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Abstract

Multimodal large language models (MLLMs) are increasingly developed to meet diverse
deployment needs, varying in scale and computational demand. While recent research has
focused on building MLLMs from Small Language Models (SLMs), these efforts remain
limited in flexibility and are still data- and compute-intensive. In this paper, we present
the first comprehensive study on flexibly compressing existing MLLMs through structural
pruning and recovery training in a data-efficient manner. Hence, we address a critical
gap in the literature by empirically analyzing best practices for adapting to specific hard-
ware or resource limitations. Our study investigates pruning and knowledge distillation
techniques, examining their impact on downstream performance across various model com-
pression strategies, including pruning paradigms and recovery training schemes. We further
investigate the feasibility of performing recovery training using only a small fraction of the
available data. Key findings reveal that widthwise pruning is more effective than layerwise
pruning in resource-constrained scenarios. For smaller compression ratios, finetuning the
multimodal projector alone can restore most performance, while combining finetuning with
hidden state knowledge distillation proves most effective across all compression levels. No-
tably, we demonstrate efficient model downsizing using as little as 5% of the original dataset
for moderate compression, which achieves over 95% of the performance compared to using
the full dataset. Our paper addresses a critical gap in the literature by empirically analysing
the best practices for compressing MLLMs. With our best practices, Bunny-v1.0-3B retains
over 95% of its original performance, while LLaVA-v1.5-7B maintains more than 97%, with
compression ratios below 30%.

1 Introduction

State-of-the-art multimodal large language models (MLLMs) (Liu et al. [2023; (Chu et al., |2023; |Chen et al.,
2024b) based on Large Language Models (LLMs) (Touvron et al., [2023; [Jiang, 2024) require substantial
resources. For instance, the LLaVA family (Liu et al.l [2023) includes models with parameter counts ranging
from 7 to 34 billion. Even those designed to be more memory-efficient, such as Bunny-v1.0-3B (He et al.|
2024)), still require significant storage, with 3 billion parameters. Reducing the size of these models without
compromising performance is crucial for adapting them to diverse deployment scenarios with varying resource
constraints.

Despite the growing need for efficient MLLMs, most existing research has focused on building MLLMs on
Small Language Models (SLMs) (Zhu et al., 2024a; [He et al| 2024} |Chu et al.,|[2023). While these approaches
successfully reduce the overall model size, their flexibility is constrained by the fixed size of the underlying
SLM. Furthermore, training an SLM from scratch to meet desired specifications is computationally expensive
(Chu et al., [2023]). Meanwhile, efforts to compress multimodal models have largely focused on task-specific
tuning for tasks like visual question answering and image captioning(Wang et al., 2023} [Shi et al., 2023))
To the best of our knowledge, no previous work has investigated general-purpose model compression for
MLLMs.
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Figure 1: Overview of our best practices for MLLM compression. After evaluating two pruning strategies,
i.e., widthwise and layerwise pruning, and multiple recovery strategies, we propose distinct compression ap-
proaches for MLLMs. The decision flow highlights the scenarios for applying each method, depending on
resource availability and compression ratio requirements. For each approach, we display the resulting com-
pressed model performance across a range of compression ratios (0-60%) on a set of multimodal benchmarks.
The spider plots illustrate the retained performance across different tasks, demonstrating each strategy’s
effectiveness at various compression levels.

In this work, we aim to uncover the key practices for obtaining effective and compressed MLLMs through
structural pruning and recovery training. We adapt and evaluate several techniques designed for compressing
LLMs on MLLMs and investigate how different design choices for performance recovery affect the downstream
performance of the compressed MLLMs. Our comprehensive empirical study explores several key dimensions:
the structural pruning paradigms, the objectives used to restore initial performance, and the amount of data
required for effective recovery. Specifically, we examine two MLLMs: a large-scale model (LLaVA-v1.5-7B
(Liu et al., [2024))) and a model already optimized for efficiency (Bunny-v1.0-3B (He et al.,[2024))). Given that
the LLM component dominates the parameter count (95% for LLaVA-v1.5-7B, 86% for Bunny-v1.0-3B), we
focus our pruning efforts on it. Specifically, we apply layerwise pruning, which removes entire transformer
layers, and widthwise pruning, which reduces attention heads and MLP hidden dimensions. We then evaluate
different strategies to recover the potential performance loss: supervised finetuning, knowledge distillation
from the original model on the logits distribution, or knowledge distillation on the hidden states. Finally, we
investigate how to combine these losses and their effectiveness w.r.t. the amount of available training data.

Our systematic evaluation across different compression ratios led to different key findings:

o« Widthwise pruning is more effective in low-resource scenarios as it produces an efficient
model even without recovery training.

e« With recovery training, layerwise pruning is better for small ratios, while widthwise
pruning usually outperforms it at larger ones (greater than 40%).

e Finetuning only the multimodal projector is sufficient at small compression ratios, where
pruning has a minimal impact on the language model itself but destroys the multi-modal alignment.

o The best recovery strategy is supervised finetuning coupled with hidden state based
distillation, consistently achieving the the highest performance across all compression ratios.
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e The higher the pruning ratio, the higher the amount of data needed for recovering the
performance. While with small ratios (less than 50%) even 5% of the data might suffice, this
quantity increases for larger ones.

We highlight our key findings in Figure [I] These findings consitute a set of best practices that practitioners
can follow when compressing MLLMs and researchers can consider for developing effective pruning strategies
without conducting extensive experiments themselves. To ease their exploitation and future studies, we will
release our codebase, benchmark as well as the compressed model checkpoints upon acceptance.

2 Related Work

Pruning. Unstructured pruning (Dong et al. 2017, Frankle & Carbin} 2019; Lee et al., 2020; Park et al.,
[2020; [Sanh et al., 2020b; Farina et al., 2024) removes individual weights or neurons. While such approaches
can achieve strong compression rates with minimal accuracy trade-offs, they usually require specialized
hardware or software for effective acceleration. Structured pruning (Ding et all 2019} |Li et al| [2017;
[Liu et al] 2021} [You et al., [2019) eliminates entire groups of parameters to reduce both the model’s size
and its computational overhead. Semi-structured pruning offers a middle ground between structured and
unstructured methods by selectively pruning certain model parts. In the context of LLMs, |[Fang et al.| (2023)
and have successfully applied structured pruning, achieving significant sparsity with minimal
performance degradation. targets transformer layers and demonstrates that some layers
can be pruned more aggressively without compromising accuracy. Meanwhile, Dery et al| (2024) propose a
dynamic pruning strategy that adjusts pruning throughout the training process. In this work, we focus on
structure pruning as well as the recovery strategies for MLLMs.

Further Compression Methods. In addition to pruning, techniques like quantization and low-rank
factorization are also widely used for model compression. Quantization (Bai et al., [2021} [Yao et al., [2022;
[Zafrir et al.l 2019) reduces model size and computational cost by lowering the precision of model parameters,
enabling efficient inference with minimal performance loss. Low-rank factorization (Hsu et al., 2022} [Hu et al.l
[2021b; Lan et al., 20205 |Ashkboos et al., 2024) compresses models by approximating large weight matrices
through the product of smaller matrices, effectively reducing the number of parameters while maintaining
most of the model’s capacity. While these methods can offer significant compression, we focus on pruning
techniques, which allow for more granular control over the architecture by directly targeting and removing
redundant components.

Knowledge distillation (KD) (Hinton et al, [2015)) is a standard method for compressing LLMs by
transferring knowledge from a large teacher model to a smaller student model (Gou et al., 2021; |Sanh|
. In NLP classification settings, KD is often applied by having the student model replicate the
teacher’s output distribution (Liang et al., 2021; Song et al., 2020; Zhang et al., |2023), hidden states
let al.| (2020); [Sun et al.| (2019), or attention patterns (Wang et al., [2020; 2021)), allowing the student to learn
from the teacher’s internal representations effectively. For text generation tasks, provides a
comprehensive survey of the role of knowledge distillation in language models. Hsieh et al.| (2023) introduce
multi-stage distillation, transferring intermediate representations to help the student model capture more
detailed features. propose to replace the forward Kullback-Leibler divergence with a reverse
Kullback-Leibler divergence to prevent the student model from overestimating the low-probability regions
of the teacher distribution.

Efficient MLLMs. Recent studies (Jin et al) 2024; |Zhu et al., [2024b; Lin et al., 2024; [Wei et al. 2024
have explored Multimodal Small Language Models (MSLMs). Models such as LLaVA-Phi (Zhu et al. 2024b
utilize pretrained small language models to lower computational costs, while MobileVLM (Chu et al.| [2023
concentrates on projector designs to enhance MSLM performance. The Bunny model (He et al., 2024
explores the effects of training data size on performance. Although these approaches reduce model size,
they are constrained by the fixed dimensions of the base SLM. Our study specifically addresses methods for
customizing the size of existing MLLMs through structured pruning and recovery strategies.

While most multimodal structured compression efforts, such as Efficient VLM (Wang et al., [2023) and UPOP
(Shi et al.} 2023]), focus on task-specific tuning for tasks like visual question answering and image captioning,
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general-purpose model compression for MLLMs remains underexplored. Our work addresses this gap by
investigating structured pruning techniques and recovery strategies applicable across a variety of multimodal
tasks. Unlike previous approaches optimizing models for specific tasks, our study provides general-purpose
compression guidelines for MLLMs.

3 Methodology

This section outlines our approach to compressing MLLMs. We first introduce two pruning strategies: lay-
erwise and widthwise pruning. We then describe methods to recover model performance through supervised
finetuning and knowledge distillation.

Notation. Given a triplet X = {x,,%p,X;}, the objective of an MLLM my, parameterized by 6 =
{1, $, W}, is to generate a response x, based on an input image x, and a text prompt x,, such that
mg(Xy,Xp) = Xr. The MLLM typically consists of a vision encoder gy(-), an LLM f5(-), and a multimodal
projector W aligning the two modalities. The prompt x, is tokenized into T, while the vision encoder
processes the image x, to extract visual features, which are then converted into language embedding tokens
T, via the multimodal projector:

T, =W-gy(x,) and fu(T, ©T,) =x,. (1)

The concatenated visual tokens T, and prompt tokens T, are fed into the LLM’s M layers, producing
hidden states {H; € RT*9}M where T is the number of tokens and d is the hidden dimension. Finally,
the probabilities py,, (x,|Xy,Xp, 7) are computed by passing the final hidden state through the classification
head with softmax temperature 7.

3.1 Pruning

Pruning seeks to reduce the number of parameters in a model, thus decreasing its computational cost. In
MLLMs, the majority of parameters ¢ are concentrated in the LLM fy4, so downsizing it can significantly re-
duce the overall computational burden. The LLM is typically structured along two main dimensions: depth
and width. Depth refers to the number of stacked transformer layers, while width pertains to the internal
structure of each layer, including the multi-head attention mechanism and the multi-layer perceptron (MLP).
In this paper, we explore two pruning strategies to reduce the parameter count in LLMs: layerwise prun-
ing, which removes entire transformer layers, and widthwise pruning, which eliminates the least important
components within each layer.

To determine which layers or components to prune, we draw a small subset of n samples from the the original
visual instruct-tuning dataset as the calibration dataset D = {xJ,xj,,x}}_;. The importance of each layer
or component is assessed, and those with the lowest importance are pruned.

3.1.1 Layerwise Pruning

Empirical research (Fan et al., 2019; Sajjad et al., 2023) has shown that large transformer models often
contain redundant layers, allowing several to be removed with minimal impact on accuracy. To identify and
remove these redundant layers, we use the Block Influence (BI) score (Men et all [2024), which quantifies
the importance of layer ¢ through the cosine distance between input H; and output hidden states H; ;1. The
key assumption is that layers that cause larger changes in hidden states have a greater influence on model
performance. The BI score of layer 7 is then calculated by

(2)

HTtHi—i-l t
BL(D) = 1 — Ex.. 2 : ,
(P)=1-Ex~py l|Hi,t||2||Hi+1,t||2

where H, ; represents the t*" row of H;. After calculating the BI scores, the layers are ranked by importance,
and those with the lowest scores are pruned.
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3.1.2 Widthwise Pruning

Previous research has shown that transformer layers also exhibit width redundancy, meaning that only a
subset of attention heads (Voita et al., [2019; Michel et al., [2019) or MLP dimensions (McCarley et al.,
2019; [Hudson & Manning), 2019) are critical for model performance. To address this, we apply dependency-
based structural pruning, which removes redundant widthwise components while minimizing the impact on
the model’s performance. Specifically, we first identify groups of interdependent structures and then prune
entire groups based on their collective importance.

Following the methods of [Fang et al| (2023) and Ma et al.| (2023)), we begin by constructing dependency
relationships within each LLM layer. Let N; and N; represent two neurons in the layer, where In(N;) and
Out(V;) represent the neurons connected to N; as inputs and outputs, respectively. The dependency of
neuron NN; on NV; is defined as:

N; € Out(N;) N Numpy,(n,) = 1, or N; € In(N;) N Numoye(w,) = 1, (3)

where Nump,(y,) refers to the number of nodes connected to N; as inputs and Numgyg () is the number of
nodes connected to N; as outputs. If neuron [V; is pruned, all its dependent neurons /V; must also be pruned.
This process results in a set of dependency graphs G = {w¥}},  where M is the number of structures in the
graph and w} represents the k' weight parameter within a structure.

Once the dependency graphs are constructed, we assess their importance at the group level, since all weights
within a graph must be pruned together. Group importance is evaluated by comparing the vision-language
modeling loss Log(mg(xy,X,),%,) on the calibration dataset, both with and without the weight. To effi-
ciently approximate the importance, we apply a Taylor expansion using gradient information. The impor-
tance function is given by:

T (%) = [Cor(X.mo) ~ Lo (X, ~0)] = | 2T (W
We then prune the graphs with the lowest group importance Ig:
M
I5(D) = Exp |21 4 Ls (X)) (5)

3.2 Recovery Training

Pruning a large multimodal language model results in performance degradation, affecting both language
modeling and cross-modality alignment. To mitigate this, we investigate two recovery training methods:
supervised finetuning (Sec. and knowledge distillation (Sec. . We consider the orginal teacher
model mg, the pruned student model mg,, and a recovery dataset D.

3.2.1 Recovery Training with supervised finetuning

A simple yet effective approach to recovery training is supervised finetuning on the original dataset. This
method helps counteract performance degradation by allowing the model to adapt its parameters to the
modified architecture while taking advantage of the detailed annotations in the original dataset. Here, we
first focus on training only the multimodal projector to realign the vision and language spaces. Second,
we jointly finetune both the projector and the language model while keeping the vision encoder fixed, as
finetuning the vision encoder does not improve performance (Karamcheti et al., 2024). We use the cross-
entropy loss for supervised finetuning, denoted as

Lypi(m, D) = Ex~p[Lop(my (%o, %Xp), X,)]. (6)

3.2.2 Recovery Training with knowledge distillation

Knowledge distillation (KD) is a method used to transfer knowledge from a large, well-trained model (the
teacher) to a smaller or pruned model (the student) (Hinton et al.l |2015). This approach allows the pruned
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model to regain lost performance by mimicking the decision-making process of the more capable teacher. In
our setup, the uncompressed model acts as the teacher, while the pruned model serves as the student. We
explore two main strategies, logits-based KD and hidden state based KD, evaluating different loss functions
and their trade-offs.

Logits-based KD focuses on aligning the output probability distributions of the pruned model with those
of the teacher model. The logits-based KD loss is defined as

Elogits (mgu mg7 D) =Exp [ﬁKD (pm;f (Xr|xva Xp, T)»pmg, (X’l“ |X117 Xp, 7—)):| . (7)

We leverage two distinct KD losses to evaluate the differences between these logit distributions. Given
the teacher distribution py and the student distribution ¢y, the standard KD objective minimizes the
approximated forward Kullback—Leibler (KL) divergence between these two distributions, denoted as
Lxp(pe,qer) = Dkr(pellger). This approach encourages the student distribution to match all the modes
of the teacher distribution.

However, minimizing forward KL can lead gy to assign excessively high probabilities to areas where p has little
or no probability mass (Malinin & Gales, [2019). In contrast, Reversed Kullback—Leibler divergence (RKL)
minimizes Lxp(pg,qe') = Dkr(qer||pe), encouraging g to focus on the major modes of py while assigning
low probabilities to its less significant regions. This helps the student model avoid learning unnecessary
long-tail variations of the teacher distribution and instead focus on generating more accurate responses (Gu
et al.l |2023} [Holtzman et al.| |2019)).

Hidden State Matching involves aligning the pruned model’s intermediate representations (hidden states)

S T
H;n"' with the teacher model’s H;n" . The corresponding loss for a layer i can be defined as

S T
Ematch (msla m;r7 D) = IEXN’D Efeat (Hzne/ 5 H;ng ) ) (8)
where Leqt refers to a feature matching loss. Both |Yang et al.| (2024) and [Popp et al.| (2024)) suggest that
applying a feature-based L2 distillation loss improves the student model’s performance, particularly for pre-
trained vision-language models. Consequently, we employ L2 loss as the feature matching loss Leqr = ||-— lI3.

The total loss for recovery training is computed as:
‘C(mga mgv D) = a‘csft (mg/ 5 D) + B‘Clogits (mg’a m’GTa D) + ’ycmatch (mg'v mg‘a D) (9)

where «, 8, and v are the coefficients that balance the contributions of the different loss components.

4 Experiments

In this section, we first introduce our experimental setup and then demonstrate the main findings on model
pruning (Sec. and performance recovery (Sec. Sec. . We highlight the findings on recovery
training using only a small fraction of data (Sec. [4.4) and present the model compression results following
our best practices (Sec. [4.5).

Experimental setup. We evaluate pruning and knowledge distillation strategies on both a large-scale
MLLM model (LLaVA-v1.5-7B (LLaVA) (Liu et al. |2024))) and a smaller-scale MLLM model (Bunny-v1.0-
3B (Bunny) (He et al., [2024)). LLaVA is built upon Vicuna-v1.5 (Chiang et all 2023) with 6.7 billion
parameters, and Bunny is based upon Phi-2 (Javaheripi et al. [2023) with 2.8 billion parameters. We provide
a detailed overview of the model architectures in Appendix

For both models, we exclusively use their visual instruction tuning datasets: LLaVA-v1-5-mix665k (Liu
et al., [2024) for LLaVA and Bunny-695K (He et all 2024) for Bunny. During pruning, we randomly select
10 samples from the training dataset as the calibration dataset to compute the importance. For recovery
training, we experiment with various portions of the original dataset (5%, 10%, 20%, and 100%) for fine-
tuning and knowledge distillation. We set the distillation temperature to 2.0 for logits-based distillation and
use the final layer representation for hidden state matching (see Appendix [A.2).
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We evaluate the pruned and recovery-trained models on visual question-answering tasks using GQA (Hudson,
& Manning), 2019) and SQA-I (Lu et al.l 2022)), as well as instruction-following tasks with POPE (Li et al.,
2023), MME-Cognition, MME-Perception (Yin et al. 2023) and MMMU (Yue et al., [2024). To ensure
consistency, we use the lmms-eval suite (Bo et al.l [2024) for all evaluations. For clearer comparisons, we
calculate the relative performance as a percentage of the original (uncompressed) model’s performance on
each benchmark.

4.1 The effect of pruning on the model performance and resources usage

In this section, we begin by exploring the techniques to obtain the best pruned model. We then examine the
resulting reductions in memory usage and computational requirements.

Comparison of Pruning Techniques. As illustrated in Figure [2] (blue lines), for both the Bunny and
LLaVA model, widthwise pruning consistently outperforms layerwise pruning in terms of model performance
after pruning without recovery training. Specifically, for small compression ratios, such as 15%, the Bunny
model retains 95% of its performance, while LLaVA retains 93% (see Appendix for full results). In
resource-constrained scenarios, widthwise pruning without recovery training offers an efficient strategy when
a small compression ratio is required. However, as the compression ratio increases, both widthwise and layer-
wise pruned models show significant performance degradation. Overall, widthwise pruning better preserves
the model’s structure and information flow, allowing it to keep performance with minimal adjustments, espe-
cially at lower compression ratios. The impact of the pruning method on model performance after finetuning
both the projector and the LLM is also illustrated in Figure [2| (green lines). For smaller compression ratios
(less than 40%), layerwise pruning offers a slight advantage over widthwise pruning, while widthwise pruning
delivers better overall performance for larger compression ratios (greater than 40%). This suggests that
finetuning plays a crucial role in reconstructing inter-layer connections and reoptimizing layer components.

Best Practice for MMLM Pruning. Widthwise pruning generally proves more effective than layerwise
pruning in obtaining the best pruned model. A widthwise pruned model can often be deployed without
recovery training when targeting a small compression ratio (less than 20%). Regarding post-finetuning
performance, layerwise pruning shows a slight advantage at compression ratios below 30%, whereas widthwise
pruning performs marginally better at higher compression ratios.

From compression ratio to resource usage. Table 1: Memory requirements (Mem.) and FLOPS
Table [T] provides an overview of how different com-  for the Bunny and LLaVA models at various compres-
pression ratios impact memory usage and FLOPS sion ratios. The models are pruned widthwise. The
for both the Bunny and LLaVA models compressed evaluation is performed in inference mode, where each
via widthwise pruning. Memory consumption refers model is provided with an image and a prompt con-
to the allocated GPU memory, while FLOPS are taining 50 tokens.

measured using the ’Calﬁops codebfisdﬂ The resul‘ts " Bunny LLaVA

demonstrate that higher compression ratios consis- #HO Mem. (MiB) FLOPS (T) Mem. (MiB) FLOPS (T)

tently lead to both memory and compute reductions. 0% 6,167 477 13,546 957

For example, at a 30% compression ratio, we observe 15% 5,380 4.14 11,530 8.21

. 07

a memory reduction of 25% for Bunny and 28% for ~ 30% 4,597 3.50 9,548 6.89

LLaVA ith di d in FLOPS of 45% 3,770 2.84 7,470 5.49
aVA, with a corresponding decrease in 0 60% 5992 9.90 5435 417

27% for both models. These reductions continue to
scale with larger compression ratios; at a 60% compression ratio, memory usage and FLOPS decrease by 50-
60%. We observe similar results for layerwise pruning (see Appendix [A.4]). This indicates that the achieved
compressions directly translate into improvements in memory efficiency and computational cost.

4.2 Supervised Finetuning for Performance Recovery

Compressing the LLM can degrade its language modeling capabilities. More critically, the impact of pruning
the LLM decoder on visual understanding and the alignment between vision and language remains largely

ICaflops codebase: https://github.com/MrYxJ/calculate-flops.pytorch
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Figure 2: Comparison of pruning and finetuning strategies on two MLLMs, Bunny and LLaVA. The plot
shows the average relative performance under three scenarios: pruning only, pruning followed by finetuning
the projector, and pruning followed by finetuning both the projector and the LLM. For smaller compression
ratios, finetuning only the projector effectively recovers performance. For larger compression ratios, finetun-
ing the projector and the LLM leads to better recovery, indicating the need for broader adjustments as more
parameters are pruned.

unexplored. To investigate these effects, we experiment with two approaches: (1) fine-tuning only the
multimodal projector and (2) jointly fine-tuning both the projector and the LLM. This allows us to pinpoint
the source of performance degradation and assess the extent to which each component contributes to overall
model effectiveness.

Following the previous research (Karamcheti et al., |2024), which shows that training the vision encoder may
degrade overall model performance, we keep the vision encoder frozen in both setups. To facilitate fast
recovery, we employ the low-rank approximation, LoRA (Hu et all 2021a)), while finetuning the LLM.

Finetuning the multimodal projector. As shown in Figure [2| (orange lines), finetuning the multimodal
projector significantly restores performance. At lower compression ratios (less than 20%), finetuning only the
projector achieves results comparable to jointly finetuning the LLM. For both Bunny and LLaVA, finetuning
the projector retains at least 95% of the performance at a compression ratio of 15%. As the compression ratio
increases, the loss of language modeling ability becomes more pronounced, making projector-only finetuning
insufficient to recover the model’s performance fully. Nevertheless, even at a compression ratio of 60%, only
finetuning the multimodal projector can still recover 60 to 80% of the performance by realigning the vision
and language inputs. This shows that pruning specific LLM structures in the MLLM can both damage the
language modeling ability and introduce modality misalignment, hindering the model’s ability to comprehend
visual inputs.

Finetuning both the projector and the LLM. While a significant portion of the recovered performance
is due to realigning the visual and textual inputs, we observe consistent gains from additionally finetuning
the pruned LLM (green lines in Figure , especially at higher compression ratios (greater than 40%). This
indicates that the pruned model not only suffers from modality misalignment but also experiences a decline
in its language modeling capabilities. We can partly restore these lost capabilities by finetuning the LLM.
At a compression ratio of 40%, finetuning both the projector and the LLM restores more than 80% of the
original model’s performance. Even at a compression ratio of 60%, finetuning recovers close to 80% of the
model’s original performance.

Best Practice for Supervised Finetuning. When a small compression ratio of around 15% is required,
finetuning the multimodal projector alone is typically sufficient to recover most of the model’s performance.
For higher compression ratios (greater than 40%), incorporating finetuning of the LLM yields additional
performance improvements.
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Figure 3: Comparison of different distillation recovery strategies (KL loss, RKL loss, L2 loss, and their
combinations) for Bunny and LlaVA models pruned with widthwise pruning. The plot shows the relative
performance improvement of each strategy over standard finetuning across various compression ratios. The
results demonstrate that distillation helps recover more performance than finetuning alone, with the L2 loss
component consistently leading to the largest performance gains.

4.3 Knowledge Distillation for Performance Recovery After Pruning

This section investigates the impact of combining knowledge distillation with finetuning.
As shown in Table [2] for the Bunny model com-
pressed with layerwise pruning, we compare a logit-
based approach (RKL) and a hidden state match-
ing strategy (L2), both with and without a fine-
tuning loss component. The results demonstrate
that incorporating a supervised finetuning loss sig-
nificantly enhances and stabilizes distillation perfor-
mance. For example, when applying only the distil- Ratio | FT | L2 LQITE;Y\ RKL  RKLAFT
lation loss, the L2 and RKL methods can recover

85% of the original performance at a compression 15% | 96.30% | 95.51%  99.59% | 96.88%  98.70%

ratio of 30%. However, for higher compression ra- 30% | 94.33% | 88.13%  95.03% | 9221%  93.81%
0- ’ & p 45% | 86.70% | 56.96% 90.19% | 82.57%  88.50%

tios, adding the finetuning loss becomes critical in 60% | 69.38% | 47.61% 72.62% | 12.61%  69.85%
preventing model collapse. At a compression ratio
of 60%, combining the finetuning loss with distillation dramatically improves performance—L2 distillation
increases from 47.61% to 72.62% and RKL distillation from 12.61% to 69.85%. This pattern is consistently
observed across all models and compression techniques evaluated. While knowledge distillation alone can
partially recover performance after pruning, its effectiveness is limited without the integration of finetuning.

Table 2: Comparison of distillation strategies with and
without finetuning for the Bunny model compressed
via layerwise pruning. We show the performance ratio
between the compressed model and the original model.
Finetuning helps stabilize performance and prevents
model collapse, especially at higher compression ratios.

Figure [3] compares various distillation strategies based on their relative improvement over finetuning alone
when widthiwse pruning is applied (see Appendix for further results on layerwise pruning). Our results
indicate that applying the L2 loss to align the hidden states of the student and teacher in the final layer
yields the best performance, or at least matches other methods. Unlike logit-based approaches, which require
the student to replicate the teacher’s output distribution, the L2 loss method enables the student to better
capture the teacher’s feature representations directly, leading to enhanced performance. Additionally, we
observe that RKL generally outperforms KL across most compression ratios, a result consistent with the
findings of |Gu et al.| (2024). We perform ablation studies by adjusting the weights of each loss component
to evaluate their individual contributions (see . Additional ablation results are in the Appendix

Best Practice for Knowledge Distillation. Knowledge distillation, particularly when combined with
finetuning and using L2 loss to map the intermediate states, delivers the most effective performance recovery
after pruning across all compression ratios.

4.4 Data Efficient Recovery

In this section, we investigate the feasibility of performing recovery training using only a small fraction of
the available data. Figure [4] shows the models’ performance after recovery training with different portions
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Figure 4: Comparison of recovery performance using different percentages of training data (100%, 20%,
10%, and 5%) for finetuning and distillation after pruning across Bunny and Llava models. For smaller
compression ratios, even a small percentage of the training data (as low as 5%) is sufficient to recover most
of the original performance. However, as the compression ratio increases, more training data is required to
achieve higher recovery performance.

of the original dataset relative to training with the full 100%. Both models undergo widthwise pruning
and recovery training incorporating RKL and L2 loss functions. Remarkably, for compression ratios below
50%, using just 5% of the original data is sufficient to achieve over 95% of the performance compared to
using the full dataset. However, as the compression ratio increases, the amount of data required for effective
recovery training also grows. For a compression ratio of 60%, the relative performance drops below 90% for
LLaVA and diminishes even further to below 70% for Bunny. Nevertheless, using only a small portion of the
training data appears to be a valid option, significantly lowering the required time and cost for compressing
and finetuning MLLMs.

Best Practice for Data Efficient Recovery. At small to medium compression ratios less than 50%,
using just 5% of the dataset is enough to achieve performance comparable to full data training. However, for
compression ratios greater than 50%, full data training becomes necessary to recover performance effectively.

4.5 Model compression results following our best practices

In this section, we summarize our key findings as a set of best practices and highlight model performance
achieved by following them. Based on the empirical results from the previous section, we outline the following
best practices for compressing MLLMs:

Best Practices for MLLM Compression and Recovery

¢ Widthwise pruning is more effective in low-resource settings, yielding an efficient model even
without the need for recovery training.

o With recovery training, layerwise pruning excels for smaller compression ratios (below 40%), while
widthwise pruning performs better at higher ratios (above 40%).

o For small compression ratios, finetuning just the multimodal projector is often sufficient to restore
performance, with minimal impact from pruning.

e For recovery training, combining finetuning with knowledge distillation of the intermediate repre-
sentations using L2 loss consistently achieves the highest performance across all compression ratios.

o Data efficiency can be significantly boosted, requiring only 5% of the original data to match full-data
training results, though full datasets are still needed for high compression ratios.

These guidelines provide insights for researchers aiming to develop new techniques for deploying MLLMs,
enabling more effective model customization for specific deployment needs. In Appendix [A.7] we offer a
detailed comparison of results for both Bunny and LLaVA. These findings underscore the feasibility of
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compressing MLLMs without incurring significant performance degradation. We provide qualitative results
for the compressed models in Appendix

5 Discussion

In this section, we discuss the effects of LLM pruning on modality alignment (Sec. , compare our best
practices with quantization and explore their integration (Sec. , and assess the generalizability of our
approach by applying it to a new model (Sec. . Finally, we discuss the limitations of structural pruning
and recovery training as compression techniques, along with potential directions for future work (Sec. .

5.1 How does pruning LLM impact multi-modal capability?

Since LLMs comprise the majority of parameters in MLLMs, reducing their size can substantially shrink
the overall model. However, pruning an LLM presents a dual challenge: it can not only degrade language
modeling capabilities but also disrupt the alignment between modalities, impairing the model’s ability to
interpret and reason about visual inputs effectively. Our analysis shows that for pruning ratios below 10%,
the model retains most of its multimodal functionality. With moderate pruning (up to 15%), modality
alignment can still be restored by post-training the multimodal projector. However, beyond this threshold,
language modeling degradation becomes more pronounced. At higher compression levels, fine-tuning the
projector alone is insufficient to recover performance, making joint training of the LLM necessary to maintain
functionality.

5.2 Comparison and combination with quantization

Integrating additional compression techniques, such as quantization, into our framework can further opti-
mize inference time and memory efficiency. In this section, we provide a comparative analysis of structured
pruning and quantization, highlighting their complementary strengths when combined. As a representative
quantization method, we employ LLM.int8() (Dettmers et al., 2022). As shown in Table [3] LLM.int8() re-
duces memory usage by 44.5% in the original uncompressed model, while incurring only a minor performance
loss of 0.43 percentage points. However, this comes at the cost of a fourfold increase in latency. For LLaVA-
6B (layerwise pruned, recovery trained) and LLaVA-5B (widthwise pruned, recovery trained), combining
pruning with quantization offers a well-balanced trade-off between memory efficiency and computational
latency, mitigating quantization’s overhead while preserving the memory saving. This synergy provides an
effective strategy for compressing large models without performance degradation.

Model Memory(MiB) Ratio MMMU GQA SQA MME-C MME-P POPE AVG Latency

LLaVA-7B 13546 35.10 61.98 68.67 363.21 1511.33 86.99 62.28 105 ms £ 1.5 ms
LLaVA-7B.int8() 7518 35.20  61.87 68.22 350.71  1508.41 86.54 61.85 398 ms £ 1.3 ms
LLaVA-6B 11604 15% 3540  61.17 68.07 328.57  1454.20 86.51 60.82 95 ms + 8.1 ms
LLaVA-6B.int8() 6473 15% 35.40  61.17 68.07 32857  1454.20 86.51 60.82 125 ms & 0.9 ms
LLaVA-5B 9548 30% 31.80  60.71 60.54 252.50  1407.08 86.68 56.94 80.7 ms & 0.6 ms
LLaVA-5B.int8() 5389 30% 31.60  60.65 60.09 263.57 1410.28 86.78 57.10 141 ms & 2.4 ms

Table 3: This table compares different pruning and quantization strategies applied to LLaVA-v1.5-7b, evalu-
ating their effect on memory usage, performance across multiple benchmarks (MMMU, GQA, SQA, MME-C,
MME-P, POPE), and inference latency. Quantization using LLM.int8() significantly reduces memory con-
sumption but increases latency, while pruning with recovery training maintains a balance between efficiency
and performance. Combining both techniques mitigates quantization overhead while preserving compression
benefits.

5.3 Generalizability of the best practices

To assess the generalizability of our best practices, we extended our experiments to Mini-InternVL-Chat-
4B-V1-5 , which comes from the recent InternVL model family(Chen et all |2024a)and achieves comparative
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results with much larger scale models across benchmarks. It comprises of InternViT-300M-448px as vision
encoder, and Phi-3-mini-128k-instruct as the LLM. As shown in Table ] widthwise pruning outperforms
layerwise pruning without recovery training, preserving 97.4% of the original performance at 15% compression
compared to 96.7% for layerwise pruning. This reinforces widthwise pruning as the preferred strategy in
low-resource scenarios.

We further examined the impact of re- Table 4: Best practices on the model InternVL-Chat-4B. Com-
covery training, including finetuning the parison of different pruning methods, recovery training only
multimodal projector and the LLM, as multimodal projector (mm) and large language model on Mini-
well as the importance of incorporating InternVL-Chat-4B-V1-5 after layerwise pruning with different re-
knowledge distillation. Table [] shows covery strategies, i.e., supervised finetuning (SFT) and knowledge
that at a 15% compression, projector- distillation (KD) on intermediate representations.

only finetuning restores 96.9% of the orig-  “gi,c Ratio  Pruming SFT,m SFT. KDui AVG AVG-%
%nal performance, while _]OlIlltly finetun- B i i i i 7256 100%
ing the projector and LLM improves re-  ——— o Tayorwise - - 7015 96.68%
covery to 97.8%. At 30% compression,  3rp 157 Widthwise 7070 97.44%
these numbers drop to 75.1% and 86.6%,

3B 30%  Layerwise -
3B 30%  Layerwise -

- 62.86 86.64%
v 63.29 87.23%

. . . | 3.5B 15%  Layerwise v v - 7015 96.68%
respectively. Supervised finetuning with 358 15%  Layerwise B v - 7096 97.80%
hidden state based distillation consis- 3.5B 15%  Layerwise - v v 7123 98.16%
tently yields the best results, recovering 3B 30%  Layerwise v ? - 4394 60.56%

v

98.2% at 15% compression and 87.2% at
30%. These findings confirm our best
practices generalize well across architectures, ensuring robustness and broader applicability.

5.4 Limitation and future work

Our experiments demonstrate that structural pruning with recovery training enables effective model com-
pression with minimal performance degradation at moderate compression ratios (up to 30%). However,
beyond this threshold, performance loss becomes increasingly difficult to recover, indicating fundamental
limitations in the model’s capacity to retain essential information. This suggests that for applications re-
quiring more aggressive compression, training MLLMs from smaller pre-trained SLMs may be a more viable
alternative than extreme pruning of large models.

This study establishes best practices based on experiments with two representative models (LLaVA-v1.5-7B
and Bunny-v1.0-3B) and confirms their generalizability with InternVL. While these models offer valuable
insights, extending our analysis to a broader range of architectures and scales would further strengthen our
findings. Future work will explore larger and smaller MLLMs and alternative recovery strategies to assess
whether our compression strategies remain effective across diverse settings.

6 Conclusion

In this work, we investigated efficient compression techniques for MLLMs, focusing on two key pruning
strategies: width and layerwise. Our study assessed the impact of these strategies on model performance,
both before and after recovery training, across various compression ratios. We further explored recovery
methods such as supervised finetuning and knowledge distillation to address performance degradation caused
by pruning. We formulate our findings as best practices, which offer practical guidelines for optimizing
MLLMs, enabling a balance between model size, performance, and data efficiency to meet specific deployment
resource constraints. Due to computational constraints, in this work we focused on two representative pruning
techniques on three different models. Future work could extend these best practices to include a broader
range of pruning techniques and models to further refine these strategies.
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A Appendix

A.1 Model architecture of the LLaVA and Bunny models used in the main experiments

Table [5 outlines the architectures of the Bunny and LLaVA models. LLaVA-v1.5-7B employs CLIP-ViT-L
(Radford et al.l 2021) as the vision encoder and Vicuna-v1.5 |Chiang et al., 2023| as the language decoder,
while Bunny-v1.0-3B utilizes SigLIP-SO (Zhai et al., 2023) as the vision encoder and Phi-2 (Javaheripi et al.,
2023)) as the language decoder. Both models leverage MLP layers to align the vision and language modalities.

Model Parameters Vision Encoder = Multimodal Projector Language Decoder
LLaVA-v1.5-7B 7.0B CLIP-ViT-L (0.3B) mlp2x-gelu (0.01B) Vicuna-v1.5 (6.7B)
Bunny-v1.0-3B 3.2B SigLIP-SO (0.4B) mlp2x-gelu (0.02B) Phi-2 (2.8B)

Table 5: Architecture details of the uncompressed models. We present the number of parameters, along with
the vision encoder, multimodal projector and the language decoder of the models included in our study.

A.2 Implementation details of hidden state matching

To determine which LLM layers’ hidden states to map between the pruned and unpruned models, we explore
three options: matching the last layer, the last two, and the last three layers. Table [6] shows that matching
only the last layer’s hidden state yields the best performance.

A.3 Detailed results for two pruning techniques

Table [7] presents the model performance for widthwise and layerwise pruning. For both of the Bunny and
LLaVA models, widthwise pruning consistently outperforms layerwise pruning. This performance gap widens
as the compression ratio increases, with widthwise pruning showing a more significant advantage at higher
compression ratios.
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Ratio Layer-1 Layer-1,2 Layer-1,2,3
12.8% 95.34% 95.17% 96.25%
25.5% 91.02% 90.48% 90.97%
39.0% 87.08% 86.12% 84.84%
51.8% 75.25% 72.56% 72.87T%

Table 6: Results for recovering widthwise pruned Bunny with hidden state mapping. We compare the relative
performance for mapping the last layer (layer-1), the last two layers (layer-1,2), and the last three layers
(layer-1,2,3). By only mapping the last LLM layer the best performance is achieved.

Method Size PruneRatio MMMU GQA SQA MME-C MME-P POPE AVG AVG-%
LLaVA-v1.5-7TB  7.0B 35.10 61.98 68.67 363.21 1511.33 86.99 62.28 100.00%
Width-wise 6.3B 15% 32.40  59.34  63.21 268.93 1432.47 86.57 57.79 92.79%
5.5B 30% 31.00 52.59 54.29 253.21 1174.93 86.29  52.43 84.17%
4.8B 45% 27.60 20.86 12.10 70.00 347.45 45.96  22.11 35.49%
4.0B 60% 23.30 0.43  0.40 2.14 19.24 3.94 4.88 7.84%
Depth-wise 6.3B 15% 31.80 42.77 55.23 202.14 701.83 86.38  46.09 74.00%
5.5B 30% 32.70  42.18 59.64 210.71 921.88 78.69 47.61 76.43%
4.8B 45% 26.90 14.39  3.82 132.86 616.63 51.69 24.04 38.60%
4.0B 60% 25.80 0.00  0.00 0.00 0.00 0.00 4.30 6.90%
Bunny-v10-3B  3.2B 34.10 54.72 70.70 289.30 1487.71 87.82 59.65 100.00%
Width-wise 2.8B 15% 30.90 51.83 65.64 242.50 1207.85 87.94 54.50 95.48%
2.5B 30% 28.40  45.65 55.73 199.64 807.95 87.13  47.04 87.57%
2.0B 45% 25.70 3792  3.42 200.00 618.25 83.12 34.35 60.66%
1.6B 60% 24.80 6.12 0.00 141.07 293.23 2.34  10.93 13.52%
Depth-wise 2.8B 15% 33.80 2942 69.66 271.43 1456.41 87.91 54.59 91.52%
2.5B 30% 29.00 24.77 28.76 272.86 1273.34 86.50  44.47 74.55%
2.0B 45% 23.90 16.85  3.47 191.43 867.37 80.09 31.94 53.54%
1.6B 60% 26.60 0.02 17.15 0.71 55.92 0.02 7.78 13.04%

Table 7: Pruning results for LLaVA-v1.5-7B and Bunny-v1-3B. Size is the number of total parameters of the
model, while the compression ratio (Ratio) indicates the proportion of remaining language model parameters

compared to the pre-pruning state.
without finetuning compared to depth-wise pruning.

For both models, width-wise pruning results in better performance

A.4 Detailed results on the eficiency of the pruned models

For the models pruned by layerwise method, we also
assess their memory consumption as FLOPs. Mem-
ory consumption refers to the allocated GPU mem-
ory, while FLOPS are measured using the Calflops
codebasd?l The results in Table [§ show the same
trend as widthwise pruning, indicating that the
achieved compressions directly translate into im-
provements in memory efficiency and computational
cost for both widthwise and layerwise pruning.

A.5 Is SFT needed for KD?

Figure [5] and Figure [6] compare logits-based knowl-
edge distillation (represented by RKL) and hidden

Ratio Bunny LLaVA
Mem. (MiB) FLOPS (T) Mem. (MiB) FLOPS (T)
0% 6,167 4.77 13,546 9.57
15% 5,411 4.16 11,604 8.03
30% 4,659 3.56 9,664 6.92
45% 3,907 2.95 7,724 5.55
60% 3,006 2.22 5,496 3.9

Table 8: Memory requirements (Mem.) and FLOPS
for the Bunny and LLaVA models at various compres-

sion ratios.

The models are pruned layerwise. The

evaluation is performed in inference mode, where each
model is provided with an image and a prompt con-
taining 50 tokens.

2Caflops codebase: https://github.com/MrYxJ/calculate-flops.pytorch
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state matching-based knowledge distillation (represented by L2 loss), with and without supervised fine-
tuning, following widthwise and layerwise pruning, respectively. While knowledge distillation alone helps in
recovering performance post-pruning, it remains less effective than supervised fine-tuning. However, when
combined with supervised fine-tuning, it results in superior performance.
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Figure 5: Comparison of L2 and RKL distillation strategies with and without additional fine-tuning loss for
Bunny and Llava models compressed by widthwise pruning. The plot shows performance differences relative
to standard fine-tuning across varying compression ratios.
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Figure 6: Comparison of L2 and RKL distillation strategies with and without additional fine-tuning loss for

Bunny and Llava models compressed by layerwise pruning. The plot shows performance differences relative
to standard fine-tuning across varying compression ratios.

A.6 Which KD strategy to use after layerwise pruning?

Figure [7] compares various distillation strategies based on their relative improvement over finetuning alone
after layerwise pruning. Similar to the results after widthwise pruning, applying hidden states matching
yields the best performance, or at least matches other methods. The trend that RKL generally outperforms
KL is also observed here.

A.7 Detailed model compression results following our best practices

This section provides detailed numerical results of the model performance following our best practices. To
illustrate the performance at different compression ratios, Table [J] offers a detailed comparison of results for
both Bunny and LLaVA across various multimodal benchmarks. The results show that, with compression
ratios below 30%, Bunny retains over 95% of its original performance, while LLaVA maintains more than
97%. Even at higher compression ratios, up to 60%, our best practices preserve an average performance
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Figure 7: Comparison of different distillation recovery strategies (KL loss, RKL loss, L2 loss, and their
combinations) for Bunny and LlaVA models pruned with layerwise pruning. The plot shows the relative
performance improvement of each strategy over standard fine-tuning across various compression ratios. The
results demonstrate that distillation helps recover more performance than fine-tuning alone, with the L2 loss
component consistently leading to the largest performance gains, particularly at higher compression ratios.

of 83% for Bunny and 78% for LLaVA. These findings underscore the feasibility of compressing MLLMs
without incurring significant performance degradation.

A.8 Qualitative results of the compressed models

In this section. We present some qualitative results of the compressed models. Table [I0] presents the
qualitative evaluation results of the compressed LLaVA models. Despite undergoing compression, these
models exhibit a remarkable capacity for understanding and processing visual inputs with high accuracy.
They effectively analyze images and generate rich, detailed textual descriptions. This demonstrates that
compression does not significantly compromise their ability to comprehend complex visual information.
Instead, the models maintain strong performance, producing coherent and contextually relevant outputs.

Table 9: Performance of the best compressed models. The size is the number of total parameters of the
model, while the ratio, short for compression ratio, indicates the proportion of remaining LLM parameters
compared to the pre-pruning state. When the compression ratio (Ratio) is below 40%, we apply depthwise
pruning. For ratios above 40%, we use widthwise pruning. During the recovery phase, we employ supervised
finetuning combined with L2 loss to match the hidden states. For both Bunny and LLaVA, 95% performance
is retained if the compression ratio is smaller than 40%.

Method Size Ratio MMMU GQA SQA MME-C MME-P POPE AVG AVG-%
Bunny-v1.0-3B

3.2B 0% 34.10 54.72 70.70 289.30 1487.71 87.82  59.65 100.00%
Depth+FT+L2 2.8B 15% 33.00 54.56 70.00 304.29 1457.06 87.97  59.40 99.59%
Depth+FT+L2 2.5B 30% 32.30 53.08 68.12 252.50 1349.91 87.53  56.68 95.03%
Width+FT+L2 2.0B 45% 29.10 52.31 63.06 244.64 1281.66 87.09 54.37 91.15%
Width+FT+L2 1.6B 60% 28.10 48.72 53.20 216.07 1115.33 86.73  49.92 83.69%

LLaVA-v1.5-7B

7.0B 0% 35.10 61.98 68.67 363.21 1511.33 86.99  62.28  100.00%
Depth+FT+L2 6.3B 15% 36.40 61.20 68.42 337.86 1442.35 86.94 61.22 98.29%
Depth+FT+L2 5.5B 30% 36.00 60.34 68.82 318.57 1496.60 85.98  60.96 97.88%
Width+FT+L2 3.8B 45% 30.80 57.74 52.90 215.00 1191.17 85.74  52.27 83.92%
Width+FT+L2 2.8B 60% 27.70  52.32 46.26 211.79 1085.97 84.06 48.52 77.90%
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Model Response

Prompt: A chat between a curious user and an artificial intelli-
gence assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions. USER: < image > What is funny
in the image?

LLaVA-6.3B The image is funny because it features a dog wearing a
Renaissance-style dress and a bandana, posing as if it’s posing
for a painting. This is humorous because it is a playful and un-
conventional representation of a dog, which is not something you
would typically see in a painting or a Renaissance-style dress. The
dog’s pose and attire create a sense of humor and absurdity, mak-
ing the image entertaining and amusing to viewers.

LLaVA-5.5B The image is funny because it features a dog dressed up in a
human-like attire, wearing a long black dress and a hat. This un-
usual and amusing scene is not something you would typically see
in real life, as dogs don’t wear clothes or accessories like humans.
The dog’s expression and the way it is posing for the picture fur-
ther contribute to the comic effect of the image. The image cap-
tures the viewer’s attention and sparks a sense of humor due to
the unexpected and imaginative representation of a dog dressed
like a human.

LLaVA-3.8B The image is funny because it features a dog dressed in a human-
like dress, posing in a pose as if it were a person. The dog appears
to be dressed in a dress, which is a humorous and unexpected
scene, as dogs are not typically dressed like humans. The dog’s
pose and the overall scene create a sense of humor and playfulness,
making the image a delightful and entertaining piece.

Table 10: Qualitative analysis of compressed LLaVA models with respect to the image. We feed the com-
pressed LLaVA models the image paired with a prompt to generate a response. The compressed LLaVA
models are able to understand the visual inputs and output reasonable texts.
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