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Abstract
Dynamical systems theory provides a frame-001
work for analyzing iterative processes and evo-002
lution over time. Within such systems, repeti-003
tive transformations can lead to stable config-004
urations, known as attractors, including fixed005
points and limit cycles. Applying this perspec-006
tive to large language models (LLMs), which007
iteratively map input text to output text, pro-008
vides a principled approach to characterizing009
long-term behaviors. Successive paraphrasing010
serves as a compelling testbed for exploring011
such dynamics, as paraphrases re-express the012
same underlying meaning with linguistic varia-013
tion. Although LLMs are expected to explore014
a diverse set of paraphrases in the text space,015
our study reveals that successive paraphrasing016
converges to stable periodic states, such as 2-017
period attractor cycles, limiting linguistic diver-018
sity. This phenomenon is attributed to the self-019
reinforcing nature of LLMs, as they iteratively020
favour and amplify certain textual forms over021
others. This pattern persists with increasing022
generation randomness or alternating prompts023
and LLMs. These findings underscore inherent024
constraints in LLM generative capability, while025
offering a novel dynamical systems perspective026
for studying their expressive potential.027

1 Introduction028

Dynamical systems theory provides a mathemati-029

cal framework for understanding how iterative pro-030

cesses evolve over time (Sutherland, 1974; Michel031

et al., 2008). In such systems, repetitive transfor-032

mation can guide the state of the system toward033

stable configurations, known as attractors (Milnor,034

1985). These attractors can manifest as fixed points,035

limit cycles, or more complex structures. Applying036

this perspective to large language models, which037

iteratively map input text to output text, allows us038

to characterize their long-term behavioral patterns039

in a principled manner.040

Paraphrase generation can serve as a valuable041

testbed for exploring these dynamics. Paraphrases042

𝑇ଶ୬𝑇ଶ୬ାଵ

…

…

𝑇଴

𝑇଴: This way, the filibuster serves as a balance to prevent 51
senators from steamrolling the opposition.

𝑇଻: In this way, the filibuster serves as a safeguard to prevent a
majority of 51 senators from dominating the minority.

𝑇 : In this manner, the filibuster acts as a protection to stop a
simple majority of 51 senators from overpowering the minority.

𝑇ଽ: In this way, the filibuster serves as a safeguard to prevent a
simple majority of 51 senators from dominating the minority.

Figure 1: An illustration of successive paraphrasing us-
ing GPT-4o-mini: Here, T0 denotes the original human-
written text, while Ti indicates the i-th round of para-
phrases. The nodes depicted in the lower section rep-
resent valid paraphrases for the input sentence, with
distance reflecting textual variation. Successive para-
phrases generated by LLMs are confined to alternating
between two limited clusters, represented as blue and
orange nodes.

are re-expressions of the same underlying mean- 043

ing, differing only in their textual or linguistic 044

form (Bhagat and Hovy, 2013). They serve multi- 045

ple purposes: improving the readability of text for 046

language learners (Motlagh et al.; Roe and Perkins, 047

2022a; Kim et al., 2024), enriching datasets in 048

low-resource scenarios (Okur et al., 2022a; Sobre- 049

villa Cabezudo et al., 2024), and enhancing stylis- 050

tic variation (Krishna et al., 2020). With recent 051

advances in LLMs (Touvron et al., 2023; Taori 052

et al., 2023; Brown et al., 2020; OpenAI, 2023), 053

machine-generated paraphrases can rival or surpass 054

human quality, exhibiting remarkable generaliza- 055

tion across diverse domains and text lengths. 056

While producing a single paraphrase demon- 057
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strates an LLM’s ability to exploit its prior knowl-058

edge to create textual variety while preserving059

semantic equivalance, successive paraphrasing060

pushes this capacity further. Instead of generating061

just one re-expression, the model recursively para-062

phrases its own output over multiple rounds (Sada-063

sivan et al., 2023; Tripto et al., 2023). Intuitively,064

this iterative process is expected to explore an065

expansive linguistic landscape, generating a rich066

tapestry of forms. Each subsequent paraphrase,067

based on previously transformed text, could the-068

oretically diverge into increasingly varied struc-069

tures—similar to depth-first exploration of the para-070

phrase search space in contrast to breadth-first ap-071

proaches like beam search (Holtzman et al., 2020;072

Huang et al., 2023; Meister et al., 2023).073

In practice, however, we find that this expected074

variety does not materialize. Instead of diverging075

across a vast combinatorial space, the LLM’s suc-076

cessive paraphrasing converges onto a limited set of077

recurring solutions, as depicted in Figure 1. When078

studied through the lens of dynamical systems,079

these recurring solutions resemble a stable attrac-080

tor cycle—a low-order periodic orbit in the space081

of possible paraphrases (Milnor, 1985). Rather082

than continuously discovering new linguistic con-083

figurations, the model settles into a pattern where084

the paraphrased outputs repeat with a fixed period.085

This phenomenon is subtle: it does not always man-086

ifest as explicit repetition but rather as a recurring087

rotation among a small set of structurally similar088

forms. Such periodic attractors challenge the in-089

tuition that longer or more complex texts should090

accomodate a broad array of distinct paraphrases.091

Instead, the LLM gravitates toward a small closed092

orbit, revealing inherent limitations in its expres-093

sive variability.094

Specifically, to investigate this attractor-like be-095

havior, we compile a diverse collection of human-096

written texts (Li et al., 2023) and prompt a range097

of both open-source and commercial LLMs to per-098

form 15 rounds of successive paraphrasing. Using099

normalized Levenshtein distance to quantify tex-100

tual variation, we consistently observe a 2-period101

cycle: each new paraphrase resembles the one gen-102

erated two steps prior. This periodicity proves ro-103

bust, remaining consistent across multiple mod-104

els, text lengths, and prompts. We further analyze105

model perplexity and generation diversity as suc-106

cessive paraphrasing unfolds. The results indicate107

that, rather than wandering freely in the paraphrase108

space, LLMs grow increasingly confident in a nar-109

row set of solutions, effectively collapsing onto 110

these attractors. Modifying generation hyperpa- 111

rameters or introducing perturbations, such as al- 112

ternating prompts and models, only subtly disrupts 113

these obstinate attractor cycles. Moreover, this ten- 114

dency to settle into attractor cycles extends beyond 115

paraphrasing. Any invertible task, i.e., one that 116

allows reconstructions of previous inputs, shows 117

similar behavior, suggesting that such cycles are a 118

general characteristic of LLM iterative behavior. 119

Finally, we propose a straightforward method to 120

disrupt attractor cycles while maintaining semantic 121

fidelity. By intervening in the iterative process, we 122

can reintroduce meaningful variation and prevent 123

the model from settling into stable yet constrained 124

periodic orbits. In summary, we propose to lever- 125

age successive paraphrasing to reveal that LLM 126

outputs, when treated as a dynamical system, tend 127

to converge onto stable attractor cycles rather than 128

exploring open-ended linguistic variety. Under- 129

standing these attractors and identifying strategies 130

to escape them is key to unlocking the full expres- 131

sive potential of LLMs. We will release our data 132

and code after the anonymous period. 133

2 Successive Paraphrasing as System 134

Function 135

In this section, we briefly introduce the theoreti- 136

cal framework of dynamical systems and applies 137

it to understand the iterative process of successive 138

paraphrasing. By viewing paraphrase generation 139

as the repeated application of a transformation 140

(the LLM’s paraphrasing function), we connect 141

observed phenomena, e.g., periodicity and conver- 142

gence, to well-studied concepts in systems theory. 143

2.1 Systems Theory Foundations 144

Systems theory provides a broad mathematical and 145

conceptual framework for analyzing how complex 146

processes evolve over time (Sutherland, 1974). The 147

core idea is modeling the state of a system and its 148

evolution through deterministic or stochastic rules. 149

In continuous or discrete time, systems can exhibit 150

distinct behaviors, ranging from stable equilibria 151

to oscillatory dynamics or even chaotic patterns. 152

A dynamical system is commonly defined as a 153

set of states and a rule describing how those states 154

vary under iteration. When a transformation repeat- 155

edly maps an initial state to a new state, one of sev- 156

eral outcomes often emerges: Fixed Points: States 157

that remain unchanged under the transformation, 158
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representing equilibrium; Limit Cycles: Closed159

loops of states that recur periodically, represent-160

ing sustained oscillations; More Complex Attrac-161

tors: Patterns to which the system’s trajectories162

converge, including chaotic attractors.163

These attractors shape the long-term behavior of164

the system. If an initial state lies within the basin165

of attraction of a limit cycle, for example, the sys-166

tem will converge to that cycle regardless of small167

perturbations. Identifying such attractors offers168

valuable insights into the stability and variability169

of the system’s evolution.170

2.2 Framing Successive Paraphrasing as a171

Dynamical System172

Successive paraphrasing involves iteratively gener-173

ating variations of a given text while maintaining174

semantic equivalence, where each iteration builds175

upon the previous output. We propose viewing176

successive paraphrasing as a discrete dynamical177

system. Let T be the space of all possible texts.178

Consider a large language model that defines a179

paraphrasing function: P : T → T , where P (T )180

outputs a paraphrase of the input text T . Given181

an initial text T0 ∈ T , successive paraphrasing182

generates the sequence {Tn}∞n=0 recursively by:183

Tn+1 = P (Tn), n = 0, 1, 2, . . . (1)184

The set P(T ) denotes the complete text space185

for valid paraphrases of T , which is assumed as a186

finite space. In theory, the space of potential para-187

phrases P(T ) can be vast, especially as text length188

grows. Each new iteration can potentially explore189

fresh textual variations, e.g., new syntactic struc-190

tures, vocabulary choices, and stylistic nuances,191

while maintaining semantic equivalence. From a192

systems perspective, if the mapping P is capable193

of diversifying output states, one might expect the194

generated text sequence to spread broadly through195

the space P(T ), never stuck in repetitive patterns,196

resembling a system without stable attractors. In197

contrast, if the LLM’s internal biases lead to favour-198

ing certain textual forms, the sequence may enter199

a basin of attraction and converge onto a stable200

set of states. In other words, rather than exhibit-201

ing limitless variety, the system might find itself202

drawn to limit cycles, i.e., periodic attractors in the203

paraphrase space.204

3 Experiment Setup205

To systematically investigate this pattern, we first206

build dedicated testbeds and evaluation criteria.207

Source Data Collection. We consider English 208

and Chinese paraphrasing in this work. For En- 209

glish paraphrase generation, we collect human- 210

written source documents by sampling instances 211

from the MAGE dataset (Li et al., 2023). Specif- 212

ically, we uniformly collect 1,000 sentences and 213

30 paragraphs from each domain in the dataset. 214

This results in a total of 1,000 sentences and 300 215

paragraphs for subsequent paraphrasing. For Chi- 216

nese, we source 200 sentences from WMT 2019 217

(Barrault et al., 2019) and 200 sentences from 218

Wikipedia (Foundation). Detailed data statistics 219

is presented in Appendix A. The main experi- 220

ments (Section 4) utilize sentence-level paraphras- 221

ing datasets, while analytic experiments employ 222

paragraph-level datasets to demonstrate the gener- 223

ality of our findings (Section 5). 224

Paraphrase Generation. For English paraphras- 225

ing, we utilize Mistral-7B-Instruct-v0.3 (Jiang 226

et al., 2023), Meta-Llama-3-8B-Instruct (Touvron 227

et al., 2023), Meta-Llama-3-70B-Instruct (Tou- 228

vron et al., 2023), Qwen2.5-7B-Instruct, Qwen2.5- 229

14B-Instruct, Qwen2.5-72B-Instruct (Yang et al., 230

2024), GPT-4o-mini and GPT-4o (OpenAI et al., 231

2024). For Chinese, we use Qwen2.5-7B-Instruct, 232

Qwen2.5-14B-Instruct, Qwen2.5-72B-Instruct, and 233

GPT-4o-mini for paraphrase generation. By default, 234

we set the temperature to 0.6 and p to 0.9 during 235

the decoding process. We sample 10 different para- 236

phrases at each step by setting the number of search 237

beams to 10 and sequentially rephrasing each sam- 238

ple for 15 rounds. We select the candidate with 239

the highest probability for the next paraphrasing 240

iteration. 241

Evaluation Metrics. We use the normalized Lev- 242

enshtein edit distance function d to quantify the 243

textual differences between two paraphrases. To 244

provide a more intuitive of the attractor cycle, we 245

propose a metric termed 2-periodicity degree to 246

quantify and study the cyclic pattern in successive 247

paraphrasing. The 2-periodicity degree τ is defined 248

as τ = 1− 1
M−2

∑M
i=3 d(Ti, Ti−2), which captures 249

the average textual similarity between the current 250

paraphrase and that from two steps prior. M de- 251

notes the total number of paraphrasing iterations. A 252

higher τ indicates stronger periodicity, i.e., similar 253

between two paraphrases. For instance, if succes- 254

sive paraphrases exhibit perfect 2-periodicity such 255

that d(Ti, Ti−2) = 0, then τ = 1, indicating that 256

the current paraphrase matches exactly with that 257

from two steps earlier. To evaluate semantic equiv- 258

3



0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Llama3-8B(EN)

0 2 4 6 8 10 12 14
0

2
4

6
8

10
12

14

Llama3-70(EN)

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Mistral-7B(EN)

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

GPT-4o-mini(EN)

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

GPT-4o(EN)

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Qwen2.5-7B(EN)

0 2 4 6 8 10 12 14
0

2
4

6
8

10
12

14

Qwen2.5-14B(EN)

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Qwen2.5-72B(EN)

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

GPT-4o-mini(ZH)

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Qwen2.5-7B(ZH)

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

Qwen2.5-14B(ZH)

0 2 4 6 8 10 12 14
0

2
4

6
8

10
12

14

Qwen2.5-72B(ZH)

0.0

0.2

0.4

0.6

0.8

Figure 2: The difference confusion matrix for successive paraphrasing, where EN and ZH denotes English and
Chinese sentence-level paraphrase generation accordingly. A darker value indicates a smaller difference between
two paraphrases. The blue arrow underlines the differences between Ti and Ti−2, and averaging these values and
subtracting the result from 1 gives our 2-period degree τ .

alence, we employ cosine similarity on sentence259

embeddings 1 (Reimers and Gurevych, 2019).260

4 Results261

Building on the dynamical systems perspective262

introduced earlier, we now examine the empiri-263

cal evidence that successive paraphrasing leads264

LLMs toward stable attractor cycles. We itera-265

tively paraphrase sentences over 15 rounds within266

the sentence-level dataset and calculate the 2-267

periodicity degree.268

4.1 Periodicity269

We calculate the textual difference between Ti and270

Ti−2 for paraphrases at each step. Arranging these271

differences into a confusion matrix (Figure 2) re-272

veals a pronounced 2-period cycle. For all LLMs,273

the matrix’s alternating light and dark patterns in-274

dicate that paraphrases generated at even iterations275

1https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

cluster together, and similarly, those at odd itera- 276

tions form another cluster. This clear partitioning 277

aligns with the behavior of a dynamical system 278

converging onto a 2-period limit cycle—an attrac- 279

tor that draws the iterative process into a stable 280

oscillation between two distinct states. 281

We also quantify this periodicity across different 282

LLMs, as shown in Table 1. While all models ex- 283

hibit some degree of 2-periodicity, Qwen2.5-72B 284

shows a particularly strong and consistent cycle in 285

both English and Chinese, whereas Llama3-70B 286

displays relatively weaker periodic behavior. Mod- 287

els with higher periodicity tend to retain more se- 288

mantic fidelity, suggesting that the recurring at- 289

tractor states preserve core meaning even as they 290

oscillate between two paraphrastic forms, as shown 291

in Appendix B. 292

While this periodicity can be viewed as an im- 293

plicit repetition issue, it differs from explicit repeti- 294

tion of previously seen context. Instead, the model 295

implicitly cycles through a limited set of paraphras- 296

4



Mistral-7B Llama3-8B Llama3-70B GPT-4o-mini GPT-4o Qwen2.5-7B

0.71 0.72 0.60 0.83 0.81 0.86

Qwen2.5-14B Qwen2.5-72B Qwen2.5-7B Qwen2.5-14B Qwen2.5-72B GPT-4o-mini

0.89 0.92 0.70 0.84 0.92 0.88

Table 1: The periodicity degree τ of different LLMs. The models represented in blue denotes the English
paraphrase generation, while red indicating Chinese paraphrasing.
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Figure 3: Convergence of perplexity, reverse perplexity, and generation diversity. The left and middle plots show
that as the number of steps increases, both perplexity and reverse perplexity decrease steadily until they reach their
lower bounds. The right plot shows that generation decreases as perplexity decreases.

tic forms without directly referencing prior itera-297

tions. In terms of systems theory, the model’s map-298

ping function P creates a dynamical environment299

in which the state space is not fully explored, with300

the trajectories settling into a 2-period attractor.301

4.2 Convergence to Stable Attractor302

To probe the internal dynamics that lead to these at-303

tractor cycles, we explore generation determinism304

with successive paraphrasing unfolds. We define305

a conditioned perplexity σ(Ti | Ti−1), reflecting306

the model’s confidence in generating Ti given Ti−1,307

and a reverse perplexity σ̂(Ti | Ti+1), indicating308

how easily Ti could be reconstructed from Ti+1.309

Figure 3 demonstrates that as successive para-310

phrasing proceeds, both perplexity and reverse per-311

plexity decrease. The forward direction (perplex-312

ity) quickly converges to a low boundary, while the313

reverse direction starts high, indicating that initially314

it is hard to “go back” from Ti+1 to Ti. However, it315

drops fast as paraphrasing proceeds and aligns with316

the forward perplexity. Finally, the system evolves317

towards a state where generating Ti+1 from Ti is318

nearly as deterministic and predictable as recon-319

structing Ti from Ti+1. This symmetry resembles320

a stable attractor in a dynamical system, where321

bidirectional predictability indicates that the sys-322

tem has “locked in” to a limit cycle. 323

We further quantify generation diversity by sam- 324

pling multiple paraphrases at each iteration and 325

computing the Vendi score (Friedman and Dieng, 326

2022). As shown in Figure 3, a low perplexity indi- 327

cates a low generation diversity. A Vendi score of 328

one indicates that all paraphrases in the beam are 329

identical to each other. As both forward and reverse 330

perplexity decreases, the model consistently pro- 331

duces similar paraphrases, leaving minimal room 332

for alternative textual trajectories. From a systems 333

viewpoint, the collapse into low perplexity and low 334

diversity states corresponds to the model settling 335

into the basin of attraction of a periodic orbit. Once 336

inside the basin, the model’s generative behavior 337

becomes nearly deterministic, causing the output 338

sequence to cycle predictably. 339

The notion of invertibility, where each para- 340

phrase can be treated as a paraphrase of its own 341

paraphrase, further explains the robustness of pe- 342

riodicity. Invertibility places constraints on the 343

mapping function P , effectively enabling a bidi- 344

rectional relationship between states which encour- 345

ages stable cycles. This insight suggests that tasks 346

with similar invertible properties, e.g., translation, 347

can also display limit cycle behavior, a hypothesis 348

we will explore in Section 5.1. 349
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Figure 4: The difference confusion matrix for four tasks
beyond paraphrasing. Note that in translations, the dif-
ference between texts in two different languages is set
to one.

5 Analysis350

In this section, we perform analytical experiments351

on paragraph-level paraphrase datasets to general-352

ize our findings to longer texts. We first demon-353

strate the extension of our findings to other task354

formats (Section 5.1). Then we go through a set of355

methods to try to escape from the attractor cycles356

in the remaining subsections.357

5.1 Beyond Paraphrase Generation358

Our earlier results indicate that successive para-359

phrasing leads LLMs to settle into periodic attrac-360

tors—specifically, 2-period limit cycles. According361

to the systems-theoretic perspective, such cycles362

should arise whenever the transformation is invert-363

ible, enabling a bidirectional mapping that makes364

prior states easily reproducible. To test this, we365

examine four additional invertible tasks at the para-366

graph level: polishing (Pol.), clarification (Clar.),367

informal-to-formal style transfer (I/F.), and for-368

ward/backward translation (Trans.). These tasks369

are defined in Appendix C.1.370

Figure 4 shows that even for these varied tasks,371

LLMs repeatedly converge to stable states, exhibit-372

ing pronounced 2-periodicity. Table 2 shows the de-373

gree of 2-periodicity across these tasks, with values374

ranging from 0.65 to 0.87. This finding reinforces375

the idea that invertibility fosters the emergence of376

limit cycles, as the model iterates the transforma-377

tion and settles into an attractor. While paraphras-378

ing is our primary lens, these findings confirm that379

stable attractor cycles are a broader characteristic380

of LLM behavior in iterative, invertible mappings. 381

Tasks Para. Clar. Pol. I/F. Trans.

τ 0.80 0.83 0.86 0.65 0.87

Table 2: Impact of perturbations on periodicity com-
pared to the original during paraphrasing.

5.2 Alternating Models and Prompts 382

One intuitive approach to escape an attractor is 383

to introduce perturbations in the transformation 384

itself. We attempt this by varying both models 385

and prompts during successive paraphrasing. For 386

prompt variation, we design four different para- 387

phrasing prompts (refer to Appendix C.2) and ran- 388

domly select one at each iteration. Despite regu- 389

larly switching prompts, the 2-period cycle persists, 390

as shown in Figure 5. 391

Similarly, we introduce model variation by al- 392

ternating among GPT-4o-mini, GPT-4o, Llama3- 393

8B, and Qwen2.5-7B during successive paraphras- 394

ing. Although each model brings its own stylistic 395

biases, the fundamental attractor cycle remains in- 396

tact. Interestingly, perplexity computed by a single 397

model (e.g., Llama3-8B) on paraphrases generated 398

by other models still decreases over iterations in 399

Figure 6. This suggests that the attractor states are 400

not confined to a single model’s parameter space. 401

Instead, they reflect a more general statistical opti- 402

mum that multiple LLMs gravitate toward. 403

From a systems perspective, this findings sug- 404

gest that randomizing the transformation function 405

P does not inherently break the attractor. The sys- 406

tem remains in a basin of attraction shared across 407

these varied modeling conditions, implying that 408

the stable cycle is a robust property of the iterative 409

transformation rather than a quirk of any particular 410

prompt or model. 411

5.3 Increasing Generation Randomness 412

Another strategy is introducing more stochasticity 413

in the generation process by increasing the gen- 414

eration temperature. Higher temperatures expand 415

the immediate token selection space, potentially al- 416

lowing trajectories to wander away from the attrac- 417

tor. However, as shown in Figure 7, while higher 418

temperatures do increase the difference between 419

successive paraphrases, the system still exhibits a 2- 420

period cycle. Further increases in temperature lead 421

only to nonsensical outputs. This outcome aligns 422

with dynamical systems theory: a small increase in 423
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Figure 5: The difference confusion matrices for
model variation and prompt variation.
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stochasticity may create local perturbations, but if424

the basin of attraction is strong, the system remains425

near the limit cycle. Excessive stochastic forcing426

can push the system out of meaningful regions of427

state space entirely, leading to “chaotic” or nonsen-428

sical behavior, rather than discovering a new stable429

attractor with richer linguistic diversity.430
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Figure 7: The difference between T15 and Ti generated
by GPT-4o-mini. By increasing the temperature, ran-
domness is amplified, causing the differences to grow
as well.

5.4 Incoporating Local Perturbations431

We introduce local perturbations to mitigate the432

attractor cycle pattern. At the end of each iteration,433

we edit 5% of the text by introducing perturbations434

using three methods: synonym replacement (S.R.),435

word swapping (W.S.), and random insertion or436

deletion (I./D.). As shown in Table 3, among these 437

interventions, synonym replacement barely affects 438

periodicity, suggesting that minor lexical changes 439

do not move the system out of the attractor’s basin. 440

It indicates that except during the first paraphrasing, 441

LLMs primarily perform synonym replacements 442

for words or phrases, as shown in Figure 1. Word 443

swapping, however, causes more significant disrup- 444

tion, lowering periodicity more effectively. From 445

a dynamical standpoint, large structural perturba- 446

tions are needed to shift the system’s state out of 447

a stable cycle. Local lexical tweaks do not suffice 448

because the attractor’s pull is strong and preserved 449

at a deeper structural level.

w/o Perturb. S.R. W.S. I./D.

0.77 0.73 0.62 0.66

Table 3: Impact of different types of perturbations on
2-periodicity degrees τ , compared to the original text
during paraphrasing.

450

5.5 Paraphrasing with History Paraphrases 451

We consider a scenario where the transformation 452

P̂ depends on both Ti and Ti−1. This added histor- 453

ical context can alter the equilibrium states. In a 454

scenario where we paraphrase Ti based on the refer- 455

ence Ti−1, it is essential that Ti+1 differs from both 456

Ti and Ti−1. This function can be expressed as: 457

Ti+1 = P̂ (Ti, Ti−1). In this context, Pi−1 emerges 458

as a strong candidate for paraphrasing P (Ti+1, Ti), 459

as it aligns with the distribution of LLMs while 460

maintaining difference from P̂ (Ti+1, Ti), satisfy- 461

ing the task requirement. As a result, this more 462

complex cycle still represents a stable attractor, al- 463

beit of higher order, as shown in Figure 8. 464

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Figure 8: When adding historical paraphrases, LLMs
exhibit 3-periodicity in the paraphrasing task.

5.6 Sample Selection Strategies 465

Finally, we investigate methods to steer the sys- 466

tem away from stable attractors at the least cost 467
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Figure 9: The periodicity of three strategies using dif-
ferent LLMs.

of generation quality. Given the correlation be-468

tween periodicity and perplexity, it is intuitive to469

mitigate this issue by increasing perplexity while470

maintaining generation quality. To achieve this, we471

can randomly sample multiple paraphrases at each472

iteration and select the one based on perplexity. We473

design three types of strategies: selecting the para-474

phrase with the maximum or minimum perplexity475

or randomly choosing one at each iteration. Figures476

9 illustrate that selecting a higher perplexity can477

reduce periodicity. However, such diversity comes478

at the cost of semantic equivalence (Appendix C.4).479

Considering both periodicity and meaning preser-480

vation, we recommend the random strategy, which481

effectively reduces periodicity while incurring min-482

imal information loss compared to selecting the483

option with the lowest perplexity.484

6 Related Work485

Paraphrase Generation. Paraphrase generation486

has long been a significant focus in NLP research,487

with numerous studies dedicated to enhancing the488

quality of generated paraphrases. (Li et al., 2018;489

Roy and Grangier, 2019; Lewis et al., 2020; Lin490

et al., 2021b; Hosking et al., 2022; Xie et al., 2022).491

Some studies also explore methods to control para-492

phrase generation by focusing on aspects such as493

syntactic and lexical diversity (Li et al., 2019;494

Goyal and Durrett, 2020; Huang and Chang, 2021;495

Bandel et al., 2022; Krishna et al., 2023; Yang et al.,496

2022). Others investigate the application of para-497

phrase generation as a data augmentation technique498

to enhance model performance (Jolly et al., 2020;499

Bencke and Moreira, 2024; Okur et al., 2022b).500

Recently, advancements in LLMs have enabled501

LLM-based paraphrasing tools to generate stable,502

high-quality responses, making them widely used503

for refining materials like news articles, academic504

papers, and speeches (Witteveen and Andrews,505

2019; Roe and Perkins, 2022b; Rani et al., 2023).506

However, their work primarily discusses single-507

step paraphrasing. In contrast, another line of work 508

involves LLMs iteratively rephrasing their own 509

outputs over multiple iterations. Sadasivan et al. 510

(2023) explores how repeated rephrasing can help 511

evade AI text detectors, while Tripto et al. (2023) 512

and Huang et al. (2024) discuss the implications for 513

authorship after a document has undergone mul- 514

tiple rounds of paraphrasing. Our research dif- 515

fers from those work. We investigate the inherent 516

characteristics of paraphrasing when extended over 517

multiple iterations. 518

Self-Reinforcement in LLMs. Repetition, de- 519

fined as the occurrence of repetitive text in nat- 520

ural language generation, has been widely ex- 521

plored in research community (Holtzman et al., 522

2020; Welleck et al., 2020; Lin et al., 2021a; 523

See et al., 2017; Liu and Lapata, 2019; Fu et al., 524

2021). Xu et al. (2022) introduce the concept of 525

self-reinforcement to elucidate this phenomenon, 526

demonstrating that LLMs exhibit a tendency to 527

repeat preceding sentences and reinforce this be- 528

havior during generation. Yan et al. (2024) fur- 529

ther explore the relationship between the self- 530

reinforcement effect and the in-context learning 531

capabilities of LLMs. Our research aligns with 532

theirs in examining the self-reinforcement patterns 533

of LLMs. However, we specifically concentrate 534

on typical behaviors observed in successive para- 535

phrasing tasks, mirroring LLMs’ limitations in the 536

exploration of text space. 537

7 Conclusion 538

W reframed successive paraphrasing as a discrete 539

dynamical system, offering a principled explana- 540

tion for the emergence of stable periodic attractors 541

in LLM-generated text. Our empirical findings 542

revealed that instead of producing an expanding 543

array of diverse paraphrases, LLMs rapidly settled 544

into low-order limit cycles. These attractor states 545

persisted even when we vary models, prompts, gen- 546

eration temperatures, and local kicak perturbations, 547

indicating that they stem from a fundamental prop- 548

erty of the system rather than superficial repetition 549

or particular model idiosyncrasies. Viewing iter- 550

ative text generation through the lens of systems 551

theory helps clarify why certain interventions fail 552

to break these cycles and how others can weaken 553

the attractor’s pull. Ultimately, recognizing and ad- 554

dressing these stable attractor cycles is crucial for 555

unlocking more expressive and flexible language 556

generation for large language models. 557
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Limitations558

While this study provides valuable insights into559

successive paraphrasing, several limitations should560

be acknowledged. First, the paraphrasing is based561

on simple prompts, which may limit the generaliz-562

ability of the findings to more complex or specific563

prompts. Second, although we have examined this564

phenomenon in the currently prevalent LLMs, other565

LLMs may not exhibit the same behavior. Finally,566

while we present the convergence of reverse per-567

plexity in this work, the underlying reasons for this568

behavior still require further investigation.569

Ethic Considerations570

We uphold the Code of Ethics and ensure that no571

private or non-public information is used in this572

work. We comply with the terms set by companies573

offering commercial LLM APIs and extend our574

gratitude to all collaborators for their invaluable575

support in utilizing these APIs.576
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We provide source information of our data in table 977

4 and statistic information of data length in 10.
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Figure 10: Statistical patterns of data length distribution.
978

B Change in similarity 979

We measure the change in similarity between Ti 980

and T0 across successive paraphrasing steps. The 981

results are presented in Figure 11. As the num- 982

ber of paraphrasing steps increases, most LLMs 983

maintain the similarity between paraphrases and 984

their corresponding original texts, with the excep- 985

tion of an initial drop in similarity. Meanwhile, it 986

also exhibits aslight 2-periodicity in similarity. By 987

combining Figure 11 and Table 2, we found that 988

models with higher periodicity also exhibit higher 989

similarity. 990
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Dataset TLDR SQuAD ROCT Yelp ELI5 Sci_Gen

Sentence/Paragraph 100/30 100/30 100/30 100/30 100/30 100/30

Dataset XSum CMV HSWAG WP Wiki WMT

Sentence/Paragraph 100/30 100/30 100/30 100/30 200/0 200/0

Table 4: Dataset Setup: Datasets marked in red indicate Chinese datasets, while others represent English datasets.
The value indicates the number of extracted samples. For example, we extract 100 sentences and 30 paragraphs
from the TLDR dataset.
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Figure 11: Similarity changes during successive para-
phrasing. Qwen2.5-72B is the best at preserving mean-
ing, while all other LLMs experience slight degradation
in similarity, except during the first paraphrasing step.

C Generalization991

C.1 Task Extentions992

We propose four additional tasks beyond para-993

phrasing: polishing (Pol.), clarification (Clar.),994

informal-to-formal style transfer (I/F.), and for-995

ward/backward translation (Trans.). The detailed996

prompts for these tasks are listed in Table 5. We997

perform these tasks on our paragraph dataset, cal-998

culate the textual difference of the paraphrase at999

each iteration with the initial text, and plot the re-1000

sults in Figure 12. As the number of paraphrasing1001

steps increases, the difference between Ti and Ti−21002

decreases. After 7 steps, there is little difference1003

between Ti and Ti−2.1004

C.2 Model and Prompt variation1005

We continue to modify the models and prompts dur-1006

ing paraphrasing. The chosen model set includes1007

GPT-4o-mini, GPT-4o, Qwen2.5-7B, and Llama3-1008

8B. Four variations of the paraphrasing prompts1009

are provided in Table 6.1010
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Figure 12: The trend in normalized edit distance be-
tween Ti and Ti−2 across various tasks during the repe-
tition process using GPT-4o-mini.

Pol. Please polish the following text: {text}

Clar. Please rewrite the following text in a way that
is simpler and easier to understand, using clear
language and shorter sentences without losing
the original meaning: {text}

I/F. Transform the following text into an informal
style: {text} / Rewrite the following text in a
formal style: {text}

Trans. Please translate the following English text into
Chinese: {text} / Please translate the following
English text into Chinese: {text}

Table 5: Four types of prompts for extension tasks. The
last two tasks involve switching between different lan-
guages and styles, separated by a semicolon.

A: Please paraphrase the following text: {text}

B: Please rephrase the text below: {text}

C: Please rewrite the following text: {text}

D: Please polish the text below: {text}

Table 6: Four variations of paraphrasing prompts. In
the prompt variation experiments, a prompt is randomly
selected at each step to perform the paraphrasing.

C.3 Increasing Randomness 1011

We measure the impact of increasing randomness 1012

on periodicity by adjusting the generation temper- 1013

ature. We select four temperature values: 0.6, 1014

0.9, 1.2, and 1.5. The results are shown in Fig- 1015

13
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Figure 13: The difference confusion matrix for suc-
cessive paraphrasing at different temperature settings,
conducted by GPT-4o-mini.
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Figure 14: The similarity between paraphrases and
the original texts increases during the paraphrasing
process.

ure 13. Although the temperature increases to a1016

very high level, the 2-periodicity still persists. Fur-1017

ther increasing temperature will cause nonsense1018

responses.1019

C.4 Sample Selection Strategies1020

We propose three strategies for successive para-1021

phrasing and evaluate them across different LLMs.1022

To assess the impact of these strategies on meaning1023

preservation, we measure the similarity between1024

the paraphrases Ti and their corresponding original1025

texts T0 and demonstrate the result in Figure 14.1026

By combining Figure 14 and Figure 9, we suggest1027

that the random strategy preserves meaning sig-1028

nificantly better than the max strategy, while also1029

effectively alleviating periodicity. 1030

D Case Study 1031

We present part of the first case from our paragraph 1032

dataset for successive paraphrasing in Figure 7. 1033
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Sample of successive paraphrasing

T0 Australia has a strong tradition of an honest days pay for an honest days work. We have a strong
union presence which leads to high wages backed by a strong resource economy. We also have a
very multicultural society with many immigrants choosing to settle in Australia this leads to diverse
shopping areas where goods originally made all over the world are made right here on our shores. The
main reason Australia is the best country in the world is our heavily ingrained concept of a "fair go"
meaning you give anybody a chance to prove themselves no matter who they are. This is not even
mentioning our spectacular landscapes and beaches. All in all Australia is the best country in the world.

T1 Australia has a robust tradition of fair compensation for hard work. The strong presence of unions
contributes to high wages, supported by a solid resource-based economy. Additionally, our multicultural
society, enriched by many immigrants, creates diverse shopping areas where products from around the
globe are available right here in Australia. A key reason why Australia stands out as the best country in
the world is our deep-rooted belief in a "fair go," which emphasizes giving everyone the opportunity to
demonstrate their abilities, regardless of their background. Not to mention, our stunning landscapes
and beautiful beaches add to our appeal. Overall, Australia truly is the best country in the world.

T2 Australia has a strong tradition of ensuring fair pay for hard work. The significant influence of unions
leads to high wages, bolstered by a stable resource-driven economy. Furthermore, our multicultural
society, enriched by a diverse population of immigrants, fosters vibrant shopping districts where global
products are readily available. One of the main reasons Australia is considered the best country in the
world is our fundamental belief in a "fair go," which highlights the importance of providing everyone
with the chance to showcase their talents, regardless of their background. Additionally, our breathtaking
landscapes and beautiful beaches enhance our country’s appeal. Overall, Australia is truly the best
place in the world.

T3 Australia has a strong history of promoting fair compensation for hard work. The powerful presence
of unions contributes to high wages, supported by a stable economy driven by natural resources. In
addition, our multicultural society, enriched by a diverse immigrant population, creates lively shopping
areas filled with international products. A key reason why Australia is often regarded as the best country
in the world is our core belief in a "fair go," which emphasizes the importance of giving everyone
the opportunity to demonstrate their abilities, regardless of their background. Moreover, our stunning
landscapes and beautiful beaches add to the allure of our nation. Overall, Australia is undoubtedly one
of the finest places in the world.

T4 Australia has a rich tradition of advocating for fair pay for hard work. The strong influence of unions
helps maintain high wages, bolstered by a robust economy fueled by natural resources. Additionally,
our multicultural society, enhanced by a varied immigrant community, fosters vibrant shopping districts
filled with international goods. A significant reason Australia is often viewed as one of the best
countries globally is our fundamental belief in a "fair go," which highlights the necessity of providing
everyone with the chance to showcase their talents, regardless of their background. Furthermore, our
breathtaking landscapes and beautiful beaches contribute to the appeal of our nation. Overall, Australia
is truly one of the most exceptional places in the world.

T5 Australia has a rich history of promoting fair compensation for hard work. The strong presence of
unions plays a crucial role in ensuring high wages, supported by a thriving economy driven by natural
resources. Moreover, our diverse society, enriched by a wide-ranging immigrant population, creates
lively shopping areas filled with products from around the globe. A key reason Australia is often
regarded as one of the best countries in the world is our core belief in a "fair go," which emphasizes
the importance of giving everyone the opportunity to demonstrate their abilities, regardless of their
background. Additionally, our stunning landscapes and beautiful beaches enhance the allure of our
nation. In summary, Australia is truly one of the most remarkable places in the world.

T6 Australia has a notable history of advocating for fair pay for hard work. The significant influence
of unions is essential in maintaining high wages, bolstered by a robust economy fueled by natural
resources. Furthermore, our diverse society, enriched by a broad immigrant community, fosters vibrant
shopping districts filled with international products. A major reason Australia is frequently seen as
one of the best countries globally is our fundamental belief in a "fair go," which underscores the
importance of providing everyone the chance to showcase their talents, irrespective of their background.
Additionally, our breathtaking landscapes and beautiful beaches add to the appeal of our nation. In
conclusion, Australia is indeed one of the most extraordinary places in the world.

T7 Australia has a rich history of promoting fair compensation for hard work. The strong presence of
unions plays a crucial role in sustaining high wages, supported by a thriving economy that benefits
from its natural resources. Moreover, our multicultural society, enhanced by a diverse immigrant
population, creates lively shopping areas filled with global products. A key reason Australia is often
regarded as one of the best countries in the world is our core belief in a "fair go," which highlights
the importance of giving everyone the opportunity to demonstrate their abilities, regardless of their
background. Additionally, our stunning landscapes and picturesque beaches contribute to the allure of
our nation. In summary, Australia is truly one of the most remarkable places on Earth.

Table 7: Case illustration of the first sample in our paragraph dataset. Due to the limited content, we just display
T0...T7. 15
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