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Abstract

Sustainable agricultural practices have become increasingly important due to growing environmental concerns and
the urgent need to mitigate the climate crisis. Digital agriculture, through advanced data analysis frameworks, holds
promise for promoting these practices. Pesticides are a common tool in agricultural pest control, which are key in
ensuring food security but also significantly contribute to the climate crisis. To combat this, Integrated Pest
Management (IPM) stands as a climate-smart alternative. We propose a causal and explainable framework for
enhancing digital agriculture, using pest management and its sustainable alternative, IPM, as a key example to
highlight the contributions of causality and explainability. Despite its potential, IPM faces low adoption rates due to
farmers’ skepticism about its effectiveness. To address this challenge, we introduce an advanced data analysis
framework tailored to enhance IPM adoption. Our framework provides (i) robust pest population predictions across
diverse environments with invariant and causal learning, (ii) explainable pest presence predictions using transparent
models, (iii) actionable advice through counterfactual explanations for in-season IPM interventions, (iv) field-
specific treatment effect estimations, and (v) assessments of the effectiveness of our advice using causal inference.
By incorporating these features, our study illustrates the potential of causality and explainability concepts to enhance
digital agriculture regarding promoting climate-smart and sustainable agricultural practices, focusing on the specific
case of pest management. In this case, our framework aims to alleviate skepticism and encourage wider adoption of
IPM practices among policymakers, agricultural consultants, and farmers.

Impact Statement

Wepresent a new data analysis framework based on causality and explainability to help farmers adopt sustainable
alternatives to traditional practices for agricultural management. The frameworkmakes agricultural management
more practical and trustworthy by providing clear, reliable predictions, advice tailored to specific fields, and
impact assessment of recommended actions. In our example, this could lead to less reliance on harmful
pesticides, helping to protect the environment and fight climate change. With this tool, farmers can make
better-informed decisions that benefit their crops and the planet, promoting a healthier and more sustainable
future.
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1. Introduction

Digital agriculture integrates agricultural expertise with digital technologies, such as remote sensing, IoT,
and data analytics, to effectively leverage diverse data sources like satellite imagery, weather forecasts,
and soil health metrics. This approach promotes more sustainable, resilient, and profitable farming by
enabling data-driven decisions across the agricultural value chain (Basso andAntle, 2020). This approach
is essential for adapting agriculture to our rapidly changing climate and mitigating its impact on climate
change (Balasundram et al., 2023). Artificial Intelligence (AI) serves digital agriculture as the means to
transform the data into insights, estimations, forecasts, and recommendations that aim to support decision-
making to balance agriculture’s environmental, societal, and economic aspects. However, digital agri-
culture has remained largely confined to using almost solely correlation-based AI, which excels at
predictive tasks but cannot go further. In this context, we propose exploiting two underutilized branches
of AI by digital agriculture—causality and explainability. They can unlock capabilities beyond the
continuous pursuit of prediction accuracy for enhancing digital agriculture, given that it considers
agricultural knowledge and practice and integrates it into the modeling and inference parts
(Sitokonstantinou et al., 2024). Thus, causality and explainability bring in digital agriculture domain-
aware robust models, explainable predictions, counterfactual reasoning, and quantifying effects of advice,
action, and policy.

Pest management is a quintessential example in this context, demonstrating the valuable contributions
that causality and explainability offer. Conventional pest management has been shown to contribute to
climate change. Raising temperatures, intensifying ultraviolet radiation, and reducing relative humidity
are expected to increase pest outbreaks and undermine the efficacy of pest control methods like host-plant
resistance, bio-pesticides, and synthetic pesticides (Sharma and Prabhakar, 2014; Skendžić et al., 2021).
Despite climate experts’ warnings, pesticide use in agriculture adversely affects public health (Boedeker
et al., 2020) and contributes to the climate crisis. This impact includes: (i) greenhouse gas (GHG)
emissions from pesticide production, packaging, and transportation (Audsley et al., 2009),
(ii) compromised soil carbon sequestration (Xu et al., 2020), (iii) elevated GHG emissions from soil
(Spokas andWang, 2003;Marty et al., 2010; Heimpel et al., 2013), and (iv) contamination of adjacent soil
and water ecosystems, resulting in biodiversity loss (Sharma et al., 2019).

Thus, a vicious cycle has been established between pesticides and climate change (Sharma et al.,
2022). In response, the European Commission (EC) has taken action to reduce all chemical and high-
risk pesticides by 50% by 2030. Achieving such reductions requires adopting integrated pest
management (IPM), which promotes sustainable agriculture and agroecology. IPM consists of eight
principles inspired by the Food and Agriculture Organization (FAO) description. The authors in
Barzman et al. (2015) condense these principles into prevention and suppression, monitoring,
decision-making, non-chemical methods, pesticide selection, reduced pesticide use, anti-resistance
strategies, and evaluation.

Data-driven methods have played a crucial role in optimizing pest management decisions. Some
studies employ supervised machine learning techniques, such as Random Forests and Artificial Neural
Networks (ANNs), satellite Earth observations, and in-situ data for pest presence prediction (Aparecido
et al., 2019; Zhang et al., 2019). Others extend their models to include weather data (Skawsang et al.,
2019). Recurrent Neural Networks (RNNs) capture temporal features from weather data, effectively
handling unobservable counterfactual outcomes (Xiao et al., 2019). Iost Filho et al. (2022) highlight the
extraction of fine-scale information for Integrated Pest Management (IPM) using meteorological data,
insect scouting records, machine learning, and remote sensing. Nanushi et al. (2022) propose an
interpretable machine learning solution integrating numerical weather predictions, vegetation indices,
and trap catch data for estimatingHelicoverpa armigera presence in cotton fields. This approach enhances
the decision-making aspect of IPM, shifting away from traditional threshold-based pesticide applications.
The interpretability of these predictions enhances trust and allows for incorporating domain expertise in
pest management decision-making.

e23-2 Ilias Tsoumas et al.

https://doi.org/10.1017/eds.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2025.14


2. Proposal

As Barzman et al. (2015) point out, threshold-based and “spray/don’t spray” advice is not enough. There
is a need for a new class of digital tools that consider the entire set of IPM principles to enhance decision-
making truly. In this direction, we propose a data analysis framework for IPM based on causality and
explainability. It consists of short-term actionable advice for in-season interventions and long-term advice
for supporting strategic farm planning (Figure 1).

This way, we will upgrade the monitoring and decision-making IPM principles leading to actionable
advice for direct pest control interventions and assisting the selection of practices relevant to other IPM
principles, such as the use of non-chemical methods and reduce pesticide dosage. Additionally, the
proposed framework will better inform farmers concerning the potential impact of practices that, in turn,
will enhance the IPM principle of prevention and suppression, for example, crop rotation, day of sowing,
and no-tillage. Furthermore, our framework employs observational causal inference to continuously
assess the recommendations above and satisfy the IPM principle of evaluation.

In this study, we exploit the proposed framework, demonstrating its applicability and efficiency in a
case study for pest management. While the case study is specific it represents the general case of pest
management in several crops and conditions, and the typical availability of data for such case studies.

3. Data

Our approach relies on diverse data sources as a key leverage to capture a comprehensive picture of the
past, present, and future agro-environmental conditions. This will enable us to improve the modeling and
comprehension of pest dynamics.

3.1. Earth observations

We leverage biophysical and biochemical properties such as Leaf Area Index (LAI), Normalized
Difference Vegetation Index (NDVI), chlorophyll content, as well as data on evapotranspiration and soil
moisture. These factors play a crucial role in monitoring pest population dynamics. The data is derived
from the Sentinel-1/2 and Terra/Aqua (MODIS) satellite missions that provide open access to optical
multi-spectral and Synthetic Aperture Radar (SAR) images.

3.2. Terrain & soil characteristics

We incorporate data from open-access digital elevation models and information on topsoil physical
properties and soil organic carbon content (de Brogniez et al., 2015; Ballabio et al., 2016). This allows us
to include fixed or long-term characteristics specific to the area of interest.

Figure 1. Causal and explainable data analysis framework for enhanced IPM.
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3.3. Numerical weather predictions (NWP) and reanalysis of environmental datasets

Any high spatial resolution weather forecast can be used. We utilize a custom configuration of WRF-
ARW (Skamarock et al., 2019) at a spatial resolution of 2 km. Hourly predictions are made, and for each
trap location (i.e., where we have measurements about pest abundance), we obtain daily values for air
(2m) and soil temperature (0m), relative humidity (RH), accumulated precipitation (AP), dew point (DP),
and wind speed (WS). These parameters have been widely used in related work and are extremely
valuable for learning from past (reanalysis) and future (NWP) pest states.

3.4. In-field measurements

In-field measurements involve ground observations of pest abundance using pheromone traps specifically
designed for monitoring the cotton bollworm, known by the scientific name Helicoverpa armigera
(H. armigera). These traps contain the active ingredients Z-11-hexadecen-1-al and Z-9-hexadecenal. The
traps are used from the beginning of the first generation until the end of the season, with regular replacement
every 4 to 6weeks. The companyCortevaAgriscienceHellas has established a dense (in time and space) trap
network (Figure 2) that covers almost all areas in theGreekmainlandwhere cotton is cultivated. The traps are
strategically positioned at suitable distances from each other to prevent interference and ensure accurate data
collection. An agronomist examines the traps and counts the trapped insects at regular intervals every 3–
5 days. CortevaAgriscienceHellas provides historical data consisting of 398 trap sequences and 8202 unique
data points from 2019 to 2022 (Table 1). They also provide auxiliary data on pesticide application, potential
crop damage from pests, the severity of the damage, trap replacements, and scouter comments.

4. Approach and methods

4.1. Causal graph for representing domain knowledge

We constructed a causal graph (Figure 3) based on domain knowledge and expertise, denoted as G, that
represents the underlying causal relationships within the pest-farm ecosystem for the H. armigera case.

no agroclimatic
data

maritime south
mediterranean
maritime north

Figure 2. Traps distribution in the Greek mainland for 2019–2022. Colors indicate the different
agroclimatic zones in which traps from the dataset belong. These zones have been identified based on the
study conducted by Ceglar et al. (2019).
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The graph G comprises vertices V , which represent the variables in the system, and directed edges E,
which symbolize the cause-and-effect relationships between these variables. Besides helping us articulate
domain knowledge, the causal graph G will benefit the downstream technical analyses in various ways.
For instance, G will be employed for effect identification via graphical tests (Pearl, 2009), where the
structure of G is integral to discerning causal relationships. Conversely, in the case of estimating
conditional average treatment effects within the potential outcomes framework, G will be utilized as a
conceptual guide for considering causal structures during the control phase. In invariant causal prediction,
the graph will facilitate the construction of an accurate list of invariant features using causal parents of the
target outcome. Moreover, the structural knowledge captured in G could benefit invariant learning
methods by guiding the environment E definition. This diverse and tailored incorporation of G is aimed
at optimizing the utilization of domain knowledge by the specifications and objectives of each analytical
technique.

Specifically, in the current case of the pest-farm ecosystem of H. armigera, various biotic and abiotic
factors (Table 2) can influence the population dynamics Y of H. armigera (Sharma et al., 2012).
Temperature T plays a crucial role, affecting the insect’s growth, development, fecundity, and survival
(Howe, 1967). The size SG of the first generation is related to the size of the second generation, and the
Southern Oscillation Index SOI has a significant correlation with the size of the first spring generation
(Maelzer and Zalucki, 1999, 2000). Additionally, the life cycle LC of H. armigera is temperature-
dependent, with completion occurring between 17.5°C and 32.5°C (Mironidis and Savopoulou-Soultani,
2014). The presence of parasitoids and natural enemies in cotton cultivation is crucial to many IPM
programs, including the control of H. armigera (Pereira et al., 2019). Many egg parasitoids of different
families are known for their high parasitism P rates and their effectiveness in reducing the population of
H. armigera (Noor-ul-Ane et al., 2015). Nevertheless, parasitism rates are influenced by temperature and

Table 1. Summary of trap data

Year Traps Measurements Mean std Sprays Sprayed fields %

2022 126 2507 19.73 4.22 30 18.25
2021 109 2245 20.30 1.79 17 11.01
2020 81 1693 20.54 4.77 12 8.64
2019 82 1757 21.29 6.43 21 21.95

T

SW

W

V

Y

ACSP
CS

Ws

SG

RHa

PGS

SOI

P

Pr

LC

Figure 3. Causal graph of a pest-farm ecosystem for Helicoverpa armigera case.
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relative humidity (Kalyebi et al., 2005; Noor-ul-Ane et al., 2015). Moreover, the efficacy of spray
application Sp also impacts population dynamics (Wardhaugh et al., 1980). The efficacy of Sp is
significantly influenced by the plant growth stage PGS. During the seedling stage, limited leaf surface
area reduces spray coverage, while the vegetative stage offers more extensive leaf area, enhancing spray
interception. However, dense canopies at later stages may impede spray penetration. Plant physiology
also varies, affecting the absorption and translocation of sprayed substances (Fishel and Ferrell, 2010).

Other environmental factors come into play as well. Precipitation Pr affects the population size, with
heavy precipitation leading to a decrease in the population (Ge et al., 2003). It also increases soil water
content SW which affects the emergence rate of H. armigera similar to air relative humidity RHa (Fajun
et al., 2003). The presence of fruiting organs during the plant growth stage PGS is important for
population dynamics, as it serves as the oviposition site for females (Fitt, 1989). Crop variety V, such
as transgenic Bt cotton, can suppress the second generation ofH. armigera, while both different cropping
systems CS and adjacent crops AC can influence the population structure (Wardhaugh et al., 1980; Gao
et al., 2010; Lu et al., 2013). Finally, windW andwind direction play a significant role in the emergence of
H. armigera, influencing the distance covered during migration from nearby locations. Additionally,
wind conditions at the time of spraying Ws can also impact the effectiveness of the intervention. These
various factors collectively shape the population dynamics of H. armigera in a complex and intercon-
nected manner as defined through domain knowledge and depicted in the causal graph (Figure 3).

4.2. Invariant & causal learning for robust pest prediction

Our goal is to predict near-future pest populations (Ytþ1) using Earth observation (EO) and environmental
data (Xt) alongwithweather forecasts (Wtþ1) by learning the function ytþ1 = f xt,wtþ1ð Þ. Pest management
recommendations heavily depend on these predictions. Conventional machine learning methods
(Aparecido et al., 2019; Skawsang et al., 2019; Xiao et al., 2019; Zhang et al., 2019), which often assume
that data points are independent and identically distributed (i.i.d.), struggle to generalize to unseen
environments, capture spatiotemporal variability, and adapt to climate change. These methods are prone
to learning spurious correlations, limiting their effectiveness in dynamic and non-i.i.d. scenarios.

To address these challenges, we turn to causal learning (Schölkopf and von Kügelgen, 2022), which
leverages domain knowledge and is grounded in the principle of independent causal mechanisms. This

Table 2. Pest-farm ecosystem variables

Id Variable description

T Temperature
SW Soil water
RHa Air relative humidity
SG Size of generation
Pr Precipitation
LC Life cycle
P Parasitism
V Variety
Sp Spraying
CS Cropping system
AC Adjacent crops
W Wind
Ws Spraying wind
SOI South oscillation index
PGS Plant growth stage
Y Outcome (H. armigera population)
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principle suggests that joint probabilities can be decomposed into separatemechanisms, each reflecting an
underlying causal relationship that remains stable despite environmental changes. By incorporating this
principle, our models can improve generalization and robustness across varying conditions.

We achieve this by integrating invariant learning with causality and categorizing dataset units into
environments E as different agroclimatic zones or host crops (Figure 4). While E influences feature
xt,wtþ1, it does not directly affect the target Yt. Utilizing Invariant Causal Prediction (ICP) (Heinze-Deml
et al., 2018), Directed Acyclic Graphs (DAGs), and Invariant Risk Minimization (IRM) (Arjovsky et al.,
2019), we can select causal features, identify potential causal relationships, and capture latent causal
structures. These tools allow us to build models that are effective in current conditions and adaptable to
future environmental changes.

4.3. Explainability & counterfactual reasoning for short-term advice

We define the problem as a binary classification of pest presence or absence at the next time step, using
Earth observation (EO) data (Xt) and weather forecasts (Wtþ1). The goal is to predict the pest population
value at the next time step, Ytþ1, by learning the function ytþ1 = f xt,wtþ1ð Þ. To enhance the trustworthiness
of our predictions, we employ Explainable Boosting Machines (EBM) (Nori et al., 2019). This glass-box
model achieves high performance while providing inherent explanations at both global and local levels.
EBM’s additive nature allows for the sorting and visualization of feature contributions on a local scale for
each one of predictions and a global level to summarize the general behavior of the model depending on
features (Figure 5), which facilitates a better understanding of the primary drivers of the model and
enhances trust in its outputs.

We propose generating counterfactual examples as recommended interventions to bolster trust further
and provide actionable insights. Following the setup of (Mothilal et al., 2020), we search for minimal
perturbations to the feature values xt,wtþ1ð Þ that would alter the prediction to the desired class using the

Figure 4. Invariant learning for robust predictions. Stable and accurate predictions in diverse
environments, such as when H. armigera feeds on different crops exhibiting variations in phenotype,
agricultural management practices, and spatial distribution. Traditional ML methods risk capturing
spurious correlations, such as associating pest abundance with a specific crop (e.g., cotton) due to its
higher frequency in the dataset, leading to biased predictions based on the underlying crop rather than
true pest presence.
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same model f . These counterfactual examples represent proposed actions that could be implemented in
natural farm systems, ensuring practicality and feasibility (Wachter et al., 2017;Mothilal et al., 2020). The
approach ensures that the generated counterfactuals are close to the original input but predicted in the
desired class, providing feasible and actionable recommendations for IPM (Figure 5).

4.4. Heterogeneous treatment effects for long-term advice

We provide long-term pest prevention and suppression advice by assessing how agricultural practices
(e.g., crop rotation, balanced fertilization, sowing dates) impact pest harmfulness and yield indices. Since
different agro-environments may respond variably to the same practice, it is crucial to account for this
heterogeneity. We estimate the conditional average treatment effect (CATE) following the potential
outcomes framework (Rubin, 2005).

The CATE quantifies the difference in potential outcomes, represented as E Y T = 1ð Þ�Y T = 0ð ÞjX½ �,
where Y Tð Þ denotes the value of a random variable Y (e.g., pest harmfulness and yield) if a unit is treated
with treatment T ∈ 0,1f g. By controlling for field characteristics X—which capture the heterogeneity
across different agro-environmental conditions—we can better understand how specific practices affect
outcomes in various contexts (Figure 6). This approach allows us to provide tailored and effective long-
term IPM advice sensitive to each field’s unique conditions (Giannarakis et al., 2022).

4.5. Causal inference for evaluating advice effectiveness

We employ causal inference techniques to assess the effectiveness of our pest control recommendations,
adapting approaches recently introduced in agricultural contexts (Tsoumas et al., 2023). Specifically, in
the case of pest management and with available panel data (Table 1), we utilize causal models such as
difference-in-differences (DiDs) (Abadie, 2005), synthetic control (Arkhangelsky et al., 2021) and
synthetic DiDs (Abadie, 2021) to quantify the treatment effect of adhering to our framework’s recom-
mendations (treated units) compared to those who did not (control units). Historical intervention data
retrospectively annotated based on whether our framework recommended action, will serve as the basis
for advice evaluation. Causal inference will be performed per-environment to ensure comparability
between treatment and control groups, adhering to the parallel trends assumption (Lechner et al., 2011).

Figure 5. Explainability for trustworthiness enhancement, on the right, with local and global
explanations of each prediction and general model behavior, respectively, &Counterfactual explanations
as agricultural actionable recommendations on the left.
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However, digital agriculture requires a two-level evaluation of interventions to disentangle the
effectiveness resulting from the accuracy of the recommendation (for intervention) in terms of space–
time from the inherent efficacy of the intervention. It is crucial to determine what effect, if any, is
attributable to the space and time of application and what is due to the pesticide itself.

In this context, we conducted an initial analysis using the aforementioned panel data to quantify the
impact of pesticide application on pest abundance in a real-world setting without expert system guidance,
employing staggered DiDs with fixed effects (Eq. 4.1).

The staggered approach accounts for units receiving treatment at different periods. We include unit-
fixed effects to control for each unit’s time-invariant characteristics and time-fixed effects to capture
overall time trends that affect all units in each period. The unit of analysis is the plot where the pest trap is
located, with periods modeled at the weekly level. Here, Y it represents the outcome variable, accumulated
pest abundance, for each unit i at the time t, and treated_timeit is an indicator of whether the unit i receives
treatment (pesticide application) in a period t (in a staggered manner across units). Specifically, β0 is the
intercept, β1 is the treatment effect coefficient, αi represents unit fixed effects, γt captures time fixed
effects, and εit is the error term. Thus, β1 provides the average causal effect of the treatment (pesticide
application) on the outcome (accumulated pest abundance) for treated units (ATT), as presented in Table 3
for each cultivation period from 2019 to 2022.

Y it = β0þβ1 � treated_timeitþαiþ γtþ ϵit (4.1)

For the years 2021 and 2022, we observe a statistically significant reduction in pest abundance, while
for 2019 and 2020, we find the opposite effect. At first glance, this contradiction may seem unusual, but
several reasonable explanations could account for it. Since the data come from real-world agricultural
practice, it likely encapsulates some of the following issues: (i) Some interventionsmay have been applied
incorrectly regarding timing and method, reducing or eliminating their efficacy in the pest-infested plots.
This could lead to a biased estimate that the pest population increased after pesticide application
(Figure 7). This occurs because the counterfactual is constructed by taking the growth trend from a plot
without intervention, which might not experience the same infestation or pest pressure level. So, a
mistreated plot that probably follows a steeper population increase, simply due to its higher infestation
levels, can lead to this fallacy that pesticide application increases pest population. (ii) After discussions
with the data provider (Corteva Agriscience Hellas), noise within the control group labels may be

Figure 6. Conditional Average Treatment Effect (CATE) is seen as long-term personalized guidance. By
accounting for each land unit’s unique characteristics, we can estimate a distinct treatment effect for each
land unit. For example, how differences in land’s characteristics can change the impact of fertilizer
application on increasing the risk of pest emergence in the future.
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possible. The company is confident in the labels for treated plots, as they receive this information directly
from farmers. However, they cannot be as certain about the control group. Some farmersmay have applied
pest control practices in their plots but chose not to report them for various reasons, such as using less
expensive pesticides from competitor companies or participating in eco-schemes prohibiting pesticide
use. Consequently, we face a scenario of positively labeled and unlabeled data, a common issue in
machine learning. (iii) The assumption of parallel trends may not hold universally, or unobserved
confounders may vary over time and between units.

In a more robust causal analysis, we can technically or conceptually address these issues. Technically,
we could retrospectively employ a recommendation system or consult experts, as aforementioned, to
annotate each time–space slot as favorable or unfavorable for intervention. On the other hand, we can
conceptually accept reality and precisely define what causal effect we retrieve. In this case, the ATT in a

Table 3. Results of staggered DiDs with controls for unobserved heterogeneity at the unit and time
levels by including fixed effects

Staggered DiDs estimates with fixed effects

Year ATT CI p-value

2019 35.6065 (30.569, 40.644) 0.000
2020 36.9961 (29.826, 44.166) 0.000
2021 �13.8687 (�20.803, �6.934) 0.000
2022 �8.5789 (�13.549, �3.609) 0.001

Note: It includes point estimates, 95% confidence intervals, and p-value. Numbers represent the increase/decrease of accumulated pest catchments at
the trap level after the intervention.

Figure 7. A visual example of DiDS for assessing the real-world impact of pesticide application. It
demonstrates how, even when the parallel trends assumption holds in both conditions, applying an
intervention (i.e., spray) at a non-recommended time can lead to unexpected effects compared to applying
the intervention at the recommended time.
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real-world setting includes different application accuracy levels, farmer’s skills, expert guidance, and
proper timing. To address the second issue, we plan to use Positive-Unlabeled (PU) learning methods
(Bekker and Davis, 2020) to train a classifier on covariates, as they are outlined in Section 3. Using the
positively labeled (treated) units only as ground truth and PU learning for training, this classifier will help
establish a control group consisting only of unlabeled units that are classified there with high confidence.
Lastly, a formal investigation with statistical tests is required to retain only cases where the parallel trends
assumption holds. Clear assumptions statements should also be made regarding the potential of unob-
served confounders that may vary by time and unit. By leveraging these techniques, we aim to rigorously
evaluate the impact of our recommendations on pest control outcomes and attribute the effects to the right
factors, providing robust evidence for the effectiveness of our framework in diverse agricultural
environments.

5. Conclusions

In conclusion, this article presents a new framework integrating causality and explainability into digital
agriculture, with a focus on enhancing pest management practices. By leveraging advanced data analysis
techniques, such as causal inference and invariant learning, our approach addresses the limitations of
conventional correlation-based models, providing more robust and transparent decision-making tools.
This framework not only supports real-time pest control interventions but also facilitates strategic long-
term planning by offering insights into the heterogeneous effects of various agricultural practices.

Our study illustrates how incorporating explainability can bolster farmers’ trust and adoption of
sustainable practices like IPM. The framework’s use of counterfactual reasoning and explainable
predictions ensures that farmers receive actionable, field-specific recommendations that can adapt to
different environmental conditions. Additionally, the causal analysis embedded within our methodology
allows for ongoing evaluation of the framework’s effectiveness, ensuring the recommendations are
impactful and contribute positively to agricultural sustainability.

We consider that a successful application to pest management will highlight, in a tangible way, the
broader potential of this framework to enhance digital agriculture to drive sustainable, evidence-based
practices across agriculture. Therefore, we plan to implement the proposed ideas outlined in Section 4
using the data described in Section 3. In parallel, we are gathering additional in-situ data in collaboration
with Corteva Agriscience Hellas to enrich our dataset for the same pest and crop, as well as independently
for other crops and pests. Finally, we explore how this approach could be adapted to related areas.

Future research will aim to expand this framework beyond pest management, exploring its potential
applications in other areas of digital agriculture, such as crop disease management and nutrient opti-
mization. Additionally, integrating advanced machine learning models to account for real-time weather
data and unforeseen environmental factors will further refine prediction accuracy. Developing user-
friendly tools and interfaces that facilitate farmer interactionwith these data-driven insights will be critical
to fostering widespread adoption.

The growing demand for sustainable agriculture underlines the importance of integrating advanced
data analysis frameworks like ours. By systematically quantifying and explaining agricultural interven-
tions, this framework offers a promising pathway for enhancing the adoption of digital agriculture in
alignment with global sustainability goals. This comprehensive, data-driven approach promises to make
sustainable agricultural practices more practical, facilitating a transition to a resilient and environmentally
conscious food system.
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Abstract

In contrast to the rapid digitalization of several industries,
agriculture suffers from low adoption of smart farming tools.
Even though recent advancements in AI-driven digital agri-
culture can offer high-performing predictive functionalities,
they lack tangible quantitative evidence on their benefits to
the farmers. Field experiments can derive such evidence, but
are often costly, time consuming and hence limited in scope
and scale of application. To this end, we propose an obser-
vational causal inference framework for the empirical evalua-
tion of the impact of digital tools on target farm performance
indicators (e.g., yield in this case). This way, we can increase
farmers’ trust via enhancing the transparency of the digital
agriculture market, and in turn accelerate the adoption of
technologies that aim to secure farmer income resilience and
global agricultural sustainability against a changing climate.
As a case study, we designed and implemented a recommen-
dation system for the optimal sowing time of cotton based
on numerical weather predictions, which was used by a farm-
ers’ cooperative during the growing season of 2021. We then
leverage agricultural knowledge, collected yield data, and en-
vironmental information to develop a causal graph of the farm
system. Using the back-door criterion, we identify the impact
of sowing recommendations on the yield and subsequently
estimate it using linear regression, matching, inverse propen-
sity score weighting and meta-learners. The results revealed
that a field sown according to our recommendations exhib-
ited a statistically significant yield increase that ranged from
12% to 17%, depending on the method. The effect estimates
were robust, as indicated by the agreement among the estima-
tion methods and four successful refutation tests. We argue
that this approach can be implemented for decision support
systems of other fields, extending their evaluation beyond a
performance assessment of internal functionalities.

Introduction
The increasing global population and the changing climate
are putting pressure on the agricultural sector, demanding
the sustainable production of adequate quantities of nutri-
tious food, feed and fiber. Nowadays, many industries enjoy
automated and effective decision-making via harnessing the

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

data that digitalization generates. However, the agricultural
sector experiences limited adoption of precision agricul-
ture and smart farming technologies (Gabriel and Gandorfer
2022). This might seem odd at first sight, given the surge of
sophisticated digital tools that utilize Artificial Intelligence
(AI) techniques and combine remote sensing data with data
from Internet of Things (IoT) sensors to offer agricultural
information of great detail (Sharma et al. 2020; Nanushi
et al. 2022; Choumos et al. 2022). Yet farmers are skepti-
cal about the effectiveness and actual contribution of these
tools to their revenues and daily work (Lowenberg-DeBoer
and Erickson 2019; Lioutas, Charatsari, and De Rosa 2021).

Traditionally, quantifying the impact of a service would
require the design and execution of a randomized experi-
ment (Boruch 1997). Nevertheless, field experiments for the
evaluation of digital agriculture tools are seldom done since
they are costly and time-consuming, requiring specialized
designs and follow-up experiments for any changes in the
product (Vaessen 2010; Diggle and Chetwynd 2011). In ad-
dition, field experiments can jeopardize the crops and hence
the farmers’ livelihood; and if potential damages are not cov-
ered, no prudent farmer would want to participate. As a re-
sult, the providers of digital agriculture tools often resort to
unproven promises that unavoidably create customer mis-
trust. An observational causal inference framework (Pearl
2009) can fill this gap by emulating the experiment we
would have liked to run (Hernán and Robins 2016).

Related Work
Causal inference with observational data has been the sub-
ject of recent work across diverse disciplines, including ecol-
ogy (Arif and MacNeil 2022), public policy (Fougère and
Jacquemet 2019), and Earth sciences (Massmann, Gentine,
and Runge 2021; Runge et al. 2019). In agriculture, it has
been used to identify and estimate the effect of agricultural
practices on various agro-environmental metrics (Qian and
Harmel 2016; Deines, Wang, and Lobell 2019; Giannarakis
et al. 2022a,b). Using causal inference to test digital agricul-
ture can provide reliable insights of superior socioeconomic
impact than of those inferred by naive descriptive studies,
including transparent benefits for the farmers, increased re-
liability, and honest pricing.
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According to Adelman (1992), the comprehensive eval-
uation of decision support systems has three facets: i) the
subjective evaluation that assesses the system from the per-
spective of the end-user, ii) the technical evaluation that as-
sesses the performance of the system’s internal functionali-
ties and iii) the empirical evaluation that experimentally as-
sesses the impact of the system (Adelman 1992). Subjec-
tive evaluation has been widely practiced for decision sup-
port (Zhai et al. 2020) and recommender systems (Pu, Chen,
and Hu 2012), retrieving user feedback (e.g., on usability,
accessibility etc.) through surveys and questionnaires. From
the perspective of the AI-based expert systems, the technical
evaluation is based on predictive, classification and ranking
accuracy metrics (Schröder, Thiele, and Lehner 2011). Tech-
nical evaluation metrics extending beyond accuracy are used
within the context of recommender systems (e.g., coverage,
serendipity) (Ge, Delgado-Battenfeld, and Jannach 2010).
These metrics capture the recommendation quality as per-
ceived by the user, connecting the technical and subjective
evaluation concepts.

Interestingly, empirical evaluation methods, and in partic-
ular with regards to the impact assessment of digital agri-
culture tools, have been seldom employed. From the per-
spective of agricultural economics, tangential questions have
been studied (Müller 1974; Roberts et al. 2009; Schim-
melpfennig and Ebel 2016; McFadden, Rosburg, and Njuki
2022), but without approaching the question from a farm
system standpoint, hence not leveraging available structural
knowledge and reaping its benefits (Cinelli, Forney, and
Pearl 2020). Thus, we propose a framework for the empiri-
cal evaluation of digital agriculture recommendations with
causal inference. In this context, we designed and imple-
mented a recommendation system for the optimal sowing
of cotton. The system was tested in a real-world case study
by providing it to a local agricultural cooperative and moni-
toring the results.

For several arable crops (e.g., cotton, maize, chickpea)
sowing time is of great importance. Mistimed sowing can
lead to suboptimal plant emergence and adversely affect
the crop yield (Huang 2016; Nielsen et al. 2002; Richards,
Maphosa, and Preston 2022). The agro-climatic conditions
for optimal sowing have been extensively studied (Free-
land Jr et al. 2006; Boman and Lemon 2005). Soil tempera-
ture, soil moisture and ambient temperature, during the first
days after sowing, play a crucial role in proper germination
and emergence and ultimately determine the yield and its
quality (Bradow and Bauer 2010; Bauer, May, and Camber-
ato 1998). The University of California (UC IPM 2004) and
the Texas Tech University (Barbato, Seshadri, and Mulligan
2011) have developed digital tools that provide daily rec-
ommendations for optimal cotton sowing, using air temper-
ature forecasts from the National Oceanic and Atmospheric
Administration (NOAA). The accuracy of the University of
California’s cotton planting tool was studied by compar-
ing the temperature forecasts to ground truth measurements
from two weather stations (Munier et al. 2004). The tool
forecasted the correct planting conditions (Kerby, Keeley,
and Johnson 1989) 75% of the time, showing that weather
forecast models can provide solid sowing recommendations.

To the best of our knowledge, there are no works that
evaluate the effectiveness of any type of decision sup-
port or recommendation system in the agricultural sector
through causal reasoning and beyond their predictive accu-
racy (Luma-Osmani et al. 2020; Pasquel et al. 2022). The
contributions of this work are summarized as follows: i) the
design and implementation of the first empirical evaluation
framework for digital agriculture based on causal inference;
ii) the development of a high-resolution, knowledge-based
recommendation system for the optimal sowing of cotton
using weather predictions, which was operationally used in
a real-world case study; iii) the identification of the causal
effect of sowing recommendations on yield, its subsequent
estimation with different methods (linear regression, match-
ing, inverse propensity score weighting and meta-learners),
and the use of refutation tests to evaluate the robustness of
estimates. Due to its accurate weather forecasts and cus-
tomized rules, we find that the system offered effective
sowing recommendations. It increased the cotton yield of
the farmers that followed the recommendations by a factor
that ranged from 12% to 17%, depending on the estimation
method used.

Agricultural Recommendation System
In this work, we design, implement and evaluate a knowl-
edge based recommendation system (Aggarwal 2016) for
optimal cotton sowing. The recommendations are based on
satisfying specific environmental conditions, as retrieved
from the related literature, which would ensure successful
cotton planting. The system is operationally deployed using
high resolution weather forecasts. Sec. 1 of the Appendix
contains an algorithmic presentation of the system.

According to literature, the minimum daily-mean soil
temperature for cotton germination is 16◦C (Bradow and
Bauer 2010). Soil or ambient temperatures lower than 10◦C
result in less vigorous and malformed seedlings (Boman and
Lemon 2005). As a general rule for cotton, agronomists rec-
ommend daily-mean soil temperatures higher than 18◦C for
at least 10 days after sowing and daily-maximum ambient
temperatures higher than 26◦C for at least 5 days after sow-
ing. We summarize the conditions for optimal cotton sowing
in Table 1 (Freeland Jr et al. 2006; Boman and Lemon 2005).
Using these conditions and Numerical Weather Predictions
(NWP) we implement a recommendation system that ad-
vises on whether any given day is a good day to sow or not.

Type of
Temperature Statistic Condition Condition

Priority
soil (0-10 cm) mean >18◦C optimum
ambient (2 m) max >26◦C optimum
soil (0-10 cm) mean >15.56◦C mandatory
soil (0-10 cm) min >10◦C mandatory
ambient (2 m) min >10◦C mandatory

Table 1: Optimal conditions for sowing cotton. All condi-
tions refer to the period from sowing day to 5 days after,
except the first soil condition that refers to 10 days after.
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Open-access high-resolution NWP forecasts are rarely
available. For this reason, we implement the WRF-ARW
model (Skamarock et al. 2019) with a grid resolution of 2
km. This enables us to reach a high spatio-temporal resolu-
tion for parameters that are crucial during the cotton seed-
ing period; soil and ambient temperature are retrieved at an
hourly rate for the forthcoming 2.5 days. Ideally, 10-day pre-
dictions at a 2 km spatial resolution should be available ev-
ery morning, as it is required by the conditions in Table 1.
However, this would demand an enormous amount of com-
putational power. To simulate the desired data, we combine
the 2.5-day high resolution forecasts with the GFS (NCEP
and USDOC 2015) 15-day forecasts that are given on a 0.25
degrees (roughly 25 km) spatial resolution.

ai =
GFSday=i

GFSday=1
, i ∈ {3, ..., 10} (1)

ARTj =

{
WRFday=j , j ∈ {1, 2}
WRFday=1 · aj , j ∈ {3, ..., 10} (2)

Eq. (1) shows how we extract the 10-day weather trend
factor using GFS forecasts. We calculate the percentage
change between each forecast (for day = 3 to day = 10)
and the corresponding next day (day = 1) forecast. Eq. (2)
shows how we produce the artificial (ART) 10-day forecasts
at 2 km spatial resolution. We keep the original WRF fore-
casts for the next two days and for the rest we apply the
respective 10-day trend factor to the next day WRF forecast.

⟞ FavorableUnfavorable ⟝

Figure 1: Optimal sowing map for a given day. The black
circle at the center depicts the GFS grid point that represents
the entire black-lined box. The white circles depict the 144
ART grid points for the same area.

We generate ART forecasts in order to provide recom-
mendations that can vary up to the field-level, which would
have been impossible with GFS forecasts alone. This is de-
picted in Figure 1. In order to evaluate the quality of our
ART forecasts, we compared them with measurements from
the nearest operational weather station in the area of interest
for the critical sowing period, from 15/4/2021 to 15/5/2021.
We have limited our comparison to the maximum and min-
imum ambient temperatures, as there were no soil tempera-

ture measurements available. It is worth noting that the near-
est grid point of GFS to the station is only 0.87 km away,
however the maximum distance can be up to 12 km away.
On the other hand, the equivalent grid point of ART is 1.41
km away, which incidentally is the maximum possible dis-
tance between any location and the nearest ART point.

Initially, we compared the next day forecasts of GFS
against their ART (or WRF) equivalent. The comparison
analysis revealed a Mean Absolute Error (MAE), between
the two forecasts and the station for maximum ambient
temperature, equal to 2.39◦C (GFS) versus 1.48◦C (ART),
and for minimum ambient temperature 1.52◦C (GFS) ver-
sus 1.74◦C (ART). Overall, WRF appears to behave well
and slightly better than GFS. This difference is expected to
be greater for other locations in the grid, as for this par-
ticular case the station happened to be very close to the
GFS grid point. Furthermore, we calculated the MAE and
Root Mean Squared Error (RMSE) of all daily 5-day fore-
casts of ART against the ground station for a period of in-
terest (for graphical comparisons, see Appendix Figure 1).
For the maximum temperature we found MAE = 2.41,
RMSE = 3.11, whereas for the minimum temperature we
found MAE = 2.75, RMSE = 3.70.

Real-World Case Study. We combined the ART weather
forecasts and the conditions listed in Table 1 to produce a
recommendation system in the form of daily maps over the
fields of the farmers of the cooperative (Figure 1). The sow-
ing recommendation maps were served through the website
of the cooperative that farmers visited on a daily basis. The
cooperative collected and provided for each field: its geo-
referenced boundaries, the sowing date, the seed variety,
the harvest date, the precise final yield, and for a subset of
the fields the yield of the previous year. We then combined
this data with publicly available observations from hetero-
geneous sources, such as satellites (Sentinel-2), weather sta-
tions and GIS maps, to engineer an observational dataset that
enables a causal analysis for studying the impact of the rec-
ommendation system on the yield.

Causal Evaluation Framework
Notation and Terminology. We encode the farm system
in the form of a Directed Acyclic Graph (DAG) G ≡ (V,E)
where V is a set of vertices consisting of all relevant vari-
ables, and E is a set of directed edges connecting them
(Pearl 2009). The directed edge A → B indicates causa-
tion from A to B, in the sense that changing the value of A
and holding everything else constant will change the value
of B. We are using Pearl’s do-operator to describe interven-
tions, with P(Y = y|do(T = t)) denoting the probability
that Y = y given that we intervene on the system by set-
ting the value of T to t. Following popular terminology, we
name the variable T , of which we aim to estimate the effect,
as treatment and the variable Y , which we want to quantify
the impact of T on, as outcome. The parents of a node are
its direct causes, while a parent of both the treatment and
outcome is referred to as a common cause or confounder.
Our end goal is to account for exactly the variables Z ⊆ V
that will allow us to estimate the Average Treatment Effect
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(ATE) of the treatment on outcome, as shown in Eq. (3).

ATE = E
[
Y |do(T = 1)

]
− E

[
Y |do(T = 0)

]
(3)

Problem Formulation. We thus aim to develop a causal
graph G whose vertices V capture the relevant actors of the
system we study, and edges E indicate their relationships.
The system recommendations should be part of the graph,
along with cotton yield and the agro-environmental condi-
tions that interfere in this physical process.

Because the end goal is the evaluation of the recommen-
dation system and its actual impact on yield, we designate as
treated the fields that farmers sowed on a day that was seen
as favorable by the system, i.e., the corresponding 10-day
ART forecasts satisfied the appropriate conditions, and as
control the fields that were sown on a non-favorable day. Be-
cause the system outputs 4 levels of recommendation rang-
ing from 0 (bad) to 3 (good), we define a day as favor-
able when all conditions are satisfied, i.e., when the system
outputs the highest recommendation value that is 3. A day
is then defined as non-favorable when the system outputs
any other recommendation value. Binarizing the treatment
in that way allows for greater flexibility in estimator selec-
tion and easier interpretation. Formally,

T =

{
1 , if recommendation of sowing date ∈ {3}
0 , if recommendation of sowing date ∈ {0,1,2}

Beyond the recommendation system, multiple factors in-
fluence the decision to sow or not. This is precisely the chal-
lenge we aim to address by employing a graphical analysis
and explicitly modeling the farm system structure. The ATE
we aim to estimate captures the difference between what the
average yield would have been if we intervened and forced
farmers to follow the recommendation by sowing on a fa-
vorable day, and the average yield if we forced them to defy
the recommendation by sowing on an unfavorable day. Such
an estimand is of primary significance for the farmers, but
also for proving the reliability and therefore accelerating the
adoption of smart farming tools. Given that confounding fac-
tors are controlled for, we henceforth refer to the ATE as the
(average) causal effect of following the recommendation in
the sense described above.

Cotton Domain Knowledge and Graph Building. Cot-
ton yield and quality are ultimately determined by the in-
teraction between the genotype, environmental conditions
and management practices throughout the growing season.
Nevertheless, the first pivotal steps for a profitable yield
are a successful seed germination and emergence which are
greatly dependent on timely sowing (Bauer, May, and Cam-
berato 1998; Bradow and Bauer 2010).

Emergence and germination mediate the effect of T on
Y ; however, Crop Growth (CG) was not observed. We thus
turned to the popular Normalized Difference Vegetation In-
dex (NDVI) in order to obtain a reliable proxy of CG, and
specifically used the trapezoidal rule across NDVI values
from sowing to harvest (Eklundh and Jönsson 2015). Even
though in the case of cotton, trapezoidal NDVI is not lin-
early correlated with yield (Dalezios et al. 2001; Zhao et al.

2007), it is correlated with early season Leaf Area Index
(LAI) (Zhao et al. 2007), which in turn is a good indica-
tor of early season crop growth rate (Virk, Snider, and Pilon
2019). Furthermore, seed germination and seedling emer-
gence are greatly dependent on soil moisture. Hence, soil
moisture SM is a confounder for the relation T → Y that
we study. As a SM proxy, we used the Normalized Differ-
ence Water Index (NDWI) at sowing day which is highly
correlated with soil moisture in bare soil (Casamitjana et al.
2020).

Agricultural management practices before sowing (AbS)
comprise tilling operations for preparing a good seedbed.
Practices during sowing (AdS) include a sowing depth of
4 − 5 cm and an average distance of 0.91 m between rows
and 7.62 cm between seeds. After sowing practices (AaS)
comprise basic fertilization, irrigation and pest management.
It is reasonable to think that all aforementioned practices
are a result of a common cause that we can define as Agri-
cultural Knowledge (AK), capturing the skills and experi-
ence of a farmer. We possess no quantitative information on
the agricultural knowledge or the practices followed by each
farmer. However, the farmer’s cooperative is not large, and
aims for consistent, high-quality produce. As a result, they
have developed highly consolidated routines for interacting
with their crops: this includes common practices, homoge-
neous fertilizer application, and jointly owned machinery.
We thus note that even if we do not have numerical data
on AbS,AdS,AaS, the cooperative directors do not observe
significant differences across fields and for the purposes of
our study these variables are considered to be constant.

At the same time, it is rational to assume that the agri-
cultural knowledge (AK) of any farmer interacts with crops
exclusively through management practices. Because of the
aforementioned condition, the influence of AK on the sys-
tem is nullified and we hence omit it from the graph. While
we note that the above limit the external validity of our re-
sults (Calder, Phillips, and Tybout 1982), by assuming that
agricultural practices are constant for all farmers and that
AK only interacts with the system through them, we im-
plicitly control for all of them (Huntington-Klein 2021).

Apart from soil moisture, soil and ambient temperatures at
the time of sowing and for 5-10 days after, affect seed germi-
nation, seedling development and final yield (Virk, Snider,
and Pilon 2019; Boman and Lemon 2005; Varco 2020). Low
temperatures result in reduced germination, slow growth and
less vigorous seedlings that are more prone to diseases and
sensitive to weed competition (Bradow and Bauer 2010).
This knowledge is incorporated in the sowing recommen-
dations, in the form of numerical rules, and consequently
in the treatment T . We thus added in the graph the weather
forecast WF (variables listed in Table 1) as a parent node of
T . We also had access to the weather on the day of sowing
WS (min & max ambient temperature in ◦C) from a nearby
weather station, influencing WF , T , and CG.

Topsoil (0-20 cm) properties SP (% content of clay, silt
and sand) and organic carbon content SoC (g C kg-1) also
affect cotton seed germination and seedling emergence due
to differences in water holding capacity and consequently
in soil temperature and aeration, drainage and seed-to-soil
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contact (Varco 2020). Data on SP and SoC were retrieved
from the European Soil Data Centre (ESDAC) (Ballabio,
Panagos, and Monatanarella 2016; de Brogniez et al. 2015).
Both variables were included in the graph as confounders of
T and CG. Seed variety also determines seed germination,
emergence and final yield (Snider, Pilon, and Virk 2020).
Seed mass and vigor (Liu et al. 2015; Snider, Pilon, and Virk
2020) are related to the seed variety (SV ); we hence added
the latter as a confounder for T and Y . In this case, we had
13 different cotton SVs.

Id Variable Description Source

T Treatment Farmers’ Cooperative, RS
WF Weather forecast GFS, WRF
WS Weather on sowing day Nearest weather station
WaS Weather after sowing Nearest weather station
CG Crop Growth NDVI via Sentinel-2
SM Soil Moisture on sowing NDWI via Sentinel-2
SP Topsoil properties Map by ESDAC
SoC Topsoil organic carbon Map by ESDAC
SV Seed Variety Farmers’ Cooperative
G Geometry of field Farmers’ Cooperative
AdS Practices during sowing Farmers’ Cooperative
AbS Practices before sowing Farmers’ Cooperative
AaS Practices after sowing Farmers’ Cooperative
HD Harvest Date Farmers’ Cooperative
Y Outcome (Yield) Farmers’ Cooperative

Table 2: Farm system variable identifier, description and
source. RS = Recommendation System.

The geometrical properties of the field (perimeter to area
ratio, G) were also considered, as border effects can play a
minor role on crop growth, confounding the effect of T on Y
(Green 1956). Since temperature is the primary environmen-
tal factor controlling plant growth (Bange and Milroy 2004;
Hatfield and Prueger 2015), temperature fluctuations were
observed throughout the growing season from the nearest
weather station, constituting a parent variable WaS (min &
max ambient temperature in ◦C) of crop growth CG. Lastly,
the Harvest Date (HD) mediates the effect of CG on Y , in-
fluencing both yield potential and quality (Dong et al. 2006;
Bange, Caton, and Milroy 2008). Table 2 summarizes the
variables’ description, abbreviation and source.

Causal Graph. Figure 2 displays the final causal graph G.
We note that, in reality, it is impossible to account for all fac-
tors interacting in the system in order to claim that the esti-
mated effect will not contain any bias. However, because the
selection of variables is deeply rooted on well-understood
agro-environmental interactions, bias is expected to be min-
imized, in the sense that no important interactions are left
unaccounted for. Furthermore, we extensively test the relia-
bility of effect estimates through multiple refutation checks.

Effect Identification and Estimation. Because the cal-
culation of causal effects requires access to counterfactual
values that are by definition not observed (Holland 1986),
observational methods rely on identification techniques and
assumptions that aim at reducing causal estimands such as

T

WF

CG

WS

Y

SV

SP

G

HD

SM

Observed Treatment & Outcome

Observed Covariates
Observed Covariates via Proxy
Unobserved Covariates 
but Constant across units

WaS

AbS

AaS

AdS

SoC

Figure 2: Graph of the farm system, encoding the causal re-
lations between the relevant agro-environmental actors.

P(Y = y|do(T = t)) to statistical ones, such as P(Y =
y|T = t). The back-door criterion is a popular identification
method that solely relies on a graphical test to infer whether
adjusting for a set of graph nodes Z ⊆ V is sufficient for
identifying P(Y = y|do(T = t)) from observational data.
Formally, a set of variables Z satisfies the back-door crite-
rion relative to an ordered pair of variables (T, Y ) in a DAG
G, if no node in Z is a descendant of T and Z blocks ev-
ery path between T and Y that contains an arrow into T .
After (if) we have obtained a back-door adjustment set to
condition on, we can proceed with estimating the ATE of
interest. The back-door criterion already provides a formula
for the interventional distribution. Given a set of variables Z
satisfying the back-door criterion we can identify the causal
effect of T on Y as P(y|do(t)) =

∑
z P(y|t, z)P(z).

In our study, ATE estimation is done with several meth-
ods of varying complexity. To check covariate balance and
as a method prerequisite, we model the propensity scores
P(T = 1|Z = z), i.e., the probability of receiving treatment
given features (Rosenbaum and Rubin 1983). Linear regres-
sion and distance matching are selected as baseline estima-
tion methods. The popular Inverse Propensity Score (IPS)
weigthing is also used (Stuart 2010). We finally apply mod-
ern machine learning methods, i.e., the baseline T-learner
and the state-of-the-art X-learner (Künzel et al. 2019).

Refutation Methods. One of the biggest challenges in
causal inference pertains to model evaluation. Given the fact
that ground truth estimates are not observed, we resort to
performing robustness checks and sensitivity analyses of es-
timates, in line with recent research (Sharma and Kiciman
2020; Cinelli and Hazlett 2020). We perform the following
tests: i) Placebo treatment, where the treatment is randomly
permuted and the estimated effect is expected to drop to 0;
ii) Random Common Cause (RCC), where a random con-
founder is added to the dataset and the estimate is expected
to remain unchanged; iii) Random Subset Removal (RSR),
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where a subset of data is randomly selected and removed and
the effect is expected to remain the same; iv) Unobserved
Common Cause (UCC), where an unobserved confounder
acts on the treatment and outcome without being added to
the dataset, and the estimates should remain relatively stable.
The Placebo, RCC and RSR tests are bootstrapped to gen-
erate confidence intervals and p-values (DiCiccio and Efron
1996). The UCC returns a heatmap of new ATE estimates
depending on the strength of unobserved confounding.

Experiments, Results and Discussion
The sowing period lasted from early April to early May
2021, the harvest took place from mid to late September, and
the yield per hectare ranged from 1, 250 to 6, 960 kg (Fig-
ure 2 of Appendix contains relevant histograms). The dataset
consists of 171 fields (51 treated and 120 control). Variables
that registered intra-field values (NDVI, NDWI) were aver-
aged at the field-level. For the experiments, we are using the
popular doWhy (Sharma and Kiciman 2020) and Causal ML
(Chen et al. 2020) Python libraries. Our implementation and
dataset are publicly available (Tsoumas 2023).

Applying the back-door criterion on graph G (Figure 2),
the following adjustment set of nodes Z was found to be
sufficient for identifying the ATE:

Z ={WSMIN, MAX , SOC, SM, G,
SPSILT, CLAY, SAND , ABS, ADS, SV1-13}

(4)

All variables in Z are numerical, including the one-hot en-
coded vectors of the categorical SV1-13 variable of seed va-
riety. AbS and AdS are constant, and thus excluded for esti-
mation purposes. We scale the data by subtracting the mean
from each variable and dividing by its standard deviation.
The treatment T is binarized, with 1 indicating that a farmer
sowed on a favorable day, and 0 indicating the opposite.

Propensity modeling is a prerequisite of IPS weighting.
We thus begin by discussing the propensity model that is fit.
Given the relatively small dataset size, logistic regression is
used on the scaled back-door adjustment set Z for classify-
ing each field into the treatment/control group. We subse-
quently trim the dataset by removing all rows with extreme
propensity scores (< 0.2 or > 0.8) to aid the overlap as-
sumption (Imbens and Rubin 2015). The resulting distribu-
tion of propensity scores can be seen at Figure 3. The model
scores 0.81 in accuracy, 0.64 in F1-score, and 0.88 in ROC-
AUC. After trimming extreme propensity scores, a subset of
48 treated and 37 control units remains. There is decent over-
lap between the propensity score distributions of the treat-
ment and control group, indicating that they are comparable
and enabling reliable propensity-based ATE estimation.

Table 3 and Figure 4 show the results of the ATE esti-
mation per method, alongside the corresponding 95% con-
fidence intervals and p-values. Besides Linear Regression,
other methods do not provide confidence intervals by de-
fault. For matching, IPS, and meta-learners confidence in-
tervals and the resulting p-values are hence bootstrapped.
Both the T-learner and X-learner use a Random Forest for
modeling the outcome Y .
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Figure 3: Distribution of propensity scores for the control
and treatment group after trimming extreme scores.

Figure 4: ATE point estimates and 95% confidence intervals
for all estimation methods.

All methods detect a significant ATE at 95% confidence
level, with point estimates ranging from 372 to 546 kilo-
grams of cotton per hectare. For context, the average ob-
served yield is 3, 145 kg/ha. We thus infer that the causal
effect of following the sowing recommendation on yield is
significantly positive, driving a yield increase ranging from
12% to 17%, depending on the estimation method used.

Of central importance are the refutation tests we run after
having estimated the recommendation impact. Table 3 fea-
tures analytic results for all method / refutation test combina-
tions. All estimation methods are robust against performing
the following data manipulations and re-estimating the ATE:
randomly permuting the treatment (Placebo test), adding a
confounder (RCC test), sampling a subset of data (RSR test)
and creating unobserved confounding (UCC test). Specifi-
cally, Placebo ATE estimates do not differ significantly from
0, while RCC and RSR estimates do not differ significantly
from the already obtained ATE. For the UCC test, the mean
ATE estimates are reduced yet remain positive, despite un-
observed confounding of significant magnitude. Confidence
intervals and p-values are bootstrapped (1000 iterations).

The results indicate that the recommendation system’s ad-
vice drove a net increase in yield that was deemed both sig-
nificant and robust from a statistical perspective. By utilizing
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Causal Effect Estimation Refutations

Placebo RCC UCC RSR

Method ATE CI p-value Effect* p-value Effect* p-value Effect* Effect* p-value

Linear Regression 546 (211, 880) 0.0015 -25.74 0.39 546 0.49 85 543 0.45
Matching 448 (186, 760) 0.0060 50.82 0.39 432 0.40 116 438 0.48

IPS weighting 471 (138, 816) 0.0010 38.82 0.40 470 0.40 113 462 0.45
T-Learner (RF) 372 (215, 528) 0.0240 9.26 0.49 373 0.46 - 353 0.42
X-Learner (RF) 437 (300, 574) 0.0050 5.10 0.50 430 0.37 - 409 0.36

Table 3: Results of Average Treatment Effect estimation. Includes point estimates, 95% confidence intervals, and four refutation
tests. For the Placebo, RCC and RSR refutations, the new ATE estimate is reported (denoted as Effect*), alongside the respective
p-value (< 0.05 indicates a failed test). The UCC column reports the mean ATE estimate of the corresponding heatmap (for
full heatmaps and details see Sec. 2 of Appendix). Numbers are in cotton kg/ha, rounded to the nearest integer.

the theory of graphical causal models, the analysis transpar-
ently puts forward its assumptions and explicitly incorpo-
rates domain knowledge in it. Combined with accurate and
performant systems, such analyses can benefit the reliabil-
ity and adoption of digital agriculture as well as farmers’
trust. The provision of information on the actual impact ex-
pected from a recommendation system may also enable a
cost-benefit analysis on behalf of the farmer, by simply com-
paring the digital tool cost to the expected yield gain.

Even though the analysis is transparent, it is as good as the
causal assumptions it makes and the DAG it develops. Our
graph is consistent with agri-environmental knowledge on
cotton, however there is always a possibility that bias exists,
either due to a missed confounder or due to a missed inter-
action between observed variables. The robustness checks
we performed were all successful; noting that when we add
strong unobserved confounding, the UCC test estimates be-
come volatile - an expected behavior to a certain degree.

Given the homogeneous management practices among
farmers in our data, we remark that external validity of es-
timates is low, as results cannot be expected to generalize
to other farms that might follow different routines. Never-
theless, it is not uncommon for farmers to follow similar
practices in other regions or even entire countries. While
the transfer of effect estimates warrants caution, the same
does not hold for the proposed framework itself. Given rel-
evant data and knowledge, a graph-based empirical evalua-
tion of an agricultural recommendation system can normally
proceed. If consensus among estimation methods in terms
of ATE significance is reached, the tool is deemed benefi-
cial; otherwise, more work is required. All in all, this system
equips farmers with a provably valuable tool based on cot-
ton knowledge and weather forecasts. It contributes to a suc-
cessful growing season and lowers the likelihood of farmers
resorting to expensive actions, e.g., replanting a field.

For the growing season of 2022, the recommendation sys-
tem was deployed at national scale and extended to two other
crops (maize, sunflower). These new pilot applications will
allow us to practically test the external validity of our re-
sults across different seasons, crops and locations. More-
over, given the developed causal graph G, the crop growth
(CG) variable that is sufficiently captured through its NDVI
proxy, mediates the effect of T on Y . The front-door crite-

rion (Pearl 2009) might thus provide an alternative identifi-
cation method for the ATE, and we plan on exploring it in
collaboration with domain experts. Finally, the more grow-
ing seasons the recommendation system has seen, the more
data are obtained. Going beyond ATE estimation by learn-
ing Conditional ATEs and using causal machine learning
methods for providing personalized effect estimates is an-
other next step. Due to the rich and well-established domain
knowledge, we finally believe that the potential of causal
reasoning in agriculture extends far beyond effect identifica-
tion. Fitting Structural Causal Models and performing coun-
terfactual inference can enable a greater understanding of
the farm system and supercharge decision support tools.

Most generally, the essential condition that allowed us
to utilize causal inference for empirically evaluating an
agricultural recommendation system is the ample, long-
established domain knowledge that exists. Decision support
systems are being used on multiple fields (Marakas 2003)
such as medical decision making (Sutton et al. 2020) or for-
est and fire management (Segura, Ray, and Maroto 2014;
Martell 2015). The aforementioned fields possess accumu-
lated domain knowledge on the interactions a good system
exploits; the same way we possess information on environ-
mental conditions related to cotton planting. We thus expect
graphical approaches to be valuable for the empirical evalu-
ation of decision support systems of diverse domains.

Conclusion
In this study, we design, implement, and test a digital agri-
culture recommendation system for the optimal sowing of
cotton. Using the collected data and leveraging domain
knowledge, we evaluate the impact of system recommen-
dations on yield. To do so, we utilize and propose causal
inference as an ideal tool for empirically evaluating decision
support systems. This idea can be upscaled to other digi-
tal agriculture tools as well as to different fields with well-
established domain knowledge. This paradigm is in princi-
ple different to decision support systems that frequently use
black-box algorithms to predict variables of interest, but are
oblivious to the evaluation of their own impact. In that sense,
this work comes to the defence of the farmer, by introducing
an AI framework for elaborating on the assumptions, relia-
bility, and impact of a system before discussing service fees.
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