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ABSTRACT

Self-supervised representation learning has mainly advanced in an empirical rather
than theoretical manner. Many successful algorithms combine multiple techniques
that are supported by experiments. This approach makes it difficult for the commu-
nity to understand self-supervised learning fundamentally. To help settle this situa-
tion, we take a principled approach. We theoretically formulate a self-supervised
learning problem as an approximation of a supervised learning problem. From the
formulated problem, we derive a loss that is closely related to existing contrastive
losses, thereby providing a foundation for these losses. The concepts of prototype
representation bias and balanced contrastive loss are naturally introduced in the
derivation, which provide insights to help understand self-supervised learning. We
discuss how components of our framework align with practices of self-supervised
learning algorithms, focusing on SimCLR. We also investigate the impact of bal-
ancing the attracting force between positive pairs and the repelling force between
negative pairs. The proofs of our theorems are provided in the appendix, and the
code to reproduce experimental results is provided in the supplementary material.

1 INTRODUCTION

Representation learning, the process of acquiring condensed but meaningful representations, lies
at the core of advancing machine learning capabilities. Conventional supervised learning depends
heavily on labeled data. It can be problematic in the face of diverse and dynamic real-world data.
Human annotation is not scalable due to its labor-intensive requirement and not generalizable due
to its subjective nature. Furthermore, it is error-prone (Vasudevan et al., 2022; Beyer et al., 2020;
Shankar et al., 2020).

Amidst these challenges, self-supervised learning has emerged as a new paradigm, supported by the
notion that humans primarily learn from unlabeled data (Orhan et al., 2020; Savage, 2019). It has
demonstrated success in various fields, including but not limited to computer vision, natural language
processing, and speech recognition (Ozbulak et al., 2023; Schiappa et al., 2023; Gui et al., 2023).

However, unlike supervised learning, self-supervised learning has primarily been driven empirically,
with limited emphasis on theoretical foundation.1 The mainstream approach is to adopt Siamese
networks as base architecture and combine various engineering techniques, such as memory banks,
momentum encoders, stop-gradient, projectors, predictors, multi-crop, and centering (Wu et al., 2018;
He et al., 2020; Grill et al., 2020; Chen & He, 2021; Caron et al., 2020; 2021; Purushwalkam &
Gupta, 2020). The techniques are often explained intuitively, and their performance is supported by
experiments. This approach may not be satisfactory since it can obscure what problem the algorithms
are addressing essentially.

In this paper, we theoretically formulate a self-supervised learning problem and derive its solution. To
do so, we observe that self-supervised learning is more nuanced compared to unsupervised learning. It
not only utilizes unlabeled data but also generates its own labels from it.2 This suggests a connection

1Self-supervised learning is sometimes metaphorically referred to as the dark matter of intelligence, implying
that its principle is not easily understood despite its significant impact (Balestriero et al., 2023).

2This is implied within expressions such as pseudo labels (Doersch et al., 2015; Noroozi & Favaro, 2016;
Zhang et al., 2016; Gidaris et al., 2018), target (or teacher) encoders (Tarvainen & Valpola, 2017; He et al., 2020;
Grill et al., 2020; Chen & He, 2021; Caron et al., 2021; Oquab et al., 2023) in the literature.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

between supervised and self-supervised learning. However, this connection has largely been addressed
implicitly through experiments and has not been elucidated properly. Therefore, it is difficult to
say we have a satisfactory theory linking supervised and self-supervised learning. To explore this
connection, we first cast a supervised learning problem as an optimization problem and then extend
to formulate a self-supervised learning problem, leveraging natural approximations. Subsequently,
we convert the objective function into a more manageable form under certain assumptions. Then,
eventually, our problem is reduced to minimizing an upper bound of the objective function.

Our framework provides an explanation of the problem that self-supervised learning solves. We show
that the loss induced from our objective function is closely related to the normalized temperature-
scaled cross-entropy (NT-Xent) loss in SimCLR (Chen et al., 2020a), which serves as a hub for many
algorithms. We introduce the concept of prototype representation bias, which arises naturally during
the approximation process. It provides insight into a data augmentation strategy. We also introduce a
loss inspired by our framework, which we term the balanced contrastive loss. We then emphasize the
significance of striking the balance between attracting and repelling components of the loss. As a
result, our work helps understand self-supervised learning in a more structured and systematic way.

Contributions of our work are summarized as follows:

1. We propose a unified theoretical framework that formalizes self-supervised learning as an
approximation of supervised learning, bridging a critical gap in the literature (Section 3).

2. From the theoretical framework, we derive a mathematical foundation for commonly used
contrastive losses, particularly InfoNCE-type losses (Section 4).

3. The framework unifies common practices and explains the coexistence of asymmetric and
symmetric approaches, enhancing understanding of the field (Section 5).

4. We introduce prototype representation bias and balanced contrastive loss, offering insights
into self-supervised learning and the role of balancing parameters (Section 6).

2 RELATED WORK

Contrastive losses Our work falls in the category of contrastive learning characterized by con-
trastive loss. The concept of contrastive loss was introduced in Chopra et al. (2005). From this,
several different types of contrastive losses has emerged. The triplet loss simultaneously considers
three representations, each serving as an anchor, a positive sample, and a negative sample (Weinberger
& Saul, 2009; Chechik et al., 2010). Furthermore, the (m+1)-tuplet loss treats m+1 representations:
an anchor, a positive sample, and m − 1 negative samples, and it is composed in the form of a
softmax function (Sohn, 2016). Wu et al. (2018) combines a temperature parameter and proximal
regularization to have the noise-contrastive estimation (NCE) loss. The NT-Xent loss (equivalently,
the InfoNCE loss (Oord et al., 2018)) is obtained by constructing a cross-entropy form loss using
2m augmented images from a minibatch of m images (Chen et al., 2020a). Wang & Isola (2020)
investigates the alignment and uniformity properties of the contrastive loss in an asymptotic setting.
In Khosla et al. (2020), the concept of contrastive loss is applied in reverse to the supervised setting.
In our work, we lay a foundation for the contrastive losses.

Views on self-supervised learning There have been attempts to express contrastive learning
approaches in different languages. There is an approach that provides unified views bridging
contrastive learning and covariance-based learning (Huang et al., 2021; Garrido et al., 2022; Lee
et al., 2021; Balestriero & LeCun, 2022). There is another approach that interprets contrastive
learning as maximizing the mutual information of positive pairs (Hjelm et al., 2018; Oord et al.,
2018; Bachman et al., 2019; Wang & Isola, 2020; Li et al., 2021; Aitchison & Ganev, 2024). In
addition, there have been attempts to frame self-supervised learning through clustering (Caron et al.,
2020), bootstrapping (Grill et al., 2020), semi-supervised learning (Chen et al., 2020b), or knowledge
distillation (Caron et al., 2021; Oquab et al., 2023). Previous works provide valuable insights by
either revealing specific aspects or bridging different methods. However, while many approaches
allude to the idea of supervision, they do not provide an explanation for how attracting or repelling
pseudo-labels mathematically translates into attracting or repelling other samples. Our work is to
formulate the problem in a principled manner from scratch and systematically outline the step-by-step
transition from this formulation to widely used methods.
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3 PROBLEM FORMULATION

In this section, we first formulate a supervised representation learning problem as an optimization
problem, followed by its self-supervised counterpart. Throughout the paper, we use uppercase letters
to denote random elements, lowercase letters to denote non-random elements (including realizations
of the random elements), and calligraphic letters to denote sets.

3.1 SUPERVISED REPRESENTATION LEARNING PROBLEM

Figure 1: Supervised learning as an optimiza-
tion. lattract(θ) encourages the image repre-
sentation to attract the prototype representation
µdog that shares the visual concept of that image.
lrepel(θ) prompts the image representation to re-
pel the prototype representation µcat that is closest
among those not sharing the visual concept of that
image. The parameter λ balances the two losses.

Let X × Y be a dataset comprising images and
their associated visual concepts (represented as
labels) of interest. To exploit the dataset to the
fullest, we consider a set of transformations T
that preserve the visual concepts and leverage
them to create an augmented dataset.3 Then, we
define the augmented dataset induced by T as

T (X )× Y
:= {(t(x), y) : (x, y) ∈ X × Y and t ∈ T }.

(1)

Equipped with the augmented dataset, we want
to train an encoder fθ : X → Rd \ {0}
which is parameterized by learnable parame-
ters θ. It maps an image t(x) to its represen-
tation fθ(t(x)). Typically, the representation
dimension d is small relative to the image size.
By training the encoder, our goal is to make
representations of images with the same visual
concept, gathered close together, while repre-
sentations of images with different visual con-
cepts are meaningfully distant from each other.
To keep the theoretical framework intuitive and
concise, we begin with just these two fundamen-
tal ideas: positive samples are clustered, while
negative samples are separated.

To achieve our goal, we employ the concept of prototype representation of a visual concept to set
targets for images (Li et al., 2020; Caron et al., 2020). This denotes a point in the representation space
that embodies the visual concept. To see the whole approximation process, we start by assuming that
an oracle gives the ideal prototype representation, which can serve as a common target for images
with the same visual concept during training. However, since such an oracle does not exist in reality,
we later construct the prototype representation using available data.

From now on, we tag a data point (t(x), y) ∈ T (X ) × Y and base the formulation on it. Let
lattract(θ) be the loss for the image representation fθ(t(x)) to approach the prototype representation
µy of its own label, and lrepel(θ) be the loss for the image representation to distance from the
prototype representations µy′ of other labels. Then, we formulate the supervised representation
learning problem as the following optimization problem:

min
θ

lattract(θ) + λlrepel(θ) (2)

where λ > 0 is a parameter which balances the two losses.

In contrastive learning, there is no need to repel negative samples that are already dissimilar enough.
In this context, we only repel the prototype representation with the maximum similarity among those

3Note that the choice of data augmentation can also be seen as a type of supervision (Xiao et al., 2020). By
treating the labels of augmented images as identical, we supervise the resolution at which the model should
be transformation invariant. Therefore, unlike X , T (X ) contains partial information about the labels, which
enables self-supervised learning.

3
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representing distinct labels. Then, our problem becomes as follows:

min
θ

−s (fθ(t(x)), µy) + λmax
y′ ̸=y

s (fθ(t(x)), µy′) (3)

where s(·, ·) is a similarity measure. For a better understanding, refer to Figure 1.

Note that our formulation is similar to minimizing the triplet loss in spirit (Chechik et al., 2010;
Schroff et al., 2015; Schultz & Joachims, 2003; Arora et al., 2019). In our formulation, we can see
fθ(t(x)) as the anchor, the prototype representation µy as the positive sample, and the prototype
representation µy′ as the negative sample. Only considering the negative sample with maximum
similarity is related to the concept of hard negative mining (Girshick, 2015; Faghri et al., 2017;
Oh Song et al., 2016). This idea has sometimes been implemented through the introduction of the
concept of support vectors or margin (Cortes & Vapnik, 1995; Schroff et al., 2015). Pursuing this
to the extreme leads us to repel the most challenging example, namely, the negative sample with
maximum similarity.

Now, we construct the prototype representations. For a given label y, a natural choice for the prototype
representation of the label is the expectation of the representations of the images with the same label,
i.e.,

ET,X|yfθ(T (X)) (4)

where T is distributed over T , and X is conditionally distributed over {x : (x, y) ∈ X×Y}. Plugging
it to Equation (3), our problem becomes as follows:

min
θ

−s
(
fθ(t(x)),ET,X|yfθ(T (X))

)
+ λmax

y′ ̸=y
s
(
fθ(t(x)),ET ′,X′|y′fθ(T

′(X ′))
)

(5)

where T ′ and X ′ are independent copies of T and X , respectively.

3.2 SELF-SUPERVISED REPRESENTATION LEARNING PROBLEM

In the self-supervised learning regime, we do not have access to the labels. So, we use a surrogate
prototype representation for the image t(x) as the target. We construct it as the expectation of the
representations of the available images sharing the same label as t(x), i.e.,

ET fθ(T (x)). (6)

In Section 5, we demonstrate the importance of finding a data augmentation strategy that approximates
well from the prototype representation ET,X|yfθ(T (X)) to the surrogate prototype representation
ET fθ(T (x)). Plugging it in the attracting component of Equation (5), we rewrite our problem as
follows:

min
θ

−s (fθ(t(x)), µ̂y) + λmax
y′ ̸=y

s (fθ(t(x)), µ̂y′) , (7)

where µ̂y := ET fθ(T (x)) and µ̂y′ := ET ′,X′|y′fθ(T
′(X ′)). Note that we leave the repelling

component as is since it can be managed without modification. In Section 4, we find an upper bound
of the above objective function, and in Section 5, we show the upper bound can be minimized using a
Siamese network. Through this, we show how attracting and repelling pseudo-labels (µ̂y and µ̂y′)
can be achieved through attracting and repelling samples (fθ(t′(x)) and fθ(t

′(x′))). Refer to Figure
2 for a better understanding.

4 THEORETICAL DERIVATION

In this section, we determine upper bounds of the attracting and repelling components. Our objective
is to minimize these upper bounds, addressing the optimization problem discussed in the previous
section.

4.1 ATTRACTING COMPONENT

We first find an upper bound for the attracting component by making the following assumptions based
on common practice.
Assumption 4.1 (cosine similarity). The similarity measure s(·, ·) is cosine similarity, i.e.,
s(x1, x2) = x1 · x2/(∥x1∥∥x2∥). When we say s(x1, x2), we assume x1 and x2 are nonzero.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

image

encoder

representation prototype rep.

image

encoder

representation representation

image

encoder

Supervised learning regime Self-supervised learning regime

shared parameters

oracle

label

representation space

augmented image space augmented image space

representation space

(1) (2) (3) (4)

Figure 2: Self-supervised learning as an approximation of supervised learning. (1) In an ideal
supervised regime, the ideal prototype representation µy is given by an oracle. (2) In a realistic
supervised regime, the prototype representation is constructed as the expectation ET,X|yfθ(T (X)) of
the representations of the images with the same label y. (3) In a self-supervised regime, a surrogate
prototype representation is constructed as the expectation ET fθ(T (x)) of the representations of the
available images sharing the same label as t(x). (4) This can be effectively implemented using a
Siamese network.

Assumption 4.2 (l2-normalization). Representations at the end of the encoder are l2-normalized so
that ∥fθ(t(x))∥ = 1, i.e., fθ : X → Sd−1.

We additionally make a technical assumption which means that the two vectors fθ(t(x)) and
ET fθ(T (x)) lie in the same hemisphere. Informally speaking, this means that the augmentation does
not distort the image too much, so ET fθ(T (x)) does not point in a completely different direction.

Assumption 4.3 (technical assumption). fθ(t(x)) · ET fθ(T (x)) ≥ 0.

Theorem 4.4 (upper bound of the attracting component). Assume Assumption 4.1, 4.2, and 4.3 hold.
Then,

− s (fθ(t(x)),ET fθ(T (x))) ≤ −ET s (fθ(t(x)), fθ(T (x))) . (8)

Proof. Refer to Appendix A.1.1.

We approximate the upper bound and obtain the following sample analog:

l̃attract(θ) := − 1

|T̂ |

∑
t′∈T̂

s (fθ(t(x)), fθ(t
′(x))) (9)

where T̂ is the set of transformation samples.

4.2 REPELLING COMPONENT

We now find an upper bound for the repelling component by making the following assumption.

Assumption 4.5 (balanced dataset). Labels are uniformly distributed, i.e., p(y) = 1
n , where n is the

finite number of labels.

Theorem 4.6 (upper bound of the repelling component). Assume Assumption 4.1, 4.2, and 4.5 hold.
Let ν := miny′ ̸=y ∥ET ′,X′|y′fθ(T

′(X ′))∥. Then, for all α > 0,

max
y′ ̸=y

s
(
fθ(t(x)),ET ′,X′|y′fθ(T

′(X ′))
)
≤ ET ′

[
1

να
logEX′ exp (αs (fθ(t(x)), fθ(T

′(X ′))))

]
+

1

να
log n.

(10)

5
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Proof. We approximate the maximum function by the log-sum-exp function and apply Jensen
inequality to pull out the expectations. For the detailed proof, refer to Appendix A.1.2.

If we approximate the upper bound and trim the constant terms, which are not relevant to optimization,
we obtain the following:

l̃repel(θ) :=
1

|T̂ |

∑
t′∈T̂

1

να
log

∑
x′∈X̂

exp(αs(fθ(t(x)), fθ(t
′(x′)))) (11)

where T̂ is the set of transformation samples, and X̂ is the set of image samples.

4.3 TOTAL LOSS

By combining Equation (9) and (11), the total loss l̃(θ) := l̃attract(θ) + λl̃repel(θ) is as follows:

l̃(θ) =
1

|T̂ |

∑
t′∈T̂

−s (fθ(t(x)), fθ(t
′(x))) +

λ

ν

 1

α
log

∑
x′∈X̂

exp(αs(fθ(t(x)), fθ(t
′(x′))))

 .

(12)

By rearranging, we have

l̃(θ) =
1

α|T̂ |

∑
t′∈T̂

[
− log

exp(αs (fθ(t(x)), fθ(t
′(x))))(∑

x′∈X̂ exp(αs(fθ(t(x)), fθ(t′(x′))))
)λ/ν

]
. (13)

Note that this equation and the NT-Xent in SimCLR are similar in their forms, which we discuss in
more detail in the next section.

5 UNDERSTANDING SELF-SUPERVISED LEARNING

In this section, we discuss components of self-supervised learning algorithms within our framework,
focusing on SimCLR (Chen et al., 2020a), which has served as a central point for many algorithms.

In experiments in this section, we utilize SimCLR with a temperature parameter τ of 0.5, employing
ImageNet (Deng et al., 2009) as the dataset and ResNet-50 (He et al., 2016) as the backbone. We
assess top-1 accuracy using linear evaluation, a standard protocol for evaluating self-supervised
learning algorithms. Note that, since ImageNet contains 1,000 classes, the chance-level accuracy
is 0.1%. For a fair comparison, all settings are kept the same except for the specific factor under
investigation. For the detailed implementation, refer to A.3.

5.1 ARCHITECTURE: SIAMESE NETWORKS

When approximating the upper bound −ET s (fθ(t(x)), fθ(T (x))) in Equation (8), we compare the
similarity between two representations fθ(t(x)) and fθ(t

′(x)). This is suitable for implementation
by a Siamese network (Bromley et al., 1993), which consists of two encoders. We augment a single
image x to obtain two differently augmented t(x) and t′(x). Then, we pass them through the two
encoders fθ that share the parameter θ and compare the similarity of the outputs. So, our derivation
shows that considering similarity with the prototype representation aligns well with using a Siamese
network, which is a common architecture in self-supervised learning.

Siamese networks are fundamentally symmetric in that the two encoders often have the same
architecture and share parameters. However, there are algorithms aimed at enhancing performance by
introducing asymmetry into Siamese networks (He et al., 2020; Chen & He, 2021; Grill et al., 2020;
Caron et al., 2020; 2021; Oquab et al., 2023; Tian et al., 2021). In such cases, it is empirically shown to
be helpful to ensure that the variance of the outputs from one encoder is lower than that from the other
encoder (Wang et al., 2022). The encoder with the lower variance is referred to as the target or teacher
encoder, and the encoder with the higher variance is referred to as the source or student encoder. In our
problem formulation, the original attracting component in Equation (8) is −s (fθ(t(x)),ET fθ(T (x)))
where the two attracting objects fθ(t(x)) and ET fθ(T (x)) are asymmetric. Note that ET fθ(T (x))

6
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Figure 3: Accuracy vs. prototype representation bias. We investigate the relationship between
accuracy and prototype representation bias by adding or removing transformations from SimCLR’s
data augmentation strategy (base). Lower prototype representation bias tends to result in higher
accuracy.

can be approximated by 1
n

∑n
i=1 fθ(Ti(x)), and 1

n

∑n
i=1 fθ(Ti(x)) has less variance than fθ(T (x)).

So, our problem formulation and Theorem 4.4 may provide insight to understand why there exist
both symmetry and asymmetry themes in the self-supervised learning literature.

5.2 LOSS: NT-XENT

Let {x1, . . . , xm} be a minibatch of m images. If we transform each image in two different ways
and pass them through the encoder, we obtain representation pairs {(fθ(t(xi)), fθ(t

′(xi))) : i =
1, . . . ,m} of 2m augmented images, which we denote as {(zi, z′i) : i = 1, . . . ,m}. Then, in the case
of λ = ν, the summand in Equation (13) can be implemented as

− log
exp(αs(zi, z

′
i))∑

j∈[m]\{i} exp(αs(zi, z
′
j))

(14)

where [m] := {1, . . . ,m}.

On the other hand, in the NT-Xent loss used in SimCLR, if we let the temperature parameter τ be
1/α, the NT-Xent loss is represented as

− log
exp(αs(zi, z

′
i))∑

j∈[m] exp(αs(zi, z
′
j)) +

∑
j∈[m]\{i} exp(αs(zi, zj))

. (15)

This is a variant of Equation (14). Having the second summation in the denominator can be seen as a
method to fully exploit the provided representations, since (zi, zj) are also negative pairs when j ̸= i.
When considering the first summation in the denominator, Yeh et al. (2022) empirically demonstrated
that it performs better when the sum is over [m]\{i} as in Equation (14) rather than [m]. Expressions
such as cross-entropy and temperature frame contrastive losses in the form of the Boltzmann (or
Gibbs) distribution. Our framework offers another perspective on the losses.

5.3 DATA AUGMENTATION: DEBIASED PROTOTYPE REPRESENTATION

When transitioning from supervised learning to self-supervised learning, we approximate the pro-
totype representation ET,X|yfθ(T (X)) with the surrogate prototype representation ET fθ(T (x)).
Therefore, we investigate whether accuracy increases as the two become closer. For this purpose, we
define the prototype representation bias as follows

E(X0,Y0)∥ET,X|Y0
fθ(T (X))− ET fθ(T (X0))∥. (16)

We then compare the values by changing the distribution of T through data augmentation. We
compare SimCLR’s default data augmentation (base) with cases where we exclude Gaussian

7
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blur (-gaussian_blur) and color distortion (-color_distortion), and with cases where
we include random cutout (+random_cutout) and random rotation (+random_rotation),
resulting in a total of five scenarios.

Figure 3 shows that using data augmentation with debiased prototype representation leads to an
increase in accuracy. It also shows the default data augmentation of SimCLR achieves the highest
accuracy while exhibiting the smallest prototype representation bias. Despite the expectation that
enriching data augmentation by adding transformations would be beneficial for training, the accuracy
still decreases. This may be because the added transformations exacerbate the prototype representation
bias.

5.4 SIMILARITY MEASURE: COSINE SIMILARITY WITH NORMALIZATION

Table 1: Similarity measure. The performance is
better for the case of cosine similarity with normal-
ization.

Similarity measure

CS w/ l2 Dot w/o l2 -Eucl. w/o l2

65.98 0.43 10.63

When computing similarity between two repre-
sentations, many self-supervised learning algo-
rithms including SimCLR normalize the repre-
sentations and calculate cosine similarity as in
Assumption 4.1 and 4.2. To empirically show
the significance of these assumptions, we com-
pare three cases: 1) cosine similarity with nor-
malization, 2) dot product without normaliza-
tion, and 3) negative Euclidean distance without normalization.4 Table 1 shows that normalization is
crucial. Without normalization, the accuracy in the case of negative Euclidean distance is higher than
that of dot product. This may be because Euclidean distance measures spatial dissimilarity in a more
straightforward manner.

5.5 DATASET: BALANCED

There are some results that contrastive learning algorithms perform better on balanced datasets, where
labels are uniformly distributed (Assran et al., 2022b;a; Zhou et al., 2022) as in Assumption 4.5.
Refer to Subsection A.4.4 for experiments in our setting.

6 EMPIRICAL STUDY

In this section, we introduce a loss that is inspired from the form of Equation (12). To reduce clutter,
we rewrite λ/ν as λ. For one representation z in 2m representations generated from a minibatch of
m images, we define our loss for the representation as follows:

− s(z, z+) + λ

[
1

α
log

∑
z−

exp(αs(z, z−))

]
(17)

where (z, z+) is the positive pair and (z, z−) are 2(m − 1) negative pairs. The cost for the whole
minibatch is then calculated by taking the mean of the losses of all representations. Note that the
attracting component consists of one attracting force, and the repelling component consists of multiple
repelling forces. We term the loss the balanced contrastive loss.

There are two hyperparameters α > 0 and λ > 0 in the balanced contrastive loss. We refer to these
as the balancing parameters since each is in charge of two different types of balancing in contrastive
learning. The parameter α > 0 adjusts the relative magnitudes within the repelling forces. Note that
the repelling component is a smooth approximation to the maximum function (refer to Lemma A.1
and Wang & Liu (2021)):

lim
α→∞

[
1

α
log

∑
z−

exp(αs(z, z−))

]
= max

z−
s(z, z−). (18)

4Note that when dealing with two normalized vectors, cosine similarity is equivalent to the dot product.
Additionally, negative Euclidean distance with normalization is equivalent to cosine similarity with normalization
since −∥a− b∥2 = −2 + 2a · b.
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(b) Generalized NT-Xent loss

Figure 4: Impact of balancing parameters α and λ. Better balancing can be accomplished through
the adjustments of the balancing parameters.

If α is large, the repelling forces with representations having high similarities contribute more in the
overall repelling component. In self-supervised learning, negative samples may have images with
the same label (called sampling bias in Chuang et al. (2020)). So, if we make α too large, there is a
risk of repelling images with the same label. Therefore, setting the value of α appropriately can be
thought of as hedging the risk with multiple negative samples. This also offers insight into the role of
the temperature parameters of InfoNCE-type losses. On the other hand, the parameter λ > 0 adjusts
the relative magnitudes of the attracting and repelling forces.

To study the impact of balancing parameters α and λ, we test our loss over a grid of parameters
{(α, λ) : α, λ ∈ {1, 2, 4, 8}}. We also investigate the case where the positive pair is included in the
summation in Equation (17). We call the case the generalized NT-Xent loss here since it is equivalent
to the NT-Xent loss when λ = 1. Figure 4 illustrates the changes in accuracy based on various
combinations of the parameters. The balanced contrastive loss generally achieves higher maximum
accuracies than the generalized NT-Xent loss in this experiment.

For the balanced contrastive loss, the highest accuracy is achieved when (α, λ) = (4, 2), and for
the generalized NT-Xent loss, the highest accuracy is achieved when (α, λ) = (2, 2). In both cases,
the highest accuracy is not achieved when λ = 1. This highlights the significance of the balancing
parameter λ. Additionally in both scenarios, it is crucial for α to have an appropriate value that is
not too large or too small. Specifically for the generalized NT-Xent, it is advantageous to set α to
a smaller value compared to the balanced contrastive loss. This may be due to the presence of the
positive sample in the repelling component, meaning that increasing α results in a larger repulsion
of the positive sample. Given that the chance-level accuracy for ImageNet is 0.1, this performance
difference is notable, achieved solely through weight adjustments. The results also suggest that the
current forms of contrastive losses may be limited.

7 DISCUSSION

The potential connection between supervised and self-supervised learning has been implied in
practical algorithms. It has been interpreted from perspectives such as bootstrapping, clustering, and
knowledge distillation, which can align with our framework. From the bootstrapping perspective
(Grill et al., 2020), the idea is to construct targets solely based on the representations without any
external input. This aligns with the framework, where prototype representations are built solely from
the representations themselves and used as pseudo-labels. In this line of work, a predictor is often
employed, which can be seen as an additional module designed to match the pseudo-labels (Chen
& He, 2021). From the clustering perspective (Tian et al., 2017; Caron et al., 2020), the goal is to
ensure consistency in the cluster assignments of transformed images. This aligns with the framework
in that the representations of transformed images converge toward a single prototype representation,
guiding them to belong to the same cluster. From the knowledge distillation perspective (Xu et al.,
2020; Caron et al., 2021), self-supervised learning involves a teacher network transferring knowledge

9
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to a student network. This aligns with the framework in that the output of one encoder serves as
a prototype representation, guiding the output of the other encoder to match it in the formula we
ultimately want to optimize.

8 CONCLUSION

In this work, a self-supervised representation learning problem is theoretically conceptualized as an
approximation of a supervised representation learning problem. We first formulate the supervised
learning problem concisely and then investigate how its natural approximation arises in the absence
of labels. We break down the process into individual steps, allowing the community to focus on
improving each step. Our framework enhances an understanding of existing algorithms. The loss
derived at the end is related to widely used InfoNCE-type losses. Additionally, our framework
provides insights into the biases of prototype representations and balancing in contrastive loss,
which can be considered when designing an optimal algorithm. It also provides richer context for
components of existing algorithms, such as data augmentation, temperature hyperparameters, and
symmetric/asymmetric architecture. Our work aims to contribute to building a firm foundation for
self-supervised learning. We hope that our work will benefit the self-supervised learning community
by serving as a basis and providing guidance for research.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. The following resources and
materials are provided to help reproduce our results:

• The proofs of all theoretical results, along with explanations of any assumptions made, are
included in the appendix (refer to Subsection A.1).

• The source code for the experiments, along with instructions for running the code, is included
as supplementary material and will be made publicly available upon publication (refer to the
attached .zip file).

• Implementation details including datasets, pre-processing steps, model configurations,
hyperparameters, evaluation metrics are specified in the main paper and further elaborated
in the appendix (refer to Section 5 and Subsection A.3).

We believe these resources and materials will facilitate the research community to reproduce our
results.
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A APPENDIX

A.1 PROOFS

This subsection presents the proofs of Theorem 4.4 and Theorem 4.6.

A.1.1 PROOF OF THEOREM 4.4

We restate the assumptions and the theorem and provide the proof below.

Assumption 4.1 (cosine similarity). The similarity measure s(·, ·) is cosine similarity, i.e.,
s(x1, x2) = x1 · x2/(∥x1∥∥x2∥). When we say s(x1, x2), we assume x1 and x2 are nonzero.

Assumption 4.2 (l2-normalization). Representations at the end of the encoder are l2-normalized so
that ∥fθ(t(x))∥ = 1, i.e., fθ : X → Sd−1.

Assumption 4.3 (technical assumption). fθ(t(x)) · ET fθ(T (x)) ≥ 0.

Theorem 4.4 (upper bound of the attracting component). Assume Assumption 4.1, 4.2, and 4.3 hold.
Then,

− s (fθ(t(x)),ET fθ(T (x))) ≤ −ET s (fθ(t(x)), fθ(T (x))) . (8)

Proof.

−s (fθ(t(x)),ET fθ(T (x)))
(i)
= − fθ(t(x)) · ET fθ(T (x))

∥fθ(t(x))∥∥ET fθ(T (x))∥
(19)

(ii)
= −fθ(t(x)) · ET fθ(T (x))

∥ET fθ(T (x))∥
(20)

(iii)

≤ −fθ(t(x)) · ET fθ(T (x))

ET ∥fθ(T (x))∥
(21)

(iv)
= −fθ(t(x)) · ET fθ(T (x)) (22)
(v)
= −ET [fθ(t(x)) · fθ(T (x))] (23)

(vi)
= −ET

[
fθ(t(x)) · fθ(T (x))

∥fθ(t(x))∥∥fθ(T (x))∥

]
(24)

(vii)
= −ET s (fθ(t(x)), fθ(T (x))) (25)

where (i) and (vii) are by Assumption 4.1, (ii), (iv), and (vi) are by Assumption 4.2, (iii) is by
Assumption 4.3, the convexity of l2-norm (Boyd & Vandenberghe, 2004), and Jensen’s inequality,
and (v) is by the linearity of expectation. This completes the proof of Theorem 4.4.

A.1.2 PROOF OF THEOREM 4.6

Before we prove Theorem 4.6, we need three additional lemmas. While the proofs of the lemmas are
straightforward, they are not readily available in the existing literature. Therefore, we provide them
here for the sake of self-containedness.

Lemma A.1. For α > 0 and xi ∈ R, i = 1, 2, . . . , n,

max
i=1,...,n

xi ≤ (1/α) log

n∑
i=1

exp(αxi) ≤ max
i=1,...,n

xi +
log n

α
, (26)

where the equalities hold when α goes to infinity.

Proof. We have

exp

(
max

i=1,...,n
(αxi)

)
≤

n∑
i=1

exp (αxi) ≤ n exp

(
max

i=1,...,n
(αxi)

)
. (27)
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Since α > 0,

α max
i=1,...,n

xi ≤ log

n∑
i=1

exp (αxi) ≤ α max
i=1,...,n

xi + log n. (28)

This completes the proof of Lemma A.1.

Lemma A.2. For α > 0 and xi ∈ R, i = 1, 2, . . . , n,

u(x1, . . . , xn) := (1/α) log

n∑
i=1

exp(αxi) (29)

is convex on Rn.

Proof. Note that the log-sum-exp function v(x1, . . . , xn) := log
∑n

i=1 exp(xi) is convex on Rn

(Boyd & Vandenberghe, 2004; Ghaoui, 2014). u(x1, . . . , xn) = (1/α)v(α(x1, . . . , xn)), and compo-
sition with an affine mapping preserves convexity (Boyd & Vandenberghe, 2004). Thus, u(x1, . . . , xn)
is also convex on Rn. This completes the proof of Lemma A.2.

Lemma A.3. If g1(x) ≥ 0 for all x, and g2(x) ≥ 0 for some x, then

max[g1(x)g2(x)] ≤ max[g1(x)]max[g2(x)]. (30)

Proof. By default, g2(x) ≤ max[g2(x)]. Since g1(x) ≥ 0 for all x, g1(x)g2(x) ≤ g1(x)max[g2(x)].
Taking the maximum of both sides, we have max[g1(x)g2(x)] ≤ max[g1(x)max[g2(x)]]. Since
g2(x) ≥ 0 for some x, max[g2(x)] ≥ 0, and thus max[g1(x)g2(x)] ≤ max[g1(x)]max[g2(x)]. This
completes the proof of Lemma A.3.

Now, we are ready to prove Theorem 4.6. We restate the assumption and the theorem and provide the
proof below.

Assumption 4.5 (balanced dataset). Labels are uniformly distributed, i.e., p(y) = 1
n , where n is the

finite number of labels.

Theorem 4.6 (upper bound of the repelling component). Assume Assumption 4.1, 4.2, and 4.5 hold.
Let ν := miny′ ̸=y ∥ET ′,X′|y′fθ(T

′(X ′))∥. Then, for all α > 0,

max
y′ ̸=y

s
(
fθ(t(x)),ET ′,X′|y′fθ(T

′(X ′))
)
≤ ET ′

[
1

να
logEX′ exp (αs (fθ(t(x)), fθ(T

′(X ′))))

]
+

1

να
log n.

(10)

Proof.

max
y′ ̸=y

s
(
fθ(t(x)),ET ′,X′|y′fθ(T

′(X ′))
) (i)
= max

y′ ̸=y

fθ(t(x)) · ET ′,X′|y′fθ(T
′(X ′))

∥fθ(t(x))∥∥ET ′,X′|y′fθ(T ′(X ′))∥
(31)

(ii)
= max

y′ ̸=y

fθ(t(x)) · ET ′,X′|y′fθ(T
′(X ′))

∥ET ′,X′|y′fθ(T ′(X ′))∥
(32)

(iii)

≤ 1

ν
max
y′ ̸=y

ET ′,X′|y′s (fθ(t(x)), fθ(T
′(X ′))) (33)

where (i) is by Assumption 4.1, (ii) is by Assumption 4.2, and (iii) is by the following argument.

Let y∗ be the label that achieves the maximum in Equation (32). Note that under Assumption 4.2,
0 < ∥ET ′,X′|y′fθ(T

′(X ′))∥ ≤ 1. If in an ideal case, fθ(t′(x′)) produces the same representation for
every t′(x′) that shares the same label y′, then ∥ET ′,X′|y′fθ(T

′(X ′))∥ = ∥fθ(t′(x′))∥ = 1. To show
(iii), we proceed by considering the following two cases.
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Case 1: If fθ(t(x)) · ET ′,X′|y∗fθ(T
′(X ′)) ≤ 0, then

fθ(t(x)) · ET ′,X′|y∗fθ(T
′(X ′))

∥ET ′,X′|y∗fθ(T ′(X ′))∥
(i)

≤
fθ(t(x)) · ET ′,X′|y∗fθ(T

′(X ′))

ET ′,X′|y∗∥fθ(T ′(X ′))∥
(34)

(ii)
= fθ(t(x)) · ET ′,X′|y∗fθ(T

′(X ′)) (35)
(iii)
= ET ′,X′|y∗s(fθ(t(x)), fθ(T

′(X ′))) (36)

≤ max
y′ ̸=y

ET ′,X′|y′s(fθ(t(x)), fθ(T
′(X ′))) (37)

(iv)

≤ 1

ν
max
y′ ̸=y

ET ′,X′|y′s(fθ(t(x)), fθ(T
′(X ′))) (38)

where (i) is by Jensen’s inequality, (ii) is by Assumption 4.2, (iii) is by a similar argument in the
proof of Theorem 4.4, and (iv) follows from the fact that 0 < ν ≤ 1.
Case 2: If fθ(t(x)) · ET ′,X′|y∗fθ(T

′(X ′)) > 0, then

fθ(t(x)) · ET ′,X′|y∗fθ(T
′(X ′))

∥ET ′,X′|y∗fθ(T ′(X ′))∥
(i)

≤ max
y′ ̸=y

1

∥ET ′,X′|y′fθ(T ′(X ′))∥
max
y′ ̸=y

[
fθ(t(x)) · ET ′,X′|y′fθ(T

′(X ′))
]

(39)

=
1

ν
max
y′ ̸=y

[
fθ(t(x)) · ET ′,X′|y′fθ(T

′(X ′))
]

(40)

(ii)
=

1

ν
max
y′ ̸=y

ET ′,X′|y′s(fθ(t(x)), fθ(T
′(X ′))) (41)

where (i) is by Lemma A.3, and (ii) is by a similar argument in the proof of Theorem 4.4.

Now for brevity, let g(T ′(X ′)) := s (fθ(t(x)), fθ(T
′(X ′))). Then,

max
y′ ̸=y

ET ′,X′|y′g(T ′(X ′))
(i)

≤ 1

α
log

∑
y′ ̸=y

exp
(
αET ′,X′|y′g(T ′(X ′))

)
(42)

(ii)

≤ 1

α
log

∑
y′

exp
(
αET ′,X′|y′g(T ′(X ′))

)
(43)

=
1

α
log

∑
y′

exp
(
αET ′EX′|y′g(T ′(X ′))

)
(44)

(iii)

≤ ET ′

 1

α
log

∑
y′

exp
(
αEX′|y′g(T ′(X ′))

) (45)

(iv)

≤ ET ′

 1

α
log

∑
y′

EX′|y′ exp (αg(T ′(X ′)))

 (46)

(v)
= ET ′

 1

α
log

n
∑
y′

p(y′)EX′|y′ exp (αg(T ′(X ′)))

 (47)

= ET ′

[
1

α
log

(
nEY ′EX′|Y ′ exp (αg(T ′(X ′)))

)]
(48)

= ET ′

[
1

α
log (nEX′ exp (αg(T ′(X ′))))

]
(49)

= ET ′

[
1

α
log (EX′ exp (αg(T ′(X ′))))

]
+

1

α
log n. (50)

where (i) is by Lemma A.1, (ii) is by the positivity of exp(αx) and the monotonicity of log(x), (iii)
is by Lemma A.2 and Jensen’s inequality, (iv) is by the convexity of exp(αx), Jensen’s inequality,
and the monotonicity of log(x), and (v) is by Assumption 4.5. This completes the proof of Theorem
4.6.
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A.2 CROSS-REFERENCE

Table 2 shows how each component of SimCLR corresponds to specific parts of our problem
formulation and theoretical derivation.

Table 2: Cross-reference between SimCLR and our framework.

Component SimCLR Our framework

Architecture Siamese network Subsection 4.1 and 4.2
Loss NT-Xent Subsection 4.3
Data augmentation debiased prototype representation Subsection 3.2
Similarity measure cosine similarity with normalization Theorem 4.4 and 4.6
Dataset balanced Theorem 4.6

A.3 IMPLEMENTATION DETAILS

This subsection offers a comprehensive description of the implementation details for our experiments.
Readers can also refer to the code provided in the supplementary material. With 8 NVIDIA V100
GPUs, the pretraining takes about 2.5 days and 13 GB peak memory usage, the linear evaluation takes
about 1.5 days and 8 GB peak memory usage, and the k-nearest neighbors takes about 40 minutes
and 30 GB peak memory usage.

A.3.1 BASE SETTING

Dataset We use ImageNet as the benchmark dataset, as it is one of the most representative large-
scale image datasets. The training set comprises 1,281,167 images, while the validation set comprises
50,000 images. As ImageNet’s test set labels are unavailable, we utilize the validation set as a test set
for evaluation purposes. ImageNet encompasses 1,000 classes.

Data augmentation The following data transformations are sequentially applied during pretraining.
Due to variations in image sizes, they are first cropped to dimensions of 224× 224.

• RandomResizedCrop: Randomly crop a patch of the image within the scale range of
(0.2, 1), then resize it to dimensions of (224, 224).

• ColorJitter: Change the image’s brightness, contrast, saturation, and hue with strengths
of (0.4, 0.4, 0.4, 0.1) with a probability of 0.8.

• RandomGrayscale: Convert the image to grayscale with a probability of 0.2.

• GaussianBlur: Apply the Gaussian blur filter to the image with a radius sampled
uniformly from the range [0.1, 2] with a probability of 0.5.

• RandomHorizontalFlip: Horizontally flip the image with a probability of 0.5.

• Normalize: Normalize the image using a mean of (0.485, 0.456, 0.406) and a standard
deviation of (0.229, 0.224, 0.225).

Network architecture The encoder consists of a backbone followed by a projector. We employ
ResNet-50 as the backbone and a three-layered fully-connected MLP as the projector. For the
projector, the input and output dimensions of all layers are set to 2,048. Batch normalization (Ioffe &
Szegedy, 2015) is applied to all layers, and the ReLU activation function is applied to the first two
layers.

Pretraining configuration We pretrain the encoder with a batch size of 512 for 100 epochs. We
employ the SGD optimizer and set the momentum to 0.9, the learning rate to 0.1, and the weight
decay rate to 0.0001. Additionally, we implement a cosine decay schedule for the learning rate, as
proposed by Loshchilov & Hutter (2016); Chen et al. (2020a).
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Evaluation configuration After pretraining, we employ linear evaluation, which is the standard
evaluation protocol. We take and freeze the pretrained backbone and attach a linear classifier on top.
The linear classifier is then trained on the training set and evaluated on the test set. Training the linear
classifier is conducted with a batch size of 4,096 for 90 epochs, utilizing the LARS optimizer (You
et al., 2017).

A.3.2 IMPLEMENTATION DETAILS FOR SECTION 5.3

To estimate the value of the prototype representation bias, for each (xi, yi) in the ImageNet training
set D, we sample ti from T and x′

i from X|yi and calculate the deviation ∥fθ(ti(x′
i))− fθ(ti(xi))∥.

Then, we take the average over the entire D as follows:

1

|D|
∑

(xi,yi)∈D

∥fθ(ti(x′
i))− fθ(ti(xi))∥. (51)

So, we consider total 1,281,167 samples, which is equivalent to the number of images in the ImageNet
training set.

A.3.3 IMPLEMENTATION DETAILS FOR SECTION 5.4

When normalization is not carried out, there is a risk of loss overflow, so we resort to using the
log-sum-exp trick. It does not alter the values themselves.

A.3.4 IMPLEMENTATION DETAILS FOR SECTION 5.5

We use ImageNet-LT (ImageNet Long-Tailed) as a benchmark for imbalanced datasets. ImageNet-LT
is a representative dataset specifically designed to address the challenges associated with imbalanced
datasets. It is subsampled across the 1,000 classes of ImageNet, following a Pareto distribution with
a shape parameter α of 6. The training set consists of 115,846 images, which is approximately 9% of
the entire ImageNet training set. The class with the most images contains 1,280 images, while the
class with the fewest has only 5 images. The test set is balanced, consisting of 50,000 images, with
each class having exactly 50 images.

We construct ImageNet-Uni (ImageNet Uniform) as a subset of ImageNet to enable a fair comparison.
We uniformly sample 115,846 images from the ImageNet training set, matching the size of the
ImageNet-LT training set. The test set is configured to be identical to that of ImageNet-LT.

A.4 FURTHER EXPERIMENTS

In this subsection, we provide additional experimental results. We include results on CIFAR-10
(Krizhevsky et al., 2009). Note that, since CIFAR-10 contains 10 classes, the chance-level accuracy
is 10%.

A.4.1 IMPLEMENTATION DETAILS FOR CIFAR-10 EXPERIMENTS

Dataset The training set comprises 60,000 images, while the test set comprises 10,000 images.
CIFAR-10 contains 10 classes, with all images standardized to a fixed size of 32× 32.

Data augmentation The following data transformations are sequentially applied during pretraining.

• RandomResizedCrop: Randomly crop a patch of the image within the scale range of
(0.08, 1), then resize it to dimensions of (32, 32).

• RandomHorizontalFlip: Horizontally flip the image with a probability of 0.5.

• ColorJitter: Change the image’s brightness, contrast, saturation, and hue with strengths
of (0.4, 0.4, 0.4, 0.1) with a probability of 0.8.

• RandomGrayscale: Convert the image to grayscale with a probability of 0.2.

• Normalize: Normalize the image using a mean of (0.485, 0.456, 0.406) and a standard
deviation of (0.229, 0.224, 0.225).
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Table 3: Standard evaluations.

Dataset Protocol

k-NN Linear eval.

CIFAR-10 80.32 ± 0.32 86.08 ± 0.07

ImageNet 51.00 ± 0.22 67.40 ± 0.07

= 1 = 2 = 4 = 8

= 1

= 2

= 4

= 8

82.92 84.43 84.76 84.43

84.07 85.26 86.08 85.13

86.02 85.83 84.48 83.83

85.26 84.51 82.95 80.41 81

82

83

84

85

86

A
ccuracy (%

)

(a) Balanced contrastive loss
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(b) Generalized NT-Xent loss

Figure 5: Impact of balancing parameters α and λ. Better balancing can be accomplished through
the adjustments of the balancing parameters.

Network architecture The encoder consists of a backbone followed by a projector. We employ
a variant of ResNet-18 for CIFAR-10 as the backbone and a two-layered fully-connected MLP as
the projector. For the projector, the input and output dimensions of the first layer and 512 and 2,048,
respectively, and the input and output dimensions of the second layer are 2,048. Batch normalization
is applied to all layers, and the ReLU activation function is applied to the first layer.

Pretraining configuration We pretrain the encoder with 512 batch size for 200 epochs. We employ
the SGD optimizer and set the momentum to 0.9, the learning rate to 0.1, and the weight decay rate
to 0.0001.

Evaluation configuration Training the linear classifier is conducted with a batch size of 256 over
90 epochs, utilizing the SGD optimizer. We set the momentum to 0.9 and learning rate to 30 and use
a cosine decay schedule.

A.4.2 STANDARD EVALUATIONS

Table 3 presents a set of standard evaluations. Error bars, represented as the mean ± standard
deviation, are reported based on five independent runs. We choose (α, λ) as (4, 2) and (2, 4) for
ImageNet and CIFAR-10, respectively. We also include k-nearest neighbors evaluation. Specifically,
we retrieve the k nearest training image representations for a given test image representation. Their
respective labels are aggregated using a majority voting process to predict the label for the test image.
In ImageNet experiments, k is set to 200, whereas in CIFAR-10 experiments, k is set to 1.

A.4.3 IMPACT OF BALANCING PARAMETERS ON CIFAR-10

As in Section 6, Figure 5 shows that, balancing between the attracting component and the repelling
component is important using balancing parameters α and λ.
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Table 4: The performance is better when the class distribution is balanced.

Class distribution

Uniform Long-tailed

20.82 13.65

A.4.4 EXPERIMENTS ON BALANCED DATASETS

We provide additional evidence in our setting for the sake of completeness. Table 4 displays SimCLR
performs better on a balanced dataset compared to an imbalanced one. In both cases, the training sets
contain the same number of images (115,846, which is 9% of the ImageNet training set), but they
differ in class distribution. We use an identical test set for both cases.
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