoT prompting 1287

provides gains, especially in subordinate accuracy, 1288

proving essential for parsing causal meteorology- 1289

event relationships. 1290

D.4 Impact of Model Scale 1291

We conducted the scale study on the open-source 1292

models, the results are shown in Figure 8 and Fig- 1293
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Models Primary
Category of
Phenomena

Subordinate
Category of
Phenomena

Primary
Category of

Consequence

Subordinate
Category of

Consequence

Gemini-2.0-flash (Team et al., 2023) 37.80% 19.72% 30.39% 13.43%
w/o image 25.81% 14.63% 30.74% 14.84%
w/o statistics 37.80% 17.48% 38.87% 13.43%
w/o Zero-Shot CoT 33.94% 11.99% 17.67% 3.89%

LLaVA-1.6-mistral-7B (Liu et al., 2024) 32.93% 17.28% 39.22% 12.01%
w/o image 27.64% 13.41% 13.78% 4.95%
w/o statistics 26.22% 15.45% 44.52% 7.77%
w/o Zero-Shot CoT 33.33% 10.77% 20.49% 3.89%

Table 4: The results of the ablation study show the accuracy of benchmarked MLLMs across two granularity levels:
primary category classification (coarse-grained) and subordinate category identification (fine-grained) for both
meteorological phenomena and their cascading consequences. w/o image: remove the meteorological image from
the prompt. w/o: remove the statistics of meteorological variables from the prompt. w/o: remove the Zero-Shot CoT
from the prompt.

ure 9.1294

D.4.1 Scale1295

Contrary to expectations, increasing the model1296

scale does not guarantee improved performance:1297

LLaVA-1.6-34B achieves state-of-the-art pri-1298

mary phenomena accuracy (42.28%) but catas-1299

trophically fails at primary consequence forecast-1300

ing (17.67% vs. 20.85% for its 7B variant), sug-1301

gesting larger models overfit to meteorological pat-1302

terns while losing causal reasoning capabilities of1303

consequence.1304

The Qwen2.5-VL and InternVL3 series demon-1305

strate scale-dependent tradeoffs. For example, Scal-1306

ing from 7B to 72B, Qwen2.5-VL improves sub-1307

ordinate consequence accuracy by 17.67% in pri-1308

mary consequence forecasting (21.91% → 39.58%)1309

and 8.47% in subordinate consequence forecasting1310

(7.78% → 16.25%) but reduces primary phenom-1311

ena forecasting (42.27% → 40.85%).1312

D.4.2 Architectural Refinements1313

Architectural improvements (LLaVA-1.5 → 1.6,1314

Qwen2 → Qwen2.5) yield significant gains.1315

The LLaVA-1.6-Mistral-7B variant outperforms1316

LLaVA-1.5-7B in all tasks. The Qwen2.5-VL-7B1317

outperforms the Qwen2-VL-7B except for the pri-1318

mary consequence forecasting.1319

D.4.3 Fine-Tuning as a Scaling Alternative1320

Task-specific adaptation eclipses scale advantages:1321

Smaller fine-tuned models consistently outperform1322

larger untrained counterparts (13B/34B), with Fine-1323

tuned-LLaVA-1.6-vicuna-7B surpassing the 34B1324

untrained variant by 26.50% in primary conse- 1325

quence forecasting (44.17% vs. 17.67%). Fine- 1326

tuned-LLaVA-1.6-vicuna-7B also achieves 29.67% 1327

subordinate phenomena accuracy vs. 15.45% for 1328

LLaVA-1.6-vicuna-34B. Fine-tuned 7B models out- 1329

perform larger untrained counterparts, proving task 1330

alignment outweighs raw scale for meteorology-to- 1331

text translation. 1332
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Figure 8: The line chart of the accuracy of open-sourced MLLMs. Left: Primary category of phenomena forecasting.
Right: Subordinate category of phenomena forecasting. The x-axis is in the log scale.

Figure 9: The line chart of the accuracy of open-sourced MLLMs. Left: Primary category of consequence
forecasting. Right: Subordinate category of consequence forecasting. The x-axis is in the log scale.
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