
In-Context Learning from Training on Unstructured Data: The Role of
Co-Occurrence, Positional Information, and Training Data Structure

Kevin Christian Wibisono 1 Yixin Wang 1

Abstract
Large language models (LLMs) like transform-
ers have impressive in-context learning (ICL)
capabilities; they can generate predictions for
new queries based on input-output sequences in
prompts without parameter updates. While many
theories have attempted to explain ICL, they of-
ten focus on structured training data similar to
ICL tasks, such as regression. In practice, how-
ever, these models are trained in an unsupervised
manner on unstructured text data, which bears
little resemblance to ICL tasks. To this end, we
investigate how ICL occurs from unsupervised
training on unstructured data. The key observa-
tion is that ICL can arise simply by modeling co-
occurrence information using classical language
models like continuous bag of words (CBOW),
which we prove and empirically validate. Fur-
thermore, we establish the necessity of positional
information and nuisance token structure to gener-
alize ICL to unseen data. Lastly, we present cases
where ICL fails and offer theoretical explanations,
indicating that the ICL ability of LLMs can be
sensitive to the structure of the training data.

1. Introduction
Large language models (LLMs) such as transformers excel
at in-context learning (ICL) (Brown et al., 2020): without
updating parameters, they can identify tasks and generate
predictions from prompts containing input-output examples.
The ICL ability of LLMs is surprising for at least two rea-
sons. First, LLMs are trained from unstructured natural lan-
guage data in an unsupervised manner through next-token
prediction. Second, training data of LLMs likely does not
include sentences that resemble typical ICL prompts.

Many efforts have sought to understand ICL from various
theoretical and empirical perspectives; see related work in

1Department of Statistics, University of Michigan, Ann Ar-
bor, MI, USA. Correspondence to: Kevin Christian Wibisono
<kwib@umich.edu>.

Work presented at TF2M workshop at ICML 2024, Vienna, Austria.
PMLR 235, 2024. Copyright 2024 by the author(s).

Appendix A. Some studies (e.g., Akyürek et al. (2022);
Dai et al. (2023); Zhang et al. (2024); Ahn et al. (2024))
expanded Garg et al.’s [2022] regression formulation and at-
tributed transformers’ ICL ability to gradient descent. Other
studies (e.g., Wang et al. (2023), Zhang et al. (2023)) built
upon Xie et al.’s [2021] argument that ICL performs implicit
Bayesian inference. While these connections are theoret-
ically intriguing, they do not fully capture the actual ICL
phenomenon as ICL arises from training on unstructured
natural language data that are distinct from ICL prompts.

This work. We study how ICL arises from pretraining on
unstructured natural language data. Throughout the paper,
we focus on two types of ICL tasks. The first involves known
input-output pairings that frequently co-occur in a sen-
tence, e.g., (country)-(capital) and (English
word)-(Indonesian translation). The second
involves recognizable patterns that may not commonly co-
occur in a sentence, e.g., (word)-(first letter).

For the first task (see left of Fig. 1), we examine train-
ing sentences with one or two distinct input-output rela-
tionship types. Through theoretical arguments, prompting,
and synthetic data experiments, we show ICL is usually
achievable by modeling co-occurrence information using
continuous bag of words (CBOW) (Mikolov et al., 2013),
a pre-transformer language model. For the second task
(see middle of Fig. 1), we study cases where the training
sentences contain one or two distinct patterns, and a more
realistic scenario with nuisance tokens. We prove that po-
sitional information and blocked nuisance structure (e.g.,
pqrs in Fig. 1) are crucial for ICL’s success, supporting
Chen et al.’s [2024b] finding that parallel pretraining data
structures facilitate ICL. We also find that learned positional
embeddings generally perform better, except in noisy sce-
narios where the nuisance tokens are not clustered in blocks.

Finally, we present scenarios where ICL can fail regardless
of architectures (see right of Fig. 1). In the first scenario
(left), both the training data and test prompts follow repeat-
ing patterns across blocks, but the pattern repeated in the
test data differs from that in the training data. In the second
scenario (right), training sentences contain known input-
output pairs only at fixed locations. These findings and their
explanations show that LLMs may require specific structures

1

In-Context Learning from Training on Unstructured Data

Figure 1. This paper aims to understand how in-context learning (ICL) occurs from pretraining on unstructured natural language data. In
Section 2, we show that ICL can arise merely through modeling co-occurrence information using continuous bag of words (CBOW).
Violet represents relationship-specific nuisance tokens. In Section 3, we establish the necessity of positional information and blocked
nuisance structures for certain ICL tasks. Violet represents nuisance tokens. In Section 4, we present two scenarios where ICL can fail
and provide theoretical explanations, highlighting the importance of training data structure in enabling ICL. Boxed letters represent the
expected outputs. In the failed scenarios, the model predicts e and d1.

in the pretraining data to exhibit ICL ability.

Summary of contributions. In this paper, we (1) theoreti-
cally and empirically show that ICL can arise from merely
modeling co-occurrence patterns using CBOW, (2) prove
that, in other instances, ICL requires modeling positional in-
formation and blocked nuisance structures, and (3) present
scenarios where ICL fails, highlighting the crucial role of
training data structure for ICL to arise.

2. In-context learning can arise by merely
modeling co-occurrence via CBOW

In this section, we focus on in-context learning (ICL) tasks
involving pairings that commonly co-occur within training
sentences. As a motivation, we consider an (English
word)-(Indonesian translation) ICL example.
Below we perform a simple experiment with ChatGPT 3.5
(OpenAI, 2022). The model is given the following prompts:

Provide the most plausible next token
to complete this sentence (only the
answer). Even if the sentence does not
make sense, please complete it as best
as you can: dog anjing, cat kucing,
lion singa, [word]

We replace [word] with elephant, tiger, soon, and
main. For the first two options, ChatGPT correctly outputs
gajah and harimau, the respective Indonesian transla-
tions. However, it does not provide the correct outputs
for the latter: it follows soon with lebih baik beri
makanan haiwan! (better feed the animals!) and main
with bola (ball). A similar pattern is observed with
LLaMA 2 (Touvron et al., 2023), which produces the correct
translations the first two words but incorrectly continues the
last two words with to-be-published and an. For con-
text, main means play, main bola means play soccer,
and mainan means toy in Indonesian.

If ICL stems from the ability of LLMs to recognize con-

sistent mappings in test prompts, these models should be
equally likely to produce the correct answer for any given
[word], irrespective of its relevance to the in-context ex-
amples. However, our experiment shows that this is not the
case (see another related experiment in Appendix B.4). This
naturally raises the question: Can ICL arise from model-
ing co-occurrence information using a simple model like
continuous bag of words (CBOW) (Mikolov et al., 2013)?

ICL via CBOW. We prove that, for certain tasks, ICL
is achievable by modeling co-occurrence information be-
tween pairs of tokens using CBOW (we do not prove that
ICL in transformer-based models arises through learning
co-occurrence patterns). We utilize a variant of CBOW
where each center word is modeled conditional on all other
words in a sentence, rather than just neighboring words.
Specifically, we associate each word w with their center
and context embeddings uw and vw of the same dimen-
sion. Given a sentence x1x2 · · ·xI , the i-th word (xi) is
distributed conditional on the other words in the sentence
(x−i): p(xi = k | x−i) ∝ exp

(
(u⊤

k

∑
j ̸=i vxj)/(I − 1)

)
.

The uw’s and vw’s are learned by minimizing the sum of
the cross-entropy losses across all sentences and positions.

Roadmap of Section 2. We present an overview of our the-
oretical results here, deferring the details and experiments
to Appendix B. In Section 2.1, we study ICL in single-
relationship tasks (ci, di). In Section 2.2, we explore sce-
narios with two connected relationships (ci, di) and (ci, ei),
and two disconnected relationships (ci, di) and (ei, fi).

2.1. ICL on single-relationship tasks
We investigate ICL in single-relationship tasks that take the
form of ci1di1 · · · ciℓdiℓciℓ+1

, where (ci, di)’s denote known
pairings such as countries and their capital cities. Our vocab-
ulary consists of c1:K , d1:K , r1:L, where r′is represent other
words (e.g., stop words). We first introduce Theorem 2.1,
which states that ICL can arise if each sentence consists of
exactly one (ci, di) pair, as long as the number of in-context
examples (ℓ) is not too large. To simplify calculations, we

2

In-Context Learning from Training on Unstructured Data

replace the cross-entropy loss with the squared loss. This
involves removing the softmax activation and comparing
the outputs against the one-hot encoding of the target words.
The proof of Theorem 2.1 is in Appendix F.

Theorem 2.1 (ICL on single-relationship tasks). Let
K,L ≥ S ≥ 3. Suppose each training sentence is generated
by selecting one (ci, di) pair and S − 2 distinct ri’s uni-
formly at random. We train a CBOW model with the squared
loss and a sufficiently large embedding dimension on these
sentences. Given a prompt ci1di1 · · · ciℓdiℓciℓ+1

with dis-
tinct ik’s, the model correctly predicts diℓ+1

if and only if

2ℓ+ 1 < KL(S−1)3

(K+L)(S−2)2(S−1)+K(S−2)(S−1)2−2(S−2)4 .

For instance, when each training sentence contains exactly
one country-capital pair (i.e., (ci, di)), Theorem 2.1
says a trained CBOW model will correctly predict diℓ+1

(i.e.,
the capital city of ciℓ+1

) given an ICL prompt of the form
ci1di1 · · · ciℓdiℓciℓ+1

, if the prompt length (2ℓ + 1) is not
too large. This behavior is due to the presence of ciℓ+1

in
the prompt, leading the model to correctly predict diℓ+1

due
to the frequent occurrences of the pair (ciℓ+1

, diℓ+1
) in the

training data. However, when the prompt length is too large,
the model will instead predict one of the ri’s (see Theorem
2.1’s proof in Appendix F for more details).

If we let L → ∞ and fix K and S, the condition in Theorem
2.1 becomes 2ℓ+1 < K(S−1)2/(S−2)2. This inequality
trivially holds if the prompt length is set to be S − 1 to
match the training sentences. Also, it is possible to adapt
the proof of Theorem 2.1 to handle the case when each
sentence consists of exactly two (not one) different (ci, di)
pairs. In this case, letting L → ∞ and fixing K and S, the
model correctly predicts diℓ+1

given the same ICL prompt

if and only if 2ℓ + 1 < K(K−2)(S−1)2

(K−2)(S−2)(S−4)−K . This upper
bound is strictly larger than K(S − 1)2/(S − 2)2. In other
words, when each sentence contains exactly two (ci, di)
pairs, ICL under the squared loss occurs for longer prompts.

2.2. ICL on dual-(dis)connected-relationship tasks
In Section 2.1, we discussed the case where the train-
ing sentences contain a relationship: (ci, di). In this sec-
tion, we first explore ICL on dual-connected-relationship
cases: (ci, di) and (ci, ei). ci might represent a coun-
try, di its capital city, and ei its currency. Our vocabu-
lary comprises c1:K , d1:K , e1:K , r1:L, where ri’s represent
other words. The ICL tasks are ci1di1 · · · ciℓdiℓciℓ+1

and
ci1ei1 · · · ciℓeiℓciℓ+1

, where the model should output diℓ+1

and eiℓ+1
. This involves task selection as the model should

use the in-context examples to infer the task. We present
Theorem 2.2: a trained CBOW model can perform task se-
lection if each sentence contains exactly two distinct (ci, di)
pairs or two distinct (ci, ei) pairs with uniform probability.
Note that we can also theoretically show that ICL works (up
to a certain number of training examples) in this scenario,

but the calculations are extremely tedious. Therefore, we
only present empirical evidence in Table 2 in Appendix B.2.
Theorem 2.2 (Task selection in CBOW). Let K,L ≥ 2
and S ≥ 5. Suppose each training sentence is gener-
ated by selecting two distinct (ci, di) pairs or (ci, ei) pairs
and S − 4 distinct ri’s uniformly at random. We train a
CBOW model with the squared loss and a large enough
embedding dimension. Given a prompt ci1di1 · · · ciℓdiℓciℓ+1

(ci1ei1 · · · ciℓeiℓciℓ+1
) with distinct ik’s, the model is more

likely to predict diℓ+1
(eiℓ+1

) than eiℓ+1
(diℓ+1

).

The proof is in Appendix G. According to Theorem 2.2,
when each training sentence includes two (ci, di) pairs or
two (ci, ei) pairs, a trained CBOW model is capable of
task selection. To understand why this is the case, consider
an ICL prompt of the first type, i.e., ci1di1 · · · ciℓdiℓciℓ+1

.
Here, the output is more likely to be diℓ+1

than eiℓ+1
since

diℓ+1
co-occurs with the other dij ’s in the training data (and

eiℓ+1
does not). In Theorem 2.2, we unrealistically require

each sentence to contain either two distinct (ci, di) pairs or
(ci, ei) pairs. However, this condition is not necessary as we
empirically show in Appendix B.2.

We next examine ICL in dual-disconnected relationship
scenarios: (ci, di) and (ei, fi). For example, (ci, di) might
denote a country and its capital city, while (ei, fi) might
denote a company and its CEO. Our vocabulary consists
of c1:K , d1:K , e1:K , f1:K , r1:L, where ri’s represent other
words. This type of task is arguably simpler because the
two relationships are disjoint, making task selection easier.
The experiments in Appendix B.3 support this observation.

3. The essential role of positional information
in enabling in-context learning

In this section, we examine another common example of
in-context learning (ICL), where the task involves predicting
the first (or second) token given a sequence of tokens. To
understand the significance of positional information (unlike
the tasks in Section 2), we consider a simpler task: modeling
sequences of tokens in the form xi1xi2xi3xi1 . Theorem
3.1 underscores the necessity of incorporating positional
information to correctly predict xi1 from xi1xi2xi3 in a
single-layer model, and provides a construction of a basic
attention-based model capable of achieving zero loss and
perfect accuracy on this task. Its proof is in Appendix H.
Theorem 3.1 (Necessity of modeling positions). Let the
vocabulary be V = {1, 2, · · · , |V |} and the training se-
quences take the form xi1xi2xi3xi1 , where xi1 ̸= xi2 ̸=
xi3 ̸= xi1 are chosen uniformly at random from V . Consider
a one-layer model that predicts the last xi1 via a learned
function f({xi1 , xi2}, xi3) using the cross-entropy loss. In
this case, it is not possible to achieve pefect accuracy or zero
loss. On the other hand, we can achieve zero loss (and thus
perfect accuracy) by incorporating positional information,

3

In-Context Learning from Training on Unstructured Data

i.e., via a learned function f̃({(xi1 , 1), (xi2 , 2)}, (xi3 , 3)).

Here, f({xi1 , xi2}, xi3) denotes a scenario where the model
lacks positional information (e.g., f is a one-layer au-
toregressive transformer without positional embeddings).
The function’s output is the same for inputs xi1xi2xi3

and xi2xi1xi3 , making it impossible to achieve zero loss.
Conversely, f̃((xi1 , 1), (xi2 , 2), (xi3 , 3)) denotes a scenario
where the model includes positional information. We show
an experiment that validates Theorem 3.1 in Appendix I.

Multiple layers. With multiple layers, positional informa-
tion can be encoded without explicit positional embeddings:

Proposition 3.2 (Multi-layer models can encode posi-
tions). Consider the sentence xi1xi2xi3xi1 . Using a
two-layer autoregressive model, the model’s final output
for predicting the last xi1 is given by t(xi1xi2xi3) :=
g3 ({f1({xi1}), f2({xi1}, xi2)}, f3({xi1 , xi2}, xi3)) for
some f1, f2, f3, and g3 (Proof in Appendix J).

Proposition 3.2 shows that unlike in the one-layer case, we
generally have t(xi1xi2xi3) ̸= t(xi2xi1xi3). Consequently,
it is possible to achieve high accuracy without positional
embeddings, as shown in Figure 9 in Appendix I. This result
parallels findings in Haviv et al. (2022) that autoregressive
transformers can implicitly encode positions.

Roadmap of Section 3. We present an overview of our
theoretical findings here, deferring details and experiments
to Appendix C. We consider the case where each sentence
contains repeating patterns. Section 3.1 focuses on the case
where training sentences follow the form abacdc (a ̸= b and
c ̸= d) or its noisy variation. Section 3.2 explores the case
where two possible patterns are present: repeating the first
letter (abca) and repeating the second letter (abcb).

3.1. ICL on single-pattern tasks
In this section, we examine the case where the training sen-
tences follow a specific pattern of the form abacdc. To
replicate real-world scenarios, we also analyze how incorpo-
rating nuisance tokens into the training sentences affects the
ICL capability of autoregressive models. To formalize the
discussion, let the vocabulary be V∪N , where N represents
nuisance tokens. Define S = {(a, b) | a, b ∈ V, a ̸= b} and
partition S into S1 and S2, where {c[1] | c ∈ S1} = {c[1] |
c ∈ S2} = V and c[i] denotes the i-th element of c, to
ensure training sentences are distinct from the ICL prompts.

We consider three different scenarios: (1) Clean: Train-
ing data follow the form abacdc where ab, cd ∈ S1. ICL
prompts follow the form abacd with ab, cd ∈ S2; (2)
One-noisy: Training data follow the form abacdc where
ab, cd ∈ S1, with one nuisance token n ∈ N randomly
inserted anywhere except the last position (to ensure ICL
prompts do not resemble the training data). ICL prompts
take the form abacd with ab, cd ∈ S2; and (3) Block-noisy:
Training data take the form abacdc where ab, cd ∈ S1,

with three consecutive nuisance tokens n1, n2, n3 ∈ N ran-
domly inserted while preserving the aba and cdc blocks.
ICL prompts take the form abacdcef with ab, cd, ef ∈ S2.

Experiments in Appendix C.1 show that ICL is challenging
in the one-noisy scenario, yet possible in the block-noisy
scenario with learned positional embeddings (see Table 4),
as formalized in Theorem 3.3. Also, sinusoidal positional
embeddings significantly enhance accuracy in the one-noisy
scenario, which may be due to the fact that they can encode
relative positional information (Vaswani et al., 2017).

Theorem 3.3 (Blocked nuisance token structure facilitates
ICL). Consider a sufficiently large autoregressive position-
aware model that can achieve the minimum loss. Training
this model in the one-noisy (block-noisy) scenario results in
zero (perfect) ICL accuracy (Proof in Appendix K).

3.2. ICL on dual-pattern tasks
We examine the case where both training data and ICL
prompts contain two different patterns with equal prob-
ability: abcadefd and abcbdefe (a ̸= b ̸= c ̸= a and
d ̸= e ̸= f ̸= d). We consider the clean and block-noisy sce-
narios as defined in Section 3.1. Experiments in Appendix
C.2 show an improvement in performance with five layers
compared to one layer, particularly with learned positional
embeddings (see Table 5 and Figure 2). This is related to the
notion of induction heads, where two or more layers may be
necessary to distinguish both patterns (Olsson et al., 2022).
Meanwhile, in both clean and block-noisy scenarios, learned
positional embeddings lead to much higher accuracies than
sinusoidal ones, similar to the single-pattern case.

4. Scenarios where ICL can fail
We consider two scenarios where in-context learning (ICL)
can fail, irrespective of architectures. In the first scenario,
both the training data and test prompts follow repeating
patterns across blocks, but the pattern in the test data differs
from that in the training data. In the second scenario, the
training sentences contain known input-output pairs but
only at fixed locations. See Appendix D for more details,
including theoretical and empirical justifications.

5. Discussion
This paper investigates how in-context learning (ICL) arises
from pretraining on unstructured natural language data. (1)
When ICL prompts involve frequently co-occurring pairs,
ICL can be achieved by modeling co-occurrence using con-
tinuous bag of words (CBOW); (2) When ICL prompts
involve recognizable patterns that do not co-occur often,
positional information and nuisance token structures play
crucial roles in enabling ICL; (3) ICL performance can
be sensitive to the structure of the training data. Further
analyses on other ICL tasks and their reliance on model
architecture can be fruitful avenues for future work.

4

In-Context Learning from Training on Unstructured Data

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
M. Abbas, Y. Zhou, P. Ram, N. Baracaldo, H. Samulowitz,

T. Salonidis, and T. Chen. Enhancing in-context learning
via linear probe calibration. In Artificial Intelligence and
Statistics, 2024.

J. Abernethy, A. Agarwal, T. V. Marinov, and M. K. War-
muth. A mechanism for sample-efficient in-context learn-
ing for sparse retrieval tasks. In Algorithmic Learning
Theory, pages 3–46, 2024.

K. Ahn, X. Cheng, H. Daneshmand, and S. Sra. Transform-
ers learn to implement preconditioned gradient descent
for in-context learning. In Neural Information Processing
Systems, volume 25, pages 1–55, 2024.

K. Ahuja and D. Lopez-Paz. A closer look at in-context
learning under distribution shifts. In Workshop on Effi-
cient Systems for Foundation Models at ICML, 2023.

E. Akyürek, D. Schuurmans, J. Andreas, T. Ma, and D. Zhou.
What learning algorithm is in-context learning? Investi-
gations with linear models. In International Conference
on Learning Representations, 2022.

E. Akyürek, B. Wang, Y. Kim, and J. Andreas. In-context
language learning: Architectures and algorithms. arXiv
preprint arXiv:2401.12973, 2024.

Y. Bai, F. Chen, H. Wang, C. Xiong, and S. Mei. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection. In Neural Information
Processing Systems, 2023.

S. Bhattamishra, A. Patel, P. Blunsom, and V. Kanade. Un-
derstanding in-context learning in transformers and LLMs
by learning to learn discrete functions. In International
Conference on Learning Representations, 2023.

A. Bietti, V. Cabannes, D. Bouchacourt, H. Jegou, and
L. Bottou. Birth of a transformer: A memory viewpoint.
In Neural Information Processing Systems, volume 36,
2023.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,

A. Radford, I. Sutskever, and D. Amodei. Language
models are few-shot learners. In Neural Information
Processing Systems, volume 33, pages 1877–1901, 2020.

S. C. Chan, A. Santoro, A. K. Lampinen, J. X. Wang, A. K.
Singh, P. H. Richemond, J. McClelland, and F. Hill. Data
distributional properties drive emergent in-context learn-
ing in transformers. In Neural Information Processing
Systems, volume 35, pages 18878–18891, 2022.

S. Chen, H. Sheen, T. Wang, and Z. Yang. Training dy-
namics of multi-head softmax attention for in-context
learning: Emergence, convergence, and optimality. arXiv
preprint arXiv:2402.19442, 2024a.

Y. Chen, C. Zhao, Z. Yu, K. McKeown, and H. He. Parallel
structures in pre-training data yield in-context learning.
arXiv preprint arXiv:2402.12530, 2024b.

T.-R. Chiang and D. Yogatama. Understanding in-context
learning with a pelican soup framework. arXiv preprint
arXiv:2402.10424, 2024.

L. Collins, A. Parulekar, A. Mokhtari, S. Sanghavi, and
S. Shakkottai. In-context learning with transformers:
Softmax attention adapts to function Lipschitzness. arXiv
preprint arXiv:2402.11639, 2024.

Y. Cui, J. Ren, P. He, J. Tang, and Y. Xing. Superiority of
multi-head attention in in-context linear regression. arXiv
preprint arXiv:2401.17426, 2024.

D. Dai, Y. Sun, L. Dong, Y. Hao, Z. Sui, and F. Wei. Why
can GPT learn in-context? Language models secretly per-
form gradient descent as meta optimizers. In Association
for Computational Linguistics, pages 4005–4019, 2023.

S. Dalal and V. Misra. The matrix: A Bayesian learning
model for LLMs. arXiv preprint arXiv:2402.03175, 2024.

N. Ding, T. Levinboim, J. Wu, S. Goodman, and R. Sori-
cut. CausalLM is not optimal for in-context learning. In
International Conference on Learning Representations,
2024.

D. Fu, T.-Q. Chen, R. Jia, and V. Sharan. Transformers
learn higher-order optimization methods for in-context
learning: A study with linear models. In Workshop on
Mathematics of Modern Machine Learning at NeurIPS,
2023.

S. Garg, D. Tsipras, P. S. Liang, and G. Valiant. What
can transformers learn in-context? A case study of sim-
ple function classes. In Neural Information Processing
Systems, volume 35, pages 30583–30598, 2022.

T. Guo, W. Hu, S. Mei, H. Wang, C. Xiong, S. Savarese,
and Y. Bai. How do transformers learn in-context be-
yond simple functions? A case study on learning with

5

In-Context Learning from Training on Unstructured Data

representations. In International Conference on Learning
Representations, 2023.

M. Hahn and N. Goyal. A theory of emergent in-context
learning as implicit structure induction. arXiv preprint
arXiv:2303.07971, 2023.

C. Han, Z. Wang, H. Zhao, and H. Ji. Explaining emergent
in-context learning as kernel regression. arXiv preprint
arXiv:2305.12766, 2023a.

X. Han, D. Simig, T. Mihaylov, Y. Tsvetkov, A. Celikyil-
maz, and T. Wang. Understanding in-context learning via
supportive pretraining data. In Association for Computa-
tional Linguistics, pages 12660–12673, 2023b.

A. Haviv, O. Ram, O. Press, P. Izsak, and O. Levy. Trans-
former language models without positional encodings
still learn positional information. In Empirical Meth-
ods in Natural Language Processing, pages 1382–1390,
2022.

Y. Huang, Y. Cheng, and Y. Liang. In-context convergence
of transformers. In Workshop on Mathematics of Modern
Machine Learning at NeurIPS, 2023.

H. J. Jeon, J. D. Lee, Q. Lei, and B. Van Roy. An
information-theoretic analysis of in-context learning.
arXiv preprint arXiv:2401.15530, 2024.

D. Kingma and J. Ba. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

J. Kossen, Y. Gal, and T. Rainforth. In-context learning
learns label relationships but is not conventional learning.
In International Conference on Learning Representations,
2024.

S. Li, Z. Song, Y. Xia, T. Yu, and T. Zhou. The closeness
of in-context learning and weight shifting for softmax
regression. arXiv preprint arXiv:2304.13276, 2023a.

X. Li and X. Qiu. Finding support examples for in-context
learning. In Empirical Methods in Natural Language
Processing, pages 6219–6235, 2023.

Y. Li, M. E. Ildiz, D. Papailiopoulos, and S. Oymak. Trans-
formers as algorithms: Generalization and stability in
in-context learning. In International Conference on Ma-
chine Learning, pages 19565–19594, 2023b.

Z. Lin and K. Lee. Dual operating modes of in-context
learning. arXiv preprint arXiv:2402.18819, 2024.

A. V. Mahankali, T. Hashimoto, and T. Ma. One step of
gradient descent is provably the optimal in-context learner
with one layer of linear self-attention. In International
Conference on Learning Representations, 2023.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Ha-
jishirzi, and L. Zettlemoyer. Rethinking the role of
demonstrations: What makes in-context learning work?
In Empirical Methods in Natural Language Processing,
pages 11048–11064, 2022.

C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma,
T. Henighan, B. Mann, A. Askell, Y. Bai, A. Chen, T. Con-
erly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Her-
nandez, S. Johnston, A. Jones, J. Kernion, L. Lovitt,
K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan,
S. McCandlish, and C. Olah. In-context learning and
induction heads. Transformer Circuits Thread, 2022.

OpenAI. ChatGPT 3.5. https://openai.com/chatgpt, 2022.

M. Panwar, K. Ahuja, and N. Goyal. In-context learning
through the Bayesian prism. In International Conference
on Learning Representations, 2023.

K. Peng, L. Ding, Y. Yuan, X. Liu, M. Zhang, Y. Ouyang,
and D. Tao. Revisiting demonstration selection strategies
in in-context learning. arXiv preprint arXiv:2401.12087,
2024.

C. Qin, A. Zhang, A. Dagar, and W. Ye. In-context learning
with iterative demonstration selection. arXiv preprint
arXiv:2310.09881, 2023.

A. Raventós, M. Paul, F. Chen, and S. Ganguli. Pretraining
task diversity and the emergence of non-Bayesian in-
context learning for regression. In Neural Information
Processing Systems, volume 36, 2023.

J. Ren, Q. Guo, H. Yan, D. Liu, X. Qiu, and D. Lin. Identi-
fying semantic induction heads to understand in-context
learning. arXiv preprint arXiv:2402.13055, 2024.

R. Ren and Y. Liu. In-context learning with transformer is
really equivalent to a contrastive learning pattern. arXiv
preprint arXiv:2310.13220, 2023.

M. E. Sander, R. Giryes, T. Suzuki, M. Blondel, and
G. Peyré. How do transformers perform in-context au-
toregressive learning? arXiv preprint arXiv:2402.05787,
2024.

L. Shen, A. Mishra, and D. Khashabi. Do pretrained trans-
formers really learn in-context by gradient descent? arXiv
preprint arXiv:2310.08540, 2023.

A. Singh, S. Chan, T. Moskovitz, E. Grant, A. Saxe, and
F. Hill. The transient nature of emergent in-context learn-
ing in transformers. In Neural Information Processing
Systems, 2023.

6

In-Context Learning from Training on Unstructured Data

J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Ro-
former: Enhanced transformer with rotary position em-
bedding. Neurocomputing, 568, 2024.

S. Swaminathan, A. Dedieu, R. Vasudeva Raju, M. Shana-
han, M. Lazaro-Gredilla, and D. George. Schema-
learning and rebinding as mechanisms of in-context learn-
ing and emergence. In Neural Information Processing
Systems, volume 36, 2023.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Ham-
bro, F. Azhar, et al. LLaMA: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971,
2023.

M.-H. Van, X. Wu, et al. In-context learning demonstra-
tion selection via influence analysis. arXiv preprint
arXiv:2402.11750, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is
all you need. In Neural Information Processing Systems,
volume 30, 2017.

M. Vladymyrov, J. von Oswald, M. Sandler, and R. Ge. Lin-
ear transformers are versatile in-context learners. arXiv
preprint arXiv:2402.14180, 2024.

J. Von Oswald, E. Niklasson, E. Randazzo, J. Sacramento,
A. Mordvintsev, A. Zhmoginov, and M. Vladymyrov.
Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pages
35151–35174, 2023.

X. Wang, W. Zhu, M. Saxon, M. Steyvers, and W. Y. Wang.
Large language models are latent variable models: Ex-
plaining and finding good demonstrations for in-context
learning. In Neural Information Processing Systems, vol-
ume 36, 2023.

K. C. Wibisono and Y. Wang. On the role of unstructured
training data in transformers’ in-context learning capabil-
ities. In Workshop on Mathematics of Modern Machine
Learning at NeurIPS, 2023.

N. Wies, Y. Levine, and A. Shashua. The learnability of
in-context learning. In Neural Information Processing
Systems, volume 36, 2023.

J. Wu, D. Zou, Z. Chen, V. Braverman, Q. Gu, and P. Bartlett.
How many pretraining tasks are needed for in-context
learning of linear regression? In International Conference
on Learning Representations, 2023.

S. M. Xie, A. Raghunathan, P. Liang, and T. Ma. An explana-
tion of in-context learning as implicit Bayesian inference.
In International Conference on Learning Representations,
2021.

Y. Xing, X. Lin, N. Suh, Q. Song, and G. Cheng. Benefits of
transformer: In-context learning in linear regression tasks
with unstructured data. arXiv preprint arXiv:2402.00743,
2024.

S. Yadlowsky, L. Doshi, and N. Tripuraneni. Pretraining
data mixtures enable narrow model selection capabilities
in transformer models. arXiv preprint arXiv:2311.00871,
2023.

J. Yan, J. Xu, C. Song, C. Wu, Y. Li, and Y. Zhang. Under-
standing in-context learning from repetitions. In Interna-
tional Conference on Learning Representations, 2023.

Z. Yu and S. Ananiadou. How do large language models
learn in-context? Query and key matrices of in-context
heads are two towers for metric learning. arXiv preprint
arXiv:2402.02872, 2024.

R. Zhang, S. Frei, and P. L. Bartlett. Trained transform-
ers learn linear models in-context. Journal of Machine
Learning Research, 2024.

Y. Zhang, F. Zhang, Z. Yang, and Z. Wang. What and
how does in-context learning learn? Bayesian model
averaging, parameterization, and generalization. arXiv
preprint arXiv:2305.19420, 2023.

Y. Zhao, Y. Sakai, and N. Inoue. NoisyICL: A little noise
in model parameters calibrates in-context learning. arXiv
preprint arXiv:2402.05515, 2024.

7

In-Context Learning from Training on Unstructured Data

A. Related work
Large language models (LLMs), such as transformers, are widely recognized for their outstanding performance in in-context
learning (ICL) (Brown et al., 2020). ICL refers to the capability of LLMs to discern specific tasks and generate predictions
based on input-output pairs (known as prompts) without needing any parameter updates. A multitude of studies have been
dedicated to exploring this intriguing phenomenon from various theoretical and empirical perspectives. In this section, we
provide a brief summary of some of these studies.

Some studies adopted a Bayesian approach to studying ICL. Xie et al. (2021) posited that ICL can be viewed as implicit
Bayesian inference. They demonstrated that LLMs can infer a latent document-level concept for next-token prediction
during pretraining and a shared latent concept across input-output pairs in an ICL prompt, under the assumption that
documents are generated from hidden Markov models (HMMs). Wang et al. (2023) and Zhang et al. (2023) expanded on
this idea by exploring more realistic latent variable models beyond HMMs. Wang et al. (2023) argued that large language
models function as latent variable models, with latent variables containing task-related information being implicitly inferred.
Zhang et al. (2023) showed that without updating the neural network parameters, ICL can be interpreted as Bayesian model
averaging parameterized by the attention mechanism. Panwar et al. (2023) provided empirical evidence that transformers
behave like Bayesian predictors when performing ICL with linear and non-linear function classes. Dalal and Misra (2024)
proposed a Bayesian learning framework to understand ICL through the lens of text generation models represented by
multinomial transition probability matrices. Chiang and Yogatama (2024) proposed the pelican soup framework to explain
ICL without relying on latent variable models. This framework incorporates concepts such as a common sense knowledge
base, natural language classification, and meaning association, enabling the establishment of a loss bound for ICL that
depends on the number of in-context examples.

Garg et al. (2022) formulated ICL as learning a specific function class F from prompts of the form
(x1, f(x1), . . . , xn, f(xn), xn+1) and their corresponding responses f(xn+1). Here, f ∈ F , where F is a function
class. In this context, ICL refers to the capability of a transformer to output a number close to g(yn+1) given a prompt of
the form (y1, g(y1), . . . , yn, g(xn), yn+1), where g ∈ F . Many studies adopted this regression formulation of ICL, with
some linking ICL to gradient descent. Akyürek et al. (2022); Von Oswald et al. (2023), and Dai et al. (2023) proved that
transformers are capable of implementing gradient descent, which results in their ICL ability. Bai et al. (2023) established
generalization bounds for ICL and proved that transformers can perform algorithm selection like statisticians. Zhang et al.
(2024) showed that the gradient flow dynamics of transformers converge to a global minimum that enables ICL. Huang
et al. (2023) investigated the learning dynamics of single-layer softmax transformers trained via gradient descent to perform
ICL on linear functions. Ahn et al. (2024) explored the optimization landscape of transformers and proved that the optimal
parameters coincide with an iteration of preconditioned gradient descent.

In a related exploration, Li et al. (2023a) showed that softmax regression models learned through gradient descent are similar
to transformers. Ren and Liu (2023) related ICL with softmax transformers to contrastive learning, where the inference
process of ICL can be viewed as a form of gradient descent. Mahankali et al. (2023) proved that minimizing the pretraining
loss is equivalent to a step of gradient descent in single-layer linear transformers. Vladymyrov et al. (2024) established that
linear transformers execute a variant of preconditioned gradient descent by maintaining implicit linear models. On the other
hand, some studies argued that the ICL ability of transformers cannot be attributed to gradient descent. Fu et al. (2023)
showed that ICL for linear regression tasks arises from higher-order optimization techniques like iterative Newton’s method
rather than gradient descent. Wibisono and Wang (2023) demonstrated that transformers can perform ICL on unstructured
data that lack explicit input-output pairings, with softmax attention playing an important role especially when using a single
attention layer. Shen et al. (2023) provided empirical evidence that the equivalence between gradient descent and ICL might
not be applicable in real-world scenarios. In contrast to these studies, our work provides a connection between ICL and
classical language models like continuous bag of words (CBOW). Specifically, we show that ICL can arise by modeling
co-occurrence patterns via CBOW.

Numerous studies focused on the pretraining aspects (e.g., data distribution and task diversity) of ICL. Min et al. (2022)
showed that the input-label mapping in the in-context examples does not significantly affect ICL performance. Chan et al.
(2022) demonstrated that the ICL capabilities of transformers depend on the training data distributions and model features.
Kossen et al. (2024) established that ICL considers in-context label information and is capable of learning entirely new
tasks in-context. Li and Qiu (2023) introduced an iterative algorithm designed to enhance ICL performance by selecting a
small set of informative examples that effectively characterize the ICL task. Qin et al. (2023) proposed a method based
on zero-shot chain-of-thought reasoning for selecting ICL examples, emphasizing the importance of choosing diverse

8

In-Context Learning from Training on Unstructured Data

examples that are strongly correlated with the test sample. Han et al. (2023b) studied ICL by identifying a small subset
of the pretraining data that support ICL via gradient-based methods. They discovered that this supportive pretraining data
typically consist of more uncommon tokens and challenging examples, characterized by a small information gain from
long-range context. Peng et al. (2024) proposed a selection method for ICL demonstrations that are both data-dependent
and model-dependent. Van et al. (2024) introduced a demonstration selection method that enhances ICL performance by
analyzing the influences of training samples using influence functions.

In a similar vein, Wu et al. (2023) demonstrated that pretraining single-layer linear attention models for ICL on linear
regression with a Gaussian prior can be effectively accomplished with a minimal number of independent tasks, regardless of
task dimension. Raventós et al. (2023) emphasized a task diversity threshold that differentiates the conditions under which
transformers can successfully address unseen tasks. Yadlowsky et al. (2023) attributed the impressive ICL capabilities of
transformers to the diversity and range of data mixtures in their pretraining, rather than their inductive biases for generalizing
to new tasks. Ding et al. (2024) compared the ICL performance of transformers trained with prefixLM (where in-context
samples can attend to all tokens) versus causalLM (where in-context samples cannot attend to subsequent tokens), finding
that the latter resulted in poorer ICL performance. Chen et al. (2024b) discovered that the ICL capabilities of language
models rely on the presence of pairs of phrases with similar structures within the same sentence. Zhao et al. (2024) proposed
a calibration scheme that modifies model parameters by adding random noises, resulting in fairer and more confident
predictions. Abbas et al. (2024) demonstrated that the ICL predictions from transformer-based models often exhibit low
confidence, as indicated by high Shannon entropy. To address this issue, they introduced a straightforward method that
linearly calibrates output probabilities, independent of the model’s weights or architecture. Similar to these works, our work
highlights the importance of training data structure for ICL to arise.

Other studies analyzed ICL from a learning theory perspective. Hahn and Goyal (2023) proposed an information-theoretic
bound that explains how ICL emerges from next-token prediction. Wies et al. (2023) derived a PAC-type framework for ICL
and finite-sample complexity results. Jeon et al. (2024) introduced a novel information-theoretic view of meta-learning
(including ICL), allowing for the decomposition of errors into three components. They proved that in ICL, the errors
decrease as the number of examples or sequence length increase. Other studies focus on the mechanistic interpretability
component of ICL. Olsson et al. (2022) argued that transformers can develop induction heads that are able to complete token
sequences such as [A][B] · · · [A] → [B], leading to impressive ICL performance. Bietti et al. (2023) examined a setup
where tokens are generated from either global or context-specific bigram distributions to distinguish between global and
in-context learning. They found that global learning occurs rapidly, while in-context learning is achieved gradually through
the development of an induction head. Ren et al. (2024) identified semantic induction heads that increase the output logits of
tail tokens when attending to head tokens, providing evidence that these heads could play a vital role in the emergence of
ICL. Yu and Ananiadou (2024) showed that the ICL ability of transformers arises from the utilization of in-context heads,
where each query and key matrix collaborate to learn the similarity between the input text and each demonstration example.

A number of works delved into specific data generating processes to provide insight into the emergence of ICL. Bhattamishra
et al. (2023) examined the ICL ability of transformers by focusing on discrete functions. Specifically, they showed that
transformers perform well on simpler tasks, struggle with more complex tasks, and can learn more efficiently when provided
with examples that uniquely identify a task. Guo et al. (2023) investigated ICL in scenarios where each label is influenced
by the input through a potentially complex yet constant representation function, coupled with a unique linear function for
each instance. Akyürek et al. (2024) studied ICL of regular languages produced by random finite automata. They compared
numerous neural sequence models and demonstrated that transformers significantly outperform RNN-based models because
of their ability to develop n-gram heads, which are a generalization of induction heads. Sander et al. (2024) analyzed
simple first-order autoregressive processes to gain insight into how transformers perform ICL to predict the next tokens. Our
work focuses on data generating processes containing input-output relationship pairs or repeating token patterns to better
understand the importance of co-occurrence, positional information, and training data structure for ICL.

Some studies explored how different components of transformers affect their ICL abilities. Ahuja and Lopez-Paz (2023)
compared the ICL performance of transformers and MLP-based architectures under distribution shifts. Their findings
demonstrate that while both methods perform well in in-distribution ICL, transformers exhibit superior ICL performance
when faced with mild distribution shifts. Collins et al. (2024) showed that softmax attention outperforms linear attention
in ICL due to its ability to calibrate its attention window to the Lipschitzness of the pretraining tasks. Xing et al. (2024)
focused on linear regression tasks to identify transformer components that enable ICL. They found that positional encoding
is crucial, along with the use of multiple heads, multiple layers, and larger input dimensions. Cui et al. (2024) proved that
multi-head attention outperforms single-head attention in various practical scenarios, including those with noisy labels and

9

In-Context Learning from Training on Unstructured Data

correlated features. Chen et al. (2024a) investigated the ICL dynamics of a multi-head softmax attention model applied
to multi-task linear regression. They proved the convergence of the gradient flow and observed the emergence of a task
allocation phenomenon, where each attention head specializes in a specific task.

Finally, several studies proposed various hypotheses on the emergence of ICL and provided theoretical justifications.
Swaminathan et al. (2023) introduced clone-structured causal graphs (CSCGs) to explain how ICL can generalize to unseen
sentences via a mechanism called rebinding. Li et al. (2023b) viewed ICL as an algorithm learning problem where a
transformer implicitly constructs a hypothesis function at inference time. Han et al. (2023a) argued that the ability of
transformers to execute ICL is attributable to their capacity to simulate kernel regression. Singh et al. (2023) explored the
interaction between ICL and in-weights learning (IWL) using synthetic data designed to support both processes. They
observed that ICL initially emerges, followed by a transient phase where it disappears and gives rise to IWL. Yan et al.
(2023) studied ICL from the perspective that token co-occurrences play a crucial role in guiding the learning of surface
patterns that facilitates ICL. Abernethy et al. (2024) showed that transformers can execute ICL by dividing a prompt into
examples and labels, then employing sparse linear regression to deduce input-output relationships and generate predictions.
Lin and Lee (2024) developed a probabilistic model that can simultaneously explain both task learning and task retrieval
aspects of ICL. Here, task learning refers to the ability of language models to identify a task from in-context examples,
while task retrieval pertains to their ability to locate the relevant task within the pretraining data.

10

In-Context Learning from Training on Unstructured Data

B. In-context learning can arise by merely modeling co-occurrence via CBOW
Roadmap. In Section B.1, we begin by considering a simple ICL task of the form ci1di1 · · · ciℓdiℓciℓ+1

, where (ci, di)
represents a known pairing (e.g., a country and its capital city) and i1, i2, · · · , iℓ+1 are all distinct. Our focus is
to investigate whether a trained CBOW model can correctly output diℓ . We also explore two other scenarios: ICL
tasks of the form ci1di1 · · · ciℓdiℓciℓ+1

and ci1ei1 · · · ciℓeiℓciℓ+1
in Section B.2 (two connected relationships), as well as

ci1di1 · · · ciℓ−1
diℓ−1

ciℓ and ei1fi1 · · · eiℓfiℓeiℓ+1
(two disconnected relationships) in Section B.3. Sections B.4 and B.5

conclude with prompting and synthetic data experiments that provide support to our theory.

B.1. ICL on single-relationship tasks

We investigate ICL in single-relationship tasks that take the form of ci1di1 · · · ciℓdiℓciℓ+1
, where (ci, di)’s denote known

pairings such as countries and their capital cities. The vocabulary consists of c1:K , d1:K , r1:L, where r′is represent other
words (e.g., stop words). We first introduce Theorem B.1, which states that ICL can arise if each sentence consists of exactly
one (ci, di) pair, as long as the number of in-context examples (ℓ) is not too large. To simplify calculations, we replace the
cross-entropy loss with the squared loss. This involves removing the softmax activation and comparing the outputs against
the one-hot encoding of the target words. The proof of Theorem B.1 is in Appendix F.

Theorem B.1 (ICL on single-relationship tasks). Let K,L ≥ S ≥ 3. Suppose each training sentence of length S is
generated by selecting one (ci, di) pair and S − 2 distinct ri’s uniformly at random. We train a CBOW model with the
squared loss and a sufficiently large embedding dimension on these sentences. Given a prompt ci1di1 · · · ciℓdiℓciℓ+1

with
distinct ik’s, the model correctly predicts diℓ+1

if and only if

2ℓ+ 1 <
KL(S − 1)3

(K + L)(S − 2)2(S − 1) +K(S − 2)(S − 1)2 − 2(S − 2)4
.

As an example, when each training sentence contains exactly one country-capital pair (i.e., (ci, di)), Theorem B.1 says
a trained CBOW model will correctly predict diℓ+1

(i.e., the capital city of ciℓ+1
) given an ICL prompt of the form

ci1di1 · · · ciℓdiℓciℓ+1
, provided that the prompt length (2ℓ + 1) is not too large. This behavior is intuitively due to the

presence of ciℓ+1
in the ICL prompt, leading the model to correctly predict diℓ+1

due to the frequent occurrences of the pair
(ciℓ+1

, diℓ+1
) in the training data. However, when the prompt length is too large, the model will instead predict one of the

ri’s (see Theorem B.1’s proof in Appendix F for more details). If we let L → ∞ and fix K and S, the condition in Theorem
B.1 becomes 2ℓ+ 1 < K(S − 1)2/(S − 2)2. This inequality trivially holds if the prompt length is set to be S − 1 to match
the training sentences.

It is possible to adapt the proof of Theorem B.1 to handle the case when each sentence comprises exactly two (not one)
different (ci, di) pairs. In this case, letting L → ∞ and fixing K and S, the model correctly predicts diℓ+1

given the same

ICL prompt if and only if 2ℓ + 1 < K(K−2)(S−1)2

(K−2)(S−2)(S−4)−K . This upper bound is strictly larger than K(S − 1)2/(S − 2)2:
when each sentence contains exactly two (ci, di) pairs, ICL under the squared loss occurs for longer prompts.

Experiments. To empirically verify Theorem B.1 and its generalizations, we conduct experiments using the cross-entropy
loss with S = 8, K = 10, L = 20, and ℓ = 3. We explore multiple (p0, p1, p2) values, where pk denotes the probability of
having exactly k pairs of (ci, di) in the sentence. For each (p0, p1, p2) triple, we introduce a more realistic setting where ci
and di do not always appear together by considering its corrupted version. In this setup, each (ci, di) pair has a 25% chance
of being replaced with (ci, rj) and a 25% chance of being replaced with (di, rj), for some j ∈ [L].

Table 1 displays the average accuracy for each scenario, calculated over 10 repetitions. Notably, when (p0, p1, p2) is (0, 1, 0)
or (0, 0, 1), ICL under the cross-entropy loss achieves zero accuracy, in contrast to perfect accuracy with the squared loss as
shown in Theorem B.1. We believe this difference in accuracy is an artifact of the loss functions used, although its relevance
is limited by the fact that, in reality, it is unlikely for every sentence to contain at least one (ci, di) pair. On the other hand,
perfect ICL performance is observed in other settings (e.g., when the training sentences contain either zero, one, or two
(ci, di) pairs) in both the clean and corrupted scenarios. For an in-depth comparison of ICL performance using both the
squared and cross-entropy loss across various numbers of demonstration examples, refer to Appendix E.

11

In-Context Learning from Training on Unstructured Data

Table 1. ICL on various single-relationship tasks, averaged over 10 repetitions, demonstrates stable, good performance across embedding
dimensions (dE), as Theorem B.1 suggests. The corrupted setting also shows excellent ICL ability under certain scenarios.

Clean Corrupted

(p0, p1, p2) dE = 10 dE = 100 dE = 10 dE = 100

(0, 1, 0) 0 0 0 0
(0, 0, 1) 0 0 0 0

(1/2, 1/2, 0) 1 0.99 0 0
(1/2, 0, 1/2) 1 1 1 1
(0, 1/2, 1/2) 1 1 0 0.01

(1/3, 1/3, 1/3) 1 1 1 1

B.2. ICL on dual-connected-relationship tasks

In Section B.1, we discussed the case where the training sentences contain one relationship, namely (ci, di)’s. We
now explore ICL on dual-connected-relationship tasks, where the two types of relationships are connected and de-
noted by (ci, di) and (ci, ei): ci might represent a country, di its capital city, and ei its currency. The vocabulary
comprises c1:K , d1:K , e1:K , r1:L, where ri’s represent other words. The corresponding ICL tasks thus take the form
ci1di1 · · · ciℓdiℓciℓ+1

and ci1ei1 · · · ciℓeiℓciℓ+1
, where the model is expected to output diℓ+1

and eiℓ+1
. This involves task

selection as the model should use the in-context examples to infer the task. We first present Theorem B.2, which states that a
trained CBOW model can perform task selection if each sentence contains exactly two distinct (ci, di) pairs or two distinct
(ci, ei) pairs with uniform probability1. Its proof is in Appendix G.

Theorem B.2 (Task selection in CBOW). Let K,L ≥ 2 and S ≥ 5. Suppose each training sentence of length S is generated
by selecting two distinct (ci, di) pairs or (ci, ei) pairs and S − 4 distinct ri’s uniformly at random. We train a CBOW model
with the squared loss and a large enough embedding dimension. Given a prompt ci1di1 · · · ciℓdiℓciℓ+1

(ci1ei1 · · · ciℓeiℓciℓ+1
)

with distinct ik’s, the model is more likely to predict diℓ+1
(eiℓ+1

) than eiℓ+1
(diℓ+1

).

Theorem B.2 says that, when each training sentence includes two (ci, di) pairs or two (ci, ei) pairs, a trained CBOW model
is capable of task selection. To understand this result, consider the ICL prompt of the first type, i.e., ci1di1 · · · ciℓdiℓciℓ+1

.
Here, the output is more likely to be diℓ+1

than eiℓ+1
since diℓ+1

co-occurs with the other dij ’s in the training data (and eiℓ+1

does not). In Theorem B.2, we unrealistically require each sentence to contain either two distinct (ci, di) pairs or (ci, ei)
pairs. However, this condition is not necessary as we empirically show next.

Experiments. We use the cross-entropy loss with S = 8, K = 10, L = 60, and ℓ = 3. Each training sentence is equally
likely to be a cd sentence (i.e., containing (ci, di) pairs) or a ce sentence (i.e., containing (ci, ei) pairs), but not both. We
explore multiple (p0, p1, p2)’s, where pk is the probability of having exactly k pairs of (ci, di) for a cd sentence, or k pairs
of (ci, ei) for a ce sentence.

Table 2. ICL on dual-connected-relationship tasks, averaged over 10 repetitions, achieves perfect accuracy when (p0, p1, p2) ∈
{(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} regardless of architectures and embedding dimensions (dE), as Theorem B.2 suggests.
When (p0, p1, p2) = (1/2, 1/2, 0), ICL performs better under imbalanced or extreme scenarios and with larger dE .

Balanced Imbalanced Extreme

(p0, p1, p2) dE = 10 dE = 100 dE = 10 dE = 100 dE = 10 dE = 100

(0, 1, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0.07, 0.10) (0, 0)

(1/2, 1/2, 0) (0.53, 0.47) (0.51, 0.50) (0.69, 0.68) (1, 1) (0.94, 0.93) (1, 1)
(1/2, 0, 1/2) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
(0, 1/2, 1/2) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
(1/3, 1/3, 1/3) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

1We can also theoretically show that ICL works (up to a certain number of training examples) in this scenario, but the calculations are
extremely tedious. Therefore, we only present empirical evidence in Table 2.

12

In-Context Learning from Training on Unstructured Data

Additionally, we introduce three different scenarios: balanced, where all L random words are equally likely to occur in both
cd and ce sentences; imbalanced, where L/3 words are more likely to occur in cd (ce) sentences; and extreme, where L/3
of the words can only occur in cd (ce) sentences. Table 2 shows the accuracies of both tasks for each scenario, averaged over
10 repetitions. We observe a perfect accuracy when (p0, p1, p2) ∈ {(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} across all
embedding dimensions and scenario types. The near-zero accuracy when (p0, p1, p2) or (0, 1, 0) or (0, 0, 1) is again an
artifact of the cross-entropy loss discussed in Section B.1.

Interestingly, ICL works in the imbalanced and extreme scenarios when (p0, p1, p2) = (1/2, 1/2, 0), where sentences do not
contain more than one (ci, di) or (ci, ei) pair. To see this, consider the balanced scenario where each ri is equally probable
to appear in both types of sentences. Given a prompt of the form ci1di1 · · · ciℓdiℓciℓ+1

, it is easy to see that the model should
output diℓ+1

or eiℓ+1
with equal probability. On the other hand, in the imbalanced and extreme scenarios, the signals from

the ri’s can allow for task selection, thus contributing to the success of ICL.

B.3. ICL on dual-disconnected-relationship tasks

Table 3. ICL on dual-disconnected-relationship tasks, averaged over 10 repetitions, achieves perfect accuracy when (p0, p1, p2) ∈
{(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} regardless of architectures and embedding dimensions (dE). When (p0, p1, p2) =
(1/2, 1/2, 0), ICL already performs well under the balanced scenario.

Balanced Imbalanced Extreme

(p0, p1, p2) dE = 10 dE = 100 dE = 10 dE = 100 dE = 10 dE = 100

(0, 1, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0, 1) (0, 0) (0, 0) (0.16, 0.14) (0, 0) (0.21, 0.29) (0, 0)

(1/2, 1/2, 0) (1, 1) (0.82, 0.83) (0.28, 0.27) (0.95, 0.95) (0.83, 0.85) (0.91, 0.91)
(1/2, 0, 1/2) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
(0, 1/2, 1/2) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
(1/3, 1/3, 1/3) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

We next replicate the experiments in Section B.2, but with two disconnected relationships (ci, di) and (ei, fi). For example,
(ci, di) might represent a country and its capital city and (ei, fi) might represent a company and its CEO. Our vocabulary
consists of c1:K , d1:K , e1:K , f1:K , r1:L, where ri’s represent other words. Table 3 summarizes the accuracies of the ICL
tasks ci1di1 · · · ciℓdiℓciℓ+1

and ei1fi1 · · · eiℓfiℓeiℓ+1
for each scenario, averaged over 10 repetitions. Similar to the connected

setting in Section B.2, we observe a perfect accuracy when (p0, p1, p2) ∈ {(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)}
across all embedding dimensions and scenario types. However, when (p0, p1, p2) = (1/2, 1/2, 0), ICL already works well
in the balanced scenario. This is because the two relationships are disjoint, thus making task selection easier.

In addition, we consider a contaminated version of the training data where cd (ef) sentences can contain some ei’s and fi’s
(ci’s and di’s). We also obtain a perfect accuracy when (p0, p1, p2) ∈ {(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} across
all embedding dimensions and scenario types.

B.4. Experiments on countries, US states, and their capital cities

We perform two experiments involving countries and their capital cities, as well as US states and their capital cities. Our
prompts follow the format c1d1, c2d2, · · · , c6d6, c7, where ci is a country or US state and di is its capital city. Using
the LLaMA 2 model (Touvron et al., 2023), we compare the prediction for each prompt with its corresponding d7. The
experimental results support the theory.

In the first experiment, we focus on 160 countries with a population exceeding one million in 2022. Among these countries,
31 have capital cities that are not their most populous cities, denoted by type A. The remaining 129 countries fall under
type B. Each ICL prompt includes three type A countries among c1, · · · , c6 to emphasize that the desired relationship is
(country)-(capital) rather than (country)-(largest city). Subsequently, we randomly generate 1,000
prompts, with 500 having a c7 representing a type A country and 500 having a c7 representing a type B country. The ICL
accuracies corresponding to type A and type B prompts are 0.58 and 0.96, respectively.

In the second experiment, we consider all 50 states, among which 33 are of type A and 17 are of type B, defined similarly.
The ICL accuracies corresponding to type A and type B prompts are found to be 0.69 and 0.84, respectively. From both

13

In-Context Learning from Training on Unstructured Data

experiments, we notice that LLaMA 2 performs better on type B prompts (i.e., the capital city as the largest city). This
suggests that ICL may arise from co-occurrence information, as larger cities tend to appear more frequently compared to
smaller ones.

B.5. Experiments on a synthetic corpus

We conduct experiments on a synthetic corpus consisting of (country)-(capital) and (country)-(IOC code)
relationships. Each sentence in the corpus is categorized into exactly one of six possible categories: (1) exactly one
country-capital pair; (2) exactly two country-capital pairs; (3) exactly one country-IOC pair; (4) exactly two country-IOC
pairs; (5) exactly one country without any pair; and (6) no country. In sentences with country-capital pairs, each capital city
can appear in any position relative to the country. Conversely, in sentences with country-IOC pairs, each IOC code must
directly follow the country. The corpus generation process is as follows:

1. Randomly select 10 countries and obtain their capital cities and IOC codes.

2. Generate 30 sentences containing exactly one country-capital pair (3 for each country).
Example: Paramaribo is the vibrant heart of Suriname.

3. Generate 30 sentences containing exactly one country-IOC pair (3 for each country).
Example: Gabon (GAB) protects its diverse rainforests and wildlife.

4. Generate 30 sentences containing exactly one country without any pair.
Example: The banking sector is central to Liechtenstein’s prosperity.

5. Generate 60 sentences without any country, capital city, or IOC code.
Example: Every country has its unique cultural identity and heritage.

6. Generate 810 sentences containing exactly two different country-capital pairs by concatenating sentences generated in
Step 2.
Example: The city of Dushanbe reflects Tajikistan’s vibrant spirit. Roseau is the cultural tapestry of Dominica.

7. Generate 810 sentences containing exactly two different country-IOC pairs by concatenating sentences generated in
Step 3.
Example: Mayotte (MAY) features lush landscapes and peaks. Turkmenistan (TKM) features the fiery Darvaza Crater.

Two models are trained on this corpus: a CBOW and a five-layer two-head autoregressive transformer. Both models have
an embedding dimension of 100. We then compare the ICL accuracies for both relationships given one to five in-context
examples. For the CBOW model, the country-capital accuracies are (0.81, 0.82, 0.78, 0.73, 0.65) and the country-IOC
accuracies are (0.15, 0.38, 0.59, 0.71, 0.79). Here, the i-th number corresponds to the accuracy given i in-context examples.
For the transformer, the accuracies are (0.00, 0.15, 0.34, 0.22, 0.07) and (1.00, 0.77, 0.78, 0.97, 0.99), respectively.

When using the transformer, we find that the accuracies for the country-IOC task are significantly higher compared to those
for the country-capital task. This is likely because each IOC code consistently follows the corresponding country in the
corpus, similar to ICL prompts. On the other hand, ICL fails to work on the country-capital task, where there is no consistent
pattern in how each pair occurs in the corpus. Meanwhile, ICL works decently well on both tasks under the CBOW model.

14

In-Context Learning from Training on Unstructured Data

C. The essential role of positional information in enabling in-context learning
Roadmap. We consider settings where each sentence contains repeating patterns. Section C.1 focuses on a simple scenario
where training sentences follow the form abacdc, where a ̸= b and c ̸= d, or a noisy variation of it. The ICL prompts
maintain the same pattern but use different combinations of ab and cd from those in the training data. Our goal is to
understand what types of training data facilitate ICL in clean or noisy scenarios. Section C.2 explores a more realistic case
where two possible patterns are present: repeating the first letter (abca) and repeating the second letter (abcb).

C.1. ICL on single-pattern tasks

In this section, we examine the case where the training sentences follow a specific pattern of the form abacdc. To
replicate real-world training scenarios, we also analyze how incorporating nuisance tokens into the training sentences
affects the ICL capability of autoregressive models. To formalize the discussion, let the vocabulary be V ∪ N , where
N represents the nuisance tokens. Define S = {(a, b) | a, b ∈ V, a ̸= b} and partition S into S1 and S2, where
{c[1] | c ∈ S1} = {c[1] | c ∈ S2} = V and c[i] denotes the i-th element of c, to ensure training sentences are distinct from
the ICL prompts. Consider three different scenarios:

1. Clean: Training data follow the form abacdc where ab, cd ∈ S1. ICL prompts follow the form abacd where ab, cd ∈ S2.

2. One-noisy: Training data follow the form abacdc where ab, cd ∈ S1, with one nuisance token n ∈ N randomly inserted
anywhere except the last position (to ensure ICL prompts do not resemble the training data). ICL prompts follow the
form abacd where ab, cd ∈ S2.

3. Block-noisy: Training data follow the form abacdc where ab, cd ∈ S1, with three consecutive nuisance tokens
n1, n2, n3 ∈ N randomly inserted while preserving the aba and cdc blocks. ICL prompts follow the form abacdcef
where ab, cd, ef ∈ S2.

Table 4. ICL on single-pattern tasks, averaged over 10 repetitions, achieves near-perfect accuracy in the clean data scenario regardless
of architectures and embedding dimension (dE). The one-noisy scenario is the most challenging, with sinusoidal embeddings giving a
higher accuracy. In the block-noisy scenario, learned positional embeddings result in significantly better ICL performance.

dE = 10 dE = 100

Pos. emb. Clean One-noisy Block-noisy Clean One-noisy Block-noisy

Learned 0.97 0.00 0.95 1.00 0.00 1.00
Sinusoidal 0.66 0.10 0.01 0.96 0.00 0.55

RoPE (Su et al., 2024) 0.31 0.00 0.03 0.48 0.00 0.00

We set the vocabulary size |V | = 20, the number of nuisance tokens N = 20, and use only one attention layer as we
empirically showed that additional layers do not improve performance. Table 4 reveals interesting phenomena. Firstly, under
the clean data scenario, ICL performs exceptionally well, with an observed performance increase with learned positional
embeddings and a larger embedding dimension. However, ICL is notably challenging under the one-noisy scenario. In the
block-noisy scenario, learned positional embeddings are crucial for satisfactory ICL performance. Theorem C.1 formalizes
these findings.

Theorem C.1 (Blocked nuisance token structure facilitates ICL). Consider a sufficiently large autoregressive position-aware
model that can achieve the minimum possible theoretical loss. Training this model in the one-noisy (block-noisy) scenario
results in zero (perfect) ICL accuracy.

The proof is in Appendix K. Theorem C.1 says that ICL works perfectly under the block-noisy scenario, yet fails to work
under the one-noisy scenario. However, as shown in Table 4, the use of sinusoidal positional embeddings significantly
enhances prediction accuracy in the one-noisy scenario. This may be due to the fact that sinusoidal embeddings can encode
relative positional information (Vaswani et al., 2017). For example, training sentences of the form nabacdc, where n ∈ N ,
may help in predicting the most likely token following the ICL prompt abacd.

15

In-Context Learning from Training on Unstructured Data

Table 5. ICL on dual-pattern tasks, averaged over 10 repetitions, achieves notably better accuracy using learned than sinusoidal embeddings.
Near-perfect accuracy is attained in the clean scenario by a 5-layer transformer with an embedding dimension (dE) of 100 and learned
positional embeddings. The block-noisy scenario is challenging; the same model attains the best performance.

dE = 10 dE = 100

Pos. emb. Clean Block-noisy Clean Block-noisy

1-layer Learned (0.33, 0.33) (0.15, 0.16) (0.51, 0.49) (0.49, 0.50)
Sinusoidal (0.12, 0.66) (0.03, 0.03) (0.51, 0.48) (0.06, 0.10)

5-layer Learned (0.39, 0.39) (0.23, 0.22) (0.97, 0.98) (0.87, 0.70)
Sinusoidal (0.32, 0.34) (0.04, 0.04) (0.83, 0.82) (0.04, 0.07)

Figure 2. One-layer models fail to differentiate the two patterns in Section C.2, as evidenced by the accuracy trajectory graph on the left.
On the other hand, five-layer models are capable of doing so.

C.2. ICL on dual-pattern tasks

We next examine the case where both the training data and ICL prompts contain two different patterns occurring with equal
probability: abcadefd and abcbdefe, where a ̸= b ̸= c ̸= a and d ̸= e ̸= f ̸= d. We consider the clean and block-noisy
scenarios, defined similarly as in Section C.1, and set |V | = N = 20. Table 5 outlines the ICL performance for both scenario
types across different model configurations. Unlike the single-pattern scenario, there is an improvement in performance with
five layers compared to one layer, particularly with learned positional embeddings.

This phenomenon is related to the notion of induction heads, where at least two layers may be necessary to distinguish the
two patterns (Olsson et al., 2022). This is reflected in Figure 2, which compares the accuracy trajectories of one-layer and
five-layer models. While the five-layer setup effectively differentiates the two patterns, the one-layer configuration fails to
do so. Meanwhile, in both clean and block-noisy scenarios, learned positional embeddings lead to notably higher accuracies
as compared to sinusoidal ones, similar to the single-pattern case.

16

In-Context Learning from Training on Unstructured Data

D. Scenarios where ICL can fail
In this section, we consider two scenarios where in-context learning (ICL) can fail, irrespective of architectures. In Section
D.1, both the training data and test prompts follow repeating patterns across blocks, but the pattern in the test data differs
from that in the training data. In Section D.2, the training sentences contain known input-output pairs but only at fixed
locations.

D.1. Failed scenario 1: Sentences with repeating patterns

In this scenario, our training data comprises sentences in the form of abacdcefe, where a ̸= b, c ̸= d, and e ̸= f . Note that
each sentence is composed of three blocks, each consisting of three tokens with the same pattern. For the ICL task, we
consider predicting f from the prompt abbcddef , where a ̸= b, c ̸= d, and e ̸= f . As each training sentence contains a
repeated pattern, we expect a well-trained model to output f to maintain the pattern seen in the in-context examples: abb
and cdd. However, as depicted in Table 6, all models fail to recognize the repeated patterns and predict the correct token.

We next formalize a generalization of this scenario. Let the vocabulary be V = {1, 2, · · · , |V |}, and define S = {(a, b) |
a, b ∈ V, a ̸= b}. To ensure training sentences are distinct from the ICL prompts, we first partition S into S1 and S2, where
{c[1] | c ∈ S1} = {c[1] | c ∈ S2} = V . Here, c[i] denotes the i-th element of c. Suppose we autoregressively train a
sufficiently large position-aware model so that it is possible to achieve the minimum possible theoretical loss. The training
sentences take the form x11x12x11x21x22x21 · · ·xN1xN2xN1, where xi1 ̸= xi2 and (xi1, xi2) is independently selected
from S1 for every i ∈ [N]. Theorem D.1, whose proof is in Appendix L, states that ICL fails to hold regardless of the
number of in-context examples.

Theorem D.1 (Failure of ICL: Different repeated patterns). Consider the generalized scenario in Section D.1. For any
1 ≤ ℓ ≤ N , given an in-context prompt of the form x11x12x12x21x22x22 · · ·xℓ1xℓ2 where xi1 ̸= xi2 and (xi1, xi2) ∈ S2

for every i ∈ [ℓ], the model predicts xℓ1 instead of xℓ2.

Table 6. ICL in failed scenarios, averaged over 10 repetitions, achieves zero accuracy for any architecture and embedding dimension (dE).

Failed scenario 1 Failed scenario 2

Pos. emb. dE = 10 dE = 100 dE = 10 dE = 100

1-layer Learned 0.00 0.00 0.01 0.00
Sinusoidal 0.01 0.00 0.00 0.00

5-layer Learned 0.00 0.00 0.00 0.00
Sinusoidal 0.00 0.00 0.00 0.00

Theorem D.1 and Table 6 demonstrate that ICL achieves zero accuracy irrespective of the number of in-context examples
(ℓ− 1). This insight sheds light on the ICL capacity of autoregressive models. Simply put, if the pattern in the in-context
examples differs significantly from any pattern in the training data, ICL may not occur. These results align with the findings
of Raventós et al. (2023) and Yadlowsky et al. (2023) on the importance of data diversity for ICL.

D.2. Failed scenario 2: Sentences with known pairs but only at fixed locations

We revisit the paired relationship scenario discussed in Section 2. The training data now comprises sentences of the form
of aipqrsbi, where (ai, bi) represents a known pairing and p, q, r, s represent other words. For the ICL task, we consider
predicting bi3 from the prompt ai1bi1ai2bi2ai3 , where i1 ̸= i2 ̸= i3 ̸= i1. As each training sentence always contains
an (ai, bi) pair at a fixed location, we expect a well-trained model to output bi3 to maintain the pattern in the in-context
examples: ai1bi1 and ai2bi2 . However, none of the models can identify the repeated patterns and predict the correct token,
as shown in Table 6.

We next formalize a generalization of this scenario. Let the vocabulary be {(ai, bi)}i∈[I] ∪ V , where V = {1, 2, · · · , |V |}
represent other words. As in Section D.1, we autoregressively train a sufficiently large position-aware model that can
achieve the minimum possible theoretical loss. The training sentences take the form aiv1v2 · · · v2kbi, where i and v1:2k are
independently chosen from [I] and V , respectively, uniformly at random. Theorem D.2, whose proof is in Appendix M,
states that ICL fails to occur regardless of the number of in-context examples.

Theorem D.2 (Failure of ICL: Different pattern structures). Consider the generalized scenario in Section D.2. For any

17

In-Context Learning from Training on Unstructured Data

1 ≤ ℓ ≤ k + 1, given an in-context prompt of the form ai1bi1ai2bi2 · · · aiℓ with distinct ij’s, the model never predicts biℓ : it
predicts a uniform probability vector over V when 1 ≤ ℓ ≤ k, and bi1 when ℓ = k + 1..

Theorem D.2 highlights the finding that the success of ICL relies heavily on how the patterns appear in the training data. In
this scenario, the (ai, bi) pairs consistently appear at the beginning and end of each training sentence, and we anticipate the
model to recognize this relationship for ICL to occur. However, as shown in Theorem D.2 and Table 6, this is not the case.

D.3. Experiment on a synthetic corpus

We conduct an experiment on a synthetic corpus consisting of (country)-(capital) relationships. Each sentence in the corpus is
categorized into exactly one of four possible categories: (1) exactly one country-capital pair; (2) exactly two country-capital
pairs; (3) exactly one country without any pair; and (4) no country. In sentences with exactly one country-capital pairs,
each capital appears in the first position, each country appears in the last position, and every sentence consists of six words
(similar to the setting in Section D.2). The corpus generation process is as follows:

1. Randomly select 10 countries and obtain their capital cities and IOC codes.

2. Generate 130 sentences containing exactly one country-capital pair (13 for each country). Example: Paramaribo stands
as capital of Suriname.

3. Generate 30 sentences containing exactly one country without any pair.
Example: The banking sector is central to Liechtenstein’s prosperity.

4. Generate 60 sentences without any country, capital city, or IOC code.
Example: Every country has its unique cultural identity and heritage.

5. Generate 1,000 sentences containing exactly two different country-capital pairs by concatenating sentences generated
in Step 2.
Example: Brazil functions as heart of Brasilia. Turkmenistan operates as center for Ashgabat.

We train a five-layer two-head autoregressive transformer on this corpus, with an embedding dimension of 100. Similar to
Section B.5, we assess the ICL accuracies using prompts involving countries and their capitals. We discover that the ICL
accuracies are zero regardless of the number of in-context examples (one to five), thus supporting the theory.

18

In-Context Learning from Training on Unstructured Data

E. Comparison of ICL performance using squared and cross-entropy loss across different
numbers of examples

Table 7. ICL performance in the clean scenario, evaluated with both squared and cross-entropy loss functions across different numbers of
examples (0 to 8) with dE = 100, averaged over 10 repetitions.

Squared Cross-entropy

(p0, p1, p2) 0 2 4 6 8 0 2 4 6 8

(0, 1, 0) 1 1 0 0 0 0.87 0 0 0 0
(0, 0, 1) 1 1 1 0 0 1 0 0 0 0

(1/2, 1/2, 0) 1 1 1 1 1 1 1 0.34 0 0
(1/2, 0, 1/2) 1 1 1 1 1 1 1 1 1 1
(0, 1/2, 1/2) 1 1 1 1 1 1 1 1 0 0

(1/3, 1/3, 1/3) 1 1 1 1 1 1 1 1 1 0

Table 8. ICL performance in the corrupted scenario, evaluated with both squared and cross-entropy loss functions across different numbers
of examples (0 to 8) with dE = 100, averaged over 10 repetitions.

Squared Cross-entropy

(p0, p1, p2) 0 2 4 6 8 0 2 4 6 8

(0, 1, 0) 1 0 0 0 0 0 0 0 0 0
(0, 0, 1) 1 0.97 0 0 0 1 0 0 0 0

(1/2, 1/2, 0) 1 1 1 0.53 0 1 0 0 0 0
(1/2, 0, 1/2) 1 1 1 1 1 1 1 1 1 1
(0, 1/2, 1/2) 1 1 0.76 0 0 1 1 0 0 0

(1/3, 1/3, 1/3) 1 1 1 1 1 1 1 1 0.18 0

From Tables 7 and 8, we observe that ICL with CBOW on single-relationship tasks performs better with squared loss
compared to cross-entropy loss and with fewer demonstration examples. Also, ICL tends to deteriorate after a certain
number of in-context demonstrations. As detailed in Appendix F, a smaller number of examples (e.g., zero) allows the model
to produce the correct output instead of one of the ri’s. This is in contrast with transformer-based LLMs, which achieve
better ICL performance as the number of demonstrations increases. On the other hand, ICL on dual-connected-relationship
tasks requires at least one demonstration example. On the other hand, ICL on dual-relationship tasks as described in Section
B.2 requires at least one demonstration example to distinguish between the two tasks.

19

In-Context Learning from Training on Unstructured Data

F. Proof of Theorem B.1
Proof. Let |V | = 2K + L denote the vocabulary size. Consider a sentence X represented by its one-hot encoding (i.e.,
X ∈ {0, 1}|V |×S). For every position i ∈ [S], the loss for predicting the word in the i-th position given all the other words
is given by ||AX(1S − ei) −Xei||22, where A = U⊤V

S−1 ∈ R|V |×|V | and ei ∈ RS is a zero vector with 1 on its i-th entry.
Here, U (V) is a matrix consisting of the center (context) embeddings of all tokens, and A is a matrix summarizing the
similarity between each pair of words (one as a center word and the other as a context word). Our objective is to find A that
minimizes the sum of losses for each position in each sentence. Lemma F.1 gives a closed-form expression of the minimizer.

Lemma F.1. The minimizer of the overall loss is given by A = B ((S − 2)B + C)
−1. Here, B is a matrix whose (i, j)-th

entry is p(i, j), the probability that for a given (center, context) pair, the center is i ∈ |V | and the context is j ∈ |V |.
Moreover, C is a diagonal matrix whose i-th diagonal entry is p(i) =

∑
j∈|V | p(i, j).

Proof. Let L(X) =
∑S

i=1 ||AX(1S − ei)−Xei||22 denote the sum of the losses corresponding to all tokens in sentence X .
By direct calculation,

∂L(X)

∂A
= 2AX

(
S∑

i=1

(1S − ei)(1S − ei)
⊤

)
X⊤ − 2X

(
S∑

i=1

ei(1S − ei)
⊤

)
X⊤

.

Note that
∑S

i=1(1S − ei)(1S − ei)
⊤ = (S − 2)1S×S + IS×S and

∑S
i=1 ei(1S − ei)

⊤ = 1S×S − IS×S . Now, let our
sentences be X1, X2, · · · , XN . The minimizer of the overall loss thus satisfies

A
1

N

N∑
k=1

Xk ((S − 2)1S×S + IS×S)X
⊤
k =

1

N

N∑
k=1

Xk (1S×S − IS×S)X
⊤
k . (1)

We denote the number of (center, context) pairs across all sentences in which the center is i and the context is j by #(i, j).
Moreover, we define #(i) =

∑
j∈|V | #(i, j). It is easy to see that Equation (1) can be rewritten as

A
(
(S − 2)B̃ + C̃

)
= B̃,

where B̃ is a matrix such that its (i, j)-th entry is #(i,j)
N and C̃ is a diagonal matrix such that its i-th diagonal element

is #(i)
N . As N → ∞, an application of the law of large numbers yields #(i,j)

N → S(S − 1)p(i, j) almost surely and
#(i)
N → S(S − 1)p(i) almost surely, where p(i, j) is the probability that for a given (center, context) pair, the center is i and

the context is j, and p(i) =
∑

j∈|V | p(i, j).

Thus, as N → ∞, we have

A = B ((S − 2)B + C)
−1

,

where B and C are defined in the statement of Lemma F.1.

We now define

• p1 = p(ci, cj) = p(di, dj) = p(ci, dj) = p(di, cj) for any i ̸= j;

• p2 = p(ri, rj) for any i ̸= j;

• p3 = p(ci, di) = p(di, ci) for any i;

• p4 = p(ci, rj) = p(di, rj) = p(rj , ci) = p(rj , di) for any i, j,

20

In-Context Learning from Training on Unstructured Data

where the equalities in the probabilities are a consequence of the data distribution.

For ease of presentation, we denote a square matrix with α on the diagonal and β off the diagonal as Xα,β , and a matrix
with all entries γ as Yγ . We then have

B =

X0,p1
Xp3,p1

Yp4

Xp3,p1
X0,p1

Yp4

Yp4
Yp4

X0,p2

 .

Now, define a = (S − 2)p1, b = (S − 2)p2, c = (S − 2)p3, d = (S − 2)p4, e = 2(K − 1)p1 + p3 + Lp4, and
f = (L− 1)p2 + 2Kp4. It is easy to see that

(S − 2)B + C =

Xe,a Xc,a Yd

Xc,a Xe,a Yd

Yd Yd Xf,b

 .

Moreover, its inverse can be written as

((S − 2)B + C)−1 =

Xq5,q1 Xq3,q1 Yq4

Xq3,q1 Xq5,q1 Yq4

Yq4 Yq4 Xq6,q2

 ,

where

∆ = 2a(K − 1)(b(L− 1) + f) + b(L− 1)(c+ e) + cf − 2d2KL+ ef ,

q1 = −
(

−abL+ab−af+d2L
(2a−c−e)∆

)
,

q2 = 2ab(K−1)+b(c+e)−2d2K
(b−f)∆ ,

q3 = −

−2a2b(K − 1)(L− 1)− 2a2f(K − 1) + 2abc(K − 2)(L− 1) + 2acf(K − 2)

+ 2(a− c)d2KL+ bc(c+ e)(L− 1) + cf(c+ e) + d2L(c− e)

(c− e)(2a− c− e)∆

,

q4 = −
(
d
∆

)
,

q5 = −

−2a2b(K − 1)(L− 1)− 2a2f(K − 1) + 2abe(K − 2)(L− 1) + 2aef(K − 2)

+ 2(a− e)d2KL+ be(c+ e)(L− 1) + ef(c+ e) + d2L(e− c)

(e− c)(2a− c− e)∆

,

and q6 = −
(

2a(K−1)(b(L−2)+f)+b(L−2)(c+e)+cf−2d2KL+2d2K+ef
(b−f)∆

)
.

By computing A = B((S − 2)B + C)−1, given the following center words, the similarities between them and all possible
context words are as follows:

• Center word = ci for any i

– ci : 2(K − 1)p1q1 + p3q3 + Lp4q4;
– cj : 2(K − 2)p1q1 + p1q5 + p3q1 + p1q3 + Lp4q4 (j ̸= i);
– di : 2(K − 1)p1q1 + p3q5 + Lp4q4;
– dj : 2(K − 2)p1q1 + p1q3 + p3q1 + p1q5 + Lp4q4 (j ̸= i);
– rj : 2(K − 1)p1q4 + p3q4 + p4q6 + (L− 1)p4q2 (for any j).

21

In-Context Learning from Training on Unstructured Data

• Center word = di for any i

– di : 2(K − 1)p1q1 + p3q3 + Lp4q4;
– dj : 2(K − 2)p1q1 + p1q5 + p3q1 + p1q3 + Lp4q4 (j ̸= i);
– ci : 2(K − 1)p1q1 + p3q5 + Lp4q4;
– cj : 2(K − 2)p1q1 + p1q3 + p3q1 + p1q5 + Lp4q4 (j ̸= i);
– rj : 2(K − 1)p1q4 + p3q4 + p4q6 + (L− 1)p4q2 (for any j).

• Center word = ri

– cj : 2(K − 1)p4q1 + p4q5 + p4q3 + (L− 1)p2q4 (for any j);
– dj : 2(K − 1)p4q1 + p4q5 + p4q3 + (L− 1)p2q4 (for any j);
– ri : 2Kp4q4 + (L− 1)p2q2;
– rj : 2Kp4q4 + (L− 2)p2q2 + p2q6 (j ̸= i).

Recall that the ICL problem of interest is the following: given context words ci1di1 · · · ciℓdiℓciℓ+1
, we aim to predict diℓ+1

.
Without loss of generality, we can rewrite the problem to predict dℓ+1 given context words c1d1 · · · cℓdℓcℓ+1. We now
compute the total similarity for each possible center word, where ϵ⊤δ indicates the similarity between the word ϵ in the
center and the word δ in the context.

• c1 (or any of c2, · · · , cℓ) : c⊤1 c1 + ℓc⊤1 c2 + c⊤1 d1 + (ℓ− 1)c⊤1 d2;

• d1 (or any of d2, · · · , dℓ) : c⊤1 d1 + ℓc⊤1 d2 + c⊤1 c1 + (ℓ− 1)c⊤1 c2;

• r1 (or any other rk’s) : (ℓ+ 1)r⊤1 c1 + ℓr⊤1 d1 = (2ℓ+ 1)r⊤1 c1;

• cℓ+1 : ℓc⊤1 c2 + ℓc⊤1 d2 + c⊤1 c1;

• dℓ+1 : ℓc⊤1 d2 + ℓc⊤1 c2 + c⊤1 d1;

• cℓ+2 (or any ck’s not in the context prompt) : (ℓ+ 1)c⊤1 c2 + ℓc⊤1 d2;

• dℓ+2 (or any dk’s not in the context prompt) : (ℓ+ 1)c⊤1 d2 + ℓc⊤1 c2.

Note that correctly predicting dℓ+1 is equivalent to the following conditions being simultaneously satisfied:

• c⊤1 d1 > c⊤1 c1, equivalent to p3q5 > p3q3;

• c⊤1 d2 > c⊤1 c1 and c⊤1 c2 > c⊤1 c1, equivalent to p1q3 + p3q1 + p1q5 > 2p1q1 + p3q3;

• c⊤1 d1 > c⊤1 c2 and c⊤1 d1 > c⊤1 d2, equivalent to 2p1q1 + p3q5 ≥ p1q5 + p1q3 + p3q1;

• 2ℓc⊤1 c2 + c⊤1 d1 > (2ℓ+ 1)r⊤1 c1, equivalent to 2ℓ(2(K − 2)p1q1 + p1q5 + p3q1 + p1q3 + Lp4q4) + 2(K − 1)p1q1 +
p3q5 + Lp4q4 > (2ℓ+ 1)(2(K − 1)p4q1 + p4q5 + p4q3 + (L− 1)p2q4);

In our data generating process, it is easy to see that p1 = 0, p2 = (S−2)(S−3)
L(L−1) , p3 = 1

K , and p4 = S−2
KL , where each pi is

multiplied by a constant S(S − 1) > 0 (without loss of generalization) to make calculations easier. From here, we have
a = 0, b = (S−2)2(S−3)

L(L−1) , c = S−2
K , d = (S−2)2

KL , e = S−1
K , and f = (S−1)(S−2)

L . Substituting to the above, we have

• q1 = (S−2)4

∆KL(2S−3) ;

• q3 = −K(S−2)2(S−1)2−(S−2)4

∆KL(2S−3) ;

• q4 = −(2S−3)(S−2)2

∆KL(2S−3) ;

• q5 = K(S−2)(S−1)3+(S−2)4

∆KL(2S−3) ,

22

In-Context Learning from Training on Unstructured Data

where ∆ = (S−1)2(S−2)
KL > 0.

We now check when these conditions are simultaneously satisfied. The first condition is equivalent to p3 > 0 and
K > 2(S−2)3

(S−1)2(2S−3) , which always hold. The second condition reduces to p3 > 0 and 2(S − 2)4 +K(S − 2)2(S − 1)2 > 0,
which is also true. The third condition can be written as p3 > 0 and K(S − 2)(S − 1)3 > 0, which always hold. The last
condition becomes

(2ℓ+ 1)((K + L)(S − 2)2(S − 1) +K(S − 2)(S − 1)2 − 2(S − 2)4) < KL(S − 1)3,

which is equivalent to

2ℓ+ 1 <
KL(S − 1)3

(K + L)(S − 2)2(S − 1) +K(S − 2)(S − 1)2 − 2(S − 2)4
.

Note that this condition ensures that the model predicts dℓ+1 instead of one of the ri’s.

G. Proof of Theorem B.2
Proof. We show that given a prompt of the form ci1di1 · · · ciℓdiℓciℓ+1

with distinct ik’s, a trained CBOW model is more
likely to predict diℓ+1

than eiℓ+1
. If this is established, the other part of the theorem follows analogously. We now define

• p1 = p(ci, dj) = p(di, cj) = p(di, dj) = p(ci, ej) = p(ei, cj) = p(ei, ej) for any i ̸= j;

• p2 = p(ri, rj) for any i ̸= j;

• p3 = p(ci, di) = p(di, ci) = p(ci, ei) = p(ei, ci);

• p4 = p(di, rj) = p(ri, dj) = p(ei, rj) = p(ri, ej) for any i, j;

where the equalities in the probabilities are a consequence of the data distribution. By direct calculation, we have
p1 = 1

K(K−1) , p2 = (S−4)(S−5)
L(L−1) , p3 = 1

K , and p4 = S−4
KL , where each pi is multiplied by S(S − 1) > 0 (without loss

of generalization) to make calculations easier. Moreover, it is easy to see that p(ci, rj) = p(ri, cj) = 2p4 for any i, j
and p(ci, cj) = 2p1 for any i ̸= j. Lastly, we define a = (S − 2)p1, b = (S − 2)p2, c = (S − 2)p3, d = (S − 2)p4,
e = 2(K − 1)p1 + p3 + Lp4, and f = 4Kp4 + (L− 1)p2.

The next step the proof is to use Lemma F.1 in Appendix F to obtain the similarity matrix A. As previously, we denote a
square matrix with α on the diagonal and β off the diagonal as Xα,β , and a matrix with all entries γ as Yγ . We then have

B =

X0,2p1

Xp3,p1
Xp3,p1

Y2p4

Xp3,p1 X0,p1 Y0 Yp4

Xp3,p1 Y0 X0,p1 Yp4

Y2p4
Yp4

Yp4
X0,p2

and

(S − 2)B + C =

X2e,2a Xc,a Xc,a Y2d

Xc,a Xe,a Y0 Yd

Xc,a Y0 Xe,a Yd

Y2d Yd Yd Xf,b

 . (2)

Moreover, its inverse can be written as

((S − 2)B + C)−1 =

Xq2,q1 Xq3,q1 Xq3,q1 Yq4

Xq3,q1 Xq5,q6 Xq7,q8 Yq4

Xq3,q1 Xq7,q8 Xq5,q6 Yq4

Yq4 Yq4 Yq4 Xq9,q10

 , (3)

23

In-Context Learning from Training on Unstructured Data

for some q1, q2, · · · , q10. Recall that our task is show that given context words ci1 , di1 , · · · , ciℓ , diℓciℓ+1
with distinct ik’s,

the center word is more likely to be diℓ+1
than eiℓ+1

. In other words, we need to establish that

d⊤iℓ+1
ci1 + d⊤iℓ+1

di1 + · · ·+ d⊤iℓ+1
ciℓ + d⊤iℓ+1

diℓ + d⊤iℓ+1
ciℓ+1

> e⊤iℓ+1
ci1 + e⊤iℓ+1

di1 + · · ·+ e⊤iℓ+1
ciℓ + e⊤iℓ+1

diℓ + e⊤iℓ+1
ciℓ+1,

where ϵ⊤δ indicates the similarity between the word ϵ in the center and the word δ in the context. This similarity can be
obtained from the matrix A = B((S − 2)B + C)−1. By symmetry, the inequality reduces to d⊤i dj > e⊤i dj for any i ̸= j.

By computing the matrix A, we have

d⊤i dj = p3q1 + p1q3 + (K − 2)p1q1 + (K − 2)p1q6 + Lp4q4 + p1q5

and

e⊤i dj = p3q1 + p1q3 + (K − 2)p1q1 + (K − 2)p1q8 + p1q7 + Lp4q4.

Thus, our problem again reduces to showing (K − 2)q6 + q5 > (K − 2)q8 + q7 as p1 = 1
K(K−1) > 0. Upon multiplying

(3) and (2) and equating the result with the identity matrix, we have the following equations:

a(K − 1)q1 + cq3 + dLq4 + eq5 + a(K − 1)q6 = 1 (4)
(c+ a(K − 2))q1 + aq3 + dLq4 + aq5 + (e+ a(K − 2))q6 = 0 (5)

a(K − 1)q1 + cq3 + dLq4 + eq7 + a(K − 1)q8 = 0 (6)
(c+ a(K − 2))q1 + aq3 + dLq4 + aq7 + (e+ a(K − 2))q8 = 0. (7)

Comparing (5) and (7) yields

a(((K − 2)q6 + q5)− ((K − 2)q8 + q7)) = e(q8 − q6).

As a = (S − 2)p1 > 0 and e = 2p1(K − 1) + p3 + p4L > 0, we now only need to show that q8 > q6. Comparing (4) and
(6) as well as (5) and (7), we have

a(q5 − q7) = (e+ a(K − 2))(q8 − q6)

e(q5 − q7) = a(K − 1)(q8 − q6) + 1,

which reduces to (q8 − q6)(e
2 + ae(K − 2)− a2(K − 1)) = a. The conclusion follows since a > 0 and

e2 + ae(K − 2)− a2(K − 1) = (e− a)(e+ a(K − 1)) =

(
S − 1

K
− S − 2

K(K − 1)

)
(e+ a(K − 1)) > 0.

H. Proof of Theorem 3.1
Proof. Consider the instance of predicting a from abc, i.e., f({a, b}, c). By the assumption on the data distribution, it is
equally likely that the task is predicting b from bac. In this case, the corresponding function is also f({a, b}, c). Thus, the
sum of the cross-entropy losses corresponding to these two tasks is lower bounded by 2 log 2 > 0. Also, it is easy to see that
we cannot achieve perfect accuracy since the predictions for abc and bac must be the same.

24

In-Context Learning from Training on Unstructured Data

We now show that it is possible to attain zero loss and perfect accuracy when the model includes positional embeddings,
so that f̃({(a, 1), (b, 2)}, (c, 3)) ̸= f̃({(b, 1), (a, 2)}, (c, 3)). As a special case, we consider a simplified version of the
transformer architecture, where

f̃({(a, 1), (b, 2)}, (c, 3)) =
∑

k∈{a,b,c}(xk + p1) exp((xk + p1)
⊤(xc + p3))∑

k∈{a,b,c} exp((xk + p1)⊤(xc + p3))
.

and

p(d | abc) ∝ exp
(
x⊤
d f̃({(a, 1), (b, 2)}, (c, 3))

)
.

for any token d. Here, xi and pj represent the embedding of token i and position j, respectively.

Let p⊤1 p3 = p, p⊤2 p3 = q, p⊤3 p3 = r, x⊤
i xi = s, x⊤

i xj = t for any i ̸= j, p⊤1 xi = u for any i, p⊤2 xi = v for any i,
and p⊤3 xi = w for any i. Note that this holds due to the assumed data generating process. We consider the following
construction: p1 = b1|V |, p2 = p3 = 1|V |, and xi = aei, where ei is a zero vector with 1 on the i-th entry. This implies
p = b|V |, q = r = |V |, s = a2, t = 0, u = ab, and v = w = a.

By direct calculation, the cross-entropy loss of predicting a from abc is given by

− log

(
exp(α1a

2)

exp(α1a2) + exp(α2a2) + exp(α3a2) + |V | − 3

)
,

where

α1 =
exp(ab+ b|V |)

exp(ab+ b|V |) + exp(a+ |V |) + exp(a2 + a+ |V |)
,

α2 =
exp(a+ |V |)

exp(ab+ b|V |) + exp(a+ |V |) + exp(a2 + a+ |V |)
,

α3 =
exp(a2 + a+ |V |)

exp(ab+ b|V |) + exp(a+ |V |) + exp(a2 + a+ |V |)
.

Letting b = a2 and a → ∞, it is easy to see that we can bring the cross-entropy loss arbitrarily close to zero. Consequently,
we also have a perfect prediction accuracy.

I. Experiments validating Theorem 3.1

Table 9. Prediction accuracy with single/multi-layer models. For successful ICL, it is crucial that the first token of sentences in the training
set covers the entire vocabulary (Both). Here, positional embeddings are essential, especially when using a one-layer model.

Both Either

Pos. emb. 1-layer 5-layer 1-layer 5-layer

Learned 1 1 0 0
Sinusoidal 1 1 0 0

No pos. emb. 0.30 0.89 0 0

We validate Theorem 3.1 by training transformers with causal masking to autoregressively learn sequences of the form
xi1xi2xi3xi1 , and assessing their accuracy in predicting the last token on a separate test data of the same pattern. We
use |V | = 20 and an embedding dimension of 10. We consider these settings: (i) number of layers: 1, 5; (ii) positional
embeddings: learned, sinusoidal, no positional embeddings; and (iii) train-test split: each token in the vocabulary is the

25

In-Context Learning from Training on Unstructured Data

first token in both the training and test sets (Both), each token in the vocabulary is the first token in either set, but not both
(Either).

Table 9 summarizes the results. Two main findings emerge: (1) for the model to successfully generalize to unseen sentences,
each token in V should be present as the first token in both the training and test sets; (2) positional embeddings are crucial
when using only one attention layer.

J. Proof of Proposition 3.2
Proof. The intermediate representation of the first layer is given by f1({xi1}), f2({xi1}, xi2)}, f3({xi1 , xi2}, xi3), and
f4({xi1 , xi2 , xi3}, xi1), for some functions f1, f2, f3, and f4. To predict the last xi1 , we use the third coordinate of the
second layer representation, which is given by t(xi1xi2xi3) := g3 ({f1({xi1}), f2({xi1}, xi2)}, f3({xi1 , xi2}, xi3)), for
some function g3. It is easy to see that in general, t(xi1xi2xi3) ̸= t(xi2xi1xi3).

K. Proof of Theorem C.1
Proof. In the one-noisy scenario, each sentence takes one of the following forms: nabacdc, anbacdc, abnacdc, abancdc,
abacndc, and abacdnc, where n ∈ N . In order to achieve the minimum possible theoretical loss, we minimize each loss
term separately. Concretely, the minimum loss of predicting the sixth token given the first five tokens is attained by the
following rule:

• When the first five tokens do not contain any nuisance token, output a uniform probability vector over N .

• Otherwise, output the conditional probability of c[2] given x, where (x, c[2]) ∈ S1. Here, x represents the last
non-nuisance token.

Under this rule, the predicted output for any in-context example abacd is never c, since c /∈ N . In the block-noisy scenario,
each sentence takes one of the following forms: n1n2n3abacdc, aban1n2n3cdc, and abacdcn1n2n3, where n1, n2, n3 ∈ N .
The minimum loss of predicting the ninth token given the first eight tokens is attained by the following rule:

• When the seventh token is not a nuisance token, output the seventh token with probability one.

• When the seventh token is a nuisance token, output a uniform probability vector over N .

Under this rule, the predicted output for any in-context example abacdcef is e, resulting in perfect ICL accuracy.

L. Proof of Theorem D.1
Proof. Recall that each training sentence is of the form x11x12x11x21x22x21 · · ·xN1xN2xN1. Note that we can decompose
the total loss L into L1+L2+ · · ·+L3N , where Lg denotes the loss of predicting the g-th token given all the other previous
tokens. As the xi1xi2xi1 blocks are generated independently, the optimal loss should satisfy L1 = L4 = · · · = L[3N−2] =
L[1], L2 = L5 = · · · = L[3N−1] = L[2], and L3 = L6 = · · · = L[3N] = L[3]. Therefore, it is sufficient to minimize
L[1] + L[2] + L[3].

In order to achieve the minimum possible theoretical loss, we need to minimize L[1], L[2], and L[3] separately. It is easy to
see that L[1] is minimized by outputting the marginal probability of c[1], where c ∈ S1. Similarly, L[2] is minimized by
outputting the conditional probability of c[2] given xi1 , where (xi1 , c[2]) ∈ S1. On the other hand, it is possible to achieve
an L[3] value of zero by outputting xi1 with probability one.

Now, given an ICL prompt x11x12x12x21x22x22 · · ·xℓ1xℓ2 where ℓ ≤ N , the trained model should predict xℓ1 with
probability one since {c[1] | c ∈ S2} = V and our ICL prompt corresponds to L[3]. This completes the proof.

M. Proof of Theorem D.2
Proof. We proceed similarly as the proof of Theorem D.1. Concretely, we separately minimize Lg for g ∈ [2k + 2], where
Lg denotes the loss of predicting the g-th token given all the other previous tokens. It is easy to see that L1 is minimized

26

In-Context Learning from Training on Unstructured Data

by outputting a uniform probability vector over a1:[I], whereas Lh (for any 2 ≤ h ≤ 2k + 1) is minimized by outputting
a uniform probability vector over V . Moreover, it is possible to achieve an L2k+2 value of zero by outputting bi with
probability one.

From here, given an ICL prompt of the form ai1bi1ai2bi2 · · · aiℓ , the trained model should predict a uniform probability
vector over V if ℓ ≤ k, and bi1 if ℓ = k + 1. In all cases, the model does not predict biℓ , completing the proof.

N. Limitations of this work
This study has several limitations. Firstly, the experiments are conducted on a relatively small scale. However, they still
provide sufficient evidence to support the theoretical findings. Secondly, the focus of this study is on two specific types
of in-context learning (ICL) tasks, as described in Section 1. Lastly, real data sets are not utilized due to the lack of
alignment with the study objectives. Despite these limitations, we believe that this work offers valuable insights into how
ICL arises through training on unstructured natural language data, supported by both theoretical and empirical evidence
from experiments involving prompting and synthetic data. Further analyses on other ICL tasks and their reliance on model
architecture can be fruitful avenues for future work.

O. Details of experiments and data sets
All experiments utilize the Keras package in Python, employing the Adam optimizer (Kingma and Ba, 2015) with a learning
rate of 0.01. Early stopping is applied based on validation loss with a patience threshold of 5, utilizing a randomly selected
subset representing 50% of the original data set. Each transformer layer uses two heads, as we empirically demonstrated
that increasing the number of heads does not impact performance in our experiments. Each layer consists of the following
components (in order): (1) Keras’ multi-head causal self-attention block, with key_dim = value_dim = embed_dim/2;
(2) Skip connection and layer normalization; (3) One hidden layer feed-forward network using the ReLU activation with
dimension = 2× embed_dim; and (4) Skip connection and layer normalization.

The world_population.csv data set, used for the experiments in Sections B.4 and B.5, is obtained from Kaggle. According to
the author, this data set is created from World Population Review.

The us-state-capitals.csv data set, used for the experiments in Section B.4, is obtained from this Github repository. Its source
is unclear.

The uscities.csv data set, used for the experiments in Section B.4, is obtained from Simple Maps, with a CC 4.0 license.

27

https://www.kaggle.com/datasets/iamsouravbanerjee/world-population-dataset
https://worldpopulationreview.com/
https://github.com/jasperdebie/VisInfo/blob/master/us-state-capitals.csv
https://simplemaps.com/data/us-cities

