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Abstract
Hierarchical time series forecasting requires not
only prediction accuracy but also coherency, i.e.,
forecasts add up appropriately across the hierar-
chy. Recent literature has shown that reconcili-
ation via projection outperforms prior methods
such as top-down or bottom-up approaches. Un-
like existing work that pre-specifies a projection
matrix (e.g., orthogonal), we study the problem
of learning the optimal oblique projection from
data for coherent forecasting of hierarchical time
series. In addition to the unbiasedness-preserving
property, oblique projection implicitly accounts
for the hierarchy structure and assigns different
weights to individual time series, providing sig-
nificant adaptability over orthogonal projection
which treats base forecast errors equally. We ex-
amine two broad classes of projections, namely
Euclidean projection and general oblique projec-
tions. We propose to model the reconciliation
step as a learnable, structured, projection layer
in the neural forecaster architecture. The pro-
posed approach allows for the efficient learning
of the optimal projection in an end-to-end frame-
work where both the neural forecaster and the
projection layer are learned simultaneously. An
empirical evaluation of real-world hierarchical
time series datasets demonstrates the superior per-
formance of the proposed method over existing
state-of-the-art approaches.

1. Introduction
A hierarchical time series refers to a collection of time series
that follows a hierarchical aggregation structure. Forecast-
ing hierarchical time series has garnered increasing attention
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due to its crucial role in decision-making across various do-
mains (Dai et al., 2017). For instance, in retail, demand
forecasts across different levels of granularity (e.g., product,
store, state, country) are essential for inventory control and
revenue management (Seeger et al., 2016). In the energy and
utility sector, accurate electricity consumption forecasts at
individual, grid, and regional levels are vital for the efficient
operation of power grids (Taieb et al., 2017; 2021).

To forecast hierarchical time series, besides accuracy, it is
also critical to ensure coherence, i.e., the forecasts of each
aggregation group are equal to those making up the group.
When individual time series are learned independently, there
is no guarantee that these forecasts would satisfy the aggre-
gation constraints specified by the hierarchy. Previous meth-
ods address coherence by forecasting only a single level
of the hierarchy and then reconciling either in a top-down
(Athanasopoulos et al., 2009; Gross & Sohl, 1990; Das et al.,
2023) or bottom-up approach (Kahn, 1998), or by utilizing
a combination of both known as the middle-out method
(Hollyman et al., 2021). There are two issues associated
with this approach. Firstly, the model parameters for each
time series are learned independently of the reconciliation
method that follows. Secondly, since such approaches only
utilize partial data in the hierarchy, valuable information
present at other levels is neglected.

Several notable advances in forecast reconciliation literature
that attempt to combine forecasts across all levels via solv-
ing a regression problem are shown to outperform prior
methods (Hyndman et al., 2011; Wickramasuriya et al.,
2019). Panagiotelis et al. (2021) provide a geometric in-
terpretation of these reconciliation methods as specific in-
stances of projections. In particular, Panagiotelis et al.
(2021) show that the method proposed in Hyndman et al.
(2011) is an orthogonal projection, while MinT method from
Wickramasuriya et al. (2019) is a special case of generalized
Euclidean projections. Reconciliation via projections enjoys
desirable properties such as the unbiasedness-preserving
property, i.e., the reconciled forecasts are unbiased if the
initial forecasts are also unbiased.

Oblique projection (such as generalized Euclidean projec-
tion) offers significantly more flexibility in modeling as
the standard orthogonal projection method implicitly treats
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individual base forecast errors equally, disregarding the hier-
archy structure. However, implementing oblique projection
is remarkably difficult. Take MinT (Wickramasuriya et al.,
2019) as an example, despite having a closed-form solution
in theory, it requires estimating the covariances of forecast
errors, rendering its implementation infeasible in practice,
without resorting to approximations.

In this paper, we attempt to address the challenge of im-
plementing oblique projection for forecast reconciliation of
hierarchical time series by proposing a novel, flexible, and
tractable framework. Our contributions are threefold.

1. Existing work on forecasting hierarchical time series
via projection only considers pre-defined projection
matrices. To the best of our knowledge, this is the first
work that proposes a learnable projection method,
where we integrate the oblique projection as a struc-
tured layer within a neural forecaster architecture. This
allows for the efficient learning of the oblique projec-
tion on an end-to-end framework where both the neural
forecaster and the projection layer are learned simul-
taneously while generating forecasts that are coherent
by construction. The proposed approach of utilizing
the structured layer for reconciliation is highly flexible
and we show that it can be applied to both point and
probabilistic forecasting of hierarchical time series.

2. We consider two types of oblique projections. The
first is generalized Euclidean projection, where we
learn a symmetric, positive-definite matrix from a hi-
erarchical time series. To impose such a structure, we
perform matrix decomposition and implement a sym-
metric, positive-definite, dense neural network layer.
We also consider general oblique projection, where
we only require the projection matrix to satisfy the
idempotence property, which is achieved via regular-
ization. The general oblique projection provides a
higher degree of adaptability due to its minimal con-
straint on the neural network structure, while the gener-
alized Euclidean projection offers an added benefit of
interpretability as the learned matrix captures different
weights applied to the forecasting errors of individual
time series, accounting for the hierarchy. In compari-
son, instead of learning the projection from data, the
state-of-the-art approach that utilizes orthogonal pro-
jection simply specifies this matrix as an identity ma-
trix, i.e., effectively treating errors in individual time
series as equal.

3. We validate the superior performance of our approach
through extensive empirical evaluation on both point
and probabilistic forecasting methods, using real-world
datasets. Specifically, we compare against existing
state-of-the-art reconciliation approaches, of both se-

Figure 1. Example of a tree hierarchically structured time series
for n = 9 time series with m = 6 bottom and r = n − m = 3
aggregated time series.

quential and end-to-end frameworks. We also experi-
ment with different neural forecasters. Our proposed
methods consistently outperform benchmarks in all
datasets and across different levels of the hierarchies,
highlighting the advantages of using learnable, oblique
projections for hierarchical time series forecasting.

2. Reconciled Hierarchical Forecasting
2.1. Notations and preliminaries

Following the notation in Hyndman et al. (2011), we de-
fine a hierarchical time series as a collection of n variables
indexed by time t, where t = 1, . . . , T . We denote the n-
dimensional vector which includes observations of all vari-
ables in the hierarchy at time t as yt ∈ Rn, with yt,i ∈ R as
the value of the i-th univariate time series at time t. We refer
to the time series at the bottom of the hierarchy as bottom-
level series of dimension m, and the rest of the series as
aggregated-level series of dimension n−m. Based on this
definition, yt can be expressed as [at bt]

T , where bt ∈ Rm

and at ∈ Rn−m represent the vectors of the bottom-level
series and the aggregated-level series at time t respectively.

We assume that the indexing of each individual time series
is given by the level-order traversal of the hierarchy going
from left to right. Each hierarchical time series structure
can be described by the aggregation matrix S = {0, 1}n×m

that is defined to satisfy that

yt = Sbt ⇐⇒
[
at

bt

]
=

[
Ssum

Im

]
bt, ∀t ∈ [T ] (1)

where Ssum ∈ Rr×m is the summation matrix and Im ∈
Rm×m is the identity matrix.

To illustrate the concepts, consider the following example
with the hierarchy depicted in Figure 1. We have that at =
[y1, y2, y3]

T
t ∈ R3 and bt = [b1, b2, b3, b4, b5, b6]

T
t ∈ R6.

Furthermore, Ssum =

1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1

. It is impor-

tant to note that in addition to the tree structure, there are
other examples of hierarchies including temporal hierarchies
(Athanasopoulos et al., 2017), cross-temporal aggregation
structures (Spiliotis et al., 2020), etc.
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The quantity of our interest is to forecast each time series
in the hierarchy for a time horizon h, i.e. for all times
t = T + 1, . . . , T + h. The typical approaches of forecast-
ing hierarchical time series follow a two-step procedure:
(i) forecast each time series independently to obtain base
forecasts of the multivariate time series τ time steps ahead,
denoted by ŷT+τ ∈ Rn, which are not necessarily rec-
onciled, and (ii) produce adjusted forecasts ỹT+τ through
reconciliation, which requires the forecasts to adhere to the
aggregation constraint – a property referred to as coherence.

Definition 2.1. The m-dimensional linear subspace S ⊆
Rn for which the linear aggregation constraints hold for all
y ∈ S is defined as the coherent subspace.

Definition 2.2. The forecast ỹT+τ of the multivariate time
series τ time steps ahead is coherent if ŷT+τ ∈ S.

Definition 2.3. Let ξ be a mapping, ξ : Rn → S. The
forecast ỹT+τ = ξ(ŷT+τ ) reconciles the predictions with
respect to the mapping.

All reconciliation methods that we are aware of consider
linear mapping in the place of ξ, where the base forecasts
are multiplied by an n × n matrix that has S as its image.
Specifically, reconciled forecasts are always achieved by
multiplying the base forecasts ŷT+τ with the matrix SP ,
where P ∈ Rm×n, i.e., ỹT+τ = SP ŷT+τ .

When the reconciliation matrix is defined as P =
[0m×r|1m×m], it represents the bottom-up approach. On
the other hand, when the reconciliation matrix is defined as
P = [pm×1|0m×(n−1)], where p is a vector that sums to 1
that disaggregates the top-level series proportionally to the
bottom series, we obtain the top-down approach.

2.2. Coherent Reconciliation via Projection

In the literature on hierarchical forecasting, several works
have considered a specific type of reconciliation where SP
is a projection matrix onto S (Hyndman et al., 2011; Wick-
ramasuriya et al., 2019; Panagiotelis et al., 2021).

Definition 2.4. Matrix SP is a projection matrix (onto S)
when the idempotence property holds, i.e. (SP )2 = SP .

Hyndman et al. (2011) proposed to use P = (STS)−1ST ,
which is a solution to the so-called OLS reconciliation
problem. Wickramasuriya et al. (2019) proposed P =
(STW−1

τ S)−1(STW−1
τ ), also known as the MinT method,

where Wτ is the covariance matrix of the τ time step ahead
forecast errors ϵ̂T+τ = yT+τ − ŷT+τ . The authors show
that when predictions are unbiased, this choice of P mini-
mizes the sum of variances of the forecast errors and pro-
duces unbiased reconciled predictions. However, a disad-
vantage is that the error covariance matrix Wτ is hard to
obtain for τ > 1, and approximations are used instead.

Recently Panagiotelis et al. (2021) provided a geometric

interpretation that encompasses these well-known recon-
ciliation methods as specific instances of projections. In
particular, the authors showed that the MinT projection
matrix is a special case of generalized Euclidean projec-
tions miny∈S ||ŷT+τ − y||W where the loss function is the
generalized Euclidean norm with respect to matrix W , i.e.
||v||2W = vTWv, under the assumption that W is an invert-
ible and symmetric matrix. If W is known a priori, then the
solution to the generalized Euclidean projection problem is
ỹT+τ = SP ŷT+τ , with P = (STWS)−1(STW ). Mean-
while, the authors also show that the reconciliation matrix
P = (STS)−1ST proposed in Hyndman et al. (2011) is
simply an orthogonal projection where W = I . To illustrate
the benefit of oblique projection over orthogonal projection,
consider the following example illustrated in Figure 2.

Example: We consider the multivariate time series y =
(y1, y2) ∈ R2. Let’s assume that for τ = 1, the actual values
are y1 = (1, 1) and the base predictions by a multivariate
time series model are ŷ1 = (2, 3). The reconciled predic-
tions when the orthogonal projection reconciliation method
is used, i.e. the reconciled predictions according to the Eu-

clidean norm (|| · ||W , with W =

[
1 0
0 1

]
and, consequently

P = [0.5, 0.5]), are ỹL2
= (2.5, 2.5) and the corresponding

Root Mean Squared Error (RMSE) is 0.5. On the other hand,

if we could learn the matrix W =

[
2 0
0 −1

]
, or equivalently

P = [2,−1], then the learned general (oblique) projection
would produce the reconciled prediction ỹobl = (1, 1) that
has a perfect RMSE of 0.

Figure 2. An example of forecast reconciliation via orthogonal
(red) and oblique projection (green).

Existing approaches in the literature first pre-specify the
projection matrix (i.e. matrix P ) and then perform the rec-
onciliation. In the next section, we propose a novel method
that learns the optimal oblique projection matrix from data.
Instead of performing the sequential two-stage procedure
(as in Wickramasuriya et al. (2019) or Ben Taieb & Koo
(2019)), we learn the optimal projection matrix and produce
the reconciled forecasts in a single end-to-end model.
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Figure 3. A representation of the proposed end-to-end architecture for both point and probabilistic forecasts. The components within the
dashed box are used only during probabilistic forecasting. We model the reconciliation matrix P as a learnable, structured projection
layer. P, fθ and Θt are learned simultaneously during training.

3. Learning Optimal Oblique Projection
To learn optimal oblique projections during training as part
of a single end-to-end framework, we model the matrix P as
a learnable, structured, dense layer in the neural forecaster
architecture that is used for the hierarchical time series pre-
diction. The proposed end-to-end architecture can be seen
in Figure 3. Note that while the learnable projection layer
can be applied to both point and probabilistic forecasting
methods, the step that learns the distribution parameters
and performs sampling (shown in the dashed box in Figure
3) is only needed for the probabilistic setting. As the vast
majority of the literature in the field of hierarchical time
series is on point-wise predictions, we focus on this setting
in this section. Later in Section 4 we will discuss how to
adapt the framework for probabilistic forecasts, and present
experimental results from both settings in Section 5.

3.1. Proposed Learnable Projections

In this work, we focus on learning two classes of projections,
namely, the generalized Euclidean projection, and the broad
class of general oblique projections.

For the generalized Euclidean oblique projection, we im-
pose the following structure on P = (STWS)−1(STW ),
with W ∈ Rn×n to be a symmetric, positive-definite,
dense neural network layer. To model symmetry, we set
W = (Q+QT )/2, where Q is a learnable, positive-definite
dense neural network layer. By performing this decompo-
sition, matrix W is always symmetric, while we only need
to learn a single matrix, Q. In Figure 4, we demonstrate the
proposed decomposition of W that preserves the symmetric
property. To model the positive-definite requirement for Q,
we perform the eigenvalue-like factorization proposed by
Lezcano-Casado (2019).

For the general oblique projection, we model P as an ar-
bitrary dense layer with input dimension n and output di-

Figure 4. The proposed decomposition of matrix W into Q+QT

2
,

where Q is a positive-definite matrix.

mension m. We train the complete model (neural forecaster
+ projection) under the constraint (SP )2 = SP . To im-
pose the idempotence property, we introduce a Lagrange
multiplier λ to penalize the Frobenius norm ||PS − I||F
of the constraint PS = I , where I ∈ Rm×m is the iden-
tity matrix. The satisfaction of this constraint implies that
SP is a general projection matrix onto S since if PS = I ,
then (SP )2 = SPSP = S(PS)P = SIP = SP . Ta-
ble 1 provides a summary that compares the two proposed
reconciliation approaches.

3.2. End-to-End Learning

Formally, our proposed approach solves the following opti-
mization problem:

min
P,θ

1
T−1

∑T
t=2 ||yt − SPfθ(y1:t−1)||

subject to projection constraints,
(2)

where fθ is the neural forecaster used for obtaining the base
predictions, θ is its set of trainable parameters, and the pro-
jection constraints depend on the type of the projection (see
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Table 1. Summary of the proposed reconciliation approaches

Reconciliation Structure of P Projection constraints

Gen. Euclidean P = (STWS)−1(STW ) W = Q+QT

2 , Q ≻ 0
Gen. Projection P ∈ Rm×n PS = I

Table 1). Through the representation of the projection as a
neural network layer, we can effectively leverage existing
off-the-shelf frameworks to efficiently learn the neural fore-
caster and the projection layer at the same time using SGD.
Furthermore, the proposed architecture enables the resulting
projection to be informed concurrently by both the structure
of the neural forecaster and the nature of the data.

3.3. Theoretical Guarantees of Reconciled Forecasts via
Projection

Utilizing learnable, oblique projections for reconciling hier-
archical time series forecasts not only enhances performance
in terms of accuracy but also confers a set of significant
properties to the reconciled forecasts. The first property is
the unbiasedness preserving property that extends to both
proposed oblique projections. We first state the following
lemma.

Lemma 3.1 (Rao (1974)). Any vector lying in the image of
a projection is mapped to itself by that projection.

This lemma implies that if SP is a projection matrix onto
S, then for every v ∈ S we have that SPv = v. We now
formally state the unbiasedness-preserving property for our
proposed projections, while we present the proof in section
A of the Appendix.

Proposition 3.2. For an unbiased base forecast ŷτ , the
reconciled point forecast produced by the proposed oblique
projections is also an unbiased prediction.

Intuitively, this property implies that if the predictions of
the neural forecaster are unbiased, then the reconciled fore-
casts will remain unbiased. Furthermore, in addition to the
unbiasedness property, the generalized Euclidean projection
comes with some additional interesting properties, that en-
hance its interpretability and transparency. These properties
extend the known properties of the original Euclidean pro-
jection to the setting of the generalized Euclidean projection.
We state the first property in the following proposition.

Proposition 3.3. The generalized Euclidean projection as-
signs different weights to different forecasts, i.e. transforms
the space, and then applies an orthogonal projection to the
weighted forecasts.

Intuitively, the generalized Euclidean projection first trans-
forms the space by multiplying all vectors and matrices
involved with W 1/2 and then applies the orthogonal pro-

jection. Thus, by retrieving matrix W , we can identify the
exact weights the projection gave to each time series in the
hierarchy in order to reduce the overall error. Moreover,
as shown in the following proposition, the generalized Eu-
clidean projection never increases the error of the reconciled
forecast, with respect to the norm induced by W .

Proposition 3.4. The generalized Euclidean projection
never increases the error of the reconciled forecast, with
respect to the norm defined by W .

Both proofs can be found in section A of the Appendix.
It is worth noting, that despite these attractive properties
associated with a generalized Euclidean projection, it is im-
portant to note that the loss function of interest is not always
the norm induced by W . Furthermore, the generalized Eu-
clidean projection imposes a specific structure on matrix
P that might not always be essential or required. On the
other hand, the general projection is the most flexible, and
thus expressive projection, as it imposes the least structure
on the learnable layer in order for SP to be a projection
onto S. In the experiments section, we also test the recon-
ciliation scheme where P is unconstrained (and thus, not
a projection) and we show empirically the advantages of
using structured, projection layers for reconciliation.

4. Adaptation to Probabilistic Forecasting
Compared to point predictions, in probabilistic forecasting
(Gneiting & Katzfuss, 2014; Salinas et al., 2020), the goal
is to accurately estimate the conditional predictive CDF for
each series i in the hierarchy, i.e. FT+τ,i(yi|y1, . . . ,yT ) =
P[yi ≤ yT+τ,i|y1, . . . ,yT ]. The proposed method can be
easily extended to produce coherent probabilistic forecasts.

Following the methodology proposed by Rangapuram et al.
(2021) for both training and inference, we use the output of
the multivariate forecaster to model the parameters Θt of the
predictive distribution at time step t (typically the forecast
distribution is assumed Gaussian, i.e. Θt = {µt,Σt}, but it
can be extended to other distributions) instead of the base
forecasts. Given the estimated distribution parameters Θt,
we generate probabilistic base forecasts by drawing a set
of N Monte Carlo samples from the predicted distribution
using the reparameterization trick. Then, we perform the
projection step by performing the feed-forward pass through
our proposed learnable projection layer and finally, we com-
pute sufficient statistics from the samples and use them to
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calculate the (log) likelihood loss function that is maximized
during training (or any other relevant loss function). Similar
to formulation (2) for point predictions, our approach solves
the following optimization problem

min
P,θ

−
T∏

t=2
p(yt,Θ

c
t)

subject to projection constraints.
(3)

This formulation maximizes the log-likelihood of the
learned distribution. Θc

t are the sufficient statistics cal-
culated on SPzt, with zt ∼ p(Θt), where Θt =
g(fθ(y1:t−1)) and g(·) is the function for calculating the
sufficient statistics of the assumed underlying distribution
from the output of the neural forecaster. Depending on our
assumption of the forecast distribution, p(·) and g(·) can be
analytically expressed. Note that in our case, the projection
matrix only affects the mean (and variance) of the distribu-
tion. In the following experiments section, to evaluate the
performance of the proposed methods, we conduct exten-
sive experiments on both point and probabilistic hierarchical
time series forecasting.

5. Experiments
5.1. Datasets

We evaluate our proposed methodology on the publicly avail-
able hierarchical datasets used in Rangapuram et al. (2021).
We consider the Labour dataset (Australian Bureau of Statis-
tics, 2020) that contains monthly Australian employment
data from Feb. 1978 to Dec. 2020, the Traffic dataset (Cuturi,
2011) that contains information about the occupancy rate of
car lanes in San Fransisco and the Wiki dataset (Ben Taieb &
Koo, 2019) that includes daily views for 145,000 Wikipedia
articles starting from Jul. 2015 to Dec. 2016. We also test
our methodology on the Tourism dataset (Tourism Research
Australia, 2005) that presents a geographical hierarchy with
quarterly observations of Australian tourism flows from
1998 to 2006, and on the TourismLarge dataset that is a
larger, more detailed version of Tourism (Wickramasuriya
et al., 2019) based on geography and purpose-of-travel. For
each dataset, we use the prediction length presented in Table
2. For a given prediction horizon h, we assume that the total
length of the multivariate time series at hand is T + h with
the total length of the time series used for training being T .

5.2. Metrics

To evaluate the accuracy of the point predictions, we use
the root mean squared error (RMSE) that is defined as√

1
nh ·

∑h
τ=1 ||yT+τ − ỹT+τ ||22 and the weighted mean

absolute percentage error (wMAPE) that is defined as
1
nh ·

∑h
τ=1 ||yT+τ−ỹT+τ ||1∑h

τ=1 ||yT+τ ||1
. To evaluate the accuracy of the

forecast distributions, we use the total continuous ranked

probability score (CRPS; Gneiting & Ranjan (2011)). Given
an estimated predictive CDF F̂t for the multivariate time
series yt, the CDF F̂t,i for univariate time series i, and
the ground-truth observation yt,i, the total CRPS is be de-
fined as CRPSsum(F̂t,yt) =

∑
i

∫ 1

0
QSq

(
F̂−1
t,i , yt,i

)
dq,

where QSq is the quantile score for the q-th quantile, i.e.
QSq

(
F̂−1
t,i , yt,i

)
= 2

(
1{yt,i ≤ F̂−1

t,i (q)} − q
)(
F̂−1
t,i (q) −

yt,i
)
. For the experiments, we use the total CRPS imple-

mentation from GluonTS (Alexandrov et al., 2020), with all
quantiles from 0.05 to 0.95 with a step of 0.05.

5.3. Models

We test our method using two backbone models as the neu-
ral forecaster fθ, i.e., the TimesNet (Wu et al., 2022) and
Autoformer (Wu et al. (2021)). For point predictions, we use
the Mean Squared Error (MSE) as the loss function, while
for probabilistic predictions we learn the set of parameters
Θt = {µt,Σt} of a Gaussian distribution, where µ ∈ Rn

corresponds to the vector of the mean and Σt ∈ Rn×n cor-
responds to the diagonal covariance matrix, using Gaussian
negative log-likelihood as the loss function. We selected
the TimesNet and the Autoformer models as the neural fore-
caster backbones due to their high prediction accuracy in a
variety of datasets.

5.4. Benchmarks

We compare our approach against several benchmarks, of
both sequential and end-to-end nature. We use both Times-
Net and Autoformer as the backbone neural forecasters and
we perform cross-validation to find the best set of parame-
ters for each dataset. For performing cross-validation on the
neural forecaster, we train on the first T − h time steps and
validate on the following h time steps. For TimesNet, we
use the hyperparameters presented in Wu et al. (2022) for
short-term forecasting and we use the default hyperparam-
eter selection method presented in Olivares et al. (2022a).
For the Autoformer model, we use again the default hy-
perparameter selection method presented in Olivares et al.
(2022a). For both models, for the family of general oblique
projection, we use a Lagrange multiplier of λ = 104, since
this value is large enough to guarantee reconciliation. In
section C of the Appendix, we present an extensive experi-
mental study investigating the impact of different Lagrange
multipliers on the learned projection matrix and show why
the selected value leads to certified projection matrices. As
baseline models, we consider the Naive and SeasonalNaive
benchmarks (Meyer, 2002; Garza et al., 2022).

For the sequential benchmarks, we first train a TimesNet
and Autoformer (AF) to generate their respective base
forecasts. Then, we apply a wide range of reconcilia-
tion methods to the base forecasts. Specifically, we use
the Bottom-up (BU), the Top-Down (TD; forecast pro-
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Table 2. Datasets Summary

Dataset Total Bottom Levels Observations Horizon h Seasonality

Labour 57 32 4 228 8 12
Traffic 207 200 4 366 1 7
Wiki 199 150 5 366 1 7
Tourism 89 56 4 36 8 4
TourismLarge 555 76, 304 4, 5 228 12 4

portions disaggregation strategy), the MinT-ols, MinT-shr,
MinT-var, and the ERM reconciliation methods. MinT
approaches impose that P = (STW−1

τ S)−1(STW−1
τ ).

In MinT-ols, the OLS estimator is used, i.e. Wτ = I .
In MinT-shr, Wτ is the shrinkage estimator, with Wτ =
(1 − α)Ws + αWd, with Ws = 1

T

∑T
t=1 ϵ̂t+1(ϵ̂t+1)

T ,
Wd = diag(Ws) and α ∈ (0, 1]. Finally, in MinT-var
Wτ is the diagonal matrix of the variances of the errors
(shrinkage estimator for α = 0). ERM corresponds to the
emprirical risk minimization reconciliation method with
P = argminP

1
(T−T1−h+1)n

∑T−h
t=T1

||yt+h − SP ŷt+h||22,
where T − T1 − h + 1 is the number of observations in
the validation set. For the ERM method, we use the whole
training sample to calculate P (i.e. T1 = 1). To implement
the aforementioned reconciliation approaches we used the
libraries by Garza et al. (2022) and Olivares et al. (2022b).

For the end-to-end benchmarks, we implement our pro-
posed methods, i.e., the generalized Euclidean projection
and the general oblique projection that we deonte as Eucl
and GenProj respectively. We also include two additional
benchmarks where we relax the idempotence constraint on
P , i.e. λ = 0, denoted as Gen in Table 3 and the end-to-end
projection presented in (Rangapuram et al., 2021) denoted
as Hier-E2E in Table 3. Note that since Gen is no longer
a projection method, its forecasts are not guaranteed to have
the unbiasedness preserving property.

5.5. Results

For each dataset, we run 10 independent simulations. We
report the mean and standard deviation of the RMSE in
Table 3, while due to space limitations, we report the mean
and standard deviation of wMAPE in Table 4 and of CRPS
for probabilistic forecasting in Table 5 in section B of the
Appendix.

We observe that in all cases, our proposed end-to-end rec-
onciliation methodologies produce the most accurate fore-
casts within the same backbone model. Among both back-
bone neural forecasters, TimesNet performs the best in two
datasets (Labour and Wiki), AF performs the best in the
Traffic dataset, while in Tourism and TourismLarge datasets
both models perform roughly the same. It is worth noting
that the Naive and SeasonalNaive baselines exhibit good

enough accuracy on the Traffic and Labour datasets.

5.6. Insights on the Resulting Projection Matrices

Experiments reveal interesting insights into the structure
of the learned projection matrices, especially regarding the
type of projections learned. It is known that orthogonal
projections have a spectral norm of 1 and oblique projec-
tions have a spectral norm greater than 1, implying that
the greater the spectral norm, the farther the projection is
from being orthogonal. By inspecting the distribution of
the spectral norms in our experiments (see Tables 6 & 7 of
the Appendix), we observe that higher spectral norms coin-
cide with datasets that are harder to predict, i.e., exhibit the
highest RMSEs. For such datasets, our method generates
projections that are far from orthogonal. Essentially, this
means that the learned projections assign higher weights to
individual series in the hierarchy that are harder to predict,
to reduce the overall error.

We have also included visualizations of the resulting orthog-
onal, generalized Euclidean, and general projection matrices
in section E of the Appendix. For all the datasets in our ex-
periments, we observe that the orthogonal projection matrix
is symmetric and sparse, while for the generalized Euclidean
and the general projection, the matrix is not symmetric and
is much denser as it contains more information concerning
the weights assigned at each forecast error. Furthermore, it
can be seen that all three matrix categories preserve the hier-
archical structure, as the constant patterns of S are observed
across all matrices.

6. Related Literature
Most recent works on hierarchical forecasting have focused
on implementing end-to-end frameworks. Rangapuram et al.
(2021) was the first to propose an end-to-end model that
consists of a neural forecaster followed by an orthogonal
projection. While Rangapuram et al. (2021) only considers
probabilistic forecasts, our paper also considers point fore-
casts. More importantly, we propose how an oblique projec-
tion can be learned instead of a pre-specified orthogonal pro-
jection. Theodosiou & Kourentzes (2021) introduced a deep
learning method to augment temporal hierarchy learning
by combining the generation of the base forecasts and the

7
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Table 3. Test RMSE for the hierarchical dataset across all models. The best RMSE achieved per dataset and per model is highlighted in
bold, while the second-best is highlighted in italics. Naive and SeasonalNaive’s predictions are always reconciled and thus, produce the
same forecasts when traditional reconciliation methods (BU, TD, MinT) are used. As a result, we omit them due to space limitations.

Method Labour Traffic Wiki Tourism TourismLarge

Naive 22.73 8.31 890.41 729.21 164.80
Naive-ERM 27.94 9.36 796.72 871.11 273.06
SeasonalNaive 24.52 3.41 752.01 454.61 167.69
SeasonalNaive-ERM 23.86 1.29 897.15 567.55 172.64
TimesNet-Unreconciled 11.32±1.53 2.21±0.30 619.12±53.52 419.15±17.59 113.75±4.33

TimesNet-Bottom-Up 10.58±1.17 2.38±0.45 620.58±62.26 419.91±19.62 128.13±6.16

TimesNet-Top-Down 11.64±1.68 2.21±0.30 730.95±52.60 424.65±17.44 134.07±1.29

TimesNet-MinT-ols 11.52±1.64 2.22±0.29 645.16±49.38 421.42±18.00 112.31±3.99

TimesNet-MinT-shr 10.99±1.44 2.35±0.44 623.04±59.30 416.49±18.99 117.36±4.87

TimesNet-MinT-var 10.95±1.42 2.37±0.40 618.85±56.63 421.84±17.84 112.36±3.73

TimesNet-ERM 22.73±3.76 2.47±0.33 646.05±37.39 586.16±24.25 188.78±5.21

TimesNet-Hier-E2E 10.51±1.42 2.20±0.37 617.94±51.42 422.78±19.81 112.26±3.76

TimesNet-Gen 10.39±1.37 2.37±0.41 622.95±46.87 415.27±22.56 111.84±4.95

TimesNet-Eucl 10.22±1.67 2.18±0.60 615.41±48.95 419.56±18.48 111.51±3.60

TimesNet-GenProj 10.12±1.35 2.14±0.39 613.95±49.37 414.33±19.94 110.82±3.71

AF-Unreconciled 27.43±5.67 1.11±0.07 643.02±6.19 425.05±18.93 129.28±13.47

AF-Bottom-Up 24.52±0.15 1.06±0.28 658.39±4.74 424.11±19.68 126.78±12.49

AF-Top-Down 30.91±6.17 1.15±0.15 642.80±9.49 432.17±14.38 130.58±7.56

AF-MinT-ols 29.74±7.91 0.82±0.13 642.38±4.76 477.12±14.77 125.17±14.82

AF-MinT-shr 25.49±3.78 0.82±0.15 645.87±9.47 433.39±19.62 127.28±18.28

AF-MinT-var 24.61±3.82 0.79±0.25 643.25±4.77 421.59±17.77 122.33±12.98

AF-ERM 29.14±0.28 1.07±0.14 686.63±0.13 420.49±12.48 165.52±12.07

AF-Hier-E2E 24.94±4.78 0.75±0.19 645.63±11.24 422.02±20.48 121.59±17.77

AF-Gen 25.63±5.52 0.73±0.18 642.68±13.94 419.36±15.65 119.17±19.82

AF-Eucl 22.81±3.78 0.71±0.11 640.63±15.52 415.37±14.78 117.12±14.77

AF-GenProj 21.96±2.38 0.71±0.24 641.63±16.37 413.18±17.04 115.17±14.38

reconciliation in an end-to-end method. The paper does not
focus on the projection but instead proposes two approaches
to perform the reconciliation step. Das et al. (2023) pro-
posed an end-to-end neural forecaster model, that follows
the principle of the classical top-down reconciliations strat-
egy, and learns the distribution of the root time series, and
the proportions according to which each parent time series
are split. Olivares et al. (2023) proposed a model that com-
bines neural networks and a statistical model for learning the
joint distribution of the hierarchical multivariate time-series
structure. Even though in this setting, model parameters are
learned with respect to the reconciliation method that fol-
lows, the reconciliation is either not guaranteed (Theodosiou
& Kourentzes, 2021), pre-defined (Rangapuram et al., 2021;
Olivares et al., 2023) or does not come with important theo-
retical guarantees (e.g. preserving unbiasedness) (Das et al.,
2023).

7. Conclusion
In this work, we propose a novel method for learning the
optimal reconciliation step from data. In contrast to exist-
ing state-of-the-art methods, which employ a pre-defined
reconciliation step to the coherent subspace, our proposed
approach learns the optimal projection during training. This
is achieved by modeling the projections as a learnable, struc-
tured, projection layer in the neural forecaster architecture
used for the hierarchical time series prediction. In this frame-
work, we utilize two broad classes of oblique projections;
the generalized Euclidean and the general projection. Our
proposed approach effectively addresses the challenge of
weighing forecast errors of individual time series differently
according to the hierarchy. We evaluate our proposed ap-
proaches by conducting extensive experiments on real-world
hierarchical datasets, where we demonstrate the superior
performance of our approach compared to state-of-the-art
reconciliation approaches both in point and probabilistic
forecasting.
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Impact Statement
This paper presents work whose goal is to advance the field
of hierarchical time series forecasting. In this work, we
propose a novel method for learning the optimal reconcili-
ation step as an oblique projection from data for coherent
forecasting of hierarchical time series. Our proposed ap-
proach is efficient, and scalable and can be applied to any
neural forecaster. Since what we propose is a fundamental
machine learning and optimization methodology, we do not
anticipate any direct negative impact on society resulting
from the proposed methods.
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A. Proofs of Propositions
Proposition 3.2 For an unbiased base forecast ŷτ , the reconciled point forecast produced by the proposed oblique
projections is also an unbiased prediction.

Proof. Step 1: We first show that SP is a projection matrix onto S for both our methods. Showing that SPS = S implies
that SP is a projection matrix onto S . We study both cases.

1. For the generalized Euclidean projection, we have that:

SPS = S(STWS)−1(STW )S = S(STWS)−1(STWS) = SI = S. (4)

2. For the general projection, given that PS = I , we have that:

SPS = S(PS) = SI = S. (5)

Therefore, both of our methods model a projection matrix onto S.

Step 2: We show the main result.

E[ỹτ ] = E[SP ŷτ ] = SPE[ŷτ ] = SPµτ , (6)

where µτ := E[yτ ] = E[yT+τ |y1, . . . ,yT ], where the expectation is taken over the predictive density (i.e., the distribution
that yt follows), and E[ŷτ ] = E[ŷT+τ ] since the base forecasts are unbiased. Given that µτ is the expectation taken over
the predictive density, we have that µτ ∈ S . Since SP is an oblique projection onto S , then it maps µτ onto S , as shown in
step 1. Therefore, SPµτ = µτ , which concludes the proof.

Proposition 3.3 The generalized Euclidean projection assigns different weights to different forecasts, i.e. transforms the
space, and then applies an orthogonal projection to the weighted forecasts.

Proof. This can be seen by pre-multiplying all vectors and matrices involved with W 1/2, i.e. ŷW := W 1/2ŷ, ỹW := W 1/2ỹ
and SW = W 1/2S, since

ỹW = W 1/2ỹ = W 1/2S(STWS)−1STW ŷ =

= W 1/2S((W 1/2S)TW 1/2S)−1(W 1/2S)TW 1/2ŷ =

= SW (ST
WSW )−1ST

W ŷW . (7)

Proposition 3.4 The generalized Euclidean projection never increases the error of the reconciled forecast, with respect to
the norm defined by W .

Proof. Let P be such that SP is a generalized Euclidean projection onto S (i.e. P = (STWS)−1(STW ), with W
symmetric and positive definite). Then, given that that ỹτ = SP ŷτ ∈ S, we have that ||yτ − ŷτ ||2W = ||yτ − ỹτ ||2W +
||ỹτ − ŷτ ||2W . Therefore, since ||ỹτ − ŷτ ||2W ≥ 0, we obtain that ||yτ − ŷτ ||W ≤ ||yτ − ỹτ ||W .
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B. Additional Results
We report the mean and standard deviation of wMAPE and CRPS in Tables 4 and 5. The results presented in the experiments
section remain consistent across different metrics.

Table 4. Test wMAPE for the hierarchical dataset across all models. The best wMAPE achieved per dataset and per model is highlighted
in bold, while the second-best is highlighted in italics. Naive and SeasonalNaive’s predictions are always reconciled and thus, produce the
same forecasts when traditional reconciliation methods (BU, TD, MinT) are used. As a result, we omit them due to space limitations.

Method Labour Traffic Wiki Tourism TourismLarge

Naive 2.34 31.76 24.14 18.65 29.78
Naive-ERM 2.86 35.80 28.89 24.77 64.79
SeasonalNaive 2.52 13.04 26.29 15.23 28.63
SeasonalNaive-ERM 2.61 11.94 30.88 18.93 32.41
TimesNet-Unreconciled 1.07±0.17 8.46±1.14 22.82±4.01 10.90±0.48 22.71±0.81

TimesNet-Bottom-Up 0.99±0.12 9.10±1.72 23.25±4.66 11.10±0.56 26.64±1.35

TimesNet-Top-Down 1.11±0.19 8.47±1.16 27.38±7.69 11.03±0.48 28.15±0.20

TimesNet-MinT-ols 1.09±0.18 8.48±1.12 24.17±3.70 11.00±0.48 22.28±0.70

TimesNet-MinT-shr 1.04±0.16 8.98±1.68 22.59±4.44 10.96±0.56 23.87±1.00

TimesNet-MinT-var 1.12±0.24 8.67±1.41 23.49±4.05 10.90±0.52 26.83±1.23

TimesNet-ERM 1.42±0.18 8.60±1.27 26.13±4.93 11.40±0.59 24.56±1.19

TimesNet-Hier-E2E 1.01±0.17 8.48±1.74 22.64±4.86 10.94±0.56 22.20±1.24

TimesNet-Gen 0.98±0.15 8.56±1.82 23.16±4.97 10.90±0.52 22.04±1.34

TimesNet-Eucl 0.97±0.16 8.42±1.54 22.46±4.62 10.90±0.50 22.04±1.38

TimesNet-GenProj 0.95±0.18 8.40±1.48 22.44±4.54 10.88±0.54 22.02±1.26

AF-Unreconciled 2.50±0.63 6.06±0.26 22.56±0.22 12.21±1.09 24.45±4.05

AF-Bottom-Up 2.36±0.03 6.01±1.08 23.02±0.17 12.26±0.73 23.92±4.05

AF-Top-Down 3.06±0.04 6.64±0.53 22.40±0.33 12.73±1.61 23.82±4.05

AF-MinT-ols 2.42±0.50 6.11±0.48 22.42±0.19 12.29±0.76 24.54±4.05

AF-MinT-shr 2.40±0.43 6.22±0.57 22.58±0.33 12.29±1.37 23.26±4.05

AF-MinT-var 2.35±0.56 6.92±0.98 22.49±0.26 12.86±0.92 24.08±4.05

AF-ERM 2.77±0.54 6.94±0.13 23.51±0.23 12.23±1.43 25.06±1.78

AF-Hier-E2E 2.18±0.32 6.17±0.45 22.38±0.64 12.27±1.52 23.78±2.34

AF-Gen 2.11±0.95 6.09±0.38 22.48±0.32 12.22±1.08 23.22±2.67

AF-Eucl 2.05±0.77 5.99±0.54 22.35±0.81 12.16±1.42 23.18±3.41

AF-GenProj 1.97±0.12 5.96±0.34 22.26±0.76 12.13±1.29 23.04±2.14
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Table 5. Test CRPS for the hierarchical dataset across all models. The best CRPS achieved per dataset and per model is highlighted in
bold, while the second-best is highlighted in italics. Naive and SeasonalNaive’s predictions are always reconciled and thus, produce the
same forecasts when traditional reconciliation methods (BU, TD, MinT) are used. As a result, we omit them due to space limitations.

Method Labour Traffic Wiki Tourism TourismLarge

Naive 0.01 0.32 0.24 0.19 0.30
Naive-ERM 0.02 0.36 0.29 0.25 0.65
SeasonalNaive 0.02 0.13 0.26 0.15 0.29
SeasonalNaive-ERM 0.03 0.12 0.31 0.19 0.32
TimesNet-Unreconciled 0.01±0.00 0.10±0.03 0.25±0.10 0.12±0.00 0.24±0.01

TimesNet-Bottom-Up 0.01±0.00 0.10±0.02 0.31±0.14 0.13±0.01 0.23±0.02

TimesNet-Top-Down 0.01±0.00 0.11±0.03 0.29±0.18 0.12±0.00 0.24±0.01

TimesNet-MinT-ols 0.01±0.00 0.11±0.03 0.25±0.09 0.12±0.00 0.23±0.01

TimesNet-MinT-shr 0.01±0.00 0.10±0.02 0.26±0.11 0.13±0.00 0.24±0.01

TimesNet-MinT-var 0.01±0.00 0.10±0.02 0.25±0.10 0.13±0.00 0.22±0.01

TimesNet-ERM 0.01±0.00 0.08±0.04 0.20±0.02 0.21±0.01 0.24±0.02

TimesNet-Hier-E2E 0.01±0.00 0.08±0.02 0.20±0.02 0.11±0.00 0.22±0.01

TimesNet-Gen 0.11±0.00 0.08±0.02 0.20±0.02 0.10±0.02 0.20±0.01

TimesNet-Eucl 0.01±0.00 0.07±0.03 0.18±0.03 0.11±0.01 0.20±0.01

TimesNet-GenProj 0.01±0.00 0.07±0.03 0.18±0.02 0.10±0.01 0.18±0.00

AF-Unreconciled 0.04±0.01 0.14±0.01 0.22±0.01 0.20±0.01 0.23±0.01

AF-Bottom-Up 0.05±0.01 0.21±0.02 0.26±0.02 0.25±0.01 0.23±0.01

AF-Top-Down 0.04±0.01 0.13±0.01 0.23±0.01 0.17±0.01 0.23±0.01

AF-MinT-ols 0.03±0.01 0.13±0.01 0.23±0.01 0.18±0.01 0.23±0.01

AF-MinT-shr 0.04±0.01 0.22±0.02 0.37±0.03 0.22±0.01 0.23±0.01

AF-MinT-var 0.04±0.01 0.23±0.02 0.37±0.03 0.22±0.01 0.23±0.01

AF-ERM 0.02±0.00 0.16±0.01 0.23±0.01 0.18±0.01 0.23±0.01

AF-Hier-E2E 0.02±0.00 0.10±0.01 0.25±0.01 0.18±0.01 0.21±0.01

AF-Gen 0.02±0.00 0.12±0.02 0.22±0.01 0.18±0.01 0.19±0.01

AF-Eucl 0.01±0.00 0.11±0.03 0.19±0.01 0.15±0.01 0.19±0.01

AF-GenProj 0.01±0.00 0.08±0.01 0.18±0.01 0.14±0.01 0.19±0.01
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C. Selection of the Lagrangian multiplier
In the experiments, we use λ = 104, a value large enough to guarantee reconciliation. In this section, we repeat the
experiments for different values of λ (102, 103, 104) and we provide the spectral norm and the reconciliation error ||PS−I||F
to verify that the reconciliation indeed holds. We report the results in Table 6.

Table 6. We report the (spectral norm, reconciliation error) for various values of λ for the general projection case using both the AF model.
All experiments were executed 10 times and we report the average value and the standard deviation.

Method Labour Traffic Wiki Tourism TourismLarge

AF-GenProj λ = 102 (3.02± 0.52, 0.08± 0.01) (9.86± 0.42, 0.22± 0.02) (10.68± 1.39, 0.18± 0.02) (6.02± 1.46, 0.10± 0.10) (10.54± 1.98, 0.27± 0.01)
AF-GenProj λ = 103 (3.24± 0.32, 0) (10.82± 0.32, 0) (9.02± 0.48, 0) (5.38± 0.76, 0) (11.04± 0.57, 0)
AF-GenProj λ = 104 (3.46± 0.24, 0) (10.61± 0.27, 0) (8.08± 0.37, 0) (4.97± 0.38, 0) (12.56± 0.25, 0)

We observe that for λ = 103 and λ = 104 the reconciliation error is 0 (in practice less than 10−10) and therefore, the resulting
matrices SP are indeed projection matrices onto S. On the other hand, for λ = 102 we observe a small reconciliation error
(magnitude of 10−1 and 10−2). In this case, the reconciliation is not verified (even though it is close to 0).

D. On the Spectral Norm of the Generalized Euclidean Projection
To understand the kind of projection matrices obtained we report the spectral norm of each general projection matrix SP in
Table 6. We observe that the resulting projection matrices are far from orthogonal as their spectral norm is always higher
than 1. Furthermore, we also report in Table 7 the spectral norm for the generalized Euclidean projection using both the
DeepVar model and the transformer-based model as the backbone in order to understand how far the resulting projections
differ from the typical Euclidean which has spectral norm equal to 1.

Table 7. We report the spectral norm for the generalized Euclidean projection case using the AF backbone model. All experiments were
executed 10 times and we report the average value and the standard deviation.

Method Labour Traffic Wiki Tourism TourismLarge

AF-Eucl 21.44± 6.76 16.21± 7.28 13.85± 4.78 19.85± 6.72 22.85± 9.32

We observe that in all cases the spectral norms are greater than 1 (especially for the transformer-based model) and therefore,
we can infer that the resulting projection is far from orthogonal.

E. Visualization of the Resulting Projection Matrices
In Tables 8, we present visualizations of the resulting orthogonal, generalized Euclidean, and general projection. For all the
datasets in our experiments, we observe that the orthogonal projection matrix is symmetric and very sparse, while for the
generalized Euclidean and the general projection, the matrix is not symmetric and less sparse as it contains more information
concerning the weights assigned at each forecast error. Furthermore, it can be seen that all three matrix categories preserve
the hierarchical structure, as constant patterns are observed across all matrices.
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Table 8. Visualizations of the resulting orthogonal, generalized Euclidean, and general projection matrices
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