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Abstract

Deep neural networks often experience performance degradation when faced with distri-
butional shifts between training and testing data, a challenge referred to as domain shift.
Domain Generalization (DG) addresses this issue by training models on multiple source
domains, enabling the development of invariant representations that generalize to unseen
distributions. Although existing DG methods have achieved success by minimizing vari-
ations across source domains within a shared feature space, recent advances inspired by
representation disentanglement have demonstrated improved performance by separating la-
tent features into domain-specific and domain-invariant components. We propose two novel
frameworks: Disentangled Embedding through Mutual Information (DETMI) and Disen-
tangled Embedding through Style Information (DETSI). DETMI enforces disentanglement
by employing a mutual information estimator, minimizing the mutual dependence between
domain-agnostic and domain-specific embeddings. DETSI, on the other hand, achieves dis-
entanglement through style extraction and perturbation, facilitating the learning of domain-
invariant and domain-specific representations. Extensive experiments on the PACS, Office-
Home, VLCS and TerraIncognita datasets show that both frameworks outperform several
state-of-the-art DG techniques.

1 Introduction

Deep neural networks excel at learning discriminative features and achieve outstanding performance in
computer vision tasks. However, their performance deteriorates significantly when tested on data with a
distribution different from the training data Ben-David et al. (2010). For instance, a network trained on
images from an urban environment performs poorly when applied to rural environments. This performance
drop results from the domain shift Quiñonero-Candela et al. (2022), which refers to the difference between
the source and target data distributions. To address this issue, Domain Generalization (DG) was introduced
in 2011 Blanchard et al. (2011). DG proposes training a model on multiple relevant source domains to
develop invariant representations that generalize to new distributions not present during training.

During the past 12 years, numerous approaches have been proposed to address the challenge of DG. Among
these, adversarial training has been widely explored to encourage domain-invariant feature learning in dif-
ferent domains Li et al. (2018b;c); Sinha et al. (2017). Other strategies have employed meta-learning Li
et al. (2018a); Balaji et al. (2018); Zhao et al. (2021); Finn et al. (2017), which enables models to learn to
generalize by simulating domain shifts during training. Ensemble learning Rame et al. (2022) is another
popular method in domain generalization, where multiple models are trained with diverse data views, and
their predictions are aggregated to improve the robustness against domain changes.
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Data augmentation techniques have also emerged as promising solutions, in which synthetic data is gener-
ated to expose the model to a wider range of variations, helping it generalize to unseen domains Mehmood
& Barner (2024); Volpi et al. (2018); Zhou et al. (2020a;b). Furthermore, some methods focus on learning
domain-invariant features, such as shape representations, by minimizing the divergence between latent rep-
resentations between domains, thereby improving generalization to new environments Zhou et al. (2022);
Lu et al. (2022). These approaches represent key advances in DG, each contributing unique mechanisms to
address the distributional shifts that lead to domain shifts.

Most of these methods discard domain-specific information (e.g, background, style) to minimize the diver-
gence between the embeddings from different source domains. Recently, inspired by disentangled represen-
tation learning, the authors of POEM Jo & Yoon (2023) trained a model to learn domain-invariant and
domain-specific information separately. In addition, to remove redundant information between these two
feature spaces, cosine similarity was minimized, further enhancing disentanglement.

Inspired by disentangled embedding learning POEM Bui et al. (2021); Jo & Yoon (2023); Yu et al. (2024)
for domain generalization (DG), we introduce two novel frameworks designed to effectively learn domain-
agnostic embeddings by leveraging domain-specific information. These frameworks enable the model to
explicitly factorize the representation space, allowing for more targeted learning of invariant features critical
for out-of-distribution generalization. By decoupling the domain-specific noise and task-relevant signal, we
aim to enhance robustness and transferability across unseen domains.

In our first proposed framework, named DETMI, we leverage domain-specific knowledge to decouple domain-
invariant representations. To this end, we introduce a domain-specific encoder and classifier alongside a
task-specific encoder and classifier. To improve disentanglement, POEM Jo & Yoon (2023) employs co-
sine similarity to promote linear independence between domain-specific and domain-agnostic feature spaces.
However, cosine similarity does not account for higher-order dependencies, which can result in residual in-
formation leakage between the two spaces and compromise the effectiveness of the disentanglement. To
overcome this limitation, we propose minimizing the mutual information between the two feature spaces.
This strategy reduces higher-order correlations and facilitates the learning of more robust and statistically
independent representations, thereby enhancing generalization to unseen domains. The DETMI framework
goes beyond geometric constraints by offering a principled mechanism for enforcing independence, thereby
enabling deeper statistical disentanglement of the underlying factors of variation.

In our second approach, we introduce the DETSI framework, which also leverages domain-specific knowledge
through a domain-specific encoder and classifier. Additionally, to improve disentanglement, it incorporates
style information to separate domain-specific and domain-agnostic embeddings. Inspired by Huang & Be-
longie (2017), which establishes a correlation between the domain of an image and its style, we apply
style perturbation to encourage the extraction of domain-agnostic embeddings. These embeddings prioritize
high-level features, such as object structure and semantic content, over domain-dependent attributes. This
approach reduces the model’s reliance on superficial cues and promotes the learning of features that generalize
across domain shifts. Meanwhile, for domain-specific embeddings, DETSI captures style-specific character-
istics, including texture and artistic style, rather than low-level features like edges or pixel intensity. By
explicitly modeling style-based attributes, DETSI effectively disentangles domain-specific components from
domain-invariant ones and produces robust embeddings, thereby significantly enhancing generalization across
diverse unseen domains.

We conducted extensive experiments on the PACS Li et al. (2017), Office-Home Venkateswara et al. (2017),
VLCS Torralba & Efros (2011), and TerraIncognita Beery et al. (2018) benchmarks. The results demon-
strate that the proposed approaches outperform several state-of-the-art (SOTA) methods addressing Domain
Generalization.

The remainder of this paper is organized as follows. Section 2 reviews related work, summarizing key methods
developed to address the challenges of domain generalization. Section 3 details the proposed methodologies,
including the techniques used to tackle domain generalization. Section 4 describes the experimental setup,
covering datasets, implementation details, and the results of the proposed methods. Section 5 presents
ablation studies, providing deeper insights into the contributions of individual components. Finally, Section 6
concludes the paper by summarizing the findings and discussing their implications.

2



Published in Transactions on Machine Learning Research (06/2025)

2 Related Work

Domain Generalization (DG) Zhou et al. (2020a) is an approach that trains models using labeled data from
multiple source domains to generalize to an unseen target domain effectively. This problem arises naturally
in applications such as medical imaging, autonomous driving, and visual recognition, where the distribution
of data in the real world may differ significantly from that in the training set, leading to poor generalization
performance. Over the past decade, numerous techniques have been proposed to tackle domain generaliza-
tion, including domain-invariant feature learning, which focuses on extracting representations that remain
consistent across domains; meta-learning, which leverages learning-to-learn paradigms for better adaptabil-
ity; data augmentation, which generates diverse training examples to improve model robustness; adversarial
learning, which introduces adversarial objectives to align distributions across domains; and disentangled em-
bedding learning, which separates domain-specific and domain-invariant factors to enhance generalization.
Each of these approaches is discussed in detail in the following subsections.

2.1 Domain-Invariant Representation Learning

One of the most popular strategies in domain generalization is to learn domain-invariant representations,
where features are shared across different domains and remain stable under distributional shifts. Early works
in this area have leveraged feature alignment techniques to ensure that representations of different domains
become indistinguishable in a learned latent space. For example, Muandet et al. Muandet et al. (2013)
introduced Domain-Invariant Component Analysis (DICA), where they aimed to learn a feature transfor-
mation that removes domain-specific variations while retaining the information necessary for classification.
Similarly, Ghifary et al. proposed Scatter Component Analysis (SCA) Ghifary et al. (2016), a method that
projects data into a subspace where the variance between domains is minimized and the class separation is
maximized.

Another approach uses distribution matching techniques like Maximum Mean Discrepancy (MMD) to align
the feature distributions across domains. For example, Li et al. Li et al. (2018b) proposed the Domain-
Adversarial Neural Network (DANN) framework, where an adversarial loss is used to align feature dis-
tributions between domains by confusing a domain classifier that attempts to distinguish between source
domains.

2.2 Meta-Learning

Meta-learning, often called “learning to learn,” has recently gained traction as a promising framework for
domain generalization. Meta-learning approaches Li et al. (2018a); Zhao et al. (2021); Finn et al. (2017)
aim to train a model to quickly adapt to new, unseen domains. In this method, data from source domains is
divided into meta-train and meta-test segments, allowing the model to be trained specifically to excel on the
meta-test data using the meta-train data, mimicking real-world applications where the model must adapt to
completely new data.

Li et al. Li et al. (2018a) introduced a meta-learning framework for domain generalization in which the
model is trained on multiple source domains to simulate the process of generalizing to new, unseen domains.
Specifically, the model is trained in a meta-learning loop, where each training iteration mimics the domain
generalization process by exposing the model to different domain shifts, helping the model learn robust
features that generalize well to unseen domains.

Another key work is by Balaji et al. Balaji et al. (2018), who proposed MetaReg, where a meta-regularization
term is learned to guide the model’s parameters to be domain-agnostic. These approaches focus on teaching
the model to adapt quickly to new tasks by simulating domain shifts during training. Meta-learning ap-
proaches have shown great promise in domain generalization due to their ability to simulate and adapt to
new domain distributions in the training phase.
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2.3 Adversarial Learning

Adversarial learning has also been widely used in domain generalization to reduce the gap between source
and unseen target domains. The core idea is to learn indistinguishable feature representations across domains
using adversarial training techniques.

In one of the foundational works, Li et al.Li et al. (2018b) proposed an adversarial autoencoder (AAE),
where the encoder is adversarially trained to produce features that are domain-invariant, while a domain
discriminator is trained to distinguish between features from different domains. The feature extractor tries
to fool the domain discriminator, thus learning domain-invariant representations.

In another work, Li et al. Li et al. (2018c) train a conditional invariant adversarial network to learn
domain-invariant representations by making the learned representations on different domains indistinguish-
able through adversarial training.

Adversarial approaches have proven to be effective in learning representations that are robust to domain
shifts, though they often require careful tuning of the adversarial loss function.

2.4 Data Augmentation

In addition to improving DG, data augmentation techniques Zhou et al. (2020a;b); Li et al. (2023) introduce
more variety to training data by augmenting existing data pairs (x, y), where x represents the input and y the
corresponding label. These techniques generate transformed pairs (A(x), y), where A(·) is a transformation
that preserves the original label. This process helps to prepare the model to handle the diverse conditions
encountered in the source domains.

Volpi et al. Volpi et al. (2018) proposed an augmentation strategy based on adversarial perturbations, where
synthetic examples are generated by perturbing the original data to mimic potential unseen domains. The
model can better handle domain shifts at test time by training on these perturbed examples.

Shankar et al. Shankar et al. (2018) introduced CrossGrad, an approach that uses the gradient of the
domain classifier to perturb input examples. This ensures that the generated examples lie closer to the
decision boundary of the domain classifier, forcing the model to learn domain-invariant features.

Zhou et al. Zhou et al. (2020b) proposed a data augmentation approach that utilizes a data generator to
synthesize samples from pseudo-novel domains, effectively expanding the source domain with artificially
generated data. By creating these domain variations, the model is exposed to a wider range of potential
domain shifts, enhancing its ability to generalize to unseen target domains.

In another work, Zhou et al. Zhou et al. (2020a) developed a Deep Domain-Adversarial Image Generation
(DDAIG) network to generate more synthetic data using adversarial training, increasing domain diversity,
and improving the generalization capabilities of the model. Other techniques like Domain Randomization
(DR) Tobin et al. (2017) and image transformations, which adjust visual features such as color, texture,
and lighting, add further robustness.

Data augmentation methods have been particularly effective when the goal is to simulate diverse, unseen
domains during training. However, a challenge with these methods is ensuring that the generated augmen-
tations accurately reflect the domain shifts encountered in practice.

2.5 Disentangled Embeddings Learning

Inspired by representation learning, recent advances in disentangled embedding learning for domain general-
ization have increasingly focused on partitioning the latent space into domain-invariant and domain-specific
embeddings. Researchers, including Bui et al. (2021) and Jo & Yoon (2023), minimize metrics such as co-
variance or cosine similarity between these spaces to enforce greater independence. Using a similar intuition,
Yu et al. (2024), minimize KL divergence loss to learn domain-agnostic and domain-specific embeddings
through a single encoder. This separation enhances the model’s generalization ability across diverse and
unseen domains.
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Our proposed frameworks tackle DG by disentangling latent representations into domain-specific and domain-
invariant components. We leverage domain-specific information to aid in the learning of domain-invariant
semantic features, ensuring a more robust representation. We leverage mutual information and style infor-
mation in DETMI and DETSI, respectively, to effectively capture both domain-related and domain-agnostic
embeddings. Through this disentanglement, our proposed approaches improve the model’s ability to learn
well-separated representations, leading to improved generalization across diverse domains.

3 Proposed Method

The feature and label spaces are represented by X ⊂ RD and Y ⊂ R, respectively. A domain is represented
by a joint distribution Pxy ∈ PX ×Y , where PX ×Y denotes the set of joint probability distributions on X ×Y.
In DG, we have access to K similar but distinct source domains as Sk = (x(k)

i , y
(k)
i )N(k)

i=1 , each associated
with a joint distribution P

(k)
xy , where (x(k)

i , y
(k)
i ) ∼ P

(k)
xy and N (k) denote the total number of data points in

a particular domain k. The goal of DG is to learn a model f : X → Y using data from the source domain
so that it can generalize well to an unseen target domain τ having a joint distribution P τ

xy.

The next two subsections introduce frameworks for disentangling embeddings to improve domain general-
ization. The first subsection, Disentangled Embedding Through Mutual Information (DETMI), presents
a framework that leverages mutual information between domain-specific and domain-invariant components
to achieve learning of generalizable features. The second subsection, Disentangled Embedding Through
Style Information (DETSI), proposes a complementary strategy that uses style information, such as feature
statistics and Gram matrices, to isolate domain-specific and domain-agnostic features. This framework pro-
motes the separation of domain-relevant components by focusing on content and style perturbations, further
improving the model’s ability to generalize across unseen domains.

3.1 Disentangled Embedding through Mutual Information (DETMI)

DG assumes the invariance between X and Y. Existing methodologies primarily focus on acquiring invariant
features from available source domains, anticipating that these invariant features can be extended to predict
the target domains unseen during training. However, these approaches remain susceptible to erroneous
predictions because of their inability to handle variations caused by data bias. Domain-specific features
such as background, style variation, and location introduce data bias that adversely affects the prediction
performance of a model. Drawing inspiration from disentangled embedding learning Bengio et al. (2013),
we leverage these domain-specific cues to disentangle domain-agnostic representations and extract more
generalizable features. By separating domain-specific information from domain-invariant components, our
approach enhances the model’s ability to generalize to unseen target domains.

To this end, we propose the Disentangled Embeddings Through Mutual Information (DETMI) framework
illustrated in Fig. 1. In the framework, we train two encoders, Ec and Ed, to learn category-related and
domain-specific characteristics denoted as Zc and Zd, respectively. We also employ two classifiers, C and
C̃, to predict class labels and domain labels, respectively. The class and domain classifiers are trained using
cross-entropy losses Lc and Ld, defined as:

Lc = −yk
i log

(
σ
(
C(Ec(xk

i ; θc); δc)
) )

, (1)

Ld = −dk
i log

(
σ
(
C̃(Ed(xk

i ; θd); δd)
) )

, (2)
where yk

i and dk
i denote the class and domain labels, respectively. The parameters δc, δd, θc, and θd

correspond to the classifiers C, C̃, and the encoders Ec and Ed, respectively. The function σ denotes the
sigmoid activation.

The optimization objective function for learning domain-agnostic feature space through the leverage of
domain-specific information is:

LdI = Lc + λ1Ld. (3)

where λ1 is the weighting coefficient.
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Figure 1: DETMI: Disentangled Embedding Through Mutual Information

Although we leverage domain-specific features to learn only domain-agnostic features, this constraint is
insufficient to remove all domain-relevant information. A recent study Jo & Yoon (2023) tackled this challenge
by employing cosine similarity to encourage geometric independence between these feature spaces, thus
improving disentanglement. Our approach minimizes mutual information between Zc and Zd to enforce
independence, addressing higher-order correlations beyond the mere spatial arrangement.

3.1.1 Independence through Mutual Information

Let X and Y be two random variables. Mutual information I(X; Y ) measures the statistical dependence
between two variables.

Theorem 1. If I(X; Y ) = 0, then X and Y are statistically independent.

Proof. The mutual information between two random variables X and Y is given by:

I(X; Y ) =
∫∫

P (x, y) log P (x, y)
P (x)P (y) dx dy. (4)

If I(X; Y ) = 0, then:

log P (x, y)
P (x)P (y) = 0 ⇒ P (x, y) = P (x)P (y). (5)

In light of Theorem 1, a well-known result in information theory, reducing I(X; Y ) brings P (x, y) closer
to P (x)P (y), promoting statistical independence. This facilitates the learning of semantically meaningful
disentangled embeddings, enhancing the extraction of generalizable features for improved domain adaptation.

The mutual information between Zc and Zd is given by:

I(Zc; Zd) =
∫∫

p(z̃, ẑ) log
(

p(z̃, ẑ)
p(z̃)p(ẑ)

)
dz̃ dẑ (6)

where p(z̃, ẑ) is the joint probability density function of Zc and Zd, and p(z̃) and p(ẑ) are the marginal
probability density functions of Zc and Zd, respectively. For high-dimensional variables, the calculation of
the double integrals is quite complex.
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MINE Belghazi et al. (2018), utilizes the Donsker-Varadhan representation of the Kullback-Leibler (KL)
divergence to provide a lower bound on mutual information and optimize it using a neural network.

Using Donsker-Varadhan representation, the Kullback-Leibler (KL) divergence between two probability dis-
tributions P and Q is given by:

DKL(P ||Q) = sup
T :Ω→R

EP [T ] − logEQ[eT ]. (7)

where the supremum is taken over all functions T for which both expectations remain finite.

The mutual information I(X; Y ) between two random variables X and Y is defined using the Kullback-
Leibler (KL) divergence as:

I(X; Y ) = DKL(P (X, Y )||P (X)P (Y )), (8)

where P (X, Y ) is the joint probability distribution of X and Y . P (X)P (Y ) represents the product of
marginal distributions.

Following MINE, we employ a neural network Nθ to estimate the lower bound of I(Zc; Zd):

I(Zc; Zd) ≥ Î(Zc; Zd) = sup
θ

Ep(z̃,ẑ)[Nθ] − logEp(z̃)⊗p(ẑ)[eNθ ]. (9)

The expectations in (9) are computed using the approach of MINE. Accordingly,

Î(Zc; Zd) = 1
n

n∑
i=1

N(z̃i, ẑi, θ) − log
(

1
n

n∑
i=1

expN(z̃i, ˜̂zi,θ)
)

, (10)

where (z̃, ẑ) is obtained through the joint probability density function p(z̃, ẑ) and ˜̂z is obtained through the
marginal distribution p(ẑ) by a random shuffle.

By minimizing Î(Zc; Zd), we force the learned embeddings Zc and Zd to satisfy:

P (Zc, Zd) ≈ P (Zc)P (Zd). (11)

This prevents information leakage from Zd into Zc, ensuring proper disentanglement. The final optimiza-
tion objective function for learning domain-agnostic feature space through the leverage of domain-related
information is:

LdI = Lc + λ1Ld + λ2Î(Zc; Zd). (12)

where λ1 and λ2 are the weighting coefficients.

Algorithm 1 Training procedure for DETMI
1: Input: K domains data samples; Encoders Ec, Ed; Classifiers C, C̃; Mutual information estimator Nθ;

Batch size B
2: Output: Optimized Encoder Ec and Classifier C
3: Using MINE, Update Mutual information estimator Nθ by maximizing 10 until convergence.
4: for i = 1: epochs do
5: Sample a mini-batch (x(k)

i , y
(k)
i )B

i=1 ∈ Sk

6: Compute the objective function
7: LdI = Lc + λ1Ld + λ2Î(Zc; Zd).
8: Update Ec, Ed, C, C̃
9: end for

10: Return Optimized Encoder Ec and Classifier C
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3.2 Disentangled Embedding through Style Information (DETSI)

We propose DETSI, an alternative approach for learning domain-agnostic embeddings by leveraging domain-
specific information. DETSI leverages style information to learn domain-agnostic and domain-specific em-
beddings, denoted as Zc and Zd. Building on the work of Huang & Belongie (2017), which establishes
the close relationship between style and instance-level feature statistics, and recognizing the strong corre-
lation between image style and visual domains, we employ style perturbation to encourage content-focused
learning for domain-agnostic embeddings. Additionally, we extract style features to enhance the learning of
domain-specific information, enabling a more effective separation of domain-specific and domain-invariant
components.

3.2.1 Preliminaries

Huang & Belongie (2017) demonstrated that CNN convolutional features maps statistics i.e. channel-wise
mean and variance, effectively characterize image style. Building on this insight, Ulyanov et al. (2016)
proposed Instance Normalization (IN) to normalize these style statistics and mitigate style variations in
style transfer models.

For a given input image x, its feature maps are represented as fx ∈ RC×H×W , where C denotes the number
of channels, and H and W correspond to the spatial dimensions. The formulation of Instance Normalization
(IN) is expressed as:

IN(fx) = γ
fx − µf

σf
+ β, (13)

where γ, β ∈ RC correspond to learnable affine transformation parameters, and µf , σf ∈ RC correspond to
the channel-wise mean and standard deviation.

µf = 1
HW

H∑
h=1

W∑
w=1

fc,h,w, (14)

and

σf =

√√√√ 1
HW

H∑
h=1

W∑
w=1

(fc,h,w − µf )2 + ϵ, (15)

where a small constant ϵ is added to avoid numerical instability.

Furthermore, leveraging these style statistics, Huang & Belongie (2017) introduced Adaptive Instance Nor-
malization (AdaIN), which transfers an image’s style to a target style by replacing the affine parameters
with corresponding style-specific statistics (µs, σs). AdaIN is defined as:

AdaIN(fx, s) = σs
fx − µf

σf
+ µs. (16)

In this paper, we introduce perturbations to the channel-wise mean and standard deviation of each feature
map to introduce style randomization. Furthermore, we utilize AdaIN to substitute the original style infor-
mation with randomly generated style statistics, enhancing style invariance in our feature representations.

3.2.2 Content-focused Learning

We achieve content-focused learning by introducing style perturbation, which alters the feature statistics
at the instance level of the training images. These feature statistics, closely tied to style, are perturbed to
encourage the model to focus on content rather than stylistic variations. The process is formally defined by:

µnew = λµ(f (l)
c ) + (1 − λ)µ(f̃ (l)

c ), (17)
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and
σnew = λσ(f (l)

c ) + (1 − λ)σ(f̃ (l)
c ), (18)

where λ ∼ U(0, 1). Here, f
(l)
c represents a specific batch of feature maps at a layer l of the encoder Ec, and

f̃
(l)
c is derived by shuffling f

(l)
c randomly across the batch dimension.

Following the method outlined by Huang & Belongie (2017), we then reconstruct the new feature maps
using the perturbed feature statistics:

f (l)
new = σnew

f
(l)
c − µ(f (l)

c )
σ(f (l)

c )
+ µnew. (19)

The perturbed feature maps are used to drive content-focused learning, thereby aiding in learning domain-
agnostic embeddings.

3.2.3 Domain-focused Learning

Recognizing the strong correlation between image style and its domain, we prioritize extracting style features
over traditional low-level features in the initial layers of the domain-specific encoder Ed. This approach aims
to enhance the learning of domain-specific embeddings. To achieve this, we employ two widely used methods
for style feature extraction.

Figure 2: DETSI: Disentangled Embedding Through Style Information, leveraging instance-level feature
statistics for style feature extraction to enable domain-focused learning.

Instance-Level Feature Statistics (Mean and Variance) We compute instance-level feature statis-
tics, such as the mean and variance of feature activations, to represent an image’s style. To capture style
information, we utilize these instance-level statistics and modify the current feature maps following the
methodology introduced by Huang & Belongie (2017):

f
(l)
sty = µsty + σsty · f

(l)
d , (20)

9
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where f
(l)
d represents a specific batch of feature maps at a layer l of the encoder Ed, and µsty and σsty

denote the style characteristics of the feature maps f
(l)
d . Instead of directly using f

(l)
d , the domain-specific

embedding Zd is computed using f
(l)
sty.

This approach enhances domain-specific learning and strengthens the disentanglement of domain-specific and
domain-invariant components. By improving this separation, we enhance the model’s ability to generalize
to unseen domains. Fig. 2 illustrates the DETSI framework, which leverages instance-level feature statistics
for style extraction to enable domain-focused learning.

Gram Matrix-Based Approach This work also considers another popular method introduced by Gatys
et al. (2016) to capture the style using Gram matrices, which compute the correlations between feature chan-
nels in a CNN. The Gram matrix encodes second-order statistics (feature correlations), effectively capturing
texture and style information. The Gram matrix is formally defined as:

G(l) = f
(l)
d · f

(l)
d

T
, (21)

where f
(l)
d represents a specific batch of feature maps at a layer l of the encoder Ed. To extract style informa-

tion, Gram matrices are computed from the early layers of the domain-specific encoder Ed. Adaptive average
pooling is applied to the Gram matrices to reduce complexity while retaining critical information, producing
resized feature vectors denoted f

(l)
sty. These vectors are combined and passed through fully connected layers

to learn the domain-specific embedding Zd.

The DETSI framework leverages Gram matrices for style feature extraction to enable domain-focused learn-
ing, as illustrated in Fig. 3.

The performance analysis of both methods for style extraction is detailed in Section 5. Details about the
network structure are provided in the following section.

Algorithm 2 Training procedure for DETSI
1: Input: K domains data samples; Encoders Ec, Ed; Classifiers C, C̃
2: Output: Optimized Encoder Ec and Classifier C
3: for i = 1: epochs do
4: Sample a mini-batch (x(k)

i , y
(k)
i )B

i=1 ∈ Sk

5: f
(l)
c = El

c(xk
i )

6: f
(l)
d = El

d(xk
i )

7: f̃
(l)
c = Shuffle (f (l)

c )
8: f

(l)
new= StylePerturbation (f (l)

c , f̃
(l)
c )

9: f
(l)
sty= StyleExtraction (f (l)

d )
10: Compute the objective function.
11: LdI = Lc + λ1Ld

12: Update Ec, Ed, C, C̃
13: end for
14: Return Optimized Encoder Ec and Classifier C

4 Experimental Setup and Evaluation

This section details the experimental setup, including the datasets, implementation specifics, and network
architectures, to evaluate the proposed methods for DG. We utilize four widely recognized benchmarks,
PACS, VLCS, Office-Home, and TerraIncognita, each designed to test the robustness of DG models across
diverse domains and styles. The implementation details describe the training protocols, hyperparameter
configurations, and data preprocessing techniques, ensuring reproducibility.

Finally, we outline the architecture of the feature extractors, predictors, and auxiliary networks used in our
experiments, emphasizing their roles in learning disentangled embeddings and leveraging style and mutual
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Figure 3: DETSI: Disentangled Embedding Through Style Information, utilizing Gram Matrix for style
feature extraction to enable domain-focused learning.

information for improved generalization. These components collectively validate the effectiveness of our
framework in addressing the challenges posed by DG.

4.1 Datasets

PACS PACS is a benchmark for object recognition in DG tasks. It includes four domains named Photo,
Art-painting, Cartoon, and Sketch, each characterized by significant variations in image styles. The dataset
contains 9,991 images across seven classes: dog, elephant, giraffe, guitar, horse, house, and person. This
study uses the official training-validation split.

VLCS VLCS is another object recognition dataset comprising 10,729 images in five categories. It includes
four domains: VOC 2007 (Pascal), LabelMe, Caltech, and Sun. The training and validation split follows the
methodology described in Li et al. (2018b).

Office-Home Office-Home is designed for DG and features 15,500 images spanning 65 categories. It
includes four domains: Art, Clipart, Product, and Real-world with variations in viewpoints and image
styles. The training and validation split adheres to the approach outlined in Xu et al. (2021).

TerraIncognita TerraIncognita is a wildlife image dataset designed for domain generalization, containing
24,788 images in 10 animal categories. The data set includes four domains corresponding to camera trap
locations, L38, L43, L100, and L46. These domains exhibit significant visual variability due to differences in
background, lighting, and environment. Following the protocol in Cha et al. (2022), we use 80% of the data
from the source domain for training and reserve the remaining 20% for validation.
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Figure 4: Training Vs. Inference Samples

4.2 Implementation Details

We follow the standard approach for domain generalization (DG) illustrated in Fig. 4. In this setup, one
domain is designated as the target domain for testing, while the training and validation splits of the remaining
domains are used to train the model and select the best-performing configuration, respectively.

The model is trained using mini-batch stochastic gradient descent (SGD) with a batch size of 32 for the
PACS, Office-Home, VLCS, and and TerraIncognita datasets. The training process spans 50 epochs, with
a weight decay of 5e−4 and an initial learning rate of 0.001. The learning rate is reduced by a factor of
0.1 after every 40 epochs. The weighting coefficients λ1 and λ2 are set to 1. Standard data augmentation
techniques are applied, including color jittering, horizontal flipping, and random resized cropping. All input
images are resized to 224×224 to ensure consistency during training.

4.3 Structure of Networks

Feature Extractors We utilize pre-trained ResNet50 He et al. (2016) as the feature encoders Ec and
Ed for all datasets. The encoder Ec extracts domain-agnostic features, denoted as Zc, while Ed extracts
domain-specific features, denoted as Zd.

Predictors The class label predictor consists of a single fully connected linear classifier C with an input
dimension of 2048. We use a classifier C̃ to predict domain labels comprising an input layer of size 2048, two
hidden layers, and an output layer. The dimensions of the hidden layers are identical to the input layer, and
a ReLU activation function follows each hidden layer. The output dimensions of both classifiers correspond
to the number of object classes and domains in the training data.

Network for Mutual Information Estimation The mutual information estimator, Nθ, is a neural
network with two fully connected layers. The hidden layer outputs a feature vector of size 512, and the
network produces a single scalar value that represents the estimated mutual information between Zc and Zd.

Network for Style Extraction in DETSI In the DETSI framework, the style information is extracted
using Gram matrices computed from the three layers of the encoder Ed. Experimental results indicate that
the first layer captures the most significant style information compared to the subsequent layers. To optimize
computational efficiency while preserving critical information, the Gram matrices initially sized 256×256
(layer 1), 512×512 (layer 2), and 1024×1024 (layer 3) are resized to a uniform dimension of 64×64 using
adaptive average pooling. The resized Gram matrices are flattened and passed through a fully connected
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network with ReLU activation. The resulting features are fed into the domain classifier C̃, ensuring a balance
between computational efficiency and effective use of style information for disentanglement.

4.4 Results and Discussion

We employ Empirical Risk Minimization (ERM) Vapnik (2013) as a baseline, which trains a single model
across all source domains by minimizing the average classification loss. In our experiments, we train the
ERM model using labeled data from all available source domains and evaluate it on the unseen target
domain without access to target supervision. We use ResNet-50 as the embedding encoder for the PACS,
OfficeHome, VLCS, and TerraIncognita datasets. The corresponding results are presented in 1, 2, 3 and
4, respectively. The results demonstrate that the proposed frameworks, DETMI and DETSI, outperform
several state-of-the-art (SOTA) approaches in terms of average accuracy across these standard benchmarks.
Fig. 5 and 6 show the t-SNE Van der Maaten & Hinton (2008) visualization of domain-agnostic embeddings
learned using the DETMI and DETSI frameworks, respectively.

Figure 5: t-SNE plots of embeddings learned by the DETMI framework using the VLCS benchmark. (Left)
Points are colored by class label to show semantic separation. (Right) Points are colored by domain to
illustrate source-target alignment.

Figure 6: t-SNE plots of embeddings learned by the DETSI framework using the VLCS benchmark. (Left)
Points are colored by class label to show semantic separation. (Right) Points are colored by domain to
illustrate source-target alignment.
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For the PACS benchmark, both approaches achieve comparable performance compared to several SOTA
methods, with average accuracy improvements of +0.74%. In particular, in the sketch domain, characterized
by its reliance on domain-invariant features, DETSI significantly outperforms DETMI and other SOTA
methods, demonstrating its effectiveness in learning disentangled embeddings for improved performance.

For the VLCS dataset, DETMI and DETSI also demonstrate notable improvements over the SOTA methods,
achieving average accuracy gains of +0.67% and +1.01%, respectively.

For the OfficeHome dataset, known for its complexity due to the large number of classes, our methods
outperform several existing SOTA approaches, including POEM.

For the TerraIncognita dataset, which is considered challenging due to severe domain shifts caused by varying
camera trap locations, backgrounds, lighting conditions, and class imbalance, our methods outperform exist-
ing SOTA approaches, achieving improvements of +0.94% and +0.38% in the average accuracy for DETMI
and DETSI, respectively.

These results underscore the effectiveness of our methods in learning domain-agnostic embeddings, signifi-
cantly enhancing the generalization capabilities of our framework to previously unseen target domains.

Table 1: Leave-one-domain-out results on PACS. The best and second-best results are bolded and underlined
respectively.

Methods Art Cartoon Photo Sketch Avg.
ResNet-50

ERM 86.18 78.58 97.24 73.55 83.88
SagNet (CVRR 21) 87.40 80.70 97.10 80.00 86.30

MatchDG (ICML 21) 85.61 82.12 97.94 78.76 86.11
mDSDI (NeurIPS 21) 88.10 81.10 98.40 79.60 86.80
SWAD (NeurIPS 21) 89.30 83.40 97.30 82.50 88.10
DiWA (NeurIPS 22) 90.60 83.40 98.20 83.80 89.00
MIRO (ECCV 22) - - - - 85.04
POEM (AAAI 23) - - - - 86.90
CCFP (ICCV 23) - - - - 86.60
INSURE (TIP 24) 90.20 85.30 97.90 83.80 89.30

CMCL (TNNLS 25) 87.57 83.60 96.03 83.73 87.73
DETMI (Ours) 88.76 85.70 98.08 82.08 88.65
DETSI (Ours) 90.18 84.85 98.20 86.94 90.04

5 Ablation Studies

This section presents ablation studies conducted to evaluate the DETMI and DETSI frameworks. The studies
analyze key components and design choices within the frameworks to assess their impact on performance
and generalization.

The first study evaluates the impact of disentangling domain-specific and domain-invariant characteristics
by leveraging domain-specific knowledge and minimizing mutual information between domain-specific (Zd)
and domain-invariant (Zc) representations. The goal is to assess how this disentanglement contributes to
improved generalization performance of DETMI on unseen domains.

The second study examines the residual interaction between the domain-specific (Zd) and domain-invariant
(Zc) feature spaces of DETSI by incorporating a mutual information estimator. This estimator quantifies any
remaining mutual information between the two embedding spaces, providing information on the effectiveness
of the disentanglement process.
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Table 2: Leave-one-domain-out results on VLCS. The best and second-best results are bolded and underlined
respectively.

Methods Caltech Labelme Pascal Sun Avg.
ResNet-50

ERM 98.58 64.53 75.23 71.51 77.46
SagNet (CVRR 21) 97.90 64.50 77.50 71.40 77.80

mDSDI (NeurIPS 21) 97.60 66.40 77.80 74.00 79.00
SWAD (NeurIPS 21) 98.80 63.30 79.20 75.30 79.10
DiWA (NeurIPS 22) 98.90 62.40 73.90 78.90 78.52
MIRO (ECCV 22) - - - - 79.00
POEM (AAAI 23) - - - - 79.80
CCFP (ICCV 23) - - - - 79.20
INSURE (TIP 24) 98.80 63.80 81.04 72.20 79.01

DETMI (Ours) 98.65 68.22 78.70 76.32 80.47
DETSI (Ours) 99.15 68.67 78.34 77.08 80.81

Table 3: Leave-one-domain-out results on OfficeHome. The best and second-best results are bolded and
underlined respectively.

Methods Art Clipart Product Real Avg.
ResNet-50

ERM 67.30 55.80 78.98 79.06 70.28
SagNet (CVRR 21) 63.40 54.80 75.80 78.30 68.10

mDSDI (NeurIPS 21) 68.40 52.50 76.20 80.60 69.42
DiWA (NeurIPS 22) 69.20 59.00 80.60 82.20 72.75

IIB (AAAI 22) - - - - 68.60
MIRO (ECCV 22) - - - - 70.90
POEM (AAAI 23) - - - - 68.20
CCFP (ICCV 23) - - - - 68.90

CMCL (TNNLS 25) 67.22 57.88 78.47 79.79 70.84
DETMI (Ours) 68.58 58.28 79.22 81.27 71.83
DETSI (Ours) 67.30 60.29 78.30 80.03 71.48

Table 4: Leave-one-domain-out results on TerraIncognita. The best and second-best results are bolded and
underlined respectively.

Methods L100 L38 L43 L46 Avg.
ResNet-50

ERM 55.93 44.56 54.02 38.66 48.29
SagNet (CVRR 21) 53.00 43.00 57.90 40.40 48.60

mDSDI (NeurIPS 21) 53.20 43.30 56.70 39.20 48.10
SWAD (NeurIPS 21) 55.40 44.90 59.70 39.90 50.00
DiWA (NeurIPS 22) 57.20 50.10 60.30 39.80 51.85

IIB (AAAI 22) - - - - 47.20
MIRO (ECCV 22) - - - - 50.40
POEM (AAAI 23) - - - - 50.10
CCFP (ICCV 23) - - - - 49.00
INSURE (TIP 24) 58.80 46.40 61.70 45.50 53.10

DETMI (Ours) 60.13 51.53 57.98 46.50 54.04
DETSI (Ours) 62.24 50.99 56.41 44.29 53.48
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The third study evaluates the impact of different style extraction techniques in DETSI to learn domain-
specific embeddings (Zd). It compares the performance of Gram matrices and instance-level feature statistics,
with style perturbation applied solely through instance-level feature statistics across various layers.

The fourth study investigates the effect of style perturbation in the task-specific encoder and style extraction
in the domain-specific encoder across different layers. The findings highlight the critical role of early encoder
layers in achieving effective disentanglement.

Finally, the last study explores the independent contributions of style perturbation for task-specific em-
beddings, domain-specfic embeddings, and style extraction for domain-specific embeddings. This analysis
underscores their complementary roles in facilitating robust disentanglement and enhancing generalization
across domains.

5.1 Impact of Domain-Specific Knowledge and Mutual Information Minimization in DETMI

To evaluate the contribution of each component in the DETMI framework, we conduct a study that focuses
on the role of domain-specific knowledge controlled through λ1 and mutual information between domain-
specific (Zd) and domain-invariant (Zc) representations controlled through λ2 in 12. Our results, presented
in Table 5, demonstrate that leveraging domain-specific information plays a critical role in promoting the
disentanglement of domain-invariant and domain-specific representations. This structural separation enables
the model to more effectively isolate invariant features that generalize across domains. Furthermore, incor-
porating mutual information minimization between the two feature spaces further strengthens this disentan-
glement by suppressing higher-order dependencies, thereby reducing redundancy. This encourages learning
of more robust domain-invariant features, which ultimately leads to improved generalization performance on
unseen domains.

Table 5: Impact of Domain-Specific Knowledge and Mutual Information Minimization

Methods Art Cartoon Photo Sketch Avg.
ResNet-50

ERM 86.18 78.58 97.24 73.55 83.88
(λ1=1,λ2=0) 87.93 82.59 97.72 79.48 86.93
(λ1=1,λ2=1) 88.76 85.70 98.08 82.08 88.65

5.2 Validating Implicit Disentanglement in DETSI

We integrated a mutual information estimator into the DETSI framework to evaluate the residual interaction
between domain-specific (Zd) and domain-invariant (Zc) feature spaces. This integration enabled us to
quantify any remaining mutual information between the two embedding spaces. The results, summarized
in Table 6, indicate that there is no significant improvement in performance with the addition of mutual
information estimation. These findings confirm that the inherent design of DETSI effectively achieves robust
disentanglement without the need for additional mutual information measures.

Table 6: Validating Implicit Disentanglement in DETSI using the PACS Dataset.

Methods Art Cartoon Photo Sketch Avg.
ResNet-50

DETSI 90.18 84.85 98.20 86.94 90.04
DETSI with MI 89.79 84.72 98.32 86.43 89.82
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5.3 Impact of Style Extraction Techniques on Learning Domain-Specific Embeddings in DETSI

This subsection presents the experimental results that evaluate the impact of different style extraction
techniques on the learning of domain-specific embeddings (Zd). As shown in Table 7, Gram matrix-based
style extraction consistently outperforms methods based on instance-level feature statistics.

The superior performance of Gram matrices stems from their ability to encode second-order statistics, which
capture correlations between feature maps across the entire image. These correlations effectively represent
texture patterns, color distributions, and structural styles, all of which are critical components of an im-
age’s overall style. In contrast, instance-level feature statistics primarily focus on low-level details, such as
brightness and contrast, but fail to capture global style attributes, including texture patterns, artistic brush-
strokes, and structural relationships. These limitations make instance-level feature statistics less effective
for representing domain-specific style information.

Table 7: Impact of Style Extraction Techniques on Learning Domain-Specific Embeddings Zd on the PACS
Dataset.

Methods Art Cartoon Photo Sketch Avg.
ResNet-50

Instance-level Statistics 86.69 84.25 98.08 85.72 89.43
Gram Matrix 90.18 84.85 98.20 86.94 90.04

5.4 Effect of Style Perturbation and Extraction Across Layers in DETSI

This study examines the impact of style extraction and perturbation across the early layers of encoders in
the DETSI framework, using instance-level feature statistics to learn domain-specific embeddings.

The results, summarized in Table 8, reveal that the application of style extraction and perturbation within
the first three layers of the domain-specific encoders achieves superior performance compared to other layer
combinations. These findings align with the established understanding that early encoder layers primarily
capture low-level features, such as textures and patterns, which are closely associated with style.

Interestingly, the fourth layer, which primarily encodes high-level semantic features rather than style at-
tributes, was excluded from this analysis. This exclusion underscores the critical role of early encoder layers
in style manipulation to enhance the disentanglement of domain-specific and domain-agnostic embeddings
in the DETSI framework.

Table 8: Evaluation of Style Feature Extraction and Perturbation Across Different Layers of DETSI on the
PACS Dataset

Methods Art Cartoon Photo Sketch Avg.
ResNet-50

Ec(L1), Ed(L1) 89.79 84.51 98.08 82.92 88.82
Ec(L12), Ed(L12) 89.59 84.00 98.32 84.72 89.15

Ec(L123), Ed(L123) 89.69 84.25 98.08 85.72 89.43

5.5 Evaluation of DETSI Components on Domain Generalization Benchmarks

This ablation study examines the impact of style perturbation on task-specific embeddings, domain-specific
embeddings, and style extraction on domain-specific embeddings within the DETSI framework. As shown in
Table 9, each component contributes to the performance gains, and the combined application yields significant
improvement. These results highlight the roles of style perturbation and style extraction to enhance feature
disentanglement. Ultimately, the framework increases generalization across unseen domains.
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Table 9: Evaluation of DETSI Components on Domain Generalization Benchmarks

Methods PACS VLCS OfficeHome
ERM 83.88 77.46 70.28
+Style Pert. in Ec

† 85.20 77.90 60.40
+Style Pert. in Ec +Ed 89.58 79.76 70.71
+Style Pert. in Ec + Style Extr. in Ed 90.04 80.81 71.48

†Result adopted from Zhou et al. (2024) due to matching configuration.

6 Conclusion

This paper addresses the challenge of domain shift in Domain Generalization (DG) by introducing two novel
frameworks: Disentangled Embedding through Mutual Information (DETMI) and Disentangled Embedding
through Style Information (DETSI). These frameworks effectively leverage domain-specific information to
disentangle the latent feature space into domain-specific and domain-invariant components, enabling the
extraction of class-relevant features and enhancing generalization to unseen domains.

DETMI utilizes a mutual information estimator to promote feature disentanglement, while DETSI achieves
disentanglement through leveraging style information. Both frameworks perform better than state-of-the-art
DG techniques, promoting domain invariance and improving generalization. Furthermore, DETSI achieves
comparable results with reduced complexity, making it a practical and efficient solution for scenarios with
limited computational resources.

The proposed frameworks advance the state-of-the-art in DG and highlight the critical role of leveraging
domain-specific information alongside domain-invariant features. These findings underscore the potential of
disentanglement-based approaches to effectively address domain shift and provide a foundation for developing
more efficient and robust DG methods in the future.
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