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Abstract

Adapting foundation models for downstream tasks via Federated Learning (FL) is a promising
strategy for protecting privacy while leveraging the capability of foundation models. However,
FL’s iterative training and model transmission result in high communication costs and GPU
memory demands, making large foundation models impractical for FL. This paper introduces
a one-shot FL method with a server-side performance bound to enable foundation models by
reducing communication costs and GPU memory requirements. Our approach, FedPFT (FL
with Parametric Feature Transfer), involves clients learning and transferring parametric
models for features extracted from frozen foundation models in a single round. Parametric
models are then used to generate synthetic features at the server to train a classifier head.
We evaluate FedPFT across eight vision datasets using three vision foundation models. Our
findings demonstrate that FedPFT is agnostic to data heterogeneity and network topology
and it enhances the communication-accuracy frontier up to 7.8%. Finally, we show FedPFT’s
compatibility with differential privacy and its resilience against reconstruction attacks. Our
work highlights the capability of private, feature-sharing methods for one-shot knowledge
transfer using foundation models.

1 Introduction

Federated learning (FL) (McMahan et al., 2017) is a learning paradigm that can facilitate fine-tuning
foundation models on downstream tasks across clients without sharing their raw data to adhere to privacy
concerns and regulatory guidelines such as GDPR (European Parliament & Council of the European Union).
Traditional FL takes place iteratively over multiple rounds, wherein each client trains a local model with its
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data and subsequently transmits it to a central server for aggregation. The frequent exchange or training
of models, each containing hundreds of millions of parameters, imposes an intolerable burden of high
communication costs and GPU memory requirement on each client, rendering the scalability of cross-device
FL systems to large foundation models impractical (Konečnỳ et al., 2016; Beitollahi & Lu, 2023).

One-shot FL (Guha et al., 2019) is an approach to address the high communication cost of FL by requiring
a single communication round. Moreover, one-shot FL addresses several drawbacks of multi-round FL: a)
coordinating a multi-iteration FL process across a large number of clients is susceptible to failures, stemming
from issues such as client dropout, resource heterogeneity, and real-world implementation challenges; b)
support of scenarios where multi-round FL is impractical, e.g., dynamic environments (Zhou, 2022) where the
global model is required to adapt to evolving environments; c) frequent communication poses a higher chance
of being intercepted by outsider attacks such as man-in-the-middle attacks (Bouacida & Mohapatra, 2021).

While one-shot FL holds promise, current methods lack the accuracy of multi-round FL counterparts (see
Figure 1). Furthermore, convergence analysis of multi-round FL cannot be extended to one-shot FL due to
its reliance on a large number of iterations; thus, current one-shot FL methods lack theoretical guarantees.
Additionally, one-shot FL alone cannot mitigate the GPU memory demands.
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Figure 1: Comparison of different one-shot FL methods
for image classification on Caltech-101 with 50 clients. See
Section 5.2 for experimental details. FedPFT and DP-
FedPFT outperform other one-shot FL methods and are
competitive with transmitting real features (Centralized).
With more communication budget, multi-round FL (i.e.
FedAvg) performs better than one-shot methods.

Recent strides in foundation models (Bommasani
et al., 2021) present novel opportunities for training-
free and communication-efficient knowledge sharing
among clients in FL. Foundation models such as
CLIP (Radford et al., 2021) and GPT series (Radford
et al., 2019; Brown et al., 2020) demonstrate remark-
able performance via task-agnostic representations.
Features from these models can be leveraged “as they
are” without extensive fine-tuning, via probing or
clustering, to achieve performance on downstream
tasks surpassing that of complex, task-specific mod-
els. Further, in well-trained foundation models, there
exist linear paths in representation space that vary
according to semantic axes (Mikolov et al., 2013;
Härkönen et al., 2020). A corollary is that fitting
simple, smooth, parametric distributions in repre-
sentation space can lead to realistic samples sharing
semantic characteristics; on the other hand, this is
certainly not true in input space (i.e., Gaussians
cannot model the distribution of natural images).

Our contributions. In this paper, we propose
FedPFT (Federated Learning with Parametric Feature Transfer) a training-free, one-shot FL method
with a server-side guarantee to enable foundation models in FL. In FedPFT, each client learns and transfers
parametric models from extracted features from pre-trained, frozen foundation models in one round. These
parametric models are used to generate synthetic features at the server to train a classifier head (as illustrated in
Figure 2). Therefore, FedPFT does not require training or fine-tuning of large foundation models. We evaluate
FedPFT with different families of parametric models, including a mixture of Gaussians. Our evaluation of
eight vision datasets with three vision foundation models shows that FedPFT achieves performance close to
centralized training and is agnostic to data heterogeneity. We show that FedPFT supports both centralized
and decentralized FL. Finally, we provide theoretical server-side performance guarantees for FedPFT.

Our main contributions include:

• We introduce FedPFT, a training-free, one-shot parametric feature-sharing framework that enables
foundation models in FL to enhance the communication-accuracy frontier.
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• We evaluate FedPFT using eight vision datasets and three vision foundation models, showing that
FedPFT enhances the communication-accuracy frontier by up to 7.8% and is agnostic to various
network topologies and distribution shifts including label shift and task shift.

• We extend FedPFT to offer differential privacy guarantees, demonstrating favorable privacy-accuracy
tradeoffs. Additionally, we conduct reconstruction attacks on various feature-sharing schemes and
demonstrate the privacy risks of sending real features.

• We theoretically analyze the performance of FedPFT and provide a server-side bound.

2 Related work

One-shot FL. Naive parameter averaging methods such as FedAvg (McMahan et al., 2017) do not perform
well in one-shot FL settings (Guha et al., 2019) (see Figure 1). To overcome this limitation, researchers have
explored diverse strategies, including knowledge distillation (KD) (Hinton et al., 2015), ensemble learning
(Guha et al., 2019; Chen & Chao, 2020), and generative method (Kasturi & Hota, 2023; Zhang et al., 2022).
KD methods commonly rely on a public dataset for distillation which is not always available in practice.
Further, ensemble learning methods use client models collectively as the global model, but as we demonstrate,
they perform poorly with extremely diverse data due to overfitting. Finally, generative methods are used to
create or extract synthetic images at the server. Generative methods require extensive training on the client
and can be challenging when clients access only a few samples. In our experiments, we were unsuccessful
in utilizing methods like DENSE (Zhang et al., 2022) to extract synthetic images from frozen, pre-trained
models (see Appendix 5 for details).

Foundation models for FL. Foundation models can greatly enhance the training of FL. For instance,
clients can directly conduct fine-tuning on their local data without training from scratch (Chen et al., 2022;
Nguyen et al.; Tan et al., 2022) to converge faster and achieve better performance. Further, foundation
models allow a novel sharing paradigm. For instance, clients can train and share prompts (Zhao et al., 2023;
Guo et al., 2023), instead of sharing high-dimensional model parameters. However, these methods require
multiple rounds of sharing parameters and training of the foundation models.

Sharing feature statistics in FL. Sharing feature statistics has been explored in FL. For instance, CCVR
(Luo et al., 2021) and FedImpro (Tang et al., 2024), in addition to conducting a multi-iteration FL, represent
the features of each class as a Gaussian distribution and transmit both the model parameters and the
distribution parameters to the server to sample and re-train the classifier. Similarly, FedNCM (Legate
et al., 2024) and FedPCL (Tan et al., 2022) consider sharing class prototypes for learning the classifier head
using Nearest Class Means and Contrastive Learning, respectively. However, neither a Gaussian nor a class
prototype can completely represent the features (see Section 6.1), FedPFT outperforms FedNCM and CCVR
by up to 7% (see Figure 4). Further, none of these methods provide any theoretical performance or privacy
analysis for the effect of sharing feature statistics. Our work is an extension of these methods to formally
study and analyze feature-sharing in training-free, one-shot FL settings. Table 1 highlights the differences
between FedPFT and similar approaches that rely on sending the statistics of features.

Table 1: Comparison between FedPFT and approaches that rely on sending the statistics of features.

Methods Parameterization
of features

Performance
guarantee One-shot Training-free

foundation model
Privacy

guarantee
Supports

decentralized FL

CCVR (Luo et al., 2021) Gaussian ✗ ✗ ✗ ✗ ✗
FedImpro (Tang et al., 2024) Gaussian ✗ ✗ ✗ ✗ ✗
FedPCL (Tan et al., 2022) Class prototypes ✗ ✗ ✓ ✗ ✗
FedNCM (Legate et al., 2024) Class prototypes ✗ ✓ ✓ ✗ ✗

FedPFT (Ours) Mixture of Gaussians ✓ ✓ ✓ ✓ ✓

3 Preliminaries

Federated learning. The objective of one-shot FL is to learn a model w from data distributed across
I clients, each communicating only once. We represent Di as the local dataset for client i ∈ {1, ..., I} of
example-label pairs (x, y), and we denote ni := |Di| as the number of samples for local data of client i.
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Figure 2: Illustration of FedPFT in centralized FL. Each client learns GMMs for their distributions of extracted
features for each class. Then, GMM’s parameters are transmitted to the server, which then samples from these
distributions to train a classifier head as the global model.

The model w is decomposed into w := h ◦ f , where f represents a feature extractor mapping input x to a
d-dimensional embedding, and h : Rd → RC is the classifier head (i.e., linear layer), with C denoting the
number of classes. In FL setups, the goal is to minimize the objective function:

L(w) :=
I∑

i=1

ni

n
E(x,y)∼Di

[ℓ(w; x, y)], (1)

where ℓ is the cross-entropy loss function and n :=
∑I

i=1 ni.

Gaussian mixture models. We employ Gaussian mixture models (GMMs) as one of our chosen parametric
models, given their concise parameterization and status as universal approximators of densities (Scott, 2015).
Our approach relies on learning Gaussian mixtures over feature space Rd. Let S+ denote the set of all d × d
positive definite matrices. We denote by G(K) the family of all Gaussian mixture distributions comprised of
K components over Rd. Each density function g ∈ G(K) is identified by a set of tuples {(πk, µk, Σk)}K

k=1,
where each mixing weight πk ≥ 0 with

∑K
k=1 πk = 1, each mean vector µk ∈ Rd, and each covariance matrix

Σk ∈ S+, satisfying:

g :=
K∑

k=1
πk · N (µk, Σk) (2)

where N (µ, Σ) refers to the Gaussian density over Rd with mean µ and covariance Σ. In addition, we denote
Gdiag(K) to denote Gaussian mixtures comprising of diagonal Gaussians, i.e., with the additional constraint
that all Σk are diagonal. We also denote Gspher to Gaussians mixtures with spherical covariances, i.e., each
Σk ∈ {λId : λ ∈ R≥0}. We may also refer to the family of full covariance G(K) as Gfull(K), and use Gcov(K)
to denote different family types.

4 Methods

In this section, We first describe FedPFT for the centralized FL setting, assuming the presence of a centralized
server connected to all clients. We also describe the modifications required to adapt FedPFT for (a) the
decentralized FL setting; and (b) differential privacy requirements. Finally, We provide a performance
guarantee for FedPFT.

4.1 Centralized FedPFT

In this conventional FL setup, a central server can aggregate the knowledge from all clients. In the centralized
FedPFT scenario, as illustrated in Figure 2, each client i extracts class-conditional features from its local
dataset for each available class c ∈ {1, ..., C}:

F i,c := {f(x); (x, y) ∈ Di, y = c}, (3)
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using the pre-trained foundation model feature extractor f . Next, each client i learns runs the Expectation
Maximization (EM) algorithm (Dempster et al., 1977) on F i,c to learn a GMM gi,c ∈ Gcov(K) for each class c
that approximates F i,c. Finally, each client sends its gi,c parameters {(πi,c

k , µi,c
k , Σi,c

k )}K
k=1 to the server. On

the server side, the server samples class-conditional synthetic features F̃ i,c from each received gi,c parameters,
i.e,

F̃ i,c ∼ gi,c =
K∑

k=1
πi,c

k · N (µi,c
k , Σi,c

k ) (4)

with the size of |F i,c|. Then, the server combines class-conditional synthetic features F̃ i,c from all the clients
and classes to create synthetic feature dataset F̃ as follows,

D̃ =
I⋃

i=1

C⋃
c=1

{(v, c) : v ∈ F̃ i,c}. (5)

Finally, the server trains a classifier head h on F̃ , minimizing E(v,y)∼D̃[ℓ(h; v, y)] where ℓ is the cross-entropy
loss. The trained, global classifier head h is then sent back to the clients, and clients can use w = h ◦ f as the
global model. This process is described in Algorithm 1.

4.2 Decentralized FedPFT

Feature Extractor Real Features
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Combined
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Figure 3: Illustration of decentralized FedPFT where
clients update received GMMs with their local data.

Traditional FL relies on a central server for coordi-
nation, which introduces a single point of failure and
limits scalability. This centralized architecture also
poses privacy and security risks by exposing model
updates and reduces fault tolerance by making the
system dependent on server availability. Decentral-
ized FL mitigates these issues by enabling direct
peer-to-peer communication, improving resilience,
and eliminating the need for a trusted aggregator.
Therefore, we extend FedPFT to the decentralized
setting.

In decentralized FL, there is no centralized server,
and clients are all connected in an ad-hoc manner.
Therefore, each client has the responsibility of aggre-
gating the knowledge of its dataset with other clients and passing the knowledge to the next client. FedPFT
for decentralized FL is illustrated in Figure 3. In this method, similar to centralized FL, each client i creates
class conditional features from its local dataset for each label c, i.e., F i,c. Then, client i samples from the
received GMMs from client j to generate synthetic class-conditional features F̃ j,c. Next, client i runs the
Expectation Maximization (EM) algorithm on F i,c ∪ F̃ j,c to learn a GMM gi,c ∈ Gcov(K) for each class c
that approximates the union of F i,c and F̃ j,c. The parameters of gi,c are sent to the next client. At the same
time, each client can use the combined features F i,c ∪ F̃ j,c to train its local classifier head hi. By passing
GMMs between clients, knowledge of each client is accumulated and propagated between clients with just
one round of communication where the last client has the knowledge of all the clients.

4.3 Differential Privacy

FedPFT’s goal is to transfer the parameters of GMMs without leaking clients’ private information in their
dataset. For formal privacy guarantees, we employ differential privacy (DP, Dwork et al., 2006). To make
FedPFT differentially private, we use the Gaussian mechanism (Dwork et al., 2006; 2014) to privatize
the release of all mean vectors and covariance matrices. The following theorem along with the proof in
the Appendix E provides the (ϵ, δ)-differential privacy guarantee for FedPFT in the case of Gaussians
(Gfull(K = 1)).
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Theorem 4.1 (Privacy Guarantee). Suppose the feature embedding f satisfies ∥f∥2 ≤ 1. Let µ̂(·) and
Σ̂(·) be the estimator of mean and covariance, respectively. Define the Gaussian mechanism

M : D 7→ (µ̃(D), Σ̃(D)), (6)
µ̃(D) = µ̂(f(D)) + ∆µ, (7)

Σ̃(D) = ProjS+(Σ̂(f(D)) + ∆Σ), (8)

where the elements of vector ∆µ and matrix ∆Σ are sampled from independent N
(

0,
(

4
niϵ

√
5 ln(4/δ)

)2
)

,
and ProjS+ is the projection onto the set of positive semi-definite matrices. Then, the Gaussian mechanism
M satisfies (ϵ, δ)-differential privacy.

Note that the assumption of normalized features in Theorem 4.1 does not limit the performance of networks
with soft-max loss function since both normalized and unnormalized features have the same expressive power
as shown in Proposition 3.A in (Zhang et al., 2023). Further, note that Theorem 4.1 only assures the privacy
of GMMs. However, FedPFT sends label counts along with the GMMs to the server, which may not be
advisable from a privacy perspective. In Section A.3, we discuss cryptographic adaptations that can be made
to address this issue.

4.4 Performance Guarantee

FedPFT trains a classifier head on the server using synthetic features. The training loss at the server assures
that the classifier can classify synthetic features effectively. But how can we guarantee that this classifier
works well for the real features of clients without accessing real features? The following theorem provides a
server-side bound on the performance of the classifier head on the real features:

Theorem 4.2 (Performance Guarantee). For any classifier head h, with ℓ0−1 and ℓ̃0−1 the 0-1 losses of
h on

⋃I
i=1 f(Di) and

⋃I
i=1
⋃C

c=1 F̃ i,c respectively,

ℓ0−1︸︷︷︸
Raw feature’s 0-1 loss

≤ 2 ℓ̃0−1︸︷︷︸
Synthetic feature’s

0-1 loss

+
I∑

i=1
Ec

[
LEM

i,c

]︸ ︷︷ ︸
EM loss of fitting
a GMM on class c

of client i

, (9)

where LEM
i,c = 1√

2

√
Hi,c − ℓEM

i,c , and ℓEM
i,c is the class-wise log-likelihood of the EM, and Hi,c is the self-entropy

of the distribution F i,c.

This theorem states that the 0-1 loss on all the real features (centralized loss) is bounded by twice the 0-1
loss of the server on all the generated synthetic features plus the sum of the expectation of EM loss of fitting
GMMs on all the classes across all the clients. Therefore, if the goal is to have a centralized 0-1 loss of 0.1,
the 0-1 loss on synthetic features should be at most 0.05 given perfect GMMs (i.e. LEM = 0). Notably, this
bound is a server-side guarantee since ℓ̃0−1 can be calculated at the server and Ec[LEM

i,c ] is already calculated
during learning of GMMs at the clients and can be sent to the server. Using this theorem, the server can
calculate the performance of clients without accessing their data. Complete proof of this theorem along with
a comparison to other bounds can be found in Appendix F.

5 Experiments

We examine the knowledge transfer capabilities of FedPFT and DP-FedPFT in the one-shot setting, comparing
them with state-of-the-art methods across various data heterogeneity settings and network topologies. Our
experiments support the claim that FedPFT: (1) compares favorably against existing one-shot FL methods; (2)
succeeds in a variety of extreme client distribution scenarios challenging for FL; and (3) supports decentralized
network topologies.
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Table 2: Summary of datasets and foundation models

Dataset Min size |D| C Foundation Model d

CIFAR10 32 50k 10 ResNet-50 2048
CIFAR100 32 50k 100 ResNet-50 2048
PACS (P) 224 1.3k 7 ViT-B/16 768
PACS (S) 224 3k 7 ViT-B/16 768
Office Home (C) 18 3.4k 65 ViT-B/16 768
Office Home (P) 63 3.5k 65 ViT-B/16 768
Caltech101 200 6k 101 CLIP, ViT-B/32 768
Stanford Cars 240 12k 196 CLIP, ViT-B/32 768
Oxford Pets 108 3.6k 37 CLIP, ViT-B/32 768
Food101 512 75k 101 CLIP, ViT-B/32 768
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Figure 4: FedPFT vs existing one-shot and multi-round FL methods in Centralized setting with CIFAR100 (left)
and Caltech 101 (right) dataset. FedPFT (G) and DP-FedPFT (Ĝ) surpass other one-shot FL methods, and are
competitive with sending raw features (Centralized).

5.1 Experimental setting

Datasets and foundation models. We use 8 vision datasets including CIFAR10/100 (Krizhevsky et al.,
2014), PACS (Li et al., 2017), Office Home (Venkateswara et al., 2017), Caltech101 (Li et al., 2022), Stanford
Cars (Krause et al., 2013), Oxford Pets (Parkhi et al., 2012), and Food101 (Bossard et al., 2014) and three
foundation models including ResNet-50 (He et al., 2016) pre-trained on ImageNet, ViT-B/16 (Dosovitskiy
et al., 2020) pre-trained on ImageNet, and the CLIP (Radford et al., 2021) image encoder as our feature
extractor f . Table 2 provides a summary of the datasets and the corresponding feature extractors used. We
keep the foundation models frozen for all the experiments except in Table 6 where we analyze the effect of
fine-tuning.

Implementation and Baselines. We use FedPFT to train the classifier head of foundation models. We
provide a discussion on training other layers in Appendix A.2. Also, We provide the code for implementing
GMMs in FedPFT in Appendix D. For transmitting GMM parameters, we use a 16-bit encoding. We use
Gcov(K) and Ĝcov(K) to denote FedPFT and DP-FedPFT, respectively, where cov represented covariance
types. We set ϵ = 1, δ = 1/|Di,c|, and use K = 1 mixture components for all DP-FedPFT experiments
since our theoretical analysis currently supports only this case. We run all the experiments for three seeds
and report the mean and standard deviation of the accuracy on the hold-out test dataset, along with its
communication cost. Further experimental details can be found in Appendix G. For baselines, we present
the results of centralized training with raw, pre-trained features (Centralized) as the oracle. We also include
the results of an Ensemble comprising locally trained classifier heads from clients, where the class with the
highest probability across the models is selected.
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Table 3: FedPFT in three extreme shifts in two-client decentralized FL. We format first and oracle results.

Method
Disjoint Label shift Covariate shift Task shift

CIFAR-10 CIFAR-100 PACS (P→S) Office (C→P) Caltech101 ↓
Stanford Cars

Oxford Pets ↓
Food101

Centralized 90.85 ± 0.03 73.97 ± 0.06 89.15 ± 0.17 82.00 ± 0.16 81.88 ± 0.06 88.48 ± 0.05

Ensemble 80.18 ± 0.30 57.94 ± 0.22 79.59 ± 0.83 71.36 ± 0.46 58.33 ± 2.01 83.54 ± 0.21

Average 77.66 ± 1.04 56.82 ± 0.22 77.83 ± 0.23 69.69 ± 0.69 72.65 ± 0.13 83.25 ± 0.59

KD 74.22 ± 0.42 55.62 ± 0.20 67.69 ± 2.47 72.15 ± 0.75 40.46 ± 0.31 43.67 ± 0.04

Gdiag(K=10) 86.19 ± 0.15 69.97 ± 0.07 89.12 ± 0.18 80.56 ± 0.31 81.74 ± 0.06 88.22 ± 0.07

Gdiag(K=20) 86.89 ± 0.02 70.31 ± 0.10 89.00 ± 0.15 80.94 ± 0.16 81.75 ± 0.04 88.25 ± 0.08

5.2 Comparing to existing one-shot and multi-round FL methods

In Figure 4, we compare the performance of FedPFT with state-of-the-art one-shot FL methods in centralized
settings with 50 clients for training the classifier head. We conduct tests on both CIFAR100 with the
ResNet-50 feature extractor and the Caltech101 dataset with the CLIP ViT feature extractor, where the
samples are distributed across clients according to Dirichlet (β = 0.1). The benchmarked multi-round methods
include FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020b), DSFL (Beitollahi et al., 2022), FedFed
(Yang et al., 2023), CCVR (Luo et al., 2021) and FedYogi (Reddi et al., 2020), along with single-shot methods
such as FedBE (Chen & Chao, 2020), FedNCM (Legate et al., 2024), FedKT (Li et al., 2020a), and Ensemble.
We were unsuccessful in running model inversion methods including DENSE (Zhang et al., 2022) for frozen,
pre-trained models (See Appendix A.4 for further details).

Figure 4 shows that FedPFT and DP-FedPFT beat other one-shot FL methods; and are competitive with
sending raw features (Centralized). With more communication budget, multi-round FL methods perform
better than existing one-shot methods. Additionally, Figure 4 demonstrates different tradeoffs for varying
numbers of mixtures K and covariance types. See Section 6.1 for more discussion on these tradeoffs.

5.3 Extreme shifts in peer-to-peer decentralized FL

Figure 5: (top) Five clients in a linear topology. Each client updates
its received GMM with its local data and sends it to the next client.
(bottom) Results of FedPFT with 5 clients in linear topology as illus-
trated in Figure

By design, FedPFT is agnostic to data
heterogeneity. To assess this claim, we ex-
amine decentralized FL settings with two
clients: source and destination. These
clients exhibit significantly different train-
ing distributions. Specifically, we ex-
plore three types of extreme shift scenar-
ios—label shift, covariate shift, and task
shift—between clients, where the source
can communicate only once to the destina-
tion client. We report the performance of
the destination’s trained classifier head on
both clients’ test datasets in Table 3. Ta-
ble 3 demonstrates that FedPFT succeeds
in various extreme client distribution sce-
narios and highlights the limitations of
vanilla averaging, ensembling, and KD
methods. Below we provide the details
of the benchmarks and distribution shifts.
Further details of this experiment includ-
ing the communication cost can be found
in Appendix G.4.
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Figure 6: Comparing real and synthetic feature distributions using the Caltech101 dataset. (Left) Classifier accuracy
on raw vs. synthetic features from various GMMs. (Middle) 2-dimensional and (Right) 1-dimensional distribution of
random indexes of real features vs GMMs’ counterparts with different covariance types and number of mixtures.

5.4 Linear topology

In this setup, we demonstrate the propagation and accumulation of knowledge using FedPFT in decentralized
FL with five clients in a linear topology where each client has access to 100 i.i.d. samples of the CIFAR10
dataset, as illustrated in Figure 5 (top). Using GMMs, we transfer knowledge of client 1 to client 5 in four
communication rounds and report the performance of each client’s classifier head trained on its received
GMM on the entire 5 client dataset in Figure 5 (bottom). We also compare FedPFT with centralized training
and local training, where we train a classifier head for each client’s dataset. Figure 5 (bottom) shows that as
GMMs pass through clients, they can accumulate and propagate the knowledge and achieve performance
close to 1.8% of centralized training.

6 Analysis

In this section, we provide a comprehensive analysis of FedPFT, examining its accuracy, communication cost,
and privacy characteristics. In particular, we: (1) examine the tradeoff between accuracy and communication
cost for different families of GMMs; (2) prove theoretical guarantees on local client accuracy; (3) estimate
communication costs; and (4) analyze privacy leakage in FedPFT, compared to sending raw features.

6.1 How well do GMMs model feature distributions?

FedPFT relies on learning the distribution of features of each class using GMMs. We aim to assess how
effectively GMMs can estimate class-conditional features. We measure the accuracy gap between two classifier
heads: one trained on real features and another on synthetic features generated using GMMs. Monitoring the
accuracy gap helps us evaluate the discriminative power of synthetic features. We examine the effect of the
number of mixtures K and the type of covariance matrix. For this experiment, pictured in Figure 6, we use
CLIP ViT-B/32 features on the Caltech101 dataset. For various families of GMMs, we plot accuracy and the
total number of statistical parameters.

Figure 6 (left) shows that 10-50 Gaussians are sufficient to represent raw extracted features with less than a
1% drop in accuracy. Notably, GMMs with a spherical covariance matrix exhibit better tradeoffs between
communication and accuracy compared to full/diagonal covariance matrices. Additionally, we illustrate the
1-dimensional (Figure 6 right) and 2-dimensional (Figure 6 middle) density of random indexes of raw features
and compare them with GMMs.

6.2 Communication cost of FedPFT

Here, we estimate the communication cost of FedPFT and compare it to sending the classifier head or sending
the raw features. Denoting by d the feature dimension, K the number of components, and C the number of
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Figure 7: (left) Results of reconstruction attacks on feature-sharing schemes using three random test images from
CIFAR-10. Attackers can reconstruct raw features (middle-left) to generate images resembling real data (left). However,
the same reconstruction on FedPFT (middle-right) and DP-FedPFT (right) does not resemble the real image. For
more reconstruction examples see Figures 12 and 13 in the Appendix. (right) Quantitative metrics for set-level
reconstruction. We report image similarity on the top 1% (n = 90) of test set images, by their SSIM to a member
of the reconstruction set. As a baseline, we report the results of treating the train set as a reconstruction set. For
further elaboration on our threat model, see Appendix H.

classes, we calculate the communication cost of FedPFT for different covariance families:

Cost(Gfull) : (2d + d2 − d

2 ) + 1)KC ∼ O(d2CK), (10)

Cost(Gdiag) : (2d + 1)KC ∼ O(2dCK), (11)
Cost(Gspher) : (d + 2)KC ∼ O(dCK). (12)

Equations (10 - 12) indicate that the communication cost of FedPFT is independent of the number of samples
of each client ni. Therefore, FedPFT can scale better compared to sending raw data or raw features when the
number of samples is large. More specifically, when ni ≳ 2dCK, it is more communication efficient to send
Gdiag(K) than send the raw features. This is also shown in Figure 6 (left). Similarly, equation (12) shows
that the communication cost of Gspher(K = 1) is equal to the communication cost of sending the classifier
head, which is (Cd + C). Therefore, GMMs can have the same communication cost as FedAvg. Further,
FedPFT supports heterogeneous communication resources, as each client can utilize a different K.

6.3 Evaluating against reconstruction attacks

We conduct reconstruction attacks on the various feature-sharing schemes described in this paper using the
CIFAR10 dataset. Figure 7 (left) verifies the vulnerability of raw feature sharing – an attacker with access to
in-distribution data (i.e. CIFAR-10 train set) can obtain high-fidelity reconstructions of the private data of
clients (i.e. CIFAR-10 test set). This necessitates sharing schemes beyond sending raw features.

The attack we present involves training a U-Net-based conditional denoising diffusion model on (extracted
feature, image) pairs and then performing inference on received feature embeddings. We apply the same
attack on features sampled via FedPFT and DP-FedPFT. The reconstructions are set-level, and we present
the closest image among the entire reconstruction set by SSIM. The resulting reconstructions do not resemble
the original image (Figure 7 (left)). Quantitative results reporting image similarity metrics can be found in
Table 7 (right).

For full experimental details, further quantitative results, and samples, please see Appendix H. We also
include a full description of our threat model and results on different backbones (e.g. our attacks are stronger
on MAEs), which could not be included in the main body due to space limitations.
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6.4 Effect of data heterogeneity β
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Figure 8: Effect of data heterogeneity (β) using the Cal-
tech101 dataset with 50 clients. We use K=1 for FedPFT.

We analyze the effect of data heterogeneity on the
performance of FedPFT and compare it to other
one-shot baselines in Figure 8. We utilize CLIP,
ViT-B/32 as our feature extractor and distribute
the Caltech101 dataset across 50 clients according to
Dirichlet with different values of β. Figure 8 confirms
that FedPFT is invariant to data heterogeneity and
outperforms other baselines by up to 32%. Further,
it shows the challenge of model merging in a one-
shot setting, since baselines such as averaging and
FedBE do not perform as well as an ensemble with
the decrease in data heterogeneity.

7 Conclusion

We introduce FedPFT, a one-shot federated learning (FL) method leveraging foundation models for better
accuracy and communication efficiency. FedPFT utilizes per-client parametric models of features extracted
from foundation models for data-free knowledge transfer. Our experiments show that FedPFT improves the
communication-accuracy frontier in a wide range of data-heterogeneity settings. Moreover, we showed that
FedPFT is amenable to formal privacy guarantees via differential privacy, exhibiting good privacy-accuracy
tradeoffs. Our theoretical analysis demonstrates that FedPFT has server-side guarantees on the local accuracy
of clients. Additionally, we conduct reconstruction attacks on feature-sharing schemes and demonstrate the
privacy risks of sending real features.
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A Discussions and Limitations

A.1 Why does FedPFT perform well with limited data?

The strong performance of FedPFT stems from its use of pre-trained foundational models to extract task-
agnostic features. Additionally, GMMs require only a few parameters (centroids and variances) from these
features, allowing them to perform well even with limited client data. Furthermore, since FedPFT recreates
features at the server, it remains agnostic to data heterogeneity. Increasing GMM complexity—from spherical
to diagonal and full covariance—enables better feature representation at the cost of higher communication
overhead.

A.2 Can we train any layer of the model using FedPFT?

We have explored training layers other than the classifier head using FedPFT. When training any layer of a
network using FedPFT, we need to extract the outputs of the previous layer and learn a parametric model
of those outputs. Two issues arise for layers that are not the classifier head: 1) the size of the output of
hidden layers is very large and 2) simple parametric models cannot describe the output of hidden layers.
For instance, consider using FedPFT for training the second to last layer (12th layer) of ViT-B/16 using
FedPFT. In this case, we need to learn the outputs of the 11th layer which is a tensor of size (sequence=197,
hidden-dim=768). In this case d = 197 ∗ 768 = 151, 257 is very large for both computation and transmission.
More importantly, it is not clear how well GMMs model intermediate layer activations. We attribute the
success of FedPFT to the observation that last layer outputs are well modeled by GMMs (See Figure 6). We
believe the reason is that during the pre-training, last-layer activations of different classes were forced to
be well-separated for classification using a linear probe. However, pre-last layer activations have positional
information that does not aggregate well for calculating parametric statistics. We have tried modeling pre-last
layers using GMMs but we were unsuccessful.

A.3 Does sending label counts along with the GMMs to the server violate privacy?

Indeed, FedPFT sends label counts along with the GMMs to the server, which may not be advisable from a
privacy perspective. However, this is not an inherent limitation of FedPFT. For example, one adaptation that
can be made to address this is to employ secure shufflers (as used in private FL protocols, see (Kairouz et al.,
2021) page 45). These are a class of cryptographic primitives that would shuffle the (GMM, label count)
tuples provided by each client before the server receives them, and therefore, the server does not know the
classes present on a specific client.

A.4 Comparing FedPFT with model inversion methods

Model inversion methods like DENSE (Zhang et al., 2022) and DFRD (Wang et al., 2024) attempt to recreate
the client’s data at the server to distill the ensemble of the client’s models to a global model using the
generated synthetic data. Therefore, the global model would adhere to the performance of the ensemble of the
client’s models (Zhang et al., 2022). Based on the results of the ensemble presented in Sections 5 and 5.3, we
argue that the performance of the ensemble model is also very limited due to the extreme data heterogeneity
of clients. Further, these methods rely on training and transmitting the entire model and it is unclear how
model inversion methods like DENSE can be extended to frozen, pre-trained foundational models as feature
extractors. We were unsuccessful in our attempts to utilize DENSE for a pre-trained, frozen ResNet-50 to
achieve competitive results. We believe one reason for our poor performance was the lack of access of DENSE
to batch norm statistics of clients. Finally, inversion methods like DENSE and DFRD do not provide any
privacy or accuracy guarantees.

A.5 Using fine-tuned features vs zero-shot features

In section 5, we are reporting the centralized baseline for zero-shot features to represent the upper bound of
what any method can achieve using a frozen, pre-trained feature extractor. In Table 6, we report the results
when you can fine-tune a feature extractor. Table 6 demonstrates that fine-tuning hurts FedPFT performance,
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and we attribute this to the fact that this introduces a mismatch between the client features computed
with client feature extractors and the server feature extractor used at test time. For our baselines (with
the exception being KD), fine-tuning and aggregating fine-tuned feature extractors improves performance.
However, FedPFT with pre-trained feature extractors still outperforms them. Finally, an important caveat
to fine-tuning and sharing models is the additional computational resources (FLOPS and memory) and
communication costs, which become especially relevant when dealing with large foundation models. We will
include this table along with the discussion in the final version.

A.6 FedPFT for multi-shot FL

In this paper, our objective is to 1) bring and utilize large pre-trained foundation models in FL while at
the same time 2) improve the communication cost by focusing only on one-shot FL. In the one-shot setting,
FedPFT optimizes parametric distributions to capture feature representations. On the other hand, in the
multi-round setting, it is not clear regarding the benefits: any approach that combines with feature fine-tuning,
i.e., CCVR, will be bottlenecked by the communication of model weights of large foundation models. Further,
the removal of the multi-round FL parts lets us prove formal accuracy and privacy guarantees.

A.7 Comparing FedPFT with CCVR using a pre-trained model

CCVR, when using a pre-trained model, does not perform similarly to FedPFT (K=1). This is because, in
FedPFT, we train the classifier head from *scratch* using Gaussian mixtures, whereas in CCVR, clients send
a trained classifier head to the server, which then post-calibrates (*fine-tunes*) the classifier at the end of
each round to mitigate bias and improve accuracy in multi-round FL. In Figure 4, we compare CCVR with a
frozen pre-trained model against FedPFT, showing that FedPFT outperforms CCVR while also reducing
communication costs by avoiding classifier head transmission. We believe that the bias in CCVR’s local
classifier heads prevents it from achieving competitive performance compared to FedPFT.

A.8 Other limitations

One of the main limitations of our work is that we have not explored non-vision tasks. We will leave non-vision
tasks for future work. Further, we leave other attacks including membership inference attacks for future work.

B Societal Impact

This work promotes privacy by bringing foundation models to FL and using differential privacy. Unlike
traditional approaches that require clients to send their raw data to a server for training, our method utilizes
FL and differential privacy to allow users to send features instead. We show that clients do need to sacrifice
privacy to achieve competitive performance. We further evaluate our method against privacy attacks and
highlight the capability of private, feature-sharing methods for knowledge transfer using foundation models.

C Algorithm

In this section, we provide the complete algorithm for FedPFT. Algorithm 1, describes the algorithm for
FedPFT.
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Algorithm 1 FedPFT for centralized, one-shot FL.
1: Input: Client datasets D1, ..., DI , pre-trained feature extractor f .
2: Parameters: Number of clients I, number of classes C, number of mixtures K, covariance type cov.
3: Output: Model w := h ◦ f

4: // Client side:
5: for each client i ∈ {1, ..., I} do
6: for each class c ∈ {1, ..., C} do
7: Let F i,c := {f(x) : (x, y) ∈ Di, y = c}.
8: Run the EM algorithm on F i,c to learn a GMM gi,c ∈ Gcov(K).
9: Send gi,c parameters {(πi,c

k , µi,c
k , Σi,c

k )}K
k=1 to the server.

10: end for
11: end for

12: // Server side:
13: for each received {(πi,c

k , µi,c
k , Σi,c

k )}K
k=1 set do

14: Sample synthetic features F̃ i,c ∼ gi,c =
∑K

k=1 πi,c
k · N (µi,c

k , Σi,c
k ) of size |F i,c|.

15: end for
16: Let D̃ =

⋃I
i=1
⋃C

c=1{(v, c) : v ∈ F̃ i,c}.
17: Train a classifier head h on F̃ , minimizing E(v,y)∼D̃[ℓ(h; v, y)] where ℓ is the cross-entropy loss.
18: return model w = h ◦ f .

D Code

In this section, we provide code for the main component of FedPFT which is extracting the GMMs for
class-conditional features. We consider the case of k = 1 and refer readers to the DP-EM (Park et al.,
2017) method for the general case. Also, in this section, we assume each client can access only one class for
simplicity and without losing generality.

1

2 from sklearn . mixture import GaussianMixture as GMM
3 import numpy as np
4

5

6 def create_gmm ( features : np.array , labels : np. array ) -> Dict:
7 ’’’
8 Creates a diagonal GMM with 10 mixtures for each class in features and
9 sample from it to create synthetic dataset

10

11

12 Args:
13 features (np. array ): all the features of training dataset
14 labels (np. array ): all the associated labels of features
15 returns ’synthetic_dataset ’
16

17 ’’’
18 synthetic_dataset = {}
19 for label in list(set( labels )):
20 conditional_features = features [ labels == label ]
21

22 # Create a GMM for ’label ’
23 gmm = GMM(
24 n_components =10 ,
25 covariance_type =’diag ’,
26 )
27 gmm.fit( conditional_features )
28

29 # Sample from the GMM for ’label ’ at the server
30 gmm_feature , _ = gmm. sample ( conditional_features . shape [0])
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31

32 # Add it to the synth dict
33 synthetic_dataset [ label ] = gmm_feature
34

35 return synthetic_dataset

E DP-FedPFT

This section provides detailed definitions and proofs for Theorem 4.1.
Definition E.1. (Differential Privacy, (Dwork et al., 2006)). A randomized algorithm M : U → Θ is (ϵ, δ)-
differentially private if for every pair of neighboring datasets D, D′ ∈ U for all S ⊆ Θ, we have

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ. (13)

Lemma E.2. (Gaussian Mechanism, (Dwork et al., 2006; 2014)). Let ϵ > 0 and let g : Dn → Rd be a
function with ℓ2-sensitivity ∆g. Then the Gaussian mechanism

M(D) := g(D) + N

0,

(
∆g

√
2ln(2/δ)
ϵ

)2

· Id×d

 , (14)

satisfies (ϵ, δ)-differential privacy.

Proof. (Theorem 4.1) We wish to apply Lemma E.2 with g mapping a feature dataset to its Gaussian mixture
approximation obtained via EM-method. The post-processing property (Proposition 2.1 of (Dwork et al.,
2014)) ensures that the projection onto the positive semi-definite symmetric matrices preserves differential
privacy. For k = 1, denote by µ̂, Σ̂ the mean and covariance matrix of this Gaussian approximation; in this
instance they coincide with the mean and covariance matrix of the dataset. We may use the ℓ2-sensitivity of
the function (µ̂, Σ̂) to apply the aforementioned Lemma.

To begin with, for any triplet of independent random variables (X, Y, ϵ) with X, Y with values in d × 1
matrices with real entries and ϵ in {0, 1} with P(ϵ = 1) = p, denote Xϵ := ϵX + (1 − ϵ)Y the mixture of X
and Y :

E(Xϵ) = E(X) + (1 − p)(E(Y ) − E(X)); (15)
Cov (Xϵ, Xϵ) = Cov (X, X) + (1 − p) [Cov(Y, Y ) − Cov(X, X)] + p(1 − p)(E(X) − E(Y ))(E(X) − E(Y ))T .

(16)

If X follows the uniform distribution on a dataset D′ with n − 1 element, Y is deterministic with value at
some xn ∈ Rd and p = 1 − 1/n ; then Xϵ follows the uniform distribution on the dataset D′′ = D′ ∪ {xn}.
Assuming D′ and D′′ are in the ball of radius 1, we have:

∥E(Xϵ) − E(X)∥2 = (1 − p)∥(E(Y ) − E(X))∥2 ≤ 2
n

;

∥Cov (Xϵ, Xϵ) − Cov (X, X) ∥2
F = (1 − p)2∥Cov(X, X)∥2

F

+ p2(1 − p)2Tr
(
E(X) − E(Y ))(E(X) − E(Y ))T (E(X) − E(Y ))(E(X) − E(Y ))T

)
;

− 2p(1 − p)2Tr
(
Cov(X, X)(E(X) − E(Y ))(E(X) − E(Y ))T

)
= (1 − p)2∥ Cov(X, X)∥2

F + p2(1 − p)2∥E(X) − E(Y )∥4
2

+ 2p(1 − p)2(E(X) − E(Y ))T Cov(X, X)(E(X) − E(Y ))

≤ 1
n2 ∥Σ̂∥2

F + 16(n − 1)2

n4 + 8(n − 1)
n3 ρ(Σ̂)

≤ 1
n2 (4 + 16 + 8 × 2) .
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Taking the square root of both sides we have:

∥Cov (Xϵ, Xϵ) − Cov (X, X) ∥F ≤ 6
n

,

where ∥ · ∥F is the Frobenius norm, ρ return the largest eigenvalue. We used the bounds ρ(Σ̂) ≤ ∥Σ̂∥F and
∥Σ̂∥F ≤ 2; the latter may be obtained in a similar fashion by developing Cov(X, X) using X =

∑n−1
i=1 ηiXi

where each Xi is deterministic at some xi and η is uniform on the set of binary vectors of length n − 1
satisfying

∑
i ηi = 1.

Finally, the ℓ2-sensitivity of (µ̂, Σ̂) is
√( 2

n

)2 +
( 6

n

)2 = 2
√

10
n . Inserting the ℓ2-sensitivity in equation (14)

yields the result.

Remark E.3. Note that in (Park et al., 2017), they derive an ℓ2-sensitivity bound for Σ̂ of 2/n instead of our
6/n. The reason is that one may replace (µ̂, Σ̂) by (µ̂, Σ̂ + µ̂µ̂T ) to reduce the ℓ2-sensitivity of the covariance
part. This leads to the improved total ℓ2-sensitivity of 2

√
2

n .

On the server side, the Gaussian mechanism would return (µ̂ + ∆µ, Σ̂ − µ̂µ̂T + ∆Σ). The server would thus
reconstruct Σ̂ by computing

Σ̂server = Σ̂ − µ̂µ̂T + ∆Σ + (µ̂ + ∆µ)(µ̂ + ∆µ)T

= Σ̂ + µ̂∆µT + ∆µµ̂T + ∆µ∆µT + ∆Σ.

Therefore, for a given coefficient (i, j) of the reconstructed covariance matrix Σ̂server, the error term is
µ̂i∆µj + µ̂j∆µi + ∆µi∆µj + ∆Σij . Assuming a Gaussian noise of standard deviation σ = 2

√
2

n C with

C =
√

2 ln(2/δ)
ϵ for both ∆Σ and ∆µ the standard deviation of the reconstruction error is then

σreconstruction =
√

(µ̂2
i + µ̂2

j )σ2 + σ4 + σ2 ≤ σ
√

2 + σ2 ≤
2
√

2C
√

2 + C2/n2

n
.

Compared to the reconstruction error of the Gaussian mechanism we used in our experiments σ′
reconstruction =

2
√

10
n C, the more sophisticated methods we described above may allow better reconstruction error without

sacrificing the differential privacy for big enough datasets, ie if n ≥
√

2 ln(2/δ)√
3ϵ

.

Another consequence is that the noises on different elements of the covariance matrix are not independent.
Remark E.4. The assumption of normalized features, i.e., ||f(x)||2 ≤ 1, in Theorem 4.1 does not limit the
performance of networks with soft-max loss function since they both have the same expressive power as
shown in Proposition 3.A in (Zhang et al., 2023).

F Control over 0-1 loss

Since the projection of from true feature distributions to mixture of Gaussian is lossy, one may control the
consequence on the accuracy of the classifier: “Given a classifier h : X → {1, · · · , C} trained on a synthetic
dataset, what guarantees do we have on the accuracy of h used to classify the true dataset?".

We adress this question by proving a theoretical bound that my be rewritten using the loss of the local client
training and the accuracy of the server model.

F.1 A Theoretical bound

The setting may be formalized as follows:

• a finite set of classes C = {1, · · · , C}, a feature space X and an approximate feature space Y;
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• a true feature/label distribution α on C × X and an approximate feature/label distribution β on
C × Y;

• a classifier hα : X → C trained on α and a classifier hβ : Y → C trained on β.

• an feature approximator mapping ι : X → Y

We denote by Acc(h, α) the accuracy of the predictor h evaluated using the distribution α.

We prove a bound adapted to the purpose of linking the EM loss to the accuracy.
Theorem F.1. Let α, β be probability distributions on X × C and Y × C with same marginal η on C. Let
h : Y → C be any predictor and let ι : X → Y be any measurable map. We have

Acc(h ◦ ι; α) ≥ Ec [Acc(h; β|c) × (Acc(h; β|c) − divT V (ι#(α|c), β|c))]

Proof. Consider any coupling P of α and β over C ie a distribution on C × X × Y whose marginals on C × X
and C × Y are α and β respectively1.

Given some c,

Acc(h ◦ ι; α|c) = (α|c)({x : h ◦ ι(x) = c}) (17)
= (P|c)({(x, y) : h ◦ ι(x) = c}) (18)
≥ (P|c)({(x, y) : h ◦ ι(x) = c and ι(x) = y}) (19)
= (P|c)({(x, y) : h(y) = c}) × (P|c, h(y) = c)({(x, y) : ι(x) = y}) (20)
= (β|c)({y : h(y) = c})︸ ︷︷ ︸

Acc(h;β|c)

×(P|c, h(y) = c)({(x, y) : ι(x) = y}) (21)

Since neither the left hand side of the first line nor the first term in the right hand side of the last line depend
on the coupling P we chose, we may choose it to maximize (P|c, h(y) = c)({(x, y) : ι(x) = y}) = 1 −E(1Z ̸=Y )
with Y drawn from (β|c, h(y) = c) and Z drawn from ι#(α|c). We recognize a characterization of the total
variation as the minimal value of E(1Z ̸=Y ) over couplings of Z and Y . Then:

(P|c, h(y) = c)({(x, y) : ι(x) = y}) ≥ 1 − divT V (ι#(α|c) ; (β|c, h(y) = c)) (22)
≥ 1 − divT V (ι#(α|c) ; (β|c)) − divT V ((β|c) ; (β|c, h(y) = c)) (23)
= 1 − divT V (ι#(α|c) ; (β|c)) − (1 − Acc(h(y); β|c)) (24)
= Acc(h(y); β|c) − divT V (ι#(α|c) ; (β|c)). (25)

We use triangular inequality of total variation to get the second line. The third line is obtained by applying
the general property that for any probability distribution Q and any event E with Q(E) > 0 we have

divT V (Q, (Q|E)) = Q(E).

We thus have
Acc(h ◦ ι; α|c) ≥ Acc(h; β|c) × [Acc(h(y); β|c) − divT V (ι#(α|c) ; (β|c))]

The result follows by taking expectation over c distributed along η.

F.2 Application to FedPFT

We now switch back to the notations used in the preliminaries. Using Pinsker inequality (Csiszár & Körner,
2011), we obtain the following bound for the accuracy of the server model

Acc(h, F i) ≥ Ec

[
Acc(h, F̃ i,c) ×

(
Acc(h, F̃ i,c) −

√
1
2

(
divKL(F̃ i,c||F i,c)

))]
. (26)

1We define the conditioning of a probability distribution P by an event E having P(E) > 0 is the distribution 1EP
P(E) so that it

is still a distribution on the same underlying measurable space.
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Since the EM algorithm maximizes the log likelyhood of the Gaussian mixture given dataset samples, we
may insert divKL(F̃ i,c||F i,c) = Hi,c − Li,c

EM to obtain

Acc(h, F i) ≥ Ec

[
Acc(h, F̃ i,c) ×

(
Acc(h, F̃ i,c) −

√
1
2

(
Hi,c − Li,c

EM )
))]

(27)

where Hi,c is the self-entropy of the distribution F i,c of features with label c in client i and Li,c
EM is the

log-likelyhood of the Gaussian mixture F̃ i,c trained using the EM algorithm. The last equation yields
inequation 9 by replacing accuracies by 0-1 losses. Beware that the feature distribution is a priori discrete, in
order to evaluate the entropy we need to dequantize the dataset, otherwise, Hi,c = +∞ and the bound is
useless.

F.3 Comparison to earlier bounds

Commonly known bounds on the accuracy of h may be found in (Ben-David et al., 2010), but these bounds
are unfortunately not directly useful in our setting. Indeed, they depend on an estimation on how much
server/client class predictors differ.

More precisely, in the limit of perfect accuracy of the server class predictor, ie ∀i, c, Acc(h, F̃ i,c) ≃ 1, our
bound yields

Acc(h, F i) ≳ Ec

[
1 −

√
1
2

(
Hi,c − Li,c

EM )
)]

. (28)

In this limit, the bound deduced from that of (Ben-David et al., 2010) contains an additional intractable
negative term on the right hand side:

Acc(h, F i) ≥ Ec

[
1 −

√
1
2

(
Hi,c − Li,c

EM )
)]

−Ec min
(
Ex∼F i,c

[
1h(x)̸=h∗

client(x)

]
;E

x∼F̃ i,c1h(x)̸=h∗
client(x)

)
(29)

where h∗
client is a hypothetical class predictor perfectly fine-tuned by the client with its own data f(Di).

However, our bound may be less sharp in general as the positive term is in Acc(h, F̃ i,c)2. This leads to a
quick degradation of the theoretical accuracy guarantee as the measured server accuracy drops. In general,
we should have error on the server side at least twice lesser than the target error on the client side in order to
hope for achievable EM-loss target on client side.
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G Experiments

In this section, we provide the full details of all of our experiments and datasets.

G.1 Implementation details

We use the Pytorch library for the implementation of our methods. We use a cluster of 4 NVIDIA v100
GPUs for our experiments. All of our experiments can be run on a single v100 GPU.

Datasets. We provide the complete details of the dataset we used in this paper in Table 4.

Learning rates and optimizers. We use Adam with a learning rate of 1e−4 for training the classifier
head for FedPFT, Ensemble, FedFT, and centralized training.

Knowledge Distillation. For the implementation of KD methods, we use Adam for training the local
classifier heads with 1e−4 learning rate. We locally train the models for 100 epochs and keep the best model
on the local test dataset. Then, we distill from the source to the destination model in 50 epochs with the
same optimizer and classifier head. We test three temperature values {1, 5, 10} and report the best results

FedAvg. We test three local training epochs {50, 100, 200} and three learning rates {5e−2, 1e−2, 1e−2} and
report the best result.

FedYogi. We set the server learning rate η to 0.01, β1, β2, and τ to 0.9, 0.99, and 0.001 respectively. We
also initialize vector vt to 1e−6. For the rest of the hyperparameters, including the clients’ learning rates, we
use the same hyperparameters as FedAvg.

FedProx. We add a regularizer with a weight of 0.01 to the loss function of each client during local training
to penalize divergence. We use the same hyperparameters as FedAvg for the rest of the hyperparameters.

DSFL. We set the top-K sparsification (K in the DSFL paper) as half of the number of parameters of the
classifier head.

FedBE. We use Adam with a learning rate of 1e−4 for training the classifier head and we sample 15 models
from the posterior distribution of classifier heads.

CCVR For CCVR, we use MC = 100 as stated in (Luo et al., 2021). We also utilize a diagonal covariance
matrix to make the algorithm competitive in terms of communication cost. The rest of the method is similar
to FedAvg.

Table 4: Summary of datasets

Dataset Image size # Train # Testing #Classes Feature extractor
CIFAR10 (32, 32) 50,000 10,000 10 ResNet-50
CIFAR100 (32, 32) 50,000 10,000 100 ResNet-50
PACS (P) (224, 224) 1,336 334 7 Base ViT, 16
PACS (S) (224, 224) 3144 785 7 Base ViT, 16
Office Home (C) min:(18, 18) 3492 873 65 Base ViT, 16
Office Home (P) min:(75, 63) 3551 888 65 Base ViT, 16
Caltech101 min:(200, 200) 6084 3060 101 CLIP, ViT-B/32
Stanford Cars min:(360, 240) 12948 3237 196 CLIP, ViT-B/32
Oxford Pets min:(108, 114) 3680 3669 37 CLIP, ViT-B/32
Food101 max:(512, 512) 75750 25250 101 CLIP, ViT-B/32
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G.2 Comparing to existing one-shot and multi-shot FL methods

In this section, we provide the details for the experiment in Section 5.2. Table 5 summarizes one-shot methods
results in Table format for Figure 4. Further, Figure 10 and 9 shows the data partitions based on Dirichlet
shift with β = 0.1 with 50 clients for Caltech101 and CIFAR100 Datasets, respectively. The magnitude of
data samples for each class label in each client is represented by the size of the red circle. This figure shows
the non-iidness of data distribution among clients.

Table 5: one-shot methods results in Table format for Figure 4

CIFAR100 (β = 0.1) Caltech101 (β = 0.1)
Methods Accuracy Comm. Accuracy Comm.
Centralized 73.50 ± 0.04 97 MB 95.36 ± 0.08 3.6 MB
Ensemble 53.97 ± 0.49 19 MB 72.86 ± 2.09 4.9 MB
AVG 43.51 ± 0.26 19 MB 56.90 ± 0.67 4.9 MB
FedKT 51.80 ± 0.02 19 MB 46.64 ± 0.33 4.9 MB
FedBE 56.32 ± 0.44 19 MB 57.67 ± 0.27 4.9 MB

Ĝspher(k=1) 56.96 ± 0.23 22 MB 86.41 ± 0.13 3 MB
Gdiag(k=10) 69.91 ± 0.11 0.3 GB 94.67 ± 0.03 23 MB
Gdiag(k=50) 72.05 ± 0.10 0.9 GB 94.74 ± 0.13 33 MB
Gdiag(k=100) 72.29 ± 0.08 1.2 GB 94.83 ± 0.18 36 MB
Gspher(k=1) 60.16 ± 0.04 22 MB 93.46 ± 0.16 3 MB
Gspher(k=10) 69.74 ± 0.16 0.2 GB 94.59 ± 0.13 12 MB
Gspher(k=50) 71.88 ± 0.03 0.5 GB 94.71 ± 0.16 16 MB

G.3 Effect of fine-tuning feature extractor

In this section, we investigate the effect of fine-tuning the feature extractor. More specifically, in Table
6, which is an extension of label shift setup in Table 3, we also fine-tune the feature extractor as well as
the classifier head. From Table 6, We see that fine-tuning hurts FedPFT performance, and we attribute

Table 6: Knowledge transfer results for label-shift

CIFAR-10 CIFAR-100
Methods Accuracy Comm. Accuracy Comm.
Centralized (fine-tuned) 97.33 ± 0.09 71.6 MB 85.18 ± 0.08 71.6 MB
Centralized (frozen) 90.85 ± 0.03 97.6 MB 73.97 ± 0.06 97.6 MB
Ensemble (fine-tuned) 85.23 ± 0.01 89.6 MB 57.94 ± 0.22 89.7 MB
Ensemble (frozen) 80.18 ± 0.30 80.0 KB 74.78 ± 0.57 0.78 MB
Average (fine-tuned) 83.18 ± 2.63 89.6 MB 68.63 ± 1.06 89.7 MB
Average (frozen) 77.66 ± 1.04 80.0 KB 56.82 ± 0.22 0.78 MB
KD (fine-tuned) 58.79 ± 3.94 89.6 MB 44.38 ± 0.26 89.7 MB
KD (frozen) 74.22 ± 0.42 80.0 KB 55.62 ± 0.20 0.78 MB
FedPFT (fine-tuned, K=20) 76.23 ± 0.50 0.8 MB 60.46 ± 0.03 7.8 MB
FedPFT (frozen, K=20) 86.89 ± 0.02 0.8 MB 70.31 ± 0.10 7.8 MB

this to the fact that this introduces a mismatch between the client features computed with client feature
extractors and the server feature extractor used at test time. For our baselines (with the exception being KD),
fine-tuning and aggregating feature extractors improves performance. However, FedPFT with pre-trained
feature extractors still outperforms them.
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Figure 9: Data partitions based on Dirichlet shift with β = 0.1 with 50 clients for CIFAR100 datasets. The size of
the red circle represents the magnitude of data samples for each class label in each client
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Figure 10: Data partitions based on Dirichlet shift with β = 0.1 with 50 clients for Caltech101 datasets. The
magnitude of data samples for each class label in each client is represented by the size of the red circle

G.4 Details of experiments for peer-to-peer experiments

In this section, we provide the full details of experiments in Section 5.3 and Table 3. Table 7 is the complete
version of Table 3 where we also include the communication cost of each method.

For baselines in Table 3, we compare to KD, where: (1) each client locally trains a classifier head; (2) the
source client sends its local classifier head to the destination client; and (3) the destination client distills
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Table 7: FedPFT in three extreme shifts in two-client decentralized FL.

Disjoint Label shift Covariate shift Task shift
CIFAR-10 CIFAR-100 PACS (P→S) Office Home (C→P) Birds → Cars Pets → Food

Methods Accuracy Comm. Accuracy Comm. Accuracy Comm. Accuracy Comm. Accuracy Comm. Accuracy Comm.
Centralized 90.85 ± 0.03 97 MB 73.97 ± 0.06 0.4 97 MB 89.15 ± 0.17 2.5 MB 82.00 ± 0.16 6.3 MB 81.88 ± 0.06 6.7 MB 88.48 ± 0.05 3.6 MB
Ensemble 80.18 ± 0.30 80 KB 57.94 ± 0.22 0.7 MB 79.59 ± 0.83 10.5 KB 71.36 ± 0.46 96 KB 58.33 ± 2.01 0.3 MB 83.54 ± 0.21 0.2 MB
Average 77.66 ± 1.04 80 KB 56.82 ± 0.22 0.7 MB 77.83 ± 0.23 10.5 KB 69.69 ± 0.69 96 KB 72.65 ± 0.13 0.3 MB 83.25 ± 0.59 0.2 MB
KD 74.22 ± 0.42 80 KB 55.62 ± 0.20 0.7 MB 67.69 ± 2.47 10.5 KB 72.15 ± 0.75 96 KB 40.46 ± 0.31 0.3 MB 43.67 ± 0.04 0.2 MB
Gdiag(K=10) 86.19 ± 0.15 0.4 MB 69.97 ± 0.07 3.9 MB 89.12 ± 0.18 0.2 MB 80.56 ± 0.31 1.8 MB 81.74 ± 0.06 1.9 MB 88.22 ± 0.07 0.7 MB
Gdiag(K=20) 86.89 ± 0.02 0.8 MB 70.31 ± 0.10 7.8 MB 89.00 ± 0.15 0.4 MB 80.94 ± 0.16 3.6 MB 81.75 ± 0.04 3.8 MB 88.25 ± 0.08 1.4 MB

the received classifier head to its local classifier head. We report ensembling and averaging locally trained
classifier heads as baselines.

In our disjoint label shift setups, our source client only has samples from the first half of labels (0-4 for
CIFAR-10 or 0-49 for CIFAR-100), and the destination client has the other half. In our covariate shift
setups, the two clients have access to the two most distinctive domains of PACS and Office Home datasets
according to (Hemati et al., 2023). Specifically, for PACS, we consider the scenario where the source has
access only to Photo (P) images, while the destination has access to Sketch (S) images. For Office Home,
the source has access to Clipart (C) images, and the destination has access to Product (P) images. In our
task shift setups, the two clients have access to two different datasets with distinct tasks. First, we consider
the scenario where the source has bird images from Caltech101, while the destination has car images from
Stanford Cars. In the second experiment, the source has access to pet images from Oxford Pets, and the
destination has food images from Food101.

G.5 Effect of ϵ

In this section, we evaluate the effect of ϵ using the CIFAR-10 settings from the experiment in Table 3. As
shown in Figure 11, increasing ϵ leads the performance of DP-FedPFT to approach that of FedPFT.
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Figure 11: Effect of ϵ on the performance of DP-FedPFT

H Reconstruction attack details

We conduct reconstruction attacks on the various feature-sharing schemes described in this paper. First, we
verify the vulnerability of raw feature sharing: we demonstrate that an attacker with access to in-distribution
data can obtain high-fidelity reconstructions of private training data. This necessitates sharing schemes beyond
sending raw features. The attack we present proceeds by training a generative model on (feature, image) pairs,
and then performing inference on received feature embeddings. Next, we apply the aforementioned attack on
features sampled from GMMs received via our proposed scheme. We find that the resulting reconstructions
do not resemble real training data.
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H.1 Threat model

We consider the setting where two clients (a defender and an attacker) collaborate via a feature-sharing
scheme to train a model to perform well on the union of their datasets. Both parties have:

• Local datasets of (image, label) pairs, which we call Dd and Da respectively, where D∗ = {(xi, yi)}m∗
i=1.

• Black-box access to a feature embedding function E : X → Z.

The defender produces an embedded version of their dataset E(Dd) := {(E(xi), yi)}md
i=1, and passes it along to

the attacker via a feature-sharing scheme. We consider sending: the embedded dataset E(Dd) directly (raw
features), our proposedfeature-sharing scheme (FedPFT ), as well as with differentially privacy (DP-FedPFT ).

The attacker has a dataset Da, which is assumed to be in-distribution of the defender’s dataset Dd. Concretely:
Da is the CIFAR-10 train set (50K examples) and Dd is the CIFAR-10 test set (10K examples) in our
experiments.

H.2 Attacker objectives.

We identify 3 attacker objectives representing varying levels of privacy violation, ordered by strictly decreasing
attack strength.

1. (Total reconstruction). The attacker is able to accurately reconstruct every example in E(Dd).

2. (Partial reconstruction). The attacker is able to identify a small subset of E(Dd), on which it can
accurately reconstruct.

3. (Set-level reconstruction). The attacker is able to produce a set of reconstructions and a small subset
of them correspond to real training points.

Although a weaker attack than (1), (2) still constitutes a strong privacy violation, since privacy is a worst-case
notion: a priori, a user submitting their data does not know whether they are part of the reconstructable
set or not (see (Carlini et al., 2022) for discussion). Success in (3) would imply an attacker can generate
accurate reconstructions, but are unable to identify which candidates correspond to real training data. Note
that success in (3) combined with a good membership inference attack implies success in (2).

H.3 Experimental details

We train U-Net-based conditional denoising diffusion models on the CIFAR-10 train set. During training,
extracted features are added to time-step embeddings and condition the model via shift-and-scale operations
inside normalization layers. We sample with DDIM and classifier-free guidance.

We find that there is a non-trivial overlap between the CIFAR-10 test and train sets; on which our models
memorize and reconstruct perfectly. To account for this, we filter the CIFAR-10 test set for near-duplicates:
we remove the 1K test images with the highest SSIM score with a member of the train set, leaving 9K images
to evaluate on. We also manually inspect reconstructions and verify that they differ from the closest training
image to the target.

H.4 Results

Raw feature reconstruction. We present the results of our reconstruction attack on raw features in Figure
12 for 3 selection methods (all, attacker, and oracle). Each selection method is representative of performance
in the corresponding attacker objectives of total, partial, and set-level reconstruction. Quantitative image
similarity measures are reported in Table 8.

For attacker-selection, we sample 10 reconstructions from each embedding, compute the average pairwise
SSIM amongst our reconstruction, and select the top 1% of reconstructions according to this metric. This is
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based on the intuition that stronger determinism during sampling implies the model is more confident about
what the information in the embedding corresponds to.

Method Selection Similarity measure
PSNR ↑ LPIPS ↓ SSIM ↑

ResNet-50
reconstruction

All 13.5 .384 .168
Attacker 14.7 .297 .358
Oracle 16.5 .257 .535

MAE
reconstruction

All 15.6 .305 .276
Attacker 17.9 .191 .579
Oracle 19.5 .181 .674

Train set Oracle 14.7 .389 .500

Table 8: Similarity metrics between original image and raw feature reconstructions on the filtered CIFAR-10
test set. Figures are computed on different selections of the test set, representing different attacker objectives. All:
averaged result over entire test set; performance corresponds to total reconstruction objective. Attacker: attacker
selects 1% (n = 90) reconstructions without access to ground truth; corresponds to partial reconstruction objective.
Oracle: top 1% (n = 90) reconstructions selected based on ground-truth SSIM; corresponds to set-level reconstruction.
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Figure 12: Results comparing the original image and raw feature reconstructions, along with the original images’
closest train set member by SSIM. We present results for 2 backbones: ResNet-50 and Masked Autoencoder; and 3
selection methods (random, attacker, and oracle), which correspond to performance on total, partial, and set-level
reconstruction.

Our main result is that an attacker is capable of producing reasonable reconstructions in all 3 settings,
outperforming a baseline of selecting the closest training image. Furthermore, we find that: (1) The feature
backbone affects reconstruction quality (MAE reconstructions are better than ResNet-50); (2) The attacker
can effectively employs heuristics (intra-sample similarity) to identify which reconstructions are likely to be
good, approaching the results of oracle selection based on the ground-truth image.
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FedPFT reconstruction. Table 9 and Figure 13 show results for set-level reconstruction of GMM-sampled
features, for both random and worst-case test images. We see that even when with a ground truth similarity
oracle, most images fail to be reconstructed (Oracle-Random column of Figure 13). DP further diminishes
attack effectiveness, in particular for worst-case set-level reconstructions.

Backbone ϵ Selection Similarity measure
PSNR ↑ LPIPS ↓ SSIM ↑

ResNet-50

∞ Oracle 14.7 .423 .508
Oracle-all 12.7 .546 .326

10 Oracle 14.6 .511 .483
Oracle-all 12.7 .571 .322

MAE

∞ Oracle 14.5 .456 .497
Oracle-all 12.5 .558 .323

10 Oracle 13.4 .553 .452
Oracle-all 12.2 .595 .306

Table 9: Similarity metrics between original images and set-level reconstructions on the filtered CIFAR-10 test
set. For each test image, we match it to its closest in terms of SSIM among all reconstructions. Oracle: the top 1%
(n = 90) of matched reconstructions by ground-truth SSIM, corresponding to performance on set-level reconstruction.
Oracle-all: average similarity between test images and their matched pairs.

Figure 13: Results comparing the original image and set-level reconstructions with ResNet-50 backbone. We
present results for two selection methods. Oracle-Random: the closest image in the reconstruction set by SSIM for
random test images. Oracle: the closest image in the reconstruction set by SSIM for worst-case test images.
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