
Under review as a conference paper at ICLR 2023

LIGHTWEIGHT UNCERTAINTY FOR OFFLINE REIN-
FORCEMENT LEARNING VIA BAYESIAN POSTERIOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline Reinforcement Learning (RL) aims to learn optimal policies from fixed 1

datasets. Directly applying off-policy RL algorithms to offline datasets typically 2

suffers from the distributional shift issue and fails to obtain a reliable value estima- 3

tion for out-of-distribution (OOD) actions. To this end, several methods penalize 4

the value function with uncertainty quantification and achieve tremendous suc- 5

cess from both theoretical and empirical perspectives. However, such uncertainty- 6

based methods typically require estimating the lower confidence bound (LCB) of 7

the Q-function based on a large number of ensemble networks, which is computa- 8

tionally expensive. In this paper, we propose a lightweight uncertainty quantifier 9

based on approximate Bayesian inference in the last layer of theQ-network, which 10

estimates the Bayesian posterior with fewer ensembles. We then obtain the uncer- 11

tainty quantification by the disagreement of the Q-posterior. Moreover, to avoid 12

mode collapse in OOD samples and improve diversity in theQ-posterior, we intro- 13

duce a repulsive force for OOD predictions in training. We show that our method 14

recovers the provably efficient LCB-penalty under linear MDP assumptions. We 15

further compare our method with other baselines on the D4RL benchmark. The 16

experimental results show that our proposed method achieves state-of-the-art per- 17

formance on most tasks with more lightweight uncertainty quantifiers. 18

1 INTRODUCTION 19

Offline Reinforcement Learning aims to learn policies from a fixed dataset without interacting with 20

the environment (Levine et al., 2020), which is appealing for applications that are costly to perform 21

online exploration (Levine et al., 2018; Kalashnikov et al., 2021). Directly applying the off-policy 22

RL algorithms in offline settings often suffers from distributional shift problems since the learned 23

policy is different from the behavior policy. Previous offline RL methods address this problem by 24

restricting the learned policy to stay close to the behavior policy (Fujimoto et al., 2019; Kumar et al., 25

2019) or penalizing OOD actions to perform value regularization (Kumar et al., 2020). Nevertheless, 26

these methods rely heavily on behavior policies or ignore potentially good OOD actions, leading to 27

an overly conservative policy. 28

Uncertainty-based methods provide an alternative and promising way to address the distributional 29

shift by characterizing the uncertainty of Q-values and pessimistically updating the estimation. In 30

this case, it is important to obtain an accurate and reliable uncertainty quantification, especially for 31

OOD data points. To this end, PBRL (Bai et al., 2022) measures the uncertainty by the disagreement 32

of bootstrapped Q-functions and performs OOD sampling to handle the extrapolation error; SAC-N 33

(An et al., 2021) extends the critic with a large number of ensembles and achieves strong perfor- 34

mance in offline environments. In spite of such progress, these methods require lots of ensembles, 35

which are computationally expensive and intractable in practice. Therefore, the following question 36

emerges: Can we obtain a reliable uncertainty quantification with more efficient methods? 37

In this paper, we propose a Bayesian uncertainty algorithm for offline RL (BURL), an uncertainty- 38

based method with a lightweight approximate posterior. We propose two components for reliable 39

uncertainty: approximate Bayesian learning and repulsive regularization. Specifically, we adopt 40

a Bayesian method to learn the posterior distribution of value function, then the low-confidence- 41

bound (LCB) of the Q-posterior is used for pessimistic value update. Theoretically, the Bayesian 42

uncertainty defined by the disagreement among different Q-samples from the posterior recovers the 43

1

Under review as a conference paper at ICLR 2023

provably efficient LCB-penalty in the Bayesian linear regression case. Nevertheless, exact Bayesian1

inference is unachievable in large-scale problems. In BURL, we adopt a Bayesian neural network2

(BNN) in the last layer of the Q-network to learn the approximate Bayesian posterior, which brings3

few parameters compared to an ordinary Q-network. In addition, to prevent different Q-samples4

from collapsing into the same function, we propose a repulsive regularization term for the OOD5

data sampled following the learned policy. Since the uncertainty hinges on the quality of the poste-6

rior, the repulsive force enforces diversity among different posterior samples to improve the uncer-7

tainty quantification. We obtain the uncertainty estimation by sampling several Q-functions from8

the posterior distribution and learn the policy by following the LCB of the value function.9

Compared to SAC-N, which is heavily dependent on the number of networks in the ensemble, BURL10

quantifies the uncertainty by sampling multiple Q-values from the posterior. Although performing11

Bayesian inference is approximately equivalent to sampling from infinite ensemble networks, in12

practice, we find that purely relying on the Bayesian posterior is still inferior to ensemble-based13

methods in large-scale tasks. To further boost the empirical performance, we combine BNN and14

ensemble in a unified architecture by using several BURL networks as an ensemble and enforcing15

repulsive force on posterior samples from both the ensemble and BNN. Experiments show that this16

approach achieves state-of-the-art performance with a few ensembles on D4RL benchmarks (Fu17

et al., 2020). Our contributions can be concluded as follows:18

• We propose BURL, a lightweight uncertainty-based offline RL algorithm that uses last-layer BNN19

to approximate the Bayesian posterior with the help of a few ensembles. We relate the Bayesian20

uncertainty to the LCB penalty in linear MDP settings.21

• We introduce a repulsive regularization term to improve the diversity among different posterior22

samples, leading to better parametric efficiency.23

• We conduct a large number of experiments and ablation studies to validate our algorithm, which24

shows competitive performance and reasonable uncertainty quantification.25

2 PRELIMINARIES26

Episodic MDP. We consider an episodic Markov Decision Process (MDP) formulated as M =27

(S,A, P, r, γ, T), where S is the state space, A is the action space, r : S × A → R is the28

reward function, γ ∈ (0, 1] is the discount factor, P is the transition distribution, and T is the29

episode length. In RL, we aim to learn an optimal policy π(a|s) that maximizes the cumula-30

tive discounted reward as E[
∑T
t=0 γ

tr(st, at)]. This objective can be optimized by estimating31

a state or state-action value function, which gives the expected cumulative reward, and then re-32

covering a near-optimal policy. We present the recursive definitions for these value functions33

as V π(s) = Ea∼π(·|s)[Qπ(s, a)] and Qπ(s, a) = r(s, a) + γEs′∼P (·|s,a)[V
π(s′)]. These two34

equations can be combined to express the Qπ(s, a) in terms of Qπ(s′, a′) Levine et al. (2020):35

Qπ(s, a) = r(s, a) + γEs′∼P (·|s,a),a′∼π(·|s)[Q
π(s′, a′)].36

In this work, we use a parameterized policy and a parameterized state-action value function37

Qπw(s, a), where w is the parameter of the Q-network. The Q-function is learned corresponding38

to the current policy π(·|s) and obeys the following equation by omitting the superscript:39

Qw(s, a) = r(s, a) + γEs′∼P (·|s,a),a′∼π(·|s)[Qw(s
′, a′)].

This equation can be expressed as the Bellman operator, which indicates the learning target for the40

Q-network. By employing the target network that is softly updated for stability Mnih et al. (2015),41

the Bellman operator is given by:42

T̂ Qw(s, a) = r(s, a) + γEs′∼P (·|s,a),a′∼π(·|s)[Qw−(s′, a′)], (1)

where w− is the parameter of the target Q-network.The Q-function is learned by minimizing the43

Bellman residual error as Es′∼P (·|s,a),a∼π(·|s)[Q(s, a) − T Q(s, a)]2, where the transitions are ob-44

tained by interacting with the environment. We refer to Sutton & Barto (2018) for more details.45

Offline RL. In offline RL, the agent needs to learn a policy from a fixed dataset Dm =46

{sit, ait, rit, sit+1}i∈[m] that contains m episodes. Then the Bellman operator T̂ Q is computed47

by estimating the expectation based on the offline datasets Dm, and the Bellman error becomes48

2

Under review as a conference paper at ICLR 2023

E(s,a,r,s′)∼Dm [Q(s, a)−T̂ Q(s, a)]2 by sampling experiences from the dataset. The policy π(·|s) is 1

learned by maximizing the value function Q(s, a). The problem of offline RL is the greedy action 2

a′ chosen by the policy π(·|s) in Eq. (1) can be OOD actions, since a′ is often scarcely covered 3

in Dm. These OOD actions cause high extrapolation errors in value function estimation, which 4

is also called distributional shift. Since the errors cannot be corrected by online interactions, the 5

distributional shift often results in sub-optimal policies. 6

To address such a problem, several offline RL algorithms (e.g. BCQ Fujimoto et al. (2019) and CQL 7

Kumar et al. (2020)) pessimistically update the value functions by constraining the learned policy or 8

penalizing the value function of OOD actions. Nevertheless, these methods lack specific uncertainty 9

estimation and lead to overly conservative behavior. Alternatively, uncertainty-based algorithms like 10

SAC-N combine hundreds of Q-networks as an ensemble and pessimistically update the policy to 11

maximize the LCB of the Q-value, which obtains strong performance while being computationally 12

expensive. Other methods reduce the computation by performing additional OOD sampling (Bai 13

et al., 2022) or diversifying the gradient of value functions (An et al., 2021), respectively. Neverthe- 14

less, they still need 10∼50 independent networks for uncertainty quantification. 15

3 METHOD 16

In this section, we first introduce the Bayesian posterior for uncertainty quantification and relate it 17

to the LCB penalty. Since the LCB penalty cannot be directly applied to environments with high- 18

dimensional observations, we approximate the LCB-term via the Bayesian posterior of the non- 19

linear neural networks. To further improve the computational efficiency, we propose the repulsive 20

force for regularization and improve the diversity in different posterior samples. Finally, we give the 21

concrete optimization objective and algorithmic descriptions. 22

3.1 BAYESIAN POSTERIOR FOR UNCERTAINTY QUANTIFICATION 23

We present the motivation and foundation of the proposed uncertainty in linear MDPs (Jin et al., 24

2021), where the transition and reward function are assumed to be linear in the state-action feature 25

ϕ(s, a). Considering that we have a learned representation ϕ(s, a), the value function Q(s, a) = 26

ϕ(s, a)⊤w is also linear in ϕ(s, a), wherew is the underlying true parameter of the linearQ-function. 27

We refer to related work Jin et al. (2021; 2020); Agarwal et al. (2022) for more details about linear 28

MDPs. In BURL, our objective is to approximate the posterior P(Q | s, a,Dm) of the value function. 29

Assumption 1. There exists a known feature mapping ϕ : S × A → Rd and an unknown vector 30

w ∼ N (0, Id/λ) such that Q(s, a) = ϕ(s, a)⊤w + ϵ, where ϵ ∼ N (0, 1) and λ is a constant. 31

We focus on the linear MDP setting where the transition dynamics and the reward function are 32

assumed to be linear. On the basis of previous work Jin et al. (2020), Assumption 1 is reasonable 33

and simplifies the LCB derivation by hypothesizing that w is a non-informative Gaussian prior, and 34

noise ϵ in the least-square problem follows the standard Gaussian. We refer to §A for more details. 35

Theorem 1. Under Assumption 1, it holds for the standard deviation of the estimated posterior 36

distribution P(Q̃ | s, a,Dm) that 37

Std(Q̃ | st, at,Dm) =
[
ϕ(st, at)

⊤Λ−1
t ϕ(st, at)

]1/2
:= Γlcb

t (st, at), (2)

where Λt =
∑
i∈[m] ϕ(s

i
t, a

i
t)ϕ(s

i
t, a

i
t)

⊤ + λ · I, and Γlcb
t (st, at) is defined as the LCB-term. 38

The proof is given in §A. The feature covariance matrix Λt accumulates the state-action features in 39

learning the Q-function, and the LCB of the Q-function given in Eq. (2) measures the confidence 40

interval of the Q-functions with the offline data Dm. Intuitively, the LCB-term Γlcb
t (st, at) can also 41

be considered as a reciprocal pseudo-count of the state-action pair in the representation space of ϕ. 42

Approximate the Q-posterior P(Q̃ | s, a,Dm). Theorem 1 shows that the standard deviation of 43

the Q-posterior is equivalent to the LCB-term Γlcb(st, at) in linear MDPs. Nevertheless, such 44

a term is specifically designed for linear MDPs and cannot be directly applied to environments 45

with high-dimensional observations. For BURL in deep offline RL, we approximate the posterior 46

P(Q̃ | s, a,Dm) via non-linear neural networks. Specifically, we interpret Assumption 1 by consid- 47

ering ϕ(s, a) as the output of hidden layers of the Q-network, and w as the weight of the last layer. 48

3

Under review as a conference paper at ICLR 2023

Then we still have the relationship of Q(s, a) = ϕ(s, a)⊤w+ ϵ, where the noise term ϵ captures the1

aleatoric uncertainty in the Q-value.2

With Assumption 1, it suffices to approximate P(w | Dm) in order to approximate the posterior. To3

that end, we adopt a variational inference approach (Blundell et al., 2015). Note that4

P(Dm) = EP(w | Dm)[P(Dm |w)]
= Eqθ(w | Dm)[logP(Dm |w)]−KL(qθ(w | Dm) ∥P(w))︸ ︷︷ ︸

ELBO

+KL(qθ(w | Dm) ∥P(w | Dm)), (3)

where we use qθ as the variational distribution of the posterior of w. We denote by q∗ the optimal5

solution to maximizing the evidence lower bound (ELBO). According to Eq. (3), maximizing the6

ELBO term is equivalent to minimizing the Kullback-Leibler divergence between our variational7

distribution q(w | Dm) and the posterior distribution P(w | Dm), which leads to the desired result8

q∗(w | Dm) = P(w | Dm). We denote by Q̃w the random variable for the estimated state-action9

value with a corresponding weight w ∼ q∗(w | Dm).10

The ELBO learning objective. To derive the practical learning objective of BURL based on11

Eq. (3), we construct a new offline dataset D̂m = {ϕit, yit}i∈[m], where the elements can be obtained12

based on dataset Dm by calculating the state-action feature ϕ(sit, a
i
t) and the target-value function13

yit = T̂ Q(sit, a
i
t) by Eq. (1). In our analysis, we consider yit as a fixed learning target based on the14

current Q-function. As a result, the optimal solution of q∗θ in the ELBO becomes15

q∗θ = argmaxEqθ(w | D̂m)

[
logP

(
D̂m |w

)]
−KL

(
qθ(w | D̂m) ∥P(w)

)
= argmaxEqθ(w | D̂m)

[∑
i∈[m],t∈[T]

logP
(
yit |ϕit, w

)]
−KL

(
qθ(w | D̂m) ∥P(w)

)
≈ argmax

∑
k∈[n]

∑
i∈[m],t∈[T]

logP
(
yit |ϕit, w(k)

)
−KL

(
qθ(w | D̂m) ∥P(w)

)
,

(4)

where the last step uses Monte Carlo sampling to approximate the variational posterior, and w(k)16

denotes the k-th sample drawn from qθ(w | D̂m). To allow gradient backpropagation to optimize17

the objective, we suppose that the posterior is a diagonal Gaussian distribution and use the re-18

parameterization trick to sample several random vectors {z(k) ∼ p(z)}k∈[n] from a standard Gaus-19

sian. Then we obtain the posterior weight as {w(k) = σ⊤
wz

(k) + µw}k∈[n], where we denote by20

qθ(w) = N (µw,Σw). The sampled Q-value is obtained by {Q(k) = ϕ⊤w(k)}k∈[n].21

• For the first term in Eq. (4), we simplify the target by using a deterministic response, then the22

log-likelihood reduces to Bellman residual error between the target T̂ Q(k) and Q(k). Such an23

error is calculated by taking the average among state-action pairs and posterior samples.24

• For the second term in Eq. (4), the prior function is also assumed to be a Gaussian distribution25

P(w) ∼ N (0, σp) and the KL term is easy to optimize.26

Practical considerations. We have two practical considerations in approximating the Bayesian27

posterior. (i) In offline RL, the learning target yit is calculated following Eq. (1) based on the target28

Q-network, which will be updated in training. Such a target is different from an ordinary regression29

task in which the target is fixed and given in the dataset. Empirically, we find that a changing target30

does not cause instability since it is generated by the targetQ-network that changes infrequently. (ii)31

The representation ϕ(s, a) is assumed to be fixed in Assumption 1, while in practice, we use ϕ(s, a)32

as part of the Q-network to extract the feature of state-action pairs. We learn the representation33

ϕ(s, a) and the posterior distribution simultaneously by following the gradients of Eq. (4).34

Pessimistic Q-learning. Based on the posterior distribution qθ(w) = N (µw,Σw), there are two35

methods to obtain the pessimistic value function. (i) We can calculate the standard deviation of36

the posterior as Γt(st, at) = ϕ(st, at)
⊤Σwϕ(st, at) to serve as an estimation of Γlcb

t in Eq. (2).37

Then the pessimistic value function is obtained using the LCB as a penalty, i.e., Q1
lcb(st, at) =38

Q̄(st, at) − αΓt(st, at), where Q̄(st, at) = ϕ(st, at)
⊤µw is the mean Q-value. (ii) Alternatively,39

we can sample several Q-values from the posterior distribution, and obtain the pessimistic Q-value40

by taking the minimal value of the Q-samples as Q2
lcb(st, at) = mink∈[n]Q

(k)(st, at). We remark41

4

Under review as a conference paper at ICLR 2023

Critic

(𝑠, 𝑎)Offline
datasets

(𝑠, 𝑎୭୭ୢ)

OOD sampling

Hidden
Layers sample

Prior

𝐷௄௅

Random vector 𝑧

Posterior
{𝑤(௞)}𝑞ఏ(𝑤)

Maximize ℛ

Pessimistic update
(min 𝒬-samples)

Repulsive regularization

Figure 1: The architecture of BURL, where we utilize approximate Bayesian inference in the last
layer of the critic network. We perform OOD sampling to obtain (s, aood) pairs based on (s, a) ∼
Dm. We input (s, a) and (s, aood) pairs to obtain theQ-samples and the repulsive term, respectively.
Then (s, a) is used for the pessimistic update of the Q-values, and (s, aood) provides regularization.

that Q1
lcb and Q2

lcb are approximately equivalent with an appropriate α. Since the realization Q(k) 1

has a linear mapping to w(k), Q(k) also follows a Gaussian distribution. According to the previous 2

work (Royston, 1982; An et al., 2021), we have 3

E
[
mink∈[n]Q

(k)(s, a)
]
≈ Q̄(s, a)− α · Std

(
{Q(k)(s, a)}k∈[n]

)
≈ Q̄(s, a)− αΓt(s, a), (5)

where α = Φ−1(N−π/8
N−π/4+1), and Φ(·) is the cumulative distribution function of the standard Gaus- 4

sian. In practice, we use Q2
lcb as the pessimistic value function since (i) it is easy to combine with 5

ensemble methods by sampling multiple values from both the ensemble and BNNs; and (ii) the sam- 6

pling method can be calculated effectively via matrix manipulation by using multiple noise vectors. 7

3.2 REPULSIVE REGULARIZATION 8

Based on the estimated Bayesian posterior, we can sample infinite Q-values from the posterior for 9

a single (s, a) pair, which is approximately equivalent to infinite Q-ensembles (Pearce et al., 2020). 10

Previous studies show that the major challenge for ensemble methods is the quality of the ensemble 11

hinges on the diversity among ensemble members (D’Angelo & Fortuin, 2021; Hiraoka et al., 2022). 12

To address this problem, several works propose to improve the diversity of the ensemble without 13

compromising the individual accuracy. For example, Random Prior (Osband et al., 2018) provides 14

independent prior networks for ensemble members, and Stein variational gradient descent (SVGD) 15

(Liu & Wang, 2016) introduces a kernelized repulsive force in the parameter space. Inspired by 16

these methods, we propose a simple repulsive term to regularize the Bayesian posterior. 17

In BURL, we explicitly increase the diversity of different Q-samples to prevent the posterior from 18

collapsing into the same solution. The repulsive regularization R(·) can either be applied in the 19

weight space (i.e., R
(
{w(k)}

)
) or the function space (i.e., R

(
{Q(k)}

)
). Since the weight space 20

has much higher dimensions, calculating the regularization on the function space is more efficient. 21

Empirically, we find that these two methods have similar performance. We use the repulsive term as 22

R
(
Q(s, aood)

)
= Std

(
{Q(k)(s, aood)}k∈[n]

)
, (6)

where the OOD action aood is sampled from the learned policy π(·|s), s is sampled from the dataset, 23

and Q(k) is sampled from the posterior. By maximizing Es,aood∼π
[
R
(
Q(s, aood)

)]
, we explicitly 24

maximize the disagreement ofQ-samples of OOD actions, which helps improve the reliability of the 25

uncertainty quantification. We remark that we do not enforce regularization for (s, a) pairs sampled 26

from the offline dataset since the uncertainty tends to be small for in-distribution samples. The whole 27

process of Bayesian inference and repulsive regularization is shown in Fig. 1. The offline data and 28

OOD data are used to perform pessimistic Bellman update and repulsive regularization, respectively. 29

Although performing Bayesian inference and repulsive regularization are sufficient to obtain the 30

posterior function, we find it still inferior to ensemble-based methods empirically in large-scale 31

offline tasks. To further improve BURL, we combine the proposed Bayesian posterior and the 32

ensemble in a unified architecture using M BNNs as an ensemble {Q(k)
j }k∈[n],j∈[M]. Then, the 33

repulsive regularization is calculated by sampling from both the ensemble (i.e., j ∈ [M]) and the 34

Bayesian posterior (i.e., k ∈ [n]). As a result, BURL combines ensemble, BNN, and repulsion to 35

obtain a posterior. Compared to the previous uncertainty-based methods (An et al., 2021; Bai et al., 36

2022), our method is more efficient as we require much fewer ensemble members (i.e., 2∼5). 37

5

Under review as a conference paper at ICLR 2023

Algorithm 1 Bayesian Uncertainty for offline RL (BURL)
Require: Offline dataset Dm, policy network πψ , Q-networks {Qwj}j∈[M], and target Q-networks
{Qw−

j
}j∈[M]. Initialize the parameters, including ψ, θ, ϕ, {wj}j∈[M], and {w−

j }j∈[M].
1: while not coverage do
2: Sample transitions {(s, a, r, s′)} from Dm and construct the OOD data as {(s, aood)}.
3: Calculate the pessimistic target Q-values by sampling from the posterior via Eq. (7).
4: Minimize the critic loss Lcritic in Eq. (8) and update the parameters.
5: Train the pessimistic policy by minimizing the actor loss Lactor in Eq. (9).
6: Update target Q-networks by {w−

j }′ ← ρ{w−
j }′ + (1− ρ){wj}

7: end while

3.3 LEARNING WITH BAYESIAN UNCERTAINTY1

We now introduce the practical learning algorithm of BURL. We use M ensemble BNNs as a critic;2

then the pessimistic learning target for the j-th Q-network is given as,3

T̂ lcbQwj (s, a) = r(s, a) + γÊs′∼P (·|s,a),a′∼πψ(·|s′)
w

(k−)
j ∼qθ(w−

j |Dm)

[
min
j∈[M]
k∈[n]

Q
(k)

w−
j

(s′, a′)− β log πψ(a′|s′)
]
, (7)

where wj and w−
j are the Bayesian parameters of the main Q-network and the target Q-network,4

respectively, πϕ is the policy network. In Eq. (7), we sample n Q-values from each BNN and take5

the minimum value among all the n×M sampled Q-values of the M BNNs to compute the target.6

Given the prior function and repulsive term, the loss function for training the j-th Q-network is7

Ljcritic = ηq · Es,a,r,s′∼Dm

[(
Qwj (s, a)− T̂ lcbQwj (s, a)

)2

+KL
(
qθ(wj) ∥P(w)

)]
− ηood · Es∼Dm,aood∼π [R

(
Qwj (s, a

ood)
)
] ,

(8)

where T̂ lcbQwj is defined in Eq. (7), ηq and ηood are constant factors, andR(·) is the repulsive term8

defined in Eq. (6). The first two terms in Ljcritic recover the variational ELBO defined in Eq. (4),9

where the first term maximizes the log-likelihood of the target, and the second term regularizes the10

posterior distribution. The last repulsive term maximizes the diversity of samples for OOD actions.11

The loss function is used to train the parameter θ of the Gaussian distribution qθ(wj) and also the12

representation ϕ(s, a).13

Based on the value function, the policy network is updated by maximizing the minimal sampled14

value from the Bayesian posterior and ensemble, as15

Lactor = −Es∼Dm,a∼πψ(·|s),w(k)
j ∼qθ(wj |Dm)

[
min

k∈[n],j∈[M]
Q(k)
wj (s, a)− β log πψ(a|s)

]
, (9)

which includes an SAC-style entropy regularization. We summarize the training process in Alg. 1.16

4 RELATED WORK17

Offline RL Most offline RL works aim to address the distributional shift problem and avoid over-18

estimation of the Q-values for OOD actions. Specifically, previous works (i) restrict the learned19

policy to the static dataset by explicitly estimating the behavior policy (Fujimoto et al., 2019; Wu20

et al., 2019) or implicitly regularizing policy learning (Kumar et al., 2019; Peng et al., 2019; Nair21

et al., 2020; Fujimoto & Gu, 2021); (ii) utilize value regularization (Kumar et al., 2020; Nachum22

et al., 2019) and pessimistically update the Q-values for OOD actions; (iii) perform one-step policy23

improvement to avoid overestimation (Brandfonbrener et al., 2021; Kostrikov et al., 2022). However,24

these methods could be overly conservative to ignore potentially good OOD actions. In contrast, our25

method obtains better value estimation for OOD data via reliable uncertainty quantification. There26

are also model-based offline approaches that aim to learn a pessimistic MDP (Yu et al., 2020; Ki-27

dambi et al., 2020), use ensembles to characterize the uncertainty of dynamics models (Yu et al.,28

2020; Kidambi et al., 2020; Matsushima et al., 2021), combine conservative value estimation with29

6

Under review as a conference paper at ICLR 2023

dynamic models (Yu et al., 2021), or model the trajectory distribution using a high-capacity Trans- 1

former (Chen et al., 2021; Janner et al., 2021; Wang et al., 2022). Nevertheless, these methods rely 2

on the prediction accuracy of the dynamics model or need additional modules such as Transformers. 3

On the contrary, BURL follows the model-free manner and is computationally efficient. Recently, 4

an adversarial trained actor-critic algorithm (Cheng et al., 2022) based on a two-player Stackelberg 5

game presents promising results, while still being computationally expensive. 6

Uncertainty Quantification The uncertainty quantification is pervasively used for exploration in 7

the online RL setting (Bellemare et al., 2016; Lee et al., 2021), i.e., optimism in the face of un- 8

certainty; its offline counterpart tends to be pessimism in the face of uncertainty (Jin et al., 2021). 9

Because of the limited coverage of offline datasets and the extrapolation error from OOD actions, it 10

is more challenging to obtain accurate uncertainty quantification in an offline setting. The ensem- 11

ble of neural networks is a widely used method to estimate predictive uncertainty via independent 12

initializations (Agarwal et al., 2020; Bai et al., 2022; An et al., 2021), different hyperparameters 13

(Wenzel et al., 2020), the depth of networks (Antorán et al., 2020), or early exits (Qendro et al., 14

2021). However, Large numbers of neural networks are required to approximate the posterior and 15

may suffer from model collapse. Bayesian neural network provides an alternative way to learn the 16

posterior over the parameters of the model. Due to that the exact posterior is intractable to com- 17

pute, previous methods choose to approximate it by Markov chain Monte Carlo (Welling & Teh, 18

2011), variational inference (Blundell et al., 2015), or Monte-Carlo dropout (Gal & Ghahramani, 19

2016; Hiraoka et al., 2022; Wu et al., 2021). Noisy-Net (Fortunato et al., 2018) injects noise to the 20

parameter while is not ensured to approximate the posterior distribution of parameters. Our method 21

is related to Hyper-DQN (Li et al., 2021), which adopts Thompson sampling and hyper-network for 22

exploration, while we use variational inference to estimate the posterior distribution for pessimism. 23

5 EXPERIMENTS 24

In this section, we conduct multiple experiments and comparisons in different setups to answer the 25

following questions: 1) Does our method exhibit better performance than other baseline methods 26

in different setups, including continuous control tasks and navigation tasks? 2) Can our method 27

obtain a reasonable uncertainty estimation of the value function? 3) What about the computational 28

or parametric efficiency of BURL? 4) Which parts or factors are critical in our methods? We evaluate 29

our algorithm using the standard D4RL benchmarks, including Gym Mujoco tasks and challenging 30

AntMaze navigation tasks. We release our codes at https://anonymous.4open.science/r/BURL-4158. 31

Baselines. To verify the feasibility and superiority of our algorithm, we compare BURL with 32

different types of offline RL methods: 1) model-free value-based methods, including CQL (Kumar 33

et al., 2020), TD3-BC (Fujimoto & Gu, 2021), and IQL (Kostrikov et al., 2022); 2) model-based 34

MOPO algorithm (Yu et al., 2020), which uses ensembles to learn transition dynamics; 3) ATAC 35

(Cheng et al., 2022), which exhibits promising results by framing offline RL as a two-player game; 36

4) uncertainty-based methods, including PBRL (Bai et al., 2022), EDAC (An et al., 2021), and 37

SAC-N. In addition, we compare BURL with uncertainty-based methods to show that BURL obtains 38

reliable uncertainty estimation and achieves better performance with fewer ensemble networks. 39

Results in Gym-Mujoco tasks. We compare the performance of all methods in Gym Mujoco tasks, 40

which include three environments: halfcheetah, walker2d, and hopper. Each environment consists of 41

five datasets (random, medium, medium-replay, medium-expert, and expert) generated by different 42

behavior policies. We report the normalized scores for each task and the average scores in Gym 43

Mujoco tasks in Table 1. We refer to §B for more experimental details. 44

The experimental results in Table 1 show that BURL outperforms CQL, TD3-BC, IQL, and MOPO 45

by a large margin in most cases and exhibits better performance than ATAC in halfcheetah and 46

walker2d environments. Compared to uncertainty-based methods such as PBRL or SAC-N, we find 47

BURL performs better in most tasks with reliable uncertainty quantification. Although BURL is 48

marginally worse than EDAC in halfcheetah/walker2d-medium-expert and walker2d-expert tasks, 49

it obtains reasonable scores with much fewer ensembles. We illustrate the number of ensembles 50

required to achieve the strong performance of EDAC and BURL in Fig. 2. 51

Results in AntMaze tasks. We also evaluate our method in challenging AntMaze navigation tasks, 52

which require an 8-DoF ant robot to reach a target position in a maze scenario. In this task, the 53

7

https://anonymous.4open.science/r/BURL-4158

Under review as a conference paper at ICLR 2023

Table 1: Performance of baseline algorithms and our proposed method on Gym Mujoco tasks. The
two highest scores are in bold. The abbreviations ‘r’, ‘m’, ‘m-r’, ‘m-e’, ‘e’ correspond to random,
medium, medium-replay, medium-expert, and expert datasets.

Environments CQL TD3-BC IQL MOPO ATAC PBRL EDAC SAC-N BURL

halfcheetah-r 17.5±1.7 10.8±1.6 12.6±2.1 35.9±2.9 4.8 13.1±1.2 27.7±1.0 28.0±0.9 30.9±1.1
halfcheetah-m 47.0±0.5 48.3±0.3 47.3±0.3 73.1±2.4 54.3 58.2±1.5 66.0±1.5 67.5±1.2 69.2±2.7
halfcheetah-m-r 45.5±0.8 44.6±0.3 44.4±0.5 69.2±1.1 49.5 49.5±0.8 62.3±1.4 63.9±0.8 66.7±2.0
halfcheetah-m-e 75.6±28.7 90.1±4.4 89.3±3.0 70.3±21.9 95.5 93.6±2.3 107.7±2.1 107.1±2.0 104.2±2.4
halfcheetah-e 96.3±1.4 96.7±0.9 95.1±0.3 81.3±21.8 94.0 96.2±2.3 106.6±1.2 105.2±2.6 107.1±2.6
walker2d-r 5.1±1.5 0.8±0.7 6.0±1.1 4.2±5.7 8.0 8.8±6.3 17.6±9.7 21.7±0.0 7.4±5.7
walker2d-m 73.3±20.0 85.0±1.0 75.6±2.3 41.2±30.8 91.0 90.3±1.2 93.7±1.3 87.9±0.2 95.1±2.7
walker2d-m-r 81.8±3.0 80.6±9.1 67.0±12.2 73.7±9.4 94.1 86.2±3.4 85.7±2.2 78.7±0.7 96.1±2.3
walker2d-m-e 107.9±1.8 110.4±0.6 109.4±0.7 77.4±27.9 116.3 109.8±0.2 113.5±1.1 116.7±0.4 112.4±1.1
walker2d-e 108.6±0.6 110.2±0.5 109.8±0.1 62.4±3.2 108.2 108.8±0.2 115.4±1.5 107.4±2.4 112.5±0.5
hopper-r 7.9±0.4 9.0±0.3 8.1±0.9 16.7±12.2 31.8 31.6±0.3 12.6±10.5 31.3±0.0 27.9±7.8
hopper-m 53.0±31.8 59.0±4.0 67.9±6.4 38.3±34.9 102.8 81.6±14.5 101.9±0.4 100.3±0.3 102.0±1.2
hopper-m-r 88.7±14.4 52.3±23.5 94.8±4.9 32.7±9.4 102.8 100.7±0.4 100.8±0.1 101.8±0.5 102.9±1.1
hopper-m-e 105.6±14.4 102.9±7.0 90.8±14.8 60.6±32.5 112.6 111.2±0.7 110.6±0.2 110.1±0.3 112.3±1.8
hopper-e 96.5±31.4 108.9±2.5 109.1±3.2 62.5±29.0 111.5 110.4±0.3 109.8±0.1 110.3±0.3 111.4±1.2
Average 67.4±10.2 67.3±3.8 68.5±3.5 53.3±16.3 78.5 76.7±2.4 82.9±2.2 82.5±0.8 83.9±2.4

random
medium

medium-replay

medium-expert
expert

0

2

4

6

8

10

M

halfcheetah
EDAC
BURL

random
medium

medium-replay

medium-expert
expert

0

2

4

6

8

10

M

walker2d
EDAC
BURL

random
medium

medium-replay

medium-expert
expert

5
10

20

30

40

50

M

hopper
EDAC
BURL

Figure 2: Minimum number of Q-ensembles (M) required to obtain the performance in Table 1.
BURL needs much fewer ensembles than EDAC in most cases and reduces the required parameters.

key challenges are dealing with sparse rewards and performing sub-trajectory stitching to reach the1

goal. We conduct experiments on two environments (umaze and medium) with two types of datasets.2

Table 2 summarizes the comparison of our method with behavior cloning (BC), Filtered (‘Filt.’) BC3

which learns from the best 10% trajectories, and value-based methods, including CQL, TD3-BC,4

and IQL. We observe that our method can achieve better performance than BC and Filt. BC, as well5

as CQL and TD3-BC. Meanwhile, BURL outperforms IQL in the umaze task with only 5 ensembles,6

and obtain competitive performance in the other environments with 10 ensembles.7

Table 2: Performance of the baseline algorithms and the proposed method in AntMaze tasks. We do
not report the performance of other baselines like PBRL and EDAC since their original implemen-
tations cannot obtain reasonable results in AntMaze domains.

Environments BC Filt. BC CQL TD3-BC IQL BURL

umaze 54.6 60.0 23.4 78.6 88.6±0.5 94.2±3.1
umaze-diverse 45.6 46.5 44.8 71.4 63.6±10.3 59.4±9.9
medium-diverse 0.0 37.2 0.0 3.0 73.0±3.4 56.2±8.7
medium-play 0.0 42.1 0.0 10.6 74.0±3.6 65.2±14.4

Average 25.1 46.5 17.5 40.9 74.8±8.0 68.8±9.0

Uncertainty Quantification. To validate whether BURL provides a reasonable uncertainty quan-8

tification, we visualize the uncertainty estimation ofQ-values for the in-distribution samples and the9

OOD samples in Fig. 3. Specifically, we train the Bayesian posterior in the medium-replay dataset10

and evaluate the learned uncertainty for both the in-distribution data and OOD data. Because expert11

trajectories are not contained in the medium-replay dataset, the state-action pairs induced by the12

expert policy can be regarded as OOD data points. Therefore, we sample in-distribution data points13

from the medium-replay dataset and OOD data points from the expert dataset. The original states14

and actions are projected into two-dimensional space using t-SNE. The uncertainty quantification15

of BURL for different state-action pairs is shown in the contour plot. As shown in Fig. 3, the in-16

distribution samples (white) mainly distribute in darker areas and get lower uncertainty. In contrast,17

8

Under review as a conference paper at ICLR 2023

100 50 0 50
100

50

0

50

0

3

6

9

12

15

18

21

24

(a) halfcheetah

100 50 0 50
100

50

0

50

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

(b) walker2d

100 50 0 50
100

50

0

50

0.00

0.75

1.50

2.25

3.00

3.75

4.50

5.25

6.00

6.75

(c) hopper

Figure 3: Uncertainty estimation of the in-distribution samples (white) and OOD samples (orange).
The brighter area in contour indicates higher uncertainty, while the darker area indicates lower un-
certainty.

the OOD samples (orange) locate in brighter areas and are assigned with higher uncertainty. We find 1

the uncertainty estimation generalizes well from in-distribution areas to OOD areas, which provides 2

reasonable penalties for OOD actions and does not lead to overly conservative policies. 3

Table 3: Computational costs of uncertainty-
based methods.

Environments Methods Runtime
(s/epoch)

Number of
parameters

halfcheetah-m

PBRL 147.3 2.9M
SAC-N (N=10) 19.4 2.9M
EDAC 24.9 2.9M
BURL 33.4 1.5M

walker2d-m

PBRL 163.7 2.9M
SAC-N (N=20) 17.5 5.7M
EDAC 24.5 2.9M
BURL 33.8 1.5M

hopper-m

PBRL 150.7 2.8M
SAC-N (N=500) 117.1 135.8M
EDAC 25.5 13.7M
BURL 33.1 1.5M

Computational Efficiency. We evaluate the 4

computational efficiency using two criteria: the 5

run-time per epoch and the number of param- 6

eters. We compare our method with other 7

uncertainty-based methods, including PBRL, 8

SAC-N, and EDAC. Each method is tested 9

on the same physical machine with Tesla P40 10

GPU. As shown in Table 3, PBRL needs a much 11

longer time since the implementation does not 12

apply parallel processing to the ensemble. In 13

addition, EDAC takes more time than SAC-N 14

to calculate the diversified gradient regulariza- 15

tion, and BURL spends time sampling from the 16

posterior distribution and OOD data. We re- 17

mark that although BURL takes a bit longer 18

time than EDAC or SAC-N (with N=10 or 20), 19

it offers a significant improvement in paramet- 20

ric efficiency. In halfcheetah and walker2d tasks, BURL needs half of the parameters of EDAC or 21

PBRL. In hopper environments, EDAC or SAC-N rely on a large number of networks, while BURL 22

only needs about one-tenth or one-percent of their parameters. 23

Ablation study. We perform ablation studies to discuss the effect of i) the number of ensembles, 24

ii) the components of loss functions, iii) the number of Bayesian samples, iv) the number of OOD 25

actions. In general, we find that more ensembles can lead to more stable performance and that 26

BURL can obtain favorable performance with 5 or fewer ensembles. In terms of the loss functions, 27

we observe that the repulsive regularization term plays a vital role in policy learning, while the effect 28

of KL divergence which regularizes the posterior distribution is relatively minor. Meanwhile, BURL 29

can obtain reliable uncertainty quantification with a few samples from the posterior distribution, and 30

the repulsive diversification term can regularize the value function without many OOD actions. A 31

detailed analysis is presented in §C. 32

6 CONCLUSION 33

In this paper, we propose a lightweight yet efficient uncertainty-based offline RL algorithm, named 34

BURL. We leverage Bayesian neural networks to estimate the Bayesian posterior and uncertainties 35

for Q-values by sampling from the posterior. Under the linear MDP assumptions, BURL recovers 36

the provably efficient LCB penalty. By explicitly utilizing repulsive regularization, BURL obtains 37

significant performance benefits with fewer ensembles. The performance and parametric efficiency 38

have been validated on the D4RL benchmarks, including challenging AntMaze tasks. Future works 39

will extend this idea to learn environmental dynamics models and explore the online fine-tuning 40

capability, as well as unifying BNN, ensemble, and repulsive term from the theoretical perspective. 41

9

Under review as a conference paper at ICLR 2023

REFERENCES1

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic2

bandits. In Advances in Neural Information Processing Systems, volume 24, pp. 2312–2320,3

2011.4

Alekh Agarwal, Nan Jiang, Sham M. Kakade, and Wen Sun. Reinforcement learning: Theory and5

algorithms, 2022.6

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline7

reinforcement learning. In ICML, volume 119 of Proceedings of Machine Learning Research, pp.8

104–114. PMLR, 2020.9

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.10

Deep reinforcement learning at the edge of the statistical precipice. In Advances in Neural Infor-11

mation Processing Systems, 2021.12

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline rein-13

forcement learning with diversified q-ensemble. In Advances in Neural Information Processing14

Systems, 2021.15

Javier Antorán, James Urquhart Allingham, and José Miguel Hernández-Lobato. Depth uncertainty16

in neural networks. In NeurIPS, 2020.17

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and Zhao-18

ran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. In19

International Conference on Learning Representations, 2022.20

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.21

Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-22

cessing systems, 29, 2016.23

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in24

neural network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.25

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-26

policy evaluation. Advances in Neural Information Processing Systems, 34:4933–4946, 2021.27

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,28

Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence29

modeling. Advances in Neural Information Processing Systems, 34:15084–15097, 2021.30

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic31

for offline reinforcement learning. In International Conference on Machine Learning, 2022.32

Francesco D’Angelo and Vincent Fortuin. Repulsive deep ensembles are bayesian. Advances in33

Neural Information Processing Systems, 34:3451–3465, 2021.34

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for35

offline RL via supervised learning? In ICLR. OpenReview.net, 2022.36

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Os-37

band, Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles38

Blundell, and Shane Legg. Noisy networks for exploration. In International Conference on39

Learning Representations, 2018.40

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep41

data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.42

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In43

Advances in Neural Information Processing Systems, 2021.44

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without45

exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.46

10

Under review as a conference paper at ICLR 2023

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model 1

uncertainty in deep learning. In International Conference on Machine Learning, pp. 1050–1059. 2

PMLR, 2016. 3

Seyed Kamyar Seyed Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? 4

estimating uncertainties for offline rl through ensemb les, and why their independence matters. In 5

Advances in Neural Information Processing Systems, 2022. 6

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka. 7

Dropout q-functions for doubly efficient reinforcement learning. In International Conference on 8

Learning Representations, 2022. 9

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence 10

modeling problem. In NeurIPS, pp. 1273–1286, 2021. 11

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement 12

learning with linear function approximation. In Conference on Learning Theory, pp. 2137–2143. 13

PMLR, 2020. 14

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In 15

International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021. 16

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski, 17

Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic re- 18

inforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021. 19

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model- 20

based offline reinforcement learning. In Advances in Neural Information Processing Systems, 21

volume 33, pp. 21810–21823, 2020. 22

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q- 23

learning. In ICLR. OpenReview.net, 2022. 24

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy 25

q-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys- 26

tems, volume 32, pp. 11784–11794, 2019. 27

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline 28

reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), 29

Advances in Neural Information Processing Systems, volume 33, pp. 1179–1191, 2020. 30

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified frame- 31

work for ensemble learning in deep reinforcement learning. In International Conference on Ma- 32

chine Learning, pp. 6131–6141. PMLR, 2021. 33

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning hand- 34

eye coordination for robotic grasping with deep learning and large-scale data collection. The 35

International Journal of Robotics Research, 37(4-5):421–436, 2018. 36

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto- 37

rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020. 38

Ziniu Li, Yingru Li, Yushun Zhang, Tong Zhang, and Zhi-Quan Luo. Hyperdqn: A randomized 39

exploration method for deep reinforcement learning. In International Conference on Learning 40

Representations, 2021. 41

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference 42

algorithm. Advances in Neural Information Processing Systems, 29, 2016. 43

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment- 44

efficient reinforcement learning via model-based offline optimization. In ICLR. OpenReview.net, 45

2021. 46

11

Under review as a conference paper at ICLR 2023

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-1

mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,2

Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-3

stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.4

Nature, 518:529–533, 2015.5

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:6

Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.7

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement8

learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.9

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement10

learning. Advances in Neural Information Processing Systems, 31, 2018.11

Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Uncertainty in neural networks: Approxi-12

mately bayesian ensembling. In International conference on artificial intelligence and statistics,13

pp. 234–244. PMLR, 2020.14

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:15

Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.16

Lorena Qendro, Alexander Campbell, Pietro Liò, and Cecilia Mascolo. Early exit ensembles for17

uncertainty quantification. In ML4H@NeurIPS, volume 158 of Proceedings of Machine Learning18

Research, pp. 181–195. PMLR, 2021.19

JP Royston. Expected normal order statistics(exact and approximate): algorithm as 177. Applied20

Statistics, 31(2):161–5, 1982.21

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.22

Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, and Dongsheng Li. Bootstrapped23

transformer for offline reinforcement learning. In Advances in Neural Information Processing24

Systems, 2022.25

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In26

Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688.27

Citeseer, 2011.28

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter ensembles for29

robustness and uncertainty quantification. Advances in Neural Information Processing Systems,30

33:6514–6527, 2020.31

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.32

arXiv preprint arXiv:1911.11361, 2019.33

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua M. Susskind, Jian Zhang, Ruslan Salakhutdi-34

nov, and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. In35

International Conference on Machine Learning, volume 139, pp. 11319–11328, 2021.36

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea37

Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. In Advances in Neural38

Information Processing Systems, volume 33, pp. 14129–14142, 2020.39

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.40

Combo: Conservative offline model-based policy optimization. In Advances in Neural Informa-41

tion Processing Systems, 2021.42

12

Under review as a conference paper at ICLR 2023

A THEORETICAL PROOF 1

A.1 BACKGROUND OF LINEAR MDPS 2

Our theoretical derivations have close connections with linear MDPs and LSVI. The former is a 3

widely used assumption Jin et al. (2021; 2020); Agarwal et al. (2022), while the latter is a classic 4

method frequently used in the linear MDPs to compute the closed-form solution. In the following, 5

we introduce the pessimistic value estimation in linear MDPs (Jin et al., 2020; Abbasi-Yadkori et al., 6

2011; Jin et al., 2021), where the transition dynamics and reward function take the following form 7

for ∀(st+1, at, st) ∈ S ×A× S , as 8

Pt(st+1 | st, at) = ⟨φ(st+1), ϕ(st, at)⟩, r(st, at) = υ⊤ϕ(st, at), (10)

where the feature embedding ϕ : S×A 7→ Rd is known. We further assume that the reward function 9

r : S ×A 7→ [0, 1] is bounded and the feature is bounded by ∥ϕ∥2 ≤ 1. We consider the settings of 10

γ = 1 in the following. Then for any policy π, the state-action value function is also linear to ϕ, as 11

Qπ(st, at) = w⊤ϕ(st, at). (11)

In offline RL settings with a fixed dataset Dm = {sit, ait, rit, sit+1}i∈[m], the parameter of the w can 12

be solved via least-squares value iteration (LSVI) algorithm, as 13

ŵt = min
w∈Rd

m∑
i=1

(
ϕ(sit, a

i
t)

⊤w − r(sit, ait)− Vt+1(s
i
t+1)

)2
(12)

where Vt+1 is the estimated value function in the (t + 1)-th step. Following LSVI, the explicit 14

solution to (12) takes the form of 15

ŵt = Λ−1
t

m∑
i=1

ϕ(sit, a
i
t)y

i
t, where Λt =

m∑
i=1

ϕ(sit, a
i
t)ϕ(s

i
t, a

i
t)

⊤ (13)

is the feature covariance matrix of the state-action pairs in the offline dataset, and yit = r(sit, a
i
t) + 16

Vt+1(s
i
t+1) is the Bellman target in regression. 17

Lemma 1. (Proposition 2.3 in Jin et al. (2020)) For a linear MDP, for any policy π, there exist 18

weights {wπh}h∈[H] such that for any (s, a, h) ∈ S×A× [H], we haveQπh(s, a) =< ϕ(s, a), wπh >. 19

We cite the proposition from Jin et al. (2020) here to demonstrate that Q-functions can be equiv- 20

alent to ϕ(s, a)Tw. In our method, we use the hidden layers of the critic network to output the 21

representation ϕ(s, a) and express w as the parameter of the last layer. 22

A.2 PROOF OF THE LCB-TERM 23

To learn the posterior distribution of Q-function, we consider a Bayesian perspective of LSVI and 24

use Bayesian linear regression to learn the posterior of w. Under Assumption 1, the following 25

theorem establishes the method to approximate the LCB-penalty Γlcb
t (st, at). 26

Theorem (Theorem 1 restate). Under Assumption 1, it holds for the standard deviation of the esti- 27

mated posterior distribution P(Q̃ | s, a,Dm) follows 28

Std(Q̃ | st, at,Dm) =
[
ϕ(st, at)

⊤Λ−1
t ϕ(st, at)

]1/2
:= Γlcb

t (st, at), (14)

where Λt =
∑
i∈[m] ϕ(s

i
t, a

i
t)ϕ(s

i
t, a

i
t)

⊤ + λ · I, and Γlcb
t (st, at) is defined as the LCB-term. 29

Proof. It holds from Bayes rule that

log q∗(w | Dm) = logP(w | Dm) = logP(w) + logP(Dm |w) + Const.

By Assumption 1, the prior of w is the standard normal distribution, and we have

Q | s, a, w ∼ N (ϕ(s, a)⊤w, 1).

13

Under review as a conference paper at ICLR 2023

Thus, it holds that

log q∗(w | Dm) = −λ
2
∥w∥2 −

∑
i∈[m]

1

2
∥ϕ(sit, ait)⊤ − yit∥2 +Const

= −1

2
(w − µt)⊤Λ−1

t (w − µt) + Const.

where we have

µt = Λ−1
t

∑
τ∈[m]

ϕ(sit, a
i
t)y

i
t. Λt =

∑
i∈[m]

ϕ(sit, a
i
t)ϕ(s

i
t, a

i
t)

⊤ + λ · I

Thus, we obtain that w | Dm ∼ N (µt,Λ
−1
t). It then holds for any (s, a) ∈ S ×A that

Var(Q̃ |S = s,A = a) = Var(ϕ(s, a)⊤w) = ϕ(s, a)⊤Λ−1
t ϕ(s, a),

which concludes the proof of Theorem 1.1

Based on the LCB term Γlcb
t (s, a), the pessimistic value function Qlcb(s, a) = Q(s, a)− Γlcb

t (s, a)2

with uncertainty penalty is known to be information-theoretically optimal in linear MDPs with finite3

horizon (Jin et al., 2021). For deep offline RL, we approximate such an LCB term Γlcb
t by estimating4

the posterior distribution of the Q-function via Bayesian neural networks.5

B IMPLEMENTATION DETAIL6

Experimental setups and baselines. All the experiments are conducted on D4RL with the ’v2’7

datasets and 5 random seeds. We run EDAC and BURL for 3M gradient steps and report the nor-8

malized scores of each policy. In Gym Mujoco tasks, the policy is evaluated every 1000 steps, and9

the evaluation contains 1 episode. In AntMaze tasks, the policy is evaluated every 20000 steps, and10

the return averages over 100 episodes.11

For baselines, we cite the reported results of TD3-BC, PBRL, and SAC-N from their own publica-12

tions (Fujimoto & Gu, 2021; Bai et al., 2022; An et al., 2021). For IQL1 and EDAC2, we reproduce13

the results with their official implementations. For ATAC3, we run the official codes for the results14

of the ’expert’ datasets and cite other results from the original paper Cheng et al. (2022). For CQL15

and MOPO, we cite the reported scores in (Bai et al., 2022).16

In Table 2, we adopt the reported performance of several baselines from (Emmons et al., 2022). For17

IQL, we run its official implementations and report its performance on ’v2’ dataset. Since the official18

codes of EDAC or SAC-N cannot work in AntMaze tasks, we do not include them in comparison.19

Inspired by (Ghasemipour et al., 2022), BURL utilizes independent targets in AntMaze tasks and20

achieves competitive performance with a few networks. Considering the sparse rewards in Antaze21

tasks, we adopt the same way as prior works (Kumar et al., 2020; Ghasemipour et al., 2022) and22

transform the rewards in the offline datasets by 4(r − 0.5).23

Hyper-parameters. Most hyper-parameters of BURL are the same as those of EDAC. In our24

experiments, we use different loss weights for the Gym Mujoco tasks and AntMaze navigation tasks.25

In addition, we add weight decay and layer norm in some tasks to prevent overfitting or divergence.26

The hyper-parameter settings are shown in Table 4. ‘T/F’ for Layernorm means whether using27

Layernorm layers.28

C ABLATION STUDY29

In this section, we perform the ablation study on walker2d-medium and hopper-medium-replay30

environments. Each experiment runs with 3 random seeds.31

1https://github.com/ikostrikov/implicit q learning
2https://github.com/snu-mllab/EDAC
3https://github.com/microsoft/ATAC

14

https://github.com/ikostrikov/implicit_q_learning
https://github.com/snu-mllab/EDAC
https://github.com/microsoft/ATAC

Under review as a conference paper at ICLR 2023

Table 4: Hyper-paramters of BURL

Environments number of
ensembles M ηq ηood L2 decay Layernorm

halfcheetah-random 2 50 1 0.01 F
halfcheetah-medium 3 50 1 0.05 F
halfcheetah-medium-replay 3 50 1 0.05 F
halfcheetah-medium-expert 5 50 5 0 T
halfcheetah-expert 5 10 1 0 T

walker2d-random 5 50 5 0.5 F
walker2d-medium 5 5 3 0.003 T
walker2d-medium-replay 4 10 5 0.01 T
walker2d-medium-expert 5 20 5 0.001 T
walker2d-expert 3 10 5 0 T

hopper-random 5 10 1 0 F
hopper-medium 5 5 3 0 T
hopper-medium-replay 5 50 3 0 T
hopper-medium-expert 5 1 3 0 T
hopper-expert 5 1 3 0 T

antmaze-umaze 5 1 5 0 T
antmaze-umaze-diverse 10 1 10 0.001 F
antmaze-medium-diverse 10 1 10 0 T
antmaze-medium-play 10 1 10 0 T

Ensemble number. We evaluate our algorithm with different numbers of Q-networks M ∈ 1

{2, 3, 4, 5, 6} and present the experimental results in Fig. 4. We find that by using approximate 2

Bayesian posterior and repulsive regularization, BURL can learn effective policies with M ≈ 5. We 3

also present the minimum number of ensembles required for other tasks in Fig. 2. It is obvious that 4

BURL needs fewer ensembles than EDAC, thus improving the parametric efficiency. Another sug- 5

gestion from Fig. 4 is that more ensembles can provide more stable performance, which is consistent 6

with our intuition that more ensembles can generate more samples and better approximation. 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

walker2d-medium-v2

M=2 M=3 M=4 M=5 M=6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

walker2d-medium-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

hopper-medium-replay-v2

Figure 4: Ablation on the number of ensembles. The shaded area indicates the variance. BURL can
exhibit superior and stable performance with 5 or 6 ensembles.

Loss function components. As shown in Eq. (8), the total loss consists of the TD error, the KL 8

divergence, and the repulsive regularization term that maximizes the diversity of Q-samples for the 9

OOD data. We name these components ‘qfs loss’, ‘ood loss’, and ‘kl loss’. To illustrate the effects 10

of these components on the final results, we perform an ablation study with three settings: only ‘qfs’ 11

loss, ‘qfs + ood’ loss, ‘qfs + ood + kl’ loss. As illustrated in Fig. 5, ‘kl loss’ is less important than 12

the other two components. The repulsive term (‘ood’ loss) is crucial for the walker2d-medium task. 13

To further explore the role of OOD diversity loss on our performance, we add comparisons on 9 14

tasks in Gym-Mujoco environments and present the results in Table 5. In hopper-medium-replay, 15

halfcheetah-medium, and halfcheetah-medium-replay tasks, optimizing ensemble BNNs without 16

OOD diversity regularization is sufficient to obtain competitive performance. This result is consis- 17

15

Under review as a conference paper at ICLR 2023

tent with Fig. 5, where OOD loss and KL divergence have only a small impact on performance in1

the hopper-medium-replay task. In the other tasks, the OOD diversity regularization term is neces-2

sary for favorable performance. Therefore, we suggest that the OOD diversity term is useful for our3

method.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

walker2d-medium-v2

only qfs qfs+ood qfs+ood+kl

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

walker2d-medium-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

hopper-medium-replay-v2

Figure 5: Ablation study on the loss functions components. The shaded area indicates the variance.
Only optimizing the TD error cannot learn effective policies in the walker2d-medium task, while
showing inferior performance to optimizing the total loss in the hopper-medium-replay task.

Table 5: Ablations on optimizing the OOD diversity loss.
Environments w/o OOD term with OOD term

halfcheetah-m 70.6 69.2 ± 2.7
halfcheetah-m-r 66.6 66.7 ± 2.0
halfcheetah-m-e 11.8 104.2 ± 2.4
walker2d-m -0.1 95.1 ± 2.7
walker2d-m-r 17.7 96.1 ± 2.3
walker2d-m-e 2.1 112.4 ± 1.1
hopper-m 1.0 102.0 ± 1.2
hopper-m-r 103.2 102.9 ± 1.1
hopper-m-e 15.5 112.3 ± 1.8

Bayesian sampling. Our method samples multiple Q-values from the Bayesian posterior and en-5

semble members to estimate the LCB of the Q-function. Intuitively, more samples can provide a6

better estimation of the LCB. We use n to denote the number of samples from each ensemble mem-7

ber and compare the performance in two tasks. The results are displayed in Fig. 6. In general, we8

find that BURL obtains reasonable performance even with a small number of samples (e.g., n = 2).9

We speculate that variational methods can quickly obtain a posterior estimate. Meanwhile, the re-10

pulsive regularization diversifies the different samples, which drives the posterior samples widely11

distributed in the posterior and makes the LCB estimation easier.12

Number of OOD actions. The diversification of OOD data is implemented by OOD sampling and13

explicitly maximizing the uncertainty of Q-values for OOD actions. In the OOD sampling process,14

K actions are sampled from the learned policy. We perform experiments with K ∈ {1, 3, 5, 7, 10}15

to analyze the sensitivity of our algorithm to the number of OOD actions. The results in Fig. 716

illustrate that the number of OOD samples does not significantly influence the performance in the17

walker-medium task. Nevertheless, in hopper-medium-replay task, the value distribution requires18

more OOD actions to diversify the posterior samples.19

Comparison with dropout ensembles. We also compare BURL with dropout ensembles and20

present the results in Fig. 8. We evaluate dropout ensembles with the same number of ensembles21

as BURL and equip them with gradient diversification from EDAC or repulsive regularization from22

BURL. However, we find that dropout ensembles cannot learn effective policies in all settings. We23

16

Under review as a conference paper at ICLR 2023

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

walker2d-medium-v2

n=2 n=4 n=6 n=8 n=10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100
No

rm
al

ize
d

sc
or

es

walker2d-medium-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

hopper-medium-replay-v2

Figure 6: Ablation on the number of Bayesian samples. The shaded area indicates the variance. In
the walker2d-medium environment, a small number of samples are enough, while more samples are
needed to obtain stable performance in the hopper-medium-replay environment.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

walker2d-medium-v2

K=1 K=3 K=5 K=7 K=10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

walker2d-medium-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

hopper-medium-replay-v2

Figure 7: Ablation on the number of OOD actions. The shaded area indicates the variance. We tend
to sample K = 10 OOD actions in both environments to keep strong performance.

speculate that it is difficult for dropout ensembles to provide reliable uncertainty quantification and 1

value estimation with a small number of ensembles (Wu et al., 2021). 2

D ADDITIONAL EXPERIMENTS 3

D.1 COMPARISONS WITH MORE OFFLINE RL METHODS 4

We additionally compare our methods with more offline RL methods and consider two algorithms: 5

model-free algorithm UWAC Wu et al. (2021) and conservative model-based algorithm COMBO 6

Yu et al. (2021). UWAC adopts Monte Carlo dropout to estimate the uncertainty for the detection 7

of OOD state-action pairs, which are then down-weighted in the training objectives, and requires 8

policy constraints Kumar et al. (2019) for regularization. COMBO obtains a conservative estimate 9

of the value function for OOD state-action tuples by combining offline model-based methods and 10

value regularization, without explicit uncertainty estimation. Since the reported results of UWAC 11

rely on the ’v0’ datasets, we choose the reimplementation results on the ’v2’ datasets from PBRL to 12

evaluate these methods in the same setting. We cite the results of COMBO from the original paper. 13

The normalized scores are presented in Table 6. Compared with UWAC and COMBO, BURL is 14

mainly an uncertainty-based offline RL algorithm and achieves better performance. 15

17

Under review as a conference paper at ICLR 2023

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

hopper-medium-replay-v2

dropout-ensemble dropout-ensemble + repulsive dropout-ensemble + gradient diversification BURL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100
No

rm
al

ize
d

sc
or

es

walker2d-medium-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e6

0
10
20
30
40
50
60
70
80
90

100

No
rm

al
ize

d
sc

or
es

hopper-medium-replay-v2

Figure 8: Comparisons with dropout ensembles. We evaluate dropout ensembles and BURL with
the same number of ensembles (M = 5).

Table 6: Comparions with UWAC and COMBO.
Environments UWAC COMBO BURL
halfcheetah-r 2.3 ± 0.0 38.8 ± 3.7 30.9 ± 1.1
halfcheetah-m 42.2 ± 0.4 54.2 ± 1.5 69.2 ± 2.7
halfcheetah-m-r 35.9 ± 3.7 55.1 ± 1.0 66.7 ± 2.0
halfcheetah-m-e 42.7 ± 0.3 90.0 ± 5.6 104.2 ± 2.4
halfcheetah-e 92.9 ± 0.6 - 107.1 ± 2.6
walker2d-r 2.0 ± 0.4 7.0 ± 3.6 7.4 ± 5.7
walker2d-m 75.4 ± 3.0 81.9 ± 2.8 95.1 ± 2.7
walker2d-m-r 23.6 ± 6.9 56.0 ± 8.6 96.1 ± 2.3
walker2d-m-e 96.5 ± 9.1 103.3 ± 5.6 112.4 ± 1.1
walker2d-e 108.4 ± 0.4 - 112.5 ± 0.5
hopper-r 2.7 ± 0.3 17.9 ± 1.4 27.9 ± 7.8
hopper-m 50.9 ± 4.4 97.2 ± 2.2 102.0 ± 1.2
hopper-m-r 25.3 ± 1.7 89.5 ± 1.8 102.9 ± 1.1
hopper-m-e 44.9 ± 8.1 111.1 ± 2.9 112.3 ± 1.8
hopper-e 110.5 ± 0.5 - 111.4 ± 1.2

D.2 DIFFERENT WAYS TO OBTAIN OOD ACTIONS1

In BURL, we introduce a repulsive term to improve the diversity among samples from the posterior2

and ensembles. Specifically, we sample OOD actions from the learned policy, which is the same3

as previous work PBRL. In general, we can roughly regard any actions that are far from behavior4

policies as OOD actions. Since the behavior policy is unknown, we can only generate OOD actions5

by sampling from some distributions that are different from the behavior policy. We consider two6

ways to generate OOD actions: randomly sampling from the action space or from the learned policy.7

In our work, we sample OOD actions from the learned policy. As shown in Eq. 1, the Q-value of8

the state-action pair Q(s, a) is updated by regressing the target E[r+ γQ(s′, a′)], where Q(s′, a′) is9

often inaccurate in the offline setting since a′ can be OOD actions chosen by the learned policy. As10

a result, we suggest that sampling OOD actions from the learned policy leads to better pessimism11

for the neighbor field of the learned policy. Instead, randomly sampling from the action space is12

insufficient to enforce pessimism.13

In this part, we compare the performance of these two ways on Gym-Mujoco datasets, and the nor-14

malized scores are shown in Table 7. The empirical results indicate that sampling from the current15

policy is reasonable and more effective, while random sampling OOD actions causes overestimation16

and final divergence of the value function in halfcheetah and walker tasks. Moreover, we remark17

that randomly sampling from the action space exhibits a large distance to sampling from the learned18

18

Under review as a conference paper at ICLR 2023

Table 7: Performance of different ways to obtain OOD actions.

Environments randomly sampling from
the action space

sampling from the
learned policy

halfcheetah-m 0.5 69.2 ± 2.7
halfcheetah-m-r 1.1 66.7 ± 2.0
halfcheetah-m-e -1.9 104.2 ± 2.4
walker2d-m -0.3 95.1 ± 2.7
walker2d-m-r 6.9 96.1 ± 2.3
walker2d-m-e -0.3 112.4 ± 1.1
hopper-m 30.5 102.0 ± 1.2
hopper-m-r 99.9 102.9 ± 1.1
hopper-m-e 14.1 112.3 ± 1.8

policies in most tasks, while showing similar performance in the hopper-medium-replay task. We 1

speculate that our OOD repulsive term plays an important role in most tasks, while only optimizing 2

loss function for BNNs is enough for competitive performance in the hopper-medium-replay task. 3

This result is consistent with Fig. 5. 4

D.3 IS BAYESIAN INFERENCE MODULE NECESSARY? 5

As presented in Eq. (8), the critic network is optimized by minimizing the TD error and KL diver- 6

gence and maximizing the OOD repulsive term. In Appendices C and D.2, we have demonstrated the 7

importance of the OOD repulsive term and sampling OOD actions from the learned policy. In this 8

section, we discuss the necessity of Bayesian neural networks and whether the OOD repulsive term 9

is useful for other methods. The difference between ensemble BNNs and other ensemble models 10

(e.g. PBRL or EDAC) lies in the last layer of the critic network. 11

We first illustrate that other methods cannot perform well with fewer ensembles, but may benefit 12

from the OOD repulsive term. In practice, we choose PBRL as the basis and add comparisons 13

with 1) PBRL with fewer ensembles and 2) PBRL with fewer ensembles and OOD diversity loss. 14

Experimental results are shown in Table 8. The first comparison illustrates that PBRL with fewer 15

ensembles cannot achieve the same performance as BURL. And the second comparison shows that 16

PBRL may benefit from the OOD repulsive term in several tasks, but is still inferior to BURL. This 17

result shows that the Bayesian inference module is necessary, and the OOD repulsive term may be 18

useful for other ensemble-based methods.

Table 8: Extended comparisons with PBRL with fewer ensembles and its combination with the OOD
repulsive term. Each method uses the same number of ensemblesM , which is presented in brackets.

Environments PBRL with fewer
ensembles

PBRL (fewer ensembles) +
OOD BURL

halfcheetah-m 59.8 (M=3) 60.3 (M=3) 69.2 ± 2.7 (M=3)
halfcheetah-m-r 46.7 (M=3) 52.3 (M=3) 66.7 ± 2.0 (M=3)
halfcheetah-m-e 93.3 (M=5) 93.6 (M=5) 104.2 ± 2.4 (M=5)
walker2d-m 89.2 (M=5) 91.1 (M=5) 95.1 ± 2.7 (M=5)
walker2d-m-r 90.9 (M=4) 84.5 (M=4) 96.1 ± 2.3 (M=4)
walker2d-m-e 109.6 (M=5) 105.6 (M=5) 112.4 ± 1.1 (M=5)
hopper-m 25.2 (M=5) 102.2 (M=5) 102.0 ± 1.2 (M=5)
hopper-m-r 98.7 (M=5) 101.1 (M=5) 102.9 ± 1.1 (M=5)
hopper-m-e 110.3 (M=5) 110.8 (M=5) 112.3 ± 1.8 (M=5)

19

To further explore the importance of BNNs, we remove the OOD repulsive term from BURL and 20

only use ensemble BNNs. We compare BURL (only ensemble BNNs) with PBRL and EDAC, 21

whose results are directly taken from their papers. We use the same number of ensembles as PBRL 22

or EDAC in most tasks, and use more ensembles in several walker2d or hopper tasks. We remark that 23

19

Under review as a conference paper at ICLR 2023

although more ensembles are required in several tasks, our method does not need pessimistic updates1

on OOD data in PBRL or gradient diversification in EDAC. The results in Table 9 validate that the2

Bayesian posterior for uncertainty quantification, which is one of our main contributions, is sufficient3

for favorable performance. It also implies that the OOD repulsive term, which is another contribution4

of our method, can decrease the number of ensembles required and lead to better computational5

efficiency.6

Table 9: Extended comparisons for BURL (only ensemble BNNs) with the results reported in PBRL
and EDAC. The numbers of ensembles required M are presented in brackets.

Environments PBRL EDAC BURL (only
ensemble BNNs)

halfcheetah-m 58.2 ± 1.5 (M=10) 65.9±0.6 (M=10) 68.1 (M=10)
halfcheetah-m-r 49.5±0.8 (M=10) 61.3±1.9 (M=10) 62.8 (M=10)
halfcheetah-m-e 93.6±2.3 (M=10) 106.3±1.9 (M=10) 105.6 (M=10)
walker2d-m 90.3±1.2 (M=10) 92.5±0.8 (M=10) 93.5 (M=20)
walker2d-m-r 86.2±3.4 (M=10) 87.0±2.3 (M=10) 96.6 (M=10)
walker2d-m-e 109.8±0.2 (M=10) 114.7±0.9 (M=10) 113.7 (M=10)
hopper-m 81.6±14.5 (M=10) 101.6±0.6 (M=50) 100.9 (M=50)
hopper-m-r 100.7±0.4 (M=10) 101.0±0.5 (M=50) 102.9 (M=10)
hopper-m-e 111.2±0.7 (M=10) 110.7±0.1 (M=50) 111.4 (M=50)

E STATISTICAL UNCERTAINTY7

As pointed out in (Agarwal et al., 2021), aggregate measures such as mean are not sufficiently reli-8

able due to the effect of outlier scores. We need more efficient and robust evaluation principles to9

characterize the statistical uncertainty. In this section, we adopt two evaluation methods from (Agar-10

wal et al., 2021): i) aggregate metrics, which contain median, interquartile mean (IQM), optimality11

gap, and mean. IQM computes the mean score of the middle 50% runs with 95% confidence inter-12

vals (CIs), and the optimality gap measures the number of runs where the algorithms fail to achieve a13

minimum score beyond which improvements are not very important. ii) performance profiles which14

use score distributions to express performance variability. We compare our algorithm with TD3-BC,15

IQL, PBRL, and EDAC and conduct experiments on Gym Mujoco tasks with 5 random seeds.16

The comparisons are presented in Fig. 9 and Fig. 10. In Fig. 9, higher mean, median, and IQM17

scores, and lower optimality gap are expected, and our algorithm outperforms other baselines. In18

Fig. 10, our algorithm also exhibits more efficient and robust performance.19

20

Under review as a conference paper at ICLR 2023

78 84 90 96 102

TD3-BC

IQL

PBRL

EDAC

BURL

Median

75 80 85 90 95

IQM

68 72 76 80 84

Mean

6 7 8 9 10

Optimality Gap

Normalized Score

Figure 9: Aggregate metrics on D4RL with 95% CIs based on Gym Mujoco tasks and 5 random
seeds for each task. BURL shows higher median, mean, and IQM, and lower optimality gap than
other methods.

0 20 40 60 80 100 120
Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 s

co
re

 >
τ

0 20 40 60 80 100 120
Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ta

sk
s

w
ith

 s
co

re
 >

 τ

TD3-BC IQL PBRL EDAC BURL

Figure 10: Comparisons on performance profiles based on score distributions (left) and average
score distributions (right). The shaded area indicates pointwise 95% confidence bands. BURL
achieves the best performance.

21

	Introduction
	Preliminaries
	Method
	Bayesian Posterior for Uncertainty Quantification
	Repulsive Regularization
	Learning with Bayesian Uncertainty

	Related Work
	Experiments
	Conclusion
	Theoretical Proof
	Background of linear MDPs
	Proof of the LCB-term

	Implementation Detail
	Ablation Study
	Additional Experiments
	Comparisons with more offline RL methods
	Different ways to obtain OOD actions
	Is Bayesian inference module necessary?

	Statistical Uncertainty

