
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPERIMENTAL DESIGN FOR NONSTATIONARY OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional methods for optimizing neural networks often struggle when used
to train networks in settings where the data distributions change, and plasticity
preservation methods have been shown to improve performance in such settings
(e.g. continual learning and reinforcement learning). With the growing interest
in nonstationary optimization and plasticity research, there is also a growing need
to properly define experimental design and hyperparameter search protocols to
enable principled research. Each new proposed work typically adds several new
hyperparameters and makes many more design decisions such as hyperparame-
ter selection protocols, evaluation protocols, and types of tasks examined. While
innovation in experiment design is important, it is also necessary to (1) question
whether those innovations are leading to the best progress and (2) have standard-
ized practices that make it easier to directly compare to prior works. In this paper,
we first perform an extensive empirical study of over 27,000 trials looking at the
performance of different methods and hyperparameters across different settings
and architectures used in the literature to provide an evaluation of these methods
and the hyperparameters they use under similar experimental conditions. We then
examine several core experiment design choices made by the community, affirm-
ing some while providing evidence against others, and provide concrete recom-
mendations and analysis that can be used to guide future research.

1 INTRODUCTION

Deep learning has seen success across a wide range of tasks and datasets. The trend of larger mod-
els and larger amounts of data, however, suggests the need to be able to update our models in an
online fashion on changing tasks and datasets. Most of our currently successful machine learning
systems were developed with training methods that assumed a static training distribution. When the
same training methods are applied in settings with changing, or nonstationary, data distributions,
they struggle to achieve the same level of performance (Ash & Adams, 2020; Abbas et al., 2023-
08-22/2023-08-25; Nikishin et al., 2022). In fact, in settings where nonstationarity is inherent either
by construction (e.g. continual learning) or because the solution methods require it (e.g. reinforce-
ment learning), many solutions instead focus on trying to transform the optimization problem into
something as stationary as possible (Mnih et al., 2015; Rolnick et al., 2019; Chaudhry et al., 2019b).

Recently, there has been a growing recognition of the limitations of traditional optimization methods
when applied to nonstationary problems. Specifically, recent works have looked at the phenomena
where neural networks get worse at both reducing training error and improving generalization per-
formance when exposed to different distributions than what they were trained on initially, problems
often collectively referred to as loss of plasticity. There are many different methods proposed to
mitigate this loss of plasticity, and mostly can be described as one of architectural (Abbas et al.,
2023-08-22/2023-08-25; Lyle et al., 2023-07-23/2023-07-29), regularization (Lyle et al., 2023-07-
23/2023-07-29; Lewandowski et al., 2024), or resetting (Lyle et al., 2024b; Dohare et al., 2021)
based.

The works introducing these methods also introduce many other experimental design choices.
As a consequence of the decentralized nature of research, these choices include everything
from the types of nonstationarities used to evaluate the methods to the protocols used to se-
lect hyperparameters, and often, these choices are hidden or unclear. In settings that require

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

nonstationary optimization such as continual learning (Cha & Cho, 2024) and reinforcement
learning (Henderson et al., 2018; Obando-Ceron et al., 2024), these choices have been shown to
have a huge impact on the evaluation of different methods: simply tuning an old method on a new
setting can result in new state-of-the-art results (Chaudhry et al., 2019b; van Hasselt et al., 2019;
Schwarzer et al., 2023).

With that in mind, our work examines a representative sample of plasticity preserving methods
across several different types of nonstationary settings and architectures that have been used in the
literature. Specifically, we look at permuted input, label shuffled, and noisy label versions of the
CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) datasets, using Multilayer Perceptrons (MLPs) and
ResNets (He et al., 2016). We choose settings and architectures that the community already works
with so that our findings can be directly useful to people working on these problems. We first per-
form an extensive hyperparameter sweep for each of these methods and evaluate them with a con-
sistent setup to evaluate which methods work well on different architectures and settings. We assess
the transferability of these methods and the impact of their hyperparameters on their performance.

We then further explore the experimental design decisions that need to be made when creating an
experiment for nonstationary optimization such as the number of seeds to use when evaluating a
hyperparameter configuration, or which metric to use to evaluate a model. Our goal is to not only
provide the research community with empirical results to guide the decision making that is often
done based on arbitrary intuition, but also enable research for groups with access to fewer resources
by telling them where to focus their resources.

To summarize, our contributions include a comprehensive evaluation of widely used current plas-
ticity preserving methods and their hyperparameters across several types of nonstationarities and
architectures, and an empirical evaluation of various experimental design decisions that go into do-
ing research on nonstationary optimization including:

• Which hyperparameter selection protocol to use?
• Whether we should be optimizing for both training and test accuracy when doing nonstationary

optimization research.
• How can we do a resource efficient hyperparameter search?

As part of our work, upon acceptance we will also be releasing the code and all of the intermediate
results for all the evaluations described in the rest of this paper as a base for future research.

2 RELATED WORK

2.1 PLASTICITY AND NONSTATIONARY OPTIMIZATION

After training on a task, neural networks have been shown to struggle to adapt to new data distribu-
tions in both the continual supervised learning (Dohare et al., 2024) and the reinforcement learning
settings (Nikishin et al., 2022; Abbas et al., 2023-08-22/2023-08-25). In fact, Ash & Adams (2020)
show that even networks pretrained on a subset of the task data underperform relative to randomly
initialized (untrained) networks when they are later trained on the full dataset. This type of non-
stationarity has been shown to affect the network’s ability to reduce both the training error (Dohare
et al., 2024) and the generalization, or testing error (Ash & Adams, 2020; Lee et al., 2024b). We
will refer to these as trainability and generalizability in the rest of the paper. The term loss of plas-
ticity usually refers to the first problem and sometimes the second problem. We will use “loss of
plasticity” as the umbrella term for both problems and use “trainability” and “generalizability” when
referring to the specific problems. Several different works have started exploring mechanisms and
causes for plasticity loss (Lyle et al., 2023-07-23/2023-07-29; Lewandowski et al., 2024; Lyle et al.,
2024b; Kumar et al., 2023). There has also been a growing literature showing that addressing plas-
ticity issues can lead to significant performance improvements not only in the standard continual
learning settings, but also for reinforcement learning agents (Abbas et al., 2023-08-22/2023-08-25;
Schwarzer et al., 2023; Lee et al., 2024a).

Plasticity loss mitigation measures usually fall into one of three categories: regularization, archi-
tectural, or resetting. Regularization based approaches involve adding a penalty or constraining
the parameters in some way, such as regularizing towards the initialization (Kumar et al., 2023;

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

...

...

...

Task 1 Task m

Shuffled
Label

Permuted
Input

Noisy to
Clean Label

(a) The three different distribution shifts described in Sec-
tion 3.1.

Protocol 1

Protocol 2

Protocol 3

...
Task 1 Task 2 Task m

Each box is
one seed

Used For:

Train

Validation

Test

Selection

Evaluation

(b) The three hyperparameter selection protocols
described in Section 3.3.

Figure 1: The task shifts and hyperparameter selection protocols used in our study.

Lewandowski et al., 2024) or towards smaller weight norm (Lyle et al., 2023-07-23/2023-07-29).
Architectural approaches involve modifying the neural network architecture itself, such as adding
normalization layers (Lyle et al., 2024b;a) or different activations (Abbas et al., 2023-08-22/2023-
08-25; Lee et al., 2024a). Finally, Resetting based approaches involve reinitializing or perturbing
the network weights in ways to reintroduce plasticity (Ash & Adams, 2020; Lee et al., 2024b; Sokar
et al., 2023; Abbas et al., 2023-08-22/2023-08-25).

2.2 HYPERPARAMETER SEARCH IN NONSTATIONARY SETTINGS

Because hyperparameters are intimately tied to how we use and evaluate any machine learning
algorithm, doing proper and equitable hyperparameter optimization is critical to properly compare
against prior work and make progress as a research community. For example, in reinforcement learn-
ing (RL), simply tuning an existing baseline created a new state-of-the-art result on the Atari100k
benchmark (Kaiser et al., 2019). Given the complexity and resource intensiveness of RL, further
work explored how to best and most efficiently tune hyperparameters for RL algorithms, including
examining reproducibility issues (Henderson et al., 2018), how to properly use multiple seeds to
evaluate an algorithm (Agarwal et al., 2021), and the consistency of selected configurations in a
search (Obando-Ceron et al., 2024).

Hyperparameter search in continual supervised learning suffers from similar issues of complexity
and resource requirements, with the added ambiguity of the criterion that should actually be used for
the selection and evaluation of a hyperparameter configuration. Previous works on hyperparameter
optimization in continual supervised learning focused on settings trying to mitigate forgetting, i.e.
performance degradation on tasks seen earlier in training, while learning new tasks. A common
approach is to set aside a portion of the training data from each incoming task as a validation set,
select the hyperparameters based on some aggregate metric on the validation sets across all tasks,
and then use the test set metrics as the final evaluation (Masana et al., 2023). Chaudhry et al. (2019a);
Cha & Cho (2024) propose tuning hyperparameters on one sequence of tasks and evaluating on a
different sequence of tasks. Lee et al. (2024c) explore different protocols where hyperparameters
were chosen after just a single task or were dynamically adapted after each task.

Our work evaluates several of these proposed protocols in the context of nonstationary optimization,
where we only try to maximize the model’s performance on the current task and do not attempt to
maintain performance on previous tasks. Since several previous works in this area are unclear on
some or all of the details of the experimental setup such as which hyperparameter selection protocol
was used or how many seeds were used, we also reimplement a representative sample of previous
works and evaluate them on a consistent setup.

3 BENCHMARKING SETUP

In this section, we outline the details of the different hyperparameter searches we conducted. We
outline the methods we analyzed in Section 3.2. For each method, we randomly sample 40 con-
figurations from the full search space for that method, as grid search would become prohibitively
expensive for some methods, and other methods like Bayesian search would impose a temporal
order on the sampling of the configurations that would make the analysis in Section 4 more difficult.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We study two different architectures, a 3 layer MLP with 128 hidden units at each layer and a
ResNet-18 (He et al., 2016). These architectures not only allow us to examine the methods at
different scales with different layer types, but they are also commonly used in the literature, making
our analysis more valuable for the community. We do a separate search for each combination of
method, architecture, and task stream. For each configuration sampled, we evaluate n = 20 seeds
for MLP runs and n = 10 seeds for ResNet-18 runs, with each seed having a different task stream
as well as model initialization.

The community has targeted both training accuracy (Dohare et al., 2021; Kumar et al., 2023;
Lewandowski et al., 2024; Lyle et al., 2024b) and test accuracy (Lee et al., 2024b; Elsayed et al.,
2024) as measures of interest when doing plasticity research. We study both, and particularly the
relation between them in Sections 4 and 4.3, and focus on test accuracy in the rest of the study. For
the Shuffled and Permuted settings, we compute the average accuracy across all tasks, while for the
Noisy setting, we only use the testing accuracy on the final task.

3.1 NONSTATIONARITIES

Each run in our setting involves training on a series of m tasks in sequence, with task k involving
learning on dataset Dk = {(xk

i , y
k
i )

nk
i=1}. The goal of the learner is to maximize performance on

task k, without trying to preserve performance on tasks 1 . . . k− 1. Several different nonstationarity
types have been proposed and studied in the plasticity literature. Most of them involve taking some
base dataset and applying some transformation. We will take a similar approach, with CIFAR-10
and CIFAR-100 (Krizhevsky, 2009) being used as the base datasets for the MLP and the ResNet-18
experiments respectively. In our study, we focus on the following three transformations (also shown
in Figure 1a):

Shuffled Label Our first transformation is the shuffled label transformation, where each task is
created by remapping the labels of the original dataset to new labels. Specifically, given the original
dataset D = {(xi, yi)

n
i=1} and a randomly generated permutation function Pk

y : Y → Y that
remaps the label space, task k involves learning on Dk = {(xi,Pk

y (yi))
n
i=1}. We prefer this output

transformation to the other commonly used output transformation where each sample is assigned a
random label as this allows us to probe the network’s ability to maintain generalizability and not just
trainability. We set the number of tasks m = 100 and m = 30 for MLP and ResNet-18 experiments
respectively.

Permuted Input Our second transformation is similar to the first, except instead of permuting
the output space, we permute the input space. This is a commonly used benchmark in continual
learning (Goodfellow et al., 2013), where given D and a randomly generated permutation function
Pk
x : X → X that permutes the locations of the pixels in input space, task k involves learning on

Dk = {(Pk
x (xi), yi)

n
i=1}. Similar to the shuffled label setup, we set the number of tasks m = 100

and m = 30 for MLP and ResNet-18 experiments respectively.

Noisy to Clean Label Our final transformation was proposed in (Lee et al., 2024b). Assuming
there are m total tasks in the task sequence, the dataset is split into m equal chunks, and then label
noise is applied to each chunk, going from a high level of noise at the beginning of training to a
clean chunk at the end of training. Given D, a corruption function T : Y × P → Y , and corruption
probability pk for task k, task k involves learning on Dk = {(xi, T (yi, p

k))
k·⌊ n

m ⌋
i=(k−1)·⌊ n

m ⌋}. For both
MLP and ResNet-18 experiments, we split the datasets into 10 chunks and linearly interpolate the
corruption probability from .5 to 0 over the course of the task sequence.

3.2 METHODS

Online This method does no plasticity preserving intervention other than the default L2 regulariza-
tion.
L2 Init (Kumar et al., 2023) This method, also known as regenerative regularization, replaces the
default L2 regularization (towards 0⃗) with an L2 regularization towards the network initialization.
LayerNorm This method simply adds Layer Normalization (Ba et al., 2016) before each ReLU
(Agarap, 2019) activation.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Sh
uff

led

CIFA
R-1

0

Per
mute

d

CIFA
R-1

0
Nois

y

CIFA
R-1

0
Sh

uff
led

CIFA
R-1

00

Per
mute

d

CIFA
R-1

00
Nois

y

CIFA
R-1

00

0.6

0.7

0.8

0.9

1.0
Tr

ai
n 

Ac
cu

ra
cy

Online
L2 Init

Shrink & Perturb
CBP

CReLU
LayerNorm

Hare & Tortoise
Redo

Sh
uff

led

CIFA
R-1

0

Per
mute

d

CIFA
R-1

0
Nois

y

CIFA
R-1

0
Sh

uff
led

CIFA
R-1

00

Per
mute

d

CIFA
R-1

00
Nois

y

CIFA
R-1

00

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

(a) Training and testing performance of different plasticity preserv-
ing methods from the literature across different distribution shifts
and architectures. Error bars represent 95% confidence intervals.

Train Ranking Test Ranking

Train
Ranking

Test
Ranking

Sh
uf

-C
10

Pe
rm

-C
10

No
i-C

10
Sh

uf
-C

10
0

Pe
rm

-C
10

0
No

i-C
10

0
Sh

uf
-C

10
Pe

rm
-C

10
No

i-C
10

Sh
uf

-C
10

0
Pe

rm
-C

10
0

No
i-C

10
0

Shuf-C10
Perm-C10

Noi-C10
Shuf-C100

Perm-C100
Noi-C100
Shuf-C10

Perm-C10
Noi-C10

Shuf-C100
Perm-C100

Noi-C100 1.0

0.5

0.0

0.5

1.0

(b) Kendall rank correlation coefficient
of the method rankings generated from
the performances on different distribution
shifts. 1.0 is perfectly correlated and -1.0 is
perfectly anti-correlated.

Figure 2: We present the performance of methods from the literature on settings representing differ-
ent architectures, distribution shifts, and datasets (left), as well as how well the the method rankings
for each setting correlate with each other (right).

CReLU(Abbas et al., 2023-08-22/2023-08-25) This method converts each ReLU activation function
into a (Concatenated ReLU) CReLU activation function. CReLU concatenates [relu(x), relu(−x)],
which increases the size of the network compared to other methods. We do not control for the num-
ber of parameters in our study.
Redo (Sokar et al., 2023) This method periodically finds the neurons with low activation absolute
values, and resets their incoming weights randomly and their outgoing weights to 0.
Hare & Tortoise (Lee et al., 2024b) This method maintains two copies of the network, a Hare net-
work that is trained on the data and a Tortoise network that is an exponentially moving average of
the Hare network. The parameters of the Hare network are periodically reset back to the parameters
of the Tortoise network.
Shrink & Perturb (Ash & Adams, 2020) This method multiplies the network parameters by a shrink-
age factor p < 1, and then perturbs the parameters with scaled noise sampled from the same distri-
bution as the network initialization.
CBP (Dohare et al., 2024) This method computes a utility function for each neuron and resets the
weights connected to low utility neurons (in a similar fashion to Redo) if the neuron had not been
reset in a while.

For each method, we search jointly over the method hyperparameters, as well as the optimizer (SGD
vs Adam), the learning rate, the L2 regularization penalty, and if the optimizer chosen was Adam,
the values for β1, β2, and ϵ. See Appendix A for the full search spaces.

3.3 SELECTION PROTOCOLS

In standard machine learning, selecting a hyperparameter configuration is fairly straightforward. To
avoid overfitting to the test set, practitioners perform k-fold cross-validation where they split the
dataset into k pieces, retraining k times each time leaving out one of the pieces to use for evaluation
(Hastie et al., 2009). With standard deep learning, this becomes more difficult as retraining is ex-
pensive, and so we simply set a piece of the training data aside as validation to use for selecting the
best configuration, then evaluating on the test set. With continual learning, this procedure becomes
ambiguous. Since we now have m different train, test, and validation datasets, as well as different
task sequences between n seeds, how do you select and evaluate your configurations?

We describe three protocols proposed in the literature for continual learning (Figure 1b). Each
protocol consists of a hyperparameter configuration selection procedure used to select amongst the
different configurations being evaluated in the search and a final evaluation procedure, which is used
to report the performance of the method and compare it to other methods.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Protocol 1: A commonly used protocol in continual learning (Masana et al., 2023) is to split the
training dataset for each incoming task into a training dataset and validation dataset. The average
validation metric (loss, accuracy, or any other metric of interest) across the different seeds and tasks
is used to select the best configuration, and the average test metric is reported for evaluation. The
selection and evaluation are done on the same task sequences.

Protocol 2: An alternative is to use multiple streams of tasks in the protocol (Chaudhry et al.,
2019a; Cha & Cho, 2024). Specifically, the test metric on one task sequence is used to select the
configuration, and the test metric on another task sequence is reported as the final evaluation. Cha &
Cho (2024) claim that Protocol 1 can overfit to the specific task sequence used, and this procedure
can mitigate that risk. In our study, each seed results in different transformations being applied and
thus represents a different task sequence.

Protocol 3: Finally, (Mesbahi et al., 2024) propose a protocol in the context of continual rein-
forcement learning where the test metric on the first k% of training is used for selection, and the
test metric on the rest of training is used for evaluation, claiming that this is a more realistic and
challenging protocol for continual learning.

4 A STUDY IN PLASTICITY

In this section, we analyze the results of the study described in section 3. We answer questions about
widely used methods for plasticity loss mitigation from the literature, as well as questions on the
practices used to evaluate them.

4.1 COMPARING PROTOCOLS

Nois
y

CIFA
R-10

Shuffle
d

CIFA
R-10

Per
muted

CIFA
R-10

Nois
y

CIFA
R-100

Shuffle
d

CIFA
R-100

Per
muted

CIFA
R-100

0.0

0.2

0.4

0.6

0.8

1.0

Ke
nd

al
l's

 

Protocol 1 Protocol 2 Protocol 3

Figure 3: A look at how the method rankings gen-
erated by the protocols described in Section 3.3
correlate with rankings of held out task sequences.
All protocols used half the available seeds/task
sequences to do model selection and evaluation.
The generated method rankings were compared
against the “held out” rankings generated by look-
ing at the test accuracy of the methods on the other
half of the task sequences. Error bars represent
95% empirical confidence intervals.

We first compare the effectiveness of the pro-
tocols described in Section 3.3. A further dis-
cussion of Protocol 3 will be done in Section
4.5. We first divide the seeds/task sequences
available for each configuration. We use half to
create a “held out” ranking of the methods by
taking the configuration of each method with
the highest average test accuracy across those
seeds. With the other half of the seeds, we do
model selection and evaluation based on each
of the protocols. We compute our estimates us-
ing statistical bootstrapping with 1000 trials by
resampling the seeds used to do model selec-
tion/evaluation. Based on the evaluations from
each protocol, we rank the performance of each
method and compare those rankings to the held
out ranking. For Protocol 3, we use the first
20% of tasks in the sequence for selection and
the latter 80% for evaluation.

As an example, with n = 20 seeds, each protocol has 10 seeds to perform both model selection and
evaluation. Protocol 1 uses the validation accuracy across all 10 seeds to perform model selection
and ranks the selected configuration based on the test accuracy of those 10 seeds. The selection
and evaluation are done using the same task sequences. Protocol 2 uses the test accuracy of 5 of
the seeds to do model selection, and ranks the selected configurations using the test accuracy of the
other 5 seeds. The 5 seeds used for selection represent different task sequences than the 5 used for
evaluation. Protocol 3 uses the test accuracy of the first 20% of tasks in the sequence across all 10
seeds to do model selection and uses the test accuracy across the rest of the tasks to evaluate the
models. The “held out” oracle rankings are created using test performance on the 10 unused seeds.
The best configuration is selected and evaluated using all 10 seeds.

This experiment tests the ability of these protocols to evaluate methods in a way that can transfer
to different task sequences. Our results (Figure 3) show that while there is no clear winner across

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Train Accuracy

0.00

0.25

0.50

0.75

1.00

Te
st

 A
cc

ur
ac

y

0.0 0.2 0.4 0.6 0.8 1.0
Train Accuracy

0.00

0.25

0.50

0.75

1.00

Te
st

 A
cc

ur
ac

y

(a) Train accuracy vs Test accu-
racy for all configurations sampled
in our study, coded by shift type.

0.00 0.25 0.50 0.75 1.00
Train Accuracy

0.00

0.25

0.50

0.75

1.00

Te
st

 A
cc

ur
ac

y

M
LP

0.00 0.25 0.50 0.75 1.00
Train Accuracy

0.00

0.25

0.50

0.75

1.00

Te
st

 A
cc

ur
ac

y

Re
sN

et

Noisy
Permuted
Shuffled

(b) Train accuracy vs Test accuracy
for the top 20% of configurations
sampled in our study, coded by shift
type.

Shift Model Slope p-value

Shuffled MLP -0.01 0.32
ResNet 0.28 0.22

Permuted MLP -0.0066 0.72
ResNet 0.05 0.22

Noisy MLP 0.02 0.45
ResNet 0.12 0.011

(c) Correlation between train accu-
racy and test accuracy for top 20%
of all configurations. The bolded
entry is the only one with a sta-
tistically significant positive corre-
lation between train and test accu-
racy.

Figure 4: A detailed look at the correlation between train accuracy and test accuracy achieved by
different configurations in our study. The top row shows MLP configurations, and the bottom row
shows ResNet-18 configurations. When considering all sampled configurations, there is a positive
relationship between train and test accuracy. When focusing on only the top 20% (i.e. the configura-
tions that are likely to be selected at the end of a hyperparameter search), however, the relationship
between train and test accuracy becomes weak if not nonexistent.

all settings, Protocol 2 is the only one that is not outright beaten by another protocol (taking into
account the confidence interval (CI)), and it is the outright best on Shuffled CIFAR-10. Protocol
2 outright beats Protocol 1 on 2 of the 6 settings, and approximately matches performance (within
CI) on the other 4, providing evidence for the claim in Cha & Cho (2024) that Protocol 1 overfits
compared to Protocol 2. Protocol 3 similarly is outright worse on 2 settings compared to Protocol 2,
and within the CI on the other 4. Thus, we argue that there is not much advantage to be gained from
using Protocols 1 or 3, and at least a few settings where it is disadvantageous to do so.

4.2 THE PERFORMANCE OF CURRENT METHODS

We now evaluate the performance of methods from the literature across both nonstationarities and
architectures (Figure 2). Based on the results of the previous section, we use protocol 2 for model
selection and evaluation. Figure 2a shows both the training and testing performance of each method
on our suite of benchmarks. We observe the following results: (1) A well tuned Online baseline does
surprisingly well. The only evaluation where it is clearly last place is test accuracy on Permuted
CIFAR-100. On the others, it beats at least one and often times multiple baselines that claim to
outperform it. (2) Training accuracy starts to saturate on 4 out of the 6 settings we study. For the
larger ResNet-18 architecture, nearly all methods are saturated on all the distribution shifts. (3)
When looking at test performance, Hare & Tortoise and CReLU do well across all the settings we
examine. Shrink & Perturb does well on the ResNet architecture (top 2 for each setting), while L2
Init does well with the MLP architecture (top 3 in each setting) and struggles with ResNet (bottom
2 in each setting).

We also look at the correlation between the rankings of the methods on each setting in Figure 2b.
We see that with a couple of exceptions, the method rankings on different settings and evaluation
criteria (train vs test accuracy) are not strongly correlated with each other. Especially comparing
rankings generated from train accuracy and those from test accuracy, we find that many of them are
in fact anti-correlated, implying that a method that does better on one does worse on the other.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 CORRELATION BETWEEN TRAINING AND TESTING PLASTICITY

Many previous works exploring plasticity and nonstationary optimization often focus on trainabil-
ity, arguing that fixing trainability is a precondition to fixing generalizability. Many works do not
even report testing accuracy and often use distribution shifts such as Random Label Assignment,
where each individual example is assigned a random label, with the goal being to test the limits of
trainability and ignoring generalizability.

In this section, we question this line of reasoning. In Figure 4, we see the correlation between train
and test accuracy of different configurations. The train and test accuracies were obtained by averag-
ing the results of all seeds for that configuration. In Figure 4a, we see a positive correlation when
plotting all configurations, but there is a leveling off of the test accuracy after a certain point. When
focusing on just the top 20% of configurations in each setting (Fig. 4b) (i.e. the configurations that
are likely to be actually chosen after a hyperparameter search), the positive correlation essentially
disappears for most settings. There is in fact a (statistically insignificant) negative correlation for
a couple of the MLP settings, and even for the settings with a positive correlation, Noisy CIFAR-
100 with ResNet is the only setting where we see a statistically significant result (p < .05). Thus,
trainability correlates with generalizability only up to a point, after which continuing to improve
trainability does not end up correlating with the end goal of improving model performance. This
suggests that (1) for the types of settings presented in this study (which are representative of what
is currently studied in the literature), we should shift our focus from improving trainability to the
problem of improving generalizability. (2) Studying trainability could still be a valuable problem,
but we should find harder settings to do so.

4.4 HOW MANY SEEDS DO YOU NEED TO EVALUATE A METHOD?

Many prior works use anywhere between 1 and 5 seeds for hyperparameter selection and then run
the selected configuration with more seeds. Figure 5 looks at the effect of the number of seeds used
when selecting hyperparameter configurations. For a given number of seeds, we perform statistical
bootstrapping with 1000 trials by resampling the seeds used to do model selection. We use the
sampled measurements to create rankings over the configurations being evaluated for each method,
and compare them to the “oracle” rankings which we compute by taking the average of all available
seeds.

Figure 5a shows that to ensure that the absolute best configuration is chosen for every method, you
likely need to use almost all the available seeds. If we relax our requirements slightly, however,
in Figures 5b and 5c, we see that for most settings (aside from Permuted CIFAR-10 with MLP
and Noisy CIFAR-100 with ResNet-18), just a couple of seeds are enough to ensure that the top
configuration is actually the oracle best and that the oracle best configuration is evaluated as a top 3
configuration in the selection process.

These results imply that we do not need very many seeds to do effective hyperparameter selection.
Furthermore, the results from Figures 5b and 5c point to a potentially effective use case of sequential
hyperparameter optimization approaches that can refine configurations or request more resources for
promising configurations.

4.5 HOW MANY TASKS DO YOU NEED TO EVALUATE A METHOD?

Protocol 3 in Section 3.3 proposes that we only use a subset of the tasks in the sequence to do
model selection. We see in Figure 6a, that unfortunately, this protocol is not able to find the best
configurations for future tasks for the methods we studied. This suggests that either our methods
might not be robust learners that can maintain performance no matter what stage of training they are
in and/or we need better ways of selecting the best configuration rather than best average accuracy
over tasks seen so far. Creating methods that can succeed in this protocol (or something similar) can
help us create agents that do well on lifetimes longer than what the protocol sees in the selection
stage, a necessary step in creating lifelong learning agents with unbounded lifetimes.

While not able to maintain performance for just future tasks, if we change our evaluation criteria
to accuracy on all tasks (Figure 6b), including those already seen by the learner, we see that for
many settings (e.g. Shuffled CIFAR-10, CIFAR-100, Permuted CIFAR-10), we can perfectly select
the best configuration with fewer than half the tasks in the full sequence, and can do respectably

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5 10 15 20
Number of Seeds

0.0

0.2

0.4

0.6

0.8

1.0

P(
Be

st
 C

on
fig

 S
el

ec
te

d)

(a) Probability best configuration is
selected for any given method.

5 10 15 20
Number of Seeds

0.0

0.2

0.4

0.6

0.8

1.0

P(
Tr

ue
 To

p 
3 

| S
el

ec
te

d)

(b) Probability that the configura-
tion evaluated as best is actually a
top 3 configuration.

5 10 15 20
Number of Seeds

0.0

0.2

0.4

0.6

0.8

1.0

P(
To

p 
3 

in
 E

va
lu

at
io

n 
| B

es
t)

Noisy
Permuted
Shuffled

MLP
ResNet

(c) Probability that the best config-
uration is evaluated as a top 3 con-
figuration.

Figure 5: A look at how the quality of the configurations selected by a hyperparameter search
changes as you vary the number of seeds used to evaluate the configurations in the search. For most
settings, to identify the absolute best configuration, you need a large number of seeds, but if allowed
to select multiple configurations, even 1 or 2 seeds can be enough. All figures were generated by
doing statistical bootstrapping and show the empirical 95% confidence interval. Note, that the lines
end at different x-values since the different settings have a different number of total seeds. The
“True” ranking mentioned in the figures refers to the ranking generated by using all 20 seeds.

1 2 5 10 20 50 100
Number of Tasks for Selection

0.2

0.4

0.6

0.8

1.0

P(
Be

st
 C

on
fig

 S
el

ec
te

d
fo

r F
ut

ur
e 

Ta
sk

s)

Noisy
Permuted
Shuffled

MLP
ResNet

(a) Probability that a configuration selected after n
tasks of evaluation will be the best configuration for
the rest of the tasks.

1 2 5 10 20 50 100
Number of Tasks for Selection

0.2

0.4

0.6

0.8

1.0
P(

Be
st

 C
on

fig
 S

el
ec

te
d)

(b) Probability that a configuration selected after n
tasks of evaluation will be the best configuration when
evaluating over all tasks.

Figure 6: Compares the effect of using fewer tasks for hyperparameter selection. If the metric we
care about is the average accuracy across all tasks, then a comparably small number of tasks can be
used. However, future task performance is more difficult to predict with just prior tasks. Note, the
lines end at different x-values since the different settings have different numbers of tasks.

on the other settings as well with fewer tasks. Thus, during hyperparameter optimization, we can
likely short circuit a run early and still potentially have a good estimate for the configuration’s
performance.

4.6 HOW MANY HYPERPARAMETER CONFIGURATIONS DO YOU NEED TO EVALUATE?

Here, we look at the benefits of sampling more configurations on the quality of the configuration
selected. In Figure 7, we see that across all the settings, sampling more configurations helps up to a
certain point, with diminishing returns. After 20-30 configurations, the expected improvement with
each additional config for most settings becomes negligible. This is not even considering the fact
that our searcher was an unintelligent random searcher. More intelligent algorithms can potentially
be even more efficient with the configuration budget.

5 DISCUSSION AND TAKEAWAYS

With the growing interest and body of work in nonstationary optimization, it’s important to ensure
that we design our experiments in a principled manner, such that our results are significant, repro-
ducible, and can be compared to by future work. We find that under similar hyperparameter search

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1 2 5 10 20 40
Number of Configurations Selected

0.1

0.2

0.3

0.4

0.5

Ex
pe

ct
ed

 Te
st

 A
cc

ur
ac

y

(a) Expected test accuracy vs the number of
configurations sampled in the hyperparameter
search. Shaded regions are 95% confidence in-
tervals.

0 10 20 30 40
Number of Configurations Selected

10 4

10 3

10 2

10 1

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

in
 Te

st
 A

cc
ur

ac
y

(b) Expected improvement with each addi-
tional configuration sampled in the hyperpa-
rameter search.

1 2 5 10 20 40

0.1

0.2

0.3

0.4

0.5

Noisy
Permuted
Shuffled
MLP
ResNet

Figure 7: There are diminishing returns with sampling more configurations in the search. Even with
a random searcher, performance improvement stalls after about 20-30 configurations. A smarter
searcher can potentially be even more efficient.

protocols, there is no method that clearly outperforms all others across different types of distribution
shifts and architectures. Our paper also examines a host of design decisions that go into designing
these experiments in the context of nonstationary optimization, to enable that future work.

Hyperparameter Search Protocol We should not do model selection on the same task sequences
that we use to report our evaluation on as that can lead to performance overestimation and method
rankings that do not transfer to different task sequences. Furthermore, our current methods, do not
perform well in the case where the first few tasks are used to do model selection for the rest of the
model’s “lifetime”, as proposed in (Mesbahi et al., 2024). The ability to select hyperparameters that
transfer to timescales not seen in the hyperparameter selection stage is essential to create lifelong
agents with unbounded lifetimes. The failure of current methods/protocols to do so invites further
research.

Training vs Testing Plasticity The plasticity community has focused much of its effort on cre-
ating methods to mitigate the loss of training accuracy, as a prerequisite to eventually improving
performance on generalization accuracy. For the types of datasets currently studied by the commu-
nity, this approach is unsound, as improvements in the ability to maintain training accuracy do not
lead to improvements in the ability to maintain generalizability. We should be studying trainability
on harder settings where improvements in trainability lead to improvements in generalizability.

Creating Resource Efficient Hyperparameter Searches We explore the effect of three factors
that can affect the resources used in a nonstationary optimization hyperparameter search: number
of seeds, number of tasks used in the search, and number of configurations sampled. For many
settings, you do not need a large number of seeds while doing a hyperparameter search. When using
a few seeds, a viable approach could also be to select multiple configurations and train them with
more seeds to get a better estimate before selecting a final configuration. We also find that in many
settings, you can reduce the number of tasks by as much as 50% and still be able to identify the best
configuration for the full task sequence. Finally, even when doing an unintelligent random search,
you do not need to sample more than 20-30 configurations on most settings to find performant
configurations.

We specifically designed our study around datasets, distribution shifts, and architectures that have
been used by several prior works in this field to ensure that our findings are directly useful to the
community. We hope that these findings will also enable good research for researchers with access
to fewer resources, as our work points to several ways to make experiments more efficient.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. Loss of plastic-
ity in continual deep reinforcement learning. In Sarath Chandar, Razvan Pascanu, Hanie Sedghi,
and Doina Precup (eds.), Proceedings of the 2nd Conference on Lifelong Learning Agents, volume
232 of Proceedings of Machine Learning Research, pp. 620–636. PMLR, 2023-08-22/2023-08-
25.

Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU), February 2019.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep Reinforcement Learning at the Edge of the Statistical Precipice. In Advances in Neural
Information Processing Systems, volume 34, pp. 29304–29320. Curran Associates, Inc., 2021.

Jordan Ash and Ryan P Adams. On Warm-Starting Neural Network Training. In Advances in Neural
Information Processing Systems, volume 33, pp. 3884–3894. Curran Associates, Inc., 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization, July 2016.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: Composable transformations of Python+NumPy programs, 2018.

Sungmin Cha and Kyunghyun Cho. Hyperparameters in Continual Learning: A Reality Check.
https://arxiv.org/abs/2403.09066v2, March 2024.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-GEM. In International Conference on Learning Representations, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K.
Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. On Tiny Episodic Memories in Continual
Learning. https://arxiv.org/abs/1902.10486v4, February 2019b.

Shibhansh Dohare, A. Rupam Mahmood, and Richard S. Sutton. Continual backprop: Stochastic
gradient descent with persistent randomness. CoRR, abs/2108.06325, 2021.

Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Rupam Mah-
mood, and Richard S. Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768–774, August 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07711-7.

Mohamed Elsayed, Qingfeng Lan, Clare Lyle, and A. Rupam Mahmood. Weight clipping for deep
continual and reinforcement learning, 2024.

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An
Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks.
https://arxiv.org/abs/1312.6211v3, December 2013.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, volume 2. Springer, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 770–778, 2016.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1), April 2018. doi: 10.1609/aaai.v32i1.11694.

Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model Based Reinforcement Learning
for Atari. In International Conference on Learning Representations, September 2019.

A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University
of Tront, 2009.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining Plasticity in Continual
Learning via Regenerative Regularization, October 2023.

Hojoon Lee, Hanseul Cho, Hyunseung Kim, Daehoon Gwak, Joonkee Kim, Jaegul Choo, Se-Young
Yun, and Chulhee Yun. Plastic: Improving input and label plasticity for sample efficient rein-
forcement learning. Advances in Neural Information Processing Systems, 36, 2024a.

Hojoon Lee, Hyeonseo Cho, Hyunseung Kim, Donghu Kim, Dugki Min, Jaegul Choo, and Clare
Lyle. Slow and Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks,
June 2024b.

Thomas L. Lee, Sigrid Passano Hellan, Linus Ericsson, Elliot J. Crowley, and Amos Storkey. Hy-
perparameter Selection in Continual Learning. https://arxiv.org/abs/2404.06466v1, April 2024c.

Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, and Marlos C. Machado. Directions of
Curvature as an Explanation for Loss of Plasticity, February 2024.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 23190–23211. PMLR, 2023-07-23/2023-07-29.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, James Martens, Hado van Hasselt, Razvan Pascanu,
and Will Dabney. Normalization and effective learning rates in reinforcement learning, 2024a.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens,
and Will Dabney. Disentangling the causes of plasticity loss in neural networks, 2024b.

Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D. Bagdanov, and Joost
van de Weijer. Class-Incremental Learning: Survey and Performance Evaluation on Image Clas-
sification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5513–5533,
May 2023. ISSN 1939-3539. doi: 10.1109/TPAMI.2022.3213473.

Golnaz Mesbahi, Parham Mohammad Panahi, Olya Mastikhina, Martha White, and Adam White.
K-percent evaluation for lifelong RL, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, February 2015. ISSN 1476-4687. doi: 10.1038/nature14236.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
Primacy Bias in Deep Reinforcement Learning. In Proceedings of the 39th International Confer-
ence on Machine Learning, pp. 16828–16847. PMLR, June 2022.

Johan Obando-Ceron, João G. M. Araújo, Aaron Courville, and Pablo Samuel Castro. On
the consistency of hyper-parameter selection in value-based deep reinforcement learning.
https://arxiv.org/abs/2406.17523v2, June 2024.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-
ence Replay for Continual Learning. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

Max Schwarzer, Johan Obando-Ceron, Aaron Courville, Marc Bellemare, Rishabh Agarwal, and
Pablo Samuel Castro. Bigger, Better, Faster: Human-level Atari with human-level efficiency,
June 2023.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The Dormant Neuron Phe-
nomenon in Deep Reinforcement Learning, June 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in rein-
forcement learning? In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Shuhei Watanabe, Archit Bansal, and Frank Hutter. PED-ANOVA: Efficiently quantifying hyper-
parameter importance in arbitrary subspaces. In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI ’23, pp. 4389–4396, Macao, P.R.China, August
2023. ISBN 978-1-956792-03-4. doi: 10.24963/ijcai.2023/488.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Method Parameter Values

Base
L2 Weight 0.0, 0.01, 0.0001

Optimizer SGD, Adam

Learning Rate 0.1, 0.01, 0.001, 0.0001, 0.00001

β1 0.9, 0.0

β2 0.99, 0.999, 0.9999

ϵ 1× 10−4, 1× 10−8, 1× 10−16

Hare & Tortoise
Base Optimizer SGD, Adam

Reset Period 200, 400, 1000, 2000, 4000, 20000

HT µ 0.98, 0.99, 0.995, 0.999, 0.9995, 0.9999

L2 Init
Regularization Weight 0.1, 0.01, 0.001, 0.0001

L2 Weight 0.0

ReDo
Reset Period 200, 400, 1000, 2000, 4000, 20000

Dormancy Threshold 0.01, 0.02, 0.05, 0.1, 0.2, 0.5

Shrink & Perturb
Noise Scale 0.001, 0.01, 0.1, 1.0

Shrink Weight 0.0, 0.2, 0.4, 0.6, 0.8, 1.0

L2 Weight 0.0

CBP
Decay Rate 0.9, 0.99, 0.999

Maturity Threshold 100, 1000, 10000

Replacement Rate 1× 10−3, 1× 10−4, 1× 10−5, 1× 10−6

Table 1: The search space used for every method in our study. Every method included the Base
space as part of its search, and some methods added additional hyperparameters.

A HYPERPARAMETER SEARCH SPACES

We present the search space used for each method in Table 1.

B TRAINING DETAILS

We briefly describe the training procedure we used for training. All experiments used batch size
256. For the MLP experiments, each task consisted of 100,000 gradient steps of training with batch
size 256. For ResNet-18, each task consisted of 20,000 gradient steps also with batch size 256. Each
seed ran a different randomly generated task sequence. All experiments were run in JAX (Bradbury
et al., 2018), parallelized over seeds.

We also list the hyperparameter configuration for the best sampled configuration for each setting and
method in Table 2.

C HYPERPARAMETER IMPORTANCE

We now look at the importance of different hyperparameters across different methods and settings
(Figure 8). We calculate the PED-ANOVA (Watanabe et al., 2023) importance score for each hy-
perparameter, which describes the relative importance of each hyperparameter in predicting final
performance. The learning rate and L2 Loss weight value seem to be consistently important across
all methods. Method specific hyperparameters tend to be fairly important.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Setting Model Method Test
Accuracy Hyperparameters

Noisy CIFAR-10 MLP CBP 0.46 Optimizer=SGD,LR=1.00e-04,L2 Loss Weight=1.00e-04,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01,Replacement Rate=1.00e-05,Maturity Threshold=1.00e+02,Decay Rate=9.90e-01,

Noisy CIFAR-10 MLP CReLU 0.48 Optimizer=SGD,LR=1.00e-04,L2 Loss Weight=1.00e-04,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01

Noisy CIFAR-10 MLP H&T 0.48 LR=1.00e-05,L2 Loss Weight=1.00e-04,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=9.99e-01,
Base Opt=Adam,Mom=1.00e+00,Reset Period=1.00e+03

Noisy CIFAR-10 MLP L2 Init 0.47 Optimizer=SGD,LR=1.00e-04,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=9.90e-01,
L2 Init Weight=1.00e-04

Noisy CIFAR-10 MLP LN 0.44 Optimizer=SGD,LR=1.00e-05,L2 Loss Weight=1.00e-04,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01

Noisy CIFAR-10 MLP Online 0.47 Optimizer=SGD,LR=1.00e-04,L2 Loss Weight=1.00e-04,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01

Noisy CIFAR-10 MLP Redo 0.47 Optimizer=SGD,LR=1.00e-04,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01,Reset Period=4.00e+02,Dormancy Threshold=2.00e-02

Noisy CIFAR-10 MLP S&P 0.46 Optimizer=SGD,LR=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=9.90e-01,
Shrink Weight=4.00e-01,Noise Scale=1.00e-03

Noisy CIFAR-100 ResNet-18 CBP 0.30 Optimizer=Adam,LR=1.00e-04,L2 Loss Weight=1.00e-04,Adam ϵ=1.00e-16,Adam β1=0.00e+00,
Adam β2=9.99e-01,Replacement Rate=1.00e-06,Maturity Threshold=1.00e+04,Decay Rate=9.99e-01,

Noisy CIFAR-100 ResNet-18 CReLU 0.35 Optimizer=Adam,LR=1.00e-03,L2 Loss Weight=0.00e+00,Adam ϵ=1.00e-16,Adam β1=0.00e+00,
Adam β2=9.90e-01

Noisy CIFAR-100 ResNet-18 H&T 0.36 LR=1.00e-03,L2 Loss Weight=1.00e-04,Adam ϵ=1.00e-04,Adam β1=0.00e+00,Adam β2=9.90e-01,
Base Opt=Adam,Mom=9.99e-01,Reset Period=2.00e+02

Noisy CIFAR-100 ResNet-18 L2 Init 0.26 Optimizer=Adam,LR=1.00e-05,Adam ϵ=1.00e-16,Adam β1=9.00e-01,Adam β2=9.99e-01,
L2 Init Weight=1.00e-04

Noisy CIFAR-100 ResNet-18 Online 0.30 Optimizer=Adam,LR=1.00e-04,L2 Loss Weight=0.00e+00,Adam ϵ=1.00e-04,Adam β1=0.00e+00,
Adam β2=9.99e-01

Noisy CIFAR-100 ResNet-18 Redo 0.31 Optimizer=Adam,LR=1.00e-03,L2 Loss Weight=0.00e+00,Adam ϵ=1.00e-04,Adam β1=9.00e-01,
Adam β2=9.99e-01,Reset Period=4.00e+02,Dormancy Threshold=2.00e-02

Noisy CIFAR-100 ResNet-18 S&P 0.35 Optimizer=Adam,LR=1.00e-04,Adam ϵ=1.00e-04,Adam β1=9.00e-01,Adam β2=9.90e-01,
Shrink Weight=4.00e-01,Noise Scale=1.00e-03

Permuted CIFAR-10 MLP CBP 0.52 Optimizer=SGD,LR=1.00e-03,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01,Replacement Rate=1.00e-04,Maturity Threshold=1.00e+02,Decay Rate=9.00e-01,

Permuted CIFAR-10 MLP CReLU 0.52 Optimizer=Adam,LR=1.00e-05,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-04,Adam β1=9.00e-01,
Adam β2=1.00e+00

Permuted CIFAR-10 MLP H&T 0.55 LR=1.00e-04,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=1.00e+00,
Base Opt=Adam,Mom=9.99e-01,Reset Period=2.00e+02

Permuted CIFAR-10 MLP L2 Init 0.53 Optimizer=SGD,LR=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=9.90e-01,
L2 Init Weight=1.00e-02

Permuted CIFAR-10 MLP LN 0.51 Optimizer=SGD,LR=1.00e-04,L2 Loss Weight=0.00e+00,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01

Permuted CIFAR-10 MLP Online 0.51 Optimizer=Adam,LR=1.00e-05,L2 Loss Weight=1.00e-04,Adam ϵ=1.00e-04,Adam β1=9.00e-01,
Adam β2=9.90e-01

Permuted CIFAR-10 MLP Redo 0.51 Optimizer=SGD,LR=1.00e-03,L2 Loss Weight=1.00e-04,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01,Reset Period=4.00e+03,Dormancy Threshold=2.00e-01

Permuted CIFAR-10 MLP S&P 0.53 Optimizer=SGD,LR=1.00e-03,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=9.90e-01,
Shrink Weight=2.00e-01,Noise Scale=1.00e-03

Permuted CIFAR-100 ResNet-18 CBP 0.24 Optimizer=SGD,LR=1.00e-01,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01,Replacement Rate=1.00e-03,Maturity Threshold=1.00e+03,Decay Rate=9.90e-01,

Permuted CIFAR-100 ResNet-18 CReLU 0.30 Optimizer=SGD,LR=1.00e-01,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01

Permuted CIFAR-100 ResNet-18 H&T 0.26 LR=1.00e-01,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=9.90e-01,
Base Opt=SGD,Mom=1.00e+00,Reset Period=1.00e+04

Permuted CIFAR-100 ResNet-18 L2 Init 0.24 Optimizer=SGD,LR=1.00e-01,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=9.90e-01,
L2 Init Weight=1.00e-03

Permuted CIFAR-100 ResNet-18 Online 0.23 Optimizer=SGD,LR=1.00e-02,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01

Permuted CIFAR-100 ResNet-18 Redo 0.26 Optimizer=SGD,LR=1.00e-01,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01,Reset Period=2.00e+02,Dormancy Threshold=5.00e-01

Permuted CIFAR-100 ResNet-18 S&P 0.28 Optimizer=SGD,LR=1.00e-01,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=9.90e-01,
Shrink Weight=2.00e-01,Noise Scale=1.00e-01

Shuffled CIFAR-10 MLP CBP 0.51 Optimizer=Adam,LR=1.00e-05,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=0.00e+00,
Adam β2=9.99e-01,Replacement Rate=1.00e-03,Maturity Threshold=1.00e+03,Decay Rate=9.99e-01,

Shuffled CIFAR-10 MLP CReLU 0.52 Optimizer=Adam,LR=1.00e-03,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-04,Adam β1=9.00e-01,
Adam β2=1.00e+00

Shuffled CIFAR-10 MLP H&T 0.51 LR=1.00e-05,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-16,Adam β1=0.00e+00,Adam β2=1.00e+00,
Base Opt=Adam,Mom=1.00e+00,Reset Period=4.00e+03

Shuffled CIFAR-10 MLP L2 Init 0.53 Optimizer=SGD,LR=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=9.90e-01,
L2 Init Weight=1.00e-02

Shuffled CIFAR-10 MLP LN 0.51 Optimizer=Adam,LR=1.00e-03,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=0.00e+00,
Adam β2=9.90e-01

Shuffled CIFAR-10 MLP Online 0.51 Optimizer=Adam,LR=1.00e-03,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-16,Adam β1=0.00e+00,
Adam β2=9.90e-01

Shuffled CIFAR-10 MLP Redo 0.52 Optimizer=Adam,LR=1.00e-03,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-16,Adam β1=0.00e+00,
Adam β2=9.99e-01,Reset Period=4.00e+03,Dormancy Threshold=5.00e-01

Shuffled CIFAR-10 MLP S&P 0.52 Optimizer=SGD,LR=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=9.90e-01,
Shrink Weight=8.00e-01,Noise Scale=1.00e-01

Shuffled CIFAR-100 ResNet-18 CBP 0.45 Optimizer=SGD,LR=1.00e-01,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01,Replacement Rate=1.00e-06,Maturity Threshold=1.00e+02,Decay Rate=9.99e-01,

Shuffled CIFAR-100 ResNet-18 CReLU 0.47 Optimizer=SGD,LR=1.00e-01,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01

Shuffled CIFAR-100 ResNet-18 H&T 0.46 LR=1.00e-02,L2 Loss Weight=1.00e-04,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=9.90e-01,
Base Opt=Adam,Mom=1.00e+00,Reset Period=4.00e+02

Shuffled CIFAR-100 ResNet-18 L2 Init 0.39 Optimizer=SGD,LR=1.00e-01,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=9.90e-01,
L2 Init Weight=1.00e-03

Shuffled CIFAR-100 ResNet-18 Online 0.45 Optimizer=SGD,LR=1.00e-01,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01

Shuffled CIFAR-100 ResNet-18 Redo 0.45 Optimizer=SGD,LR=1.00e-01,L2 Loss Weight=1.00e-02,Adam ϵ=1.00e-08,Adam β1=9.00e-01,
Adam β2=9.90e-01,Reset Period=1.00e+04,Dormancy Threshold=1.00e-01

Shuffled CIFAR-100 ResNet-18 S&P 0.48 Optimizer=Adam,LR=1.00e-03,Adam ϵ=1.00e-08,Adam β1=9.00e-01,Adam β2=1.00e+00,
Shrink Weight=8.00e-01,Noise Scale=1.00e-01

Table 2: List of every setting, the best configuration on that setting, and the test accuracy for that
setting. 15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Online L2 Init S&P CBP CReLU LN H&T Redo

No
isy

 C
IFA

R-
10

Pe
rm

ut
ed

 C
IFA

R-
10

Sh
uf

fle
d 

CI
FA

R-
10

No
isy

 C
IFA

R-
10

0
Pe

rm
ut

ed
 C

IFA
R-

10
0

Sh
uf

fle
d 

CI
FA

R-
10

0

No
isy

 C
IFA

R-
10

Pe
rm

ut
ed

 C
IFA

R-
10

Sh
uf

fle
d 

CI
FA

R-
10

No
isy

 C
IFA

R-
10

0
Pe

rm
ut

ed
 C

IFA
R-

10
0

Sh
uf

fle
d 

CI
FA

R-
10

0

No
isy

 C
IFA

R-
10

Pe
rm

ut
ed

 C
IFA

R-
10

Sh
uf

fle
d 

CI
FA

R-
10

No
isy

 C
IFA

R-
10

0
Pe

rm
ut

ed
 C

IFA
R-

10
0

Sh
uf

fle
d 

CI
FA

R-
10

0

No
isy

 C
IFA

R-
10

Pe
rm

ut
ed

 C
IFA

R-
10

Sh
uf

fle
d 

CI
FA

R-
10

No
isy

 C
IFA

R-
10

0
Pe

rm
ut

ed
 C

IFA
R-

10
0

Sh
uf

fle
d 

CI
FA

R-
10

0

No
isy

 C
IFA

R-
10

Pe
rm

ut
ed

 C
IFA

R-
10

Sh
uf

fle
d 

CI
FA

R-
10

No
isy

 C
IFA

R-
10

0
Pe

rm
ut

ed
 C

IFA
R-

10
0

Sh
uf

fle
d 

CI
FA

R-
10

0

No
isy

 C
IFA

R-
10

Pe
rm

ut
ed

 C
IFA

R-
10

Sh
uf

fle
d 

CI
FA

R-
10

No
isy

 C
IFA

R-
10

Pe
rm

ut
ed

 C
IFA

R-
10

Sh
uf

fle
d 

CI
FA

R-
10

No
isy

 C
IFA

R-
10

0
Pe

rm
ut

ed
 C

IFA
R-

10
0

Sh
uf

fle
d 

CI
FA

R-
10

0

No
isy

 C
IFA

R-
10

Pe
rm

ut
ed

 C
IFA

R-
10

Sh
uf

fle
d 

CI
FA

R-
10

No
isy

 C
IFA

R-
10

0
Pe

rm
ut

ed
 C

IFA
R-

10
0

Sh
uf

fle
d 

CI
FA

R-
10

00.0

0.2

0.4

0.6

0.8

1.0 Hyperparameter
LR
Optimizer
L2 Loss Weight
Adam 
Adam 1
Adam 2
HT Base Opt
HT Momentum
HT Reset Period
L2 Init Weight
S&P Shrink Weight
S&P Noise Scale
CBP Replacement Rate
CBP Maturity Threshold
CBP Decay Rate
ReDo Reset Period
ReDo Dormancy Threshold

Figure 8: PED-ANOVA (Watanabe et al., 2023) hyperparameter importance for each hyperparame-
ter in our search. Hatched bars are method specific hyperparameters.

D ADDITIONAL RESULTS

D.1 ADDITIONAL DISCUSSION ON SEEDS

In Figure 9a, we look at the probability that the overall method rankings change depending on the
number of seeds used. The ranking is fairly stable for most of the settings, and Noisy CIFAR-100,
Shuffled CIFAR-10, and Permuted CIFAR-10 are the only settings that required more than 5 seeds
to get a fully stable ranking. Figure 9b shows the correlation between the sampled rankings and
the oracle ranking, and it shows that the noisy settings tend to have lower correlation and need
more seeds. Finally, 9c shows that there is only a modest improvement in expected average test
accuracy over methods (i.e. the expected value of the average of the test accuracies of the selected
configurations for each method).

In Figures 10 and 11, we present a non aggregated (by method) version of the results from Figures
5 and 9 to examine the effect of the number of seeds on hyperparameter searches for each specific
method. While the results vary from method to method, a few trends do emerge. We do not need
very many seeds to select the best Hare & Tortoise configuration. Figure 10b shows that other
than the Online baseline on Noisy CIFAR-100 with ResNet, the configurations selected as the best
configuration in the search is very likely to at least be a top 3 configuration even with 1 seed. From
Figure 10c, we see that the best configuration will be evaluated as a top 3 configuration in the search
with very few seeds for every case except Noisy CIFAR-100 and Onlineon Permuted CIFAR-10.
Figures 11a and 11b show approximately the ordering of how sensitive the configuration rankings
are for different methods to the number of seeds used in model selection. Although there is a lot
of overlap, you can still see some separation between methods. Figure 11c shows the approximate
range expected for the test accuracy of a method given a certain number of seeds used for selection.
For most methods on most settings, there is not a very large spread even with a small number of
seeds. For a few methods, however, there is a large spread when using small numbers of seeds
which narrows at higher numbers of seeds.

D.2 SAMPLING EXTRA CONFIGURATIONS

In Figure 12, we examine the effect of sampling extra configurations separately for each method
across all settings. We see that there is not much difference between methods for the expected
improvement per extra configuration or the width of the range of expected final test accuracy.

D.3 EVALUATION PROTOCOLS

We dive deeper into the protocols presented in Section 3.3 and the results presented in Section 4.1 in
Figure 13. We see that Protocol 2 is still superior in the ability to transfer to held out data, matching
the held out ranking exactly more often than Protocol 1 or Protocol 3.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

5 10 15 20
Number of Seeds

0.0

0.2

0.4

0.6

0.8

1.0

P(
M

et
ho

d 
Ra

nk
in

g 
m

at
ch

es
Tr

ue
 R

an
ki

ng
)

(a) Probability that the method
ranking matches the true ranking
when using n seeds to select the
best configuration for each method.

5 10 15 20
Number of Seeds

0.7

0.8

0.9

1.0

Ke
nd

al
l's

 
 

Sa
m

pl
ed

 v
s T

ru
e 

Ra
nk

in
gs

(b) Kendall’s τ between the true
rankings and the rankings created
using only n seeds.

5 10 15 20
Number of Seeds

0.25

0.30

0.35

0.40

0.45

0.50

Ex
pe

ct
ed

 A
ve

ra
ge

Te
st

 A
cc

ur
ac

y

(c) The expected best test accuracy
averaged across all methods given a
certain number of seeds.

Figure 9: A look at how the quality of the configurations selected by a hyperparameter search
changes as you vary the number of seeds used to evaluate the configurations in the search. All
figures were generated by doing statistical bootstrapping and show the empirical 95% confidence
interval. Note, that the lines end at different x-values since the different settings have a different
number of total seeds. The “True” ranking mentioned in the figures refers to the ranking generated
by using all 20 seeds.

D.4 METHOD RANKINGS

In Figure 14, we see how the method rankings change depending on the architecture, the distribution
shift, and whether we are optimizing for train or test accuracy. We see that there is not a method
that consistently dominates across all settings. Hare & Tortoise does well on test accuracy, but not
well on train accuracy. L2 Init does well on MLP test accuracy, but badly on ResNet test accuracy.
A method such as LayerNorm which does badly on test accuracy performs well on train accuracy.

D.5 TRAINING VS TESTING PLASTICITY

In Figure 15, we see that the relationship between train and test loss of the different configurations
in our study. A decrease in train loss correlates with a decrease in test loss up to a certain point,
after which there is a lot of overfitting to the train set. When we focus on just the top 20% of
configurations on test loss, we see that there is little to no relationship between train and test loss for
most settings (other than Shuffled CIFAR-10).

Figure 16 and Table 3 show the relationship between train and test accuracy for the various different
methods in our study with the results separated by setting. In Figure 16a, we see a similar trend
as 4a, where train accuracy is positively correlated with test accuracy. When focusing on just the
top 20% of configurations of each method (Fig. 16b, Tab. 3), however, there isn’t a statistically
significant positive correlation between train and test accuracy. In fact, the only place where such a
relationship exists is for ReDo with ResNets on Noisy CIFAR-100 (the other statistically significant
positive correlations in the table are essentially vertical lines that are not well defined correlations).

D.6 CReLU ADJUSTED FOR NUMBER OF PARAMETERS

The CReLU activation function changes the architecture by doubling the size of the activation output.
This also increases the number of parameters in the network since for the intermediate layers, the
input size is doubled compared to a non-CReLU activation.

To adjust for the number of parameters, we ran a search with a smaller architecture such that the
number of parameters in the network approximately matches an architecture without CReLU. For
the MLP architecture, this meant a reduction of the hidden size from 128 to 120, and for the ResNet
architecture, we reduced the number of filters in each convolutional layer from 64 to 48. We ran a
slightly shortened search with 30 configurations for each setting, and show the results in Figure 17.
We can see that the MLP results are approximately the same, with a slight decrease in performance
in Permuted CIFAR-10 training accuracy and Shuffled CIFAR-10 test accuracy. For ResNet, the
training performance is matched by the smaller network, but the test performance is significantly
lower across all settings.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
P(

Be
st

 C
on

fig
 S

el
ec

te
d)

Shuffled

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Permuted

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Noisy

CBP
CReLU
Hare & Tortoise
L2 Init
LayerNorm
Online
Redo
Shrink & Perturb

2 4 6 8 10
Number of Seeds

0.0

0.2

0.4

0.6

0.8

1.0

P(
Be

st
 C

on
fig

 S
el

ec
te

d)

2 4 6 8 10
Number of Seeds

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10
Number of Seeds

0.0

0.2

0.4

0.6

0.8

1.0

MLP

ResNet

(a) Probability that the best configuration is selected in a hyperparameter search with n seeds for
each method.

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

P(
Tr

ue
 To

p 
3 

| S
el

ec
te

d)

Shuffled

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Permuted

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Noisy

CBP
CReLU
Hare & Tortoise
L2 Init
LayerNorm
Online
Redo
Shrink & Perturb

2 4 6 8 10
Number of Seeds

0.96

0.98

1.00

1.02

1.04

P(
Tr

ue
 To

p 
3 

| S
el

ec
te

d)

2 4 6 8 10
Number of Seeds

0.96

0.98

1.00

1.02

1.04

2 4 6 8 10
Number of Seeds

0.0

0.2

0.4

0.6

0.8

1.0

MLP

ResNet

(b) Probability that the configuration evaluated as best is actually a top 3 configuration for each
method.

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

P(
To

p 
3 

in
 E

va
lu

at
io

n 
| B

es
t)

Shuffled

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Permuted

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Noisy

CBP
CReLU
Hare & Tortoise
L2 Init
LayerNorm
Online
Redo
Shrink & Perturb

2 4 6 8 10
Number of Seeds

0.96

0.98

1.00

1.02

1.04

P(
To

p 
3 

in
 E

va
lu

at
io

n 
| B

es
t)

2 4 6 8 10
Number of Seeds

0.96

0.98

1.00

1.02

1.04

2 4 6 8 10
Number of Seeds

0.0

0.2

0.4

0.6

0.8

1.0

MLP

ResNet

(c) Probability that the best configuration is evaluated as a top 3 configuration for each method.

Figure 10: A version of the plots in Figure 5 analyzing the effect of seeds in hyperparameter searches
separated by method. The “True” ranking mentioned in the figures refers to the ranking generated
by using all 20 seeds.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
P(

Co
nf

ig
ur

at
io

n 
Ra

nk
in

g 
ex

ac
tly

m
at

ch
es

 Tr
ue

 R
an

ki
ng

)
Shuffled

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Permuted

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Noisy

CBP
CReLU
Hare & Tortoise
L2 Init
LayerNorm
Online
Redo
Shrink & Perturb

2 4 6 8 10
Number of Seeds

0.0

0.2

0.4

0.6

0.8

1.0

P(
Co

nf
ig

ur
at

io
n 

Ra
nk

in
g 

ex
ac

tly
m

at
ch

es
 Tr

ue
 R

an
ki

ng
)

2 4 6 8 10
Number of Seeds

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10
Number of Seeds

0.0

0.2

0.4

0.6

0.8

1.0

MLP

ResNet

(a) Probability that the ranking for all 40 configurations matches the true ranking for each method.

5 10 15 20
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

Ke
nd

al
l's

 Ta
u

Sa
m

pl
ed

 v
s T

ru
e 

Ra
nk

in
gs

Shuffled

5 10 15 20
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Permuted

5 10 15 20
0.80

0.85

0.90

0.95

1.00
Noisy

CBP
CReLU
Hare & Tortoise
L2 Init
LayerNorm
Online
Redo
Shrink & Perturb

2 4 6 8 10
Number of Seeds

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ke
nd

al
l's

 Ta
u

Sa
m

pl
ed

 v
s T

ru
e 

Ra
nk

in
gs

2 4 6 8 10
Number of Seeds

0.92

0.94

0.96

0.98

1.00

2 4 6 8 10
Number of Seeds

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MLP

ResNet

(b) Kendall’s τ between the true configuration rankings and the configuration rankings created using
only n seeds for each method.

5 10 15 20

0.490

0.495

0.500

0.505

0.510

0.515

0.520

Ex
pe

ct
ed

 A
cc

ur
ac

y 
Te

st
 A

cc
ur

ac
y Shuffled

5 10 15 20

0.50

0.51

0.52

0.53

0.54

Permuted

5 10 15 20

0.43

0.44

0.45

0.46

0.47

0.48

Noisy

CBP
CReLU
Hare & Tortoise
L2 Init
LayerNorm
Online
Redo
Shrink & Perturb

2 4 6 8 10
Number of Seeds

0.40

0.42

0.44

0.46

Ex
pe

ct
ed

 A
cc

ur
ac

y 
Te

st
 A

cc
ur

ac
y

2 4 6 8 10
Number of Seeds

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

2 4 6 8 10
Number of Seeds

0.24

0.26

0.28

0.30

0.32

0.34

0.36

MLP

ResNet

(c) The expected best test accuracy for each method given a certain number of seeds.

Figure 11: A version of the plots in Figure 9 analyzing the effect of seeds in hyperparameter searches
separated by method. The “True” ranking mentioned in the figures refers to the ranking generated
by using all 20 seeds.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1 2 5 10 20 40
0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Shuffled

1 2 5 10 20 40
0.1

0.2

0.3

0.4

0.5

Permuted

1 2 5 10 20 40
0.1

0.2

0.3

0.4

0.5
Noisy

CBP
CReLU
Hare & Tortoise
L2 Init
LayerNorm
Online
Redo
Shrink & Perturb

1 2 5 10 20 40
Configurations Selected

0.0

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

Shuffled

1 2 5 10 20 40
Configurations Selected

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Permuted

1 2 5 10 20 40
Configurations Selected

0.0

0.1

0.2

0.3

Noisy

(a) Expected test accuracy per extra configuration sampled for each method across all settings. Top row is MLP,
bottom row is ResNet-18.

1 2 5 10 20 40

10 6

10 5

10 4

10 3

10 2

10 1

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

in
 Te

st
 A

cc
ur

ac
y

Shuffled
CIFAR-10

1 2 5 10 20 40

10 6

10 5

10 4

10 3

10 2

10 1

Permuted
CIFAR-10

1 2 5 10 20 40
10 6

10 5

10 4

10 3

10 2

10 1

Noisy
CIFAR-10

CBP
CReLU
Hare & Tortoise
L2 Init
LayerNorm
Online
Redo
Shrink & Perturb

1 2 5 10 20 40
Configurations Selected

10 5

10 4

10 3

10 2

10 1

Ex
pe

ct
ed

 Im
pr

ov
em

en
t

in
 Te

st
 A

cc
ur

ac
y

Shuffled
CIFAR-100

1 2 5 10 20 40
Configurations Selected

10 6

10 5

10 4

10 3

10 2

Permuted
CIFAR-100

1 2 5 10 20 40
Configurations Selected

10 5

10 4

10 3

10 2

Noisy
CIFAR-100

(b) Expected improvement in test accuracy for every extra configuration sampled for each method across all
settings. Top row is MLP, bottom row is ResNet-18.

Figure 12: Effect of sampling extra configurations in a hyperparameter search, broken down by
method.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Nois
y

CIFA
R-10

Shuffle
d

CIFA
R-10

Per
muted

CIFA
R-10

Nois
y

CIFA
R-100

Shuffle
d

CIFA
R-100

Per
muted

CIFA
R-100

0.0

0.2

0.4

0.6

0.8

1.0

P(
M

et
ho

ds
 R

an
ki

ng
 Tr

an
sf

er
s)

Protocol 1 Protocol 2 Protocol 3

Figure 13: Probability that the ranking generated by the protocol exactly matches the held out rank-
ing.

Shuffled

CIFAR-10
Permuted

CIFAR-10 Noisy

CIFAR-10
Shuffled

CIFAR-100
Permuted

CIFAR-100 Noisy

CIFAR-100

1
2
3
4
5
6
7
8

Tr
ai

n 
Ac

cu
ra

cy
 R

an
k

MLP ResNet

(a) Ranking on Training Accuracy.

Shuffled

CIFAR-10
Permuted

CIFAR-10 Noisy

CIFAR-10
Shuffled

CIFAR-100
Permuted

CIFAR-100 Noisy

CIFAR-100

1
2
3
4
5
6
7
8

Te
st

 A
cc

ur
ac

y 
Ra

nk

MLP ResNet

(b) Ranking on Testing Accuracy.
Shuffled

CIFAR-10
Permuted

CIFAR-10 Noisy

CIFAR-10
Shuffled

CIFAR-100
Permuted

CIFAR-100 Noisy

CIFAR-100

1
2
3
4
5
6
7
8

Te
st

 A
cc

ur
ac

y 
Ra

nk

MLP ResNet

Online
L2 Init
Shrink & Perturb
CBP
CReLU
LayerNorm
Hare & Tortoise
Redo

Figure 14: The overall performance of different plasticity preserving methods from the literature
across different distribution shifts and architectures. There is not a method that consistently domi-
nates all other methods across all settings, but there are some methods that are dominated. Further-
more, ranking on training accuracy does not seem to correlate to ranking on test accuracy.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Shift Model Method Slope p-value

Shuffled

MLP

Online 0.017 0.865
L2 Init -0.131 0.060

Shrink & Perturb -0.002 0.868
CBP -0.152 0.066

CReLU -0.267 0.138
LayerNorm 0.010 0.821

Hare & Tortoise -0.129 0.126
Redo -0.051 0.001

ResNet

Online 1.650 0.454
L2 Init -0.102 0.619

Shrink & Perturb 6.608 0.046
CBP 4.866 0.317

CReLU 12.757 0.013
Hare & Tortoise 0.258 0.367

Redo -0.486 0.943

Permuted

MLP

Online -0.030 0.431
L2 Init -0.145 0.001

Shrink & Perturb 0.007 0.866
CBP -0.094 0.026

CReLU 0.068 0.086
LayerNorm -0.536 0.073

Hare & Tortoise 0.027 0.714
Redo 0.021 0.350

ResNet

Online 0.043 0.207
L2 Init 0.016 0.334

Shrink & Perturb 3.600 0.083
CBP 5.163 0.001

CReLU 1.577 0.248
Hare & Tortoise 0.028 0.476

Redo 9.888 0.205

Noisy

MLP

Online -0.041 0.095
L2 Init -0.027 0.020

Shrink & Perturb 0.136 0.577
CBP -0.001 0.936

CReLU 0.012 0.477
LayerNorm 1.070 0.032

Hare & Tortoise 0.038 0.139
Redo 0.003 0.883

ResNet

Online -0.086 0.550
L2 Init -0.045 0.191

Shrink & Perturb -0.106 0.237
CBP 0.158 0.162

CReLU 0.452 0.173
Hare & Tortoise 0.091 0.636

Redo 0.329 0.012

Table 3: Correlation between train accuracy and test accuracy for top 20% of all configurations.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 2 4
Train Loss

0.0

2.5

5.0

7.5

10.0

Te
st

 L
os

s

M
LP

0 2 4 6
Train Loss

4

6

8

10

Te
st

 L
os

s

Re
sN

et

(a) Train Loss vs Test Loss for
all configurations sampled in our
study, coded by shift type. Di-
verged configurations are filtered
out.

0.75 1.00 1.25 1.50 1.75 2.00
Train Loss

1.4

1.6

1.8

Te
st

 L
os

s

M
LP

0 1 2 3 4
Train Loss

3.0

3.5

4.0

Te
st

 L
os

s

Re
sN

et

Noisy
Permuted
Shuffled

(b) Train loss vs Test loss for the
top 20% of configurations sampled
in our study, coded by shift type.

Shift Model Slope p-value

Shuffled MLP 0.176 2.90e-6
ResNet 0.016 0.690

Permuted MLP 0.030 0.364
ResNet -0.029 0.307

Noisy MLP -0.100 0.001
ResNet 0.069 0.002

(c) Correlation between train loss
and test loss for top 20% of all
configurations. Settings with sta-
tistically significant positive corre-
lation are bolded.

Figure 15: A detailed look at the correlation between train loss and test loss achieved by different
configurations in our study. The top row shows MLP configurations, and the bottom row shows
ResNet-18 configurations. Up to a certain point, it does make sense to focus on preserving train
loss, but for the best configurations, preserving train loss leads to little to no improvement in test
loss.

E BOOTSTRAPPING PROCEDURE

With statistical bootstrapping, we sample B datasets of size n, compute some statistic using each
of these datasets, and use the empirical distribution over the statistic to create confidence intervals
or compute standard errors for the sample mean of the statistic (Hastie et al., 2009). In our case,
we are sampling partitions over the seeds, P , and using the partition to estimate some statistics that
are a function of this partition, f(P ). Specifically, statistics such as the rank correlation between
the rankings generated by two protocols or the binary random variable indicating whether the best
config was selected by a protocol are a deterministic function of the partition. In our case, since
when people do hyperparameter search, they usually only sample one partition, we set n = 1 and
B = 1000. Thus, we are sampling 1000 different partitions (with replacement), calculating the
statistic for each of the partitions, and displaying the 95% empirical confidence interval that results.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0.5 1.0

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y

Shuffled
CIFAR-10

0.5 1.0

0.2

0.4

0.6

Permuted
CIFAR-10

0.25 0.50 0.75
0.1

0.2

0.3

0.4

Noisy
CIFAR-10

CBP
CReLU
Hare & Tortoise
L2 Init
LayerNorm
Online
Redo
Shrink & Perturb

0.0 0.5 1.0
Train Accuracy

0.0

0.2

0.4

Te
st

 A
cc

ur
ac

y
Shuffled

CIFAR-100

0.0 0.5 1.0
Train Accuracy

0.0

0.1

0.2

0.3

Permuted
CIFAR-100

0.0 0.5
Train Accuracy

0.0

0.1

0.2

0.3

Noisy
CIFAR-100

(a) Train accuracy vs Test accuracy for all configurations sampled in our study,
coded by method.

0.6 0.8 1.0

0.46

0.48

0.50

0.52

Te
st

 A
cc

ur
ac

y

Shuffled
CIFAR-10

0.6 0.8
0.48

0.50

0.52

0.54

Permuted
CIFAR-10

0.4 0.6

0.40

0.42

0.44

Noisy
CIFAR-10

CBP
CReLU
Hare & Tortoise
L2 Init
LayerNorm
Online
Redo
Shrink & Perturb

0.8 0.9 1.0
Train Accuracy

0.30

0.35

0.40

0.45

Te
st

 A
cc

ur
ac

y

Shuffled
CIFAR-100

0.50 0.75 1.00
Train Accuracy

0.200

0.225

0.250

0.275

0.300

Permuted
CIFAR-100

0.6 0.7
Train Accuracy

0.225

0.250

0.275

0.300

Noisy
CIFAR-100

(b) Train accuracy vs Test accuracy for the top 20% of configurations sampled
in our study, coded by method.

Figure 16: The relationship between Train and Test accuracy for the configurations sampled in our
study, separated by method.

Sh
uff

led

CIFA
R-1

0

Per
mute

d

CIFA
R-1

0
Nois

y

CIFA
R-1

0
Sh

uff
led

CIFA
R-1

00

Per
mute

d

CIFA
R-1

00
Nois

y

CIFA
R-1

00

0.6

0.7

0.8

0.9

1.0

Tr
ai

n 
Ac

cu
ra

cy

Online
L2 Init

Shrink & Perturb
CBP

CReLU
CReLU (Adj. Params)

LayerNorm
Hare & Tortoise

Redo

Sh
uff

led

CIFA
R-1

0

Per
mute

d

CIFA
R-1

0
Nois

y

CIFA
R-1

0
Sh

uff
led

CIFA
R-1

00

Per
mute

d

CIFA
R-1

00
Nois

y

CIFA
R-1

00

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

Figure 17: Results for Average Training and Testing Accuracy for each method (same as Fig. 2a)
with the addition of a CReLU baseline with a smaller network such that it approximately matches
the number of parameters in the network of the other methods.

24


	Introduction
	Related Work
	Plasticity and Nonstationary Optimization
	Hyperparameter Search in Nonstationary Settings

	Benchmarking Setup
	Nonstationarities
	Methods
	Selection Protocols

	A Study in Plasticity
	Comparing Protocols
	The Performance of Current Methods
	Correlation between training and testing plasticity
	How many seeds do you need to evaluate a Method?
	How many tasks do you need to evaluate a Method?
	How many Hyperparameter Configurations do you need to evaluate?

	Discussion and Takeaways
	Hyperparameter Search Spaces
	Training Details
	Hyperparameter Importance
	Additional Results
	Additional Discussion on Seeds
	Sampling Extra Configurations
	Evaluation Protocols
	Method Rankings
	Training vs Testing Plasticity
	CReLU adjusted for Number of Parameters

	Bootstrapping Procedure

