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Abstract
The main drawbacks of input-output linearizing controllers are the need for precise dynamics mod-
els and not being able to account for input constraints. Model uncertainty is common in almost
every robotic application and input saturation is present in every real world system. In this paper,
we address both challenges for the specific case of bipedal robot control by the use of reinforcement
learning techniques. Taking the structure of a standard input-output linearizing controller, we use
an additive learned term that compensates for model uncertainty. Moreover, by adding constraints
to the learning problem we manage to boost the performance of the final controller when input
limits are present. We demonstrate the effectiveness of the designed framework for different levels
of uncertainty on the five-link planar walking robot RABBIT.
Keywords: legged robots, feedback control, reinforcement learning, model uncertainty

1. Introduction

1.1. Motivation

Research on humanoid walking robots is gaining in popularity due to the robots’ medical appli-
cations as exoskeletons for people with physical disabilities and their usage in dangerous disaster
and rescue missions. Model-based controllers have traditionally been applied to obtain stable walk-
ing controllers but, in general, they heavily rely on having perfect model knowledge and unlimited
torque capacity. In this paper we take a data-driven approach to address these two topics of cur-
rent research interest which still constitute challenges in bipedal robot control: uncertainty in the
dynamics and input saturation.

1.2. Related work

Input-output linearization is a nonlinear control technique that can be used to get the outputs
of a nonlinear system to track desired reference trajectories in a simple manner. By introducing an
appropriate state transformation, this control technique permits rendering the input-output dynamics
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linear. Afterward, linear systems control theory can be used to track the desired outputs. However,
input-output linearization requires precise knowledge of the system’s dynamics, which directly con-
flicts with the fact that actual systems’ dynamics might have nonlinearities that can be extremely
challenging to model precisely. Several efforts have been made to address this issue, using different
methods including robust and adaptive control techniques (Nguyen and Sreenath, 2015; Sastry and
Bodson, 1989; Craig et al., 1986; Sastry and Isidori, 1989) or, more recently, data-driven learning
methods (Taylor et al., 2019; Westenbroek et al., 2019). This paper will take the later approach
to address this challenge, specifically combining reinforcement learning (RL) and the Hybrid Zero
Dynamics (HZD) method for getting bipedal robots to walk.

The high nonlinearity, underactuation and hybrid nature of bipedal robotic systems pose addi-
tional problems that need to be addressed. The virtual constraints and HZD methods (Grizzle et al.,
2001; Westervelt et al., 2002; Westervelt, 2003; Morris and Grizzle, 2005) provide a systematic
approach to designing asymptotically stable walking controllers if there is full model knowledge.
These methods have been very successful in dealing with the challenging dynamics of legged robots,
being able to achieve fast enough convergence to guarantee stability over several walking steps. By
the HZD method, a set of output functions is chosen such that, when they are driven to zero, a time-
invariant lower-dimensional zero dynamics manifold is created. Stable periodic orbits designed on
this lower-dimensional manifold are also stable orbits for the full system under application of, for
instance, input-output linearizing (Sreenath et al., 2011), or control Lyapunov function (CLF) based
controllers (Ames et al., 2014). The later is based on solving online quadratic programs, whereas
the former approach does not rely on running any kind of online optimization. The CLF-based
method has also been successful in taking into account torque saturation (Galloway et al., 2015),
but it assumes perfect model knowledge too. In fact, taking input saturation into account is of
major importance and not doing it is one of the main disadvantages of input-output linearization
controllers that is often overlooked.

In this work, we build on the formulation proposed in Westenbroek et al. (2019) wherein pol-
icy optimization algorithms from the RL literature are used to overcome large amounts of model
uncertainty and learn linearizing controllers for uncertain robotic systems. Specifically, we extend
the framework introduced in Westenbroek et al. (2019) to the class of hybrid dynamical systems
typically used to model bipedal robots using the HZD framework. Unlike the systems considered in
Westenbroek et al. (2019), here we must explicitly account for the effects of underactuation when
designing the desired output trajectories for the system to ensure that it remains stable. Addition-
ally, we demonstrate that a stable walking controller can be learned even when input constraints are
added to the system. By focusing on learning a stabilizing controller for a single task (walking),
we are able to train our controller using significantly less data than was used in Westenbroek et al.
(2019), where it was trained to track all possible desired output signals.

1.3. Contributions

The contributions of our work thus are:

• We extend the work in Westenbroek et al. (2019) to the case of hybrid, underactuated bipedal
robots with input constraints.

• We directly address the challenge of dealing with a statically unstable underactuated system,
designing a new training strategy that uses a finite-time convergence feedback controller to
track desired walking trajectories.
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• We perform Poincaré analysis to claim local exponential stability of our proposed RL-enhanced
input-output linearization controller in the presence of torque saturation.

1.4. Organization

The rest of the paper is organized as follows. Section 2 briefly revisits hybrid systems theory
for walking and input-output linearization. Section 3 develops the proposed RL framework that
improves the input-output linearizing controller when there is a mismatch between the model and
the plant dynamics. Section 4 presents simulations on perturbed models of RABBIT, a five-link
planar bipedal robot. Finally, Section 5 provides concluding remarks.

2. Input-Output Linearization of Bipedal Robots

2.1. Model Description

Bipedal walking is represented as a hybrid model with single-support continuous-time dynamics
and double-support discrete-time impact dynamics (1), with x ∈ R2n being the robot state, and
u ∈ Rm the control inputs. x− and x+ represent the state before and after impact, respectively, with
S being the switching surface when the swing leg contacts the ground and ∆ being the discrete-
time impact map. The constrained continuous-time dynamics are represented in the manipulator
form (2), where q ∈ Rn is the vector containing the generalized system’s coordinates, D(q) is the
inertia matrix of the system, C(q, q̇) is the matrix representing the centripetal and Coriolis effects,
G(q) is the gravitation terms vector, B(q) is the motor torque matrix, J(q) is the Jacobian of the
stance foot and λ is the ground contact forces vector. The state variables are x = [q, q̇]>.

H =

{
ẋ = f(x) + g(x)u, x− /∈ S,
x+ = ∆(x−), x− ∈ S.

(1)

{
D(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u+ J>(q)λ,

J(q)q̈ + J̇(q, q̇)q̇ = 0.
(2)

2.2. Input-Output Linearization

The output function y : R2n → Rm is defined to represent the walking gait. Supposing y has a
vector relative degree two —meaning that the first derivative of y does not depend on the inputs but
the second derivative does— the second derivative of y can be written as:

ÿ = L2
fy(x) + LgLfy(x)u. (3)

The functions L2
fy and LgLfy are known as second order Lie derivatives. More information

about Lie derivatives and how to compute them can be found in Sastry (1999). Moreover, using
the method of Hybrid Zero Dynamics (HZD) the output function and its first derivative are driven
to zero, imposing “virtual constraints” such that the system evolves on the lower-dimensional zero
dynamics manifold, given by Z = {x ∈ R2n| y(x) = 0, ẏ(x) = 0}. If the vector relative degree
is well-defined, then LgLfy(x) 6= 0 ∀ x ∈ D, with D ⊂ R2n being a compact subset of the
state space containing the origin. Since LgLfy is nonsingular in D, we can use the input-output
linearizing control law:

u(x) = LgLfy
−1(x)(−L2

fy(x) + v), (4)

which yields ÿ = v, where v is a virtual input.
Suppose a state transform Φ : x → (ξ, z), with ξ = [y, ẏ]> and z ∈ Z. Then, the closed-loop

dynamics become a linear time-invariant system on ξ and the zero-dynamics on z:
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{
ξ̇ = Aξ +Bv,

ż = p(ξ, z),
with A =

[
0m×m Im
0m×m 0m×m

]
and B =

[
0m×m
Im

]
. (5)

We define v following Westervelt et al. (2007):

v(ξ) = 1
ε2
ψa(y, εẏ), with

ψa(y, εẏ) = −sign(εẏ)|εẏ|a − sign(φa(y, εẏ))|φa(y, εẏ)|
a

2−a ,

φa(y, εẏ) = y +
1

2− a
sign(εẏ)|εẏ|2−a,

(6)

such that v ensures finite time convergence to Z and ε controls the rate of convergence.

3. Reinforcement Learning for Uncertain Dynamics

In this section, we study the case in which there is a mismatch between the model and the actual
plant dynamics. Now, plant and model are represented by:

(Unknown) Plant Dynamics (Known) Model Dynamics{
ẋ = fp(x) + gp(x)u,

y = hp(x),
(7)

{
ẋ = fm(x) + gm(x)u,

y = hm(x).
(8)

For our application we will be using the same output functions for plant and model, so we could
actually set hp ≡ hm. Furthermore, we assume that both systems have vector relative degree two.
Defining an input-output linearizing controller on the model dynamics using the state dependent
finite-time convergence feedback controller presented in (6) for the additional input v we get:

u(x) = (LgmLfmhm(x))−1 (−L2
fmhm(x) + v(x)). (9)

However, if the mismatch between the model and the real dynamics is big enough, this controller
may not manage to stabilize the plant. In order to address this issue we use an alternative control
input:

uθ(x) =
(
LgmLfmhm(x)

)−1(
− L2

fmhm(x) + v(x)
)

+ αθ(x)v(x) + βθ(x), (10)

where θ ∈ Rk is a vector of parameters of a neural network that are to be learned. For a specific θ,
the policies αθ : Rn → Rm×m, βθ : Rn → Rm take the current state as input and serve to define
an additive learned term that is affine in v. Note that uθ maintains the structure of an input-output
linearizing controller. Applying the new control law uθ, the second derivative of the plant’s outputs
can be rewritten as:

ÿ = L2
fphp(x)+LgpLfphp(x)

((
LgmLfmhm(x)

)−1(
−L2

fmhm(x)+v(x)
)

+αθ(x)v(x)+βθ(x)

)
.

(11)
In Westenbroek et al. (2019), Wθ is defined as the right hand side of the above equation, such that
∀x ∈ R2n, ÿ = Wθ(x). The point-wise loss is then defined on R2n × Rk as:

l(x, θ) = ||v(x)−Wθ(x)||22, (12)

which provides a measure of how well the controller uθ linearizes the plant at the state x. Since
the term Wθ present in the loss function depends on the unknown plant dynamics, we use a finite
difference approximation of it by replacing this by the second derivative of the outputs of the plant.
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(a) RABBIT (b) Coordinate system

Figure 1: (a) RABBIT, a planar five-link bipedal
robot with nonlinear, hybrid and underactuated
dynamics. (b) q1, q2 are the relative stance
and swing leg femur angles referenced to the
torso, q3, q4 are the relative stance and swing
leg knee angles, q5 is the absolute torso an-
gle in the world frame, and x and y are the
position of the hip in the world frame. Here
q = [x, y, q1, q2, q3, q4, q5]

>.

Now, we will formulate our problem as a canonical RL problem (Sutton and Barto, 2018). Even
though only αθ and βθ are learned, for the sake of simplicity let πθ : x 7→ πθ(x) be our policy taking
the current state x and returning the control action uθ = πθ(x), and let the reward for a given state
x be R(x, uθ) = −l(x, θ) +Re(x), where Re(x) is a penalty value if the state x is associated with
a fallen robot configuration or a bonus value otherwise. Then, we can define the learning problem

max
θ

Ex0∼X0,w∼N (0,σ2)

∫ T

0
R(x(τ), uθ(τ))dτ,

s.t. ẋ = f(x) + g(x)(πθ(x) + wt),

umin ≤ πθ(x) ≤ umax,

(13)

where X0 is the initial state distribution, T > 0 is the duration of the episode, w is an additive zero-
mean noise term and umin and umax are the torque limits. An episode ends when the robot com-
pletes an entire step or when it falls. A discrete-time approximation of this problem can be solved
using standard on-policy and off-policy RL algorithms. Note that our proposed controller (10) with
the chosen loss (12) and the inclusion of input constraints in the optimization (13) addresses the
classical challenges of input-output linearization: model uncertainty and input constraints. From
now on, we will call original IO controller the one of (9) and RL-enhanced IO controller the one of
(10), with θ chosen by solving (13).

4. Simulation

4.1. System Description

In order to numerically validate our method, we use a model of the five-link planar robot RAB-
BIT (Chevallereau et al., 2003), wherein the stance phase is parametrized by a suitable set of coordi-
nates (Figure 1). RABBIT is a 7 Degrees-of-Freedom (DOF) underactuated system with 4 actuated
DOF, with the actuators being located at the four joints (the two hip joints and the two knee joints).
The dynamics of this 14-dimensional system are extremely coupled and nonlinear.

4.2. Reference Trajectory Generation

In order to generate a reference trajectory offline, we use the Fast Robot Optimization and
Simulation Toolkit (FROST) (Hereid and Ames, 2017). The four actuated DOF (q1, q2, q3 and
q4) are virtually constrained to be Bézier Polynomials of the stance leg angle θ = q5 + q1 +
q3
2 , which is monotonically increasing during a walking step. This way, the trajectory that has
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(a) scale = 1.5 (b) scale = 3

Figure 2: Euclidean norm of the tracking error (for 10 and 200 steps) and joint torques (for 10 steps),
for the original IO controller (yellow), the RL-enhanced IO controller (blue), and the RL-enhanced
IO controller with torque saturation (red). Torque saturation for the RL-enhanced IO controller is
set at 105 Nm when scale = 1.5, and at 155 Nm when scale = 3. There is no torque saturation
for the original IO controller.

been generated is time-invariant, which makes the controlled system more robust to uncertainties
(Westervelt et al., 2007). Taking the difference between the actual four actuated joint angles and
the desired ones (coming from the reference trajectory) as output functions y, the system is input-
output linearizable with vector relative degree two. Consequently, we can use the RL-enhanced IO
controller uθ presented in the previous section.

We train our controller using a Deep Deterministic Policy Gradient Algorithm (DDPG) (Silver
et al., 2014). DDPG is used to tune the parameters of the actor and critic feedforward neural net-
works. They each have two hidden layers of widths 400 and 300 and ReLU activation functions.
The actor neural network maps 14 observations, which are the states of the robot, to 20 outputs
corresponding to the 4× 4 αθ and the 4× 1 βθ.

4.3. Model-Plant Mismatch and Torque Saturation Results

We introduce model uncertainty by scaling all the masses and inertia values of the plant’s links
by some factor (scale) with respect to the known model. After about twenty minutes of training
when the scale is 1.5 and about an hour when the scale is 3, we obtain the results shown in Fig-
ure 2, in which we compare the tracking error and the joint torques when using (i) the original IO
controller, (ii) the RL-enhanced IO controller without torque saturation and (iii) the RL-enhanced
IO controller when there is torque saturation. For these results we did not need to include torque
saturation in the training process, and Figure 2 shows that the RL-enhanced IO controller still per-
forms well in the presence of input constraints if they are not too severe. The beneficial effects of
including torque saturation constraints during training will be discussed later.
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Figure 3: RL-enhanced IO controller with torque saturation at 45 Nm and scale = 1. Euclidean
norm of the tracking error (left) and joint torques (right) for a simulation of 10 walking steps. The
original IO controller fails after one step and is not shown in this figure.

In Figure 2 it can be observed that the RL-enhanced IO controller with and without saturation is
able to stabilize the system indefinitely each time, whereas the original IO controller accumulates
error on the outputs and the robot falls after a few steps. Moreover, the RL-enhanced IO controller
achieves this without increasing the magnitude of the torques when compared with the original IO
controller.

The stability of the periodic gait obtained under the RL-enhanced IO controller can also be
studied by the method of Poincaré. We consider the post-impact double stance surface S as a
Poincaré section, and define the Poincaré map P : S → S. We can numerically calculate the
eigenvalues of the linearization of the Poincaré map about the obtained periodic gait, which results
in a dominant eigenvalue of magnitude 0.67 for scale = 1.5 and no torque saturation, 0.78 for
scale = 1.5 with torque saturation, 0.76 for scale = 3 and no torque saturation and 0.83 for
scale = 3 with torque saturation. The magnitude of the dominant eigenvalue being always less than
one means that the designed controllers achieve local exponential stability (Westervelt et al., 2007).

Next, we study the case of having no mismatch between the plant and the model dynamics but,
instead, having heavy input constraints in the torques, which make the original IO controller fail.
By training while taking into account the torque saturation, we obtain a RL-enhanced IO controller
that achieves stable walking under the presence of severe input constraints, as shown in Figure 3.

4.4. Tracking Untrained Trajectories

Depicted in Figure 4 are the tracking errors and torques produced by the RL-enhanced IO con-
troller for a scale of 3 when it is trying to follow periodic orbits it was not trained on. These
trajectories differ from the one used for the training (trajectory 1) in the maximum hip height dur-
ing a step. As can be seen in the left part of Figure 4, trajectory 2 and trajectory 1 are relatively
similar, whereas trajectory 3 constitutes a noticeably different walking gait. From the figures, we
can see that the RL-enhanced IO controller performs better when tested in trajectory 2 than in tra-
jectory 3. Actually, it will be able to stably track trajectory 2 for an indefinitely long horizon and not
trajectory 3. This was expected, since the more different the trajectory is, the farther the state of the
robot will be from the distribution of states the DDPG agent has been trained on. Also, the output
functions we have defined depend on the Bézier coefficients of the reference trajectory, and so the
actual input-output linearizing controller is different for each trajectory. Still, thanks to training the
DDPG agent on a stochastic distribution of initial states, we get enough exploration to achieve good
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Figure 4: Left: Phase portrait of the periodic orbits. Right: Euclidean norm of the tracking error
and joint torques for a simulation of 10 steps on untrained trajectories.

tracking performance on untrained trajectories as long as they are not too different from the one the
agent was trained on.

5. Conclusions

In this paper, we deployed a framework for improving an input-output linearizing controller for
a bipedal robot when uncertainty in the dynamics and input constraints are present. We demon-
strated the effectiveness of this approach by testing the learned controller on the hybrid, nonlinear
and underactuated five-link walker RABBIT. For the simulations, different degrees of model-plant
mismatch with and without torque saturation were used. Furthermore, the RL-enhanced IO con-
troller was able to follow trajectories it was not trained on as long as these trajectories were not too
different from the one used for the training. However, a limitation of our work is the need for the
original IO controller to work for a significant part of a walking step before failing, in order for the
training process to converge. For high degrees of uncertainty this could be difficult to guarantee.

Future work would focus on deploying this controller on hardware and on other more complex
bipedal walkers, such as Cassie. Moreover, a similar approach could be used to improve Control
Lyapunov Function (CLF)-based controllers in the presence of model uncertainty.
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The work of Fernando Castañeda was supported by a fellowship (code LCF/BQ/AA17/11610009)
from ”la Caixa” Foundation (ID 100010434). This work was also partially supported through Na-
tional Science Foundation Grants CMMI-1931853, IIS-1834557, by Berkeley Deep Drive and by
HICON-LEARN (design of HIgh CONfidence LEARNing-enabled systems), Defense Advanced
Research Projects Agency award number FA8750-18-C-010.

8



IMPROVING I-O LINEARIZING CONTROLLERS FOR BIPEDAL ROBOTS VIA RL

References

A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle. Rapidly exponentially stabilizing control
lyapunov functions and hybrid zero dynamics. IEEE Transactions on Automatic Control, 59(4):
876–891, April 2014.

C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R. Westervelt, C. Canudas-De-Wit, and J. W.
Grizzle. Rabbit: a testbed for advanced control theory. IEEE Control Systems Magazine, 23(5):
57–79, 2003.

J. Craig, Ping Hsu, and S. Sastry. Adaptive control of mechanical manipulators. Proceedings of the
1986 IEEE International Conference on Robotics and Automation, 3:190–195, 1986.

K. Galloway, K. Sreenath, A. D. Ames, and J. W. Grizzle. Torque saturation in bipedal robotic
walking through control lyapunov function-based quadratic programs. IEEE Access, 3:323–332,
2015.

J. W. Grizzle, G. Abba, and F. Plestan. Asymptotically stable walking for biped robots: analysis via
systems with impulse effects. IEEE Transactions on Automatic Control, 46(1):51–64, 2001.

A. Hereid and A. D. Ames. Frost: Fast robot optimization and simulation toolkit. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 719–726, Vancouver,
BC, Canada, September 2017.

B. Morris and J. W. Grizzle. A restricted poincaré map for determining exponentially stable periodic
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