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Abstract—Unsupervised multi-view bipartite graph clustering (MVBGC) is a fast-growing research, due to promising scalability in large-
scale tasks. Although many variants are proposed by various strategies, a common design is to construct the bipartite graph directly
from the input data, i.e. only consider the unidirectional “encoding” process. However, “encoding-decoding” mechanism is a popular
design for deep learning, the most representative one is auto-encoder (AE). Enlightened by this, this paper rethinks existing MVBGC
paradigms and transfers the “encoding-decoding” design into graph machine learning, and proposes a novel framework termed auto-
encoding multi-view bipartite graph clustering (BGAE), which integrates encoding, bipartite graph construction, and decoding modules
in a self-supervised learning manner. The encoding module extracts a latent joint representation from the input data, the bipartite graph
construction module learns a bipartite graph with connectivity constraint in latent semantic space, and the decoding module recreates the
input data via the bipartite graph. Therefore, our novel BGAE combines representation learning, bipartite graph learning, reconstruction
learning, and label inference into a unified framework. All the modules are seamlessly integrated and mutually reinforcing for clustering-
friendly purposes. Extensive experiments verify the superiority of our novel design and the significance of “decoding” process. To the
best of our knowledge, this is the first attempt to explore “encoding-decoding” design in traditional MVBGC. The code is provided at
https://github.com/liliangnudt/BGAE.

Index Terms—Encoding-decoding, Bipartite graph learning, Graph machine learning, Multi-view clustering.
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1 INTRODUCTION

W ITH the rapid growth of data in the real world,
human annotations induce expensive costs, devel-

oping unsupervised or self-supervised learning is a trend
to explore hidden patterns without human intervention
[1]. Clustering is a central topic in unsupervised learning
to find intrinsic data groupings and latent structures [2].
Owing to the flexibility and powerful capacity of graph to
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Fig. 1: Sketch of auto-encoder.

represent complex data structures [3], [4], graph clustering
is a fast-growing research [5], [6]. To process multi-view or
multimodal data (e.g., image features can be characterized
by LBP, PHOG, and GIST) [7], [8], [9], multi-view clustering
(MVC) has gained extensive research and achieved superior
embeddings or partitions than single-view clustering by
fusing consistency and complementarity [10], [11]. Multi-
view graph clustering (MVGC) [12], [13] is an active branch,
widely applied in data mining, natural language processing,
and computer vision [14], [15].

Since traditional MVGC paradigms require building
fully connected graphs with cubic time complexity and
quadratic space complexity respecting sample number [16],
[17], greatly limiting scalability in large-scale applications,
multi-view bipartite graph clustering (MVBGC) [18], [19]
is developed by building correlations of representative an-
chors/landmarks and all instances, i.e., bipartite graph. In
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this way, complexity can be reduced to linear magnitude,
greatly expanding scalability.

Many MVBGC models have been proposed by various
strategies to construct a “nice” bipartite graph, such as using
sampling [20], [21] or optimizing manners [22], [23] to select
representative anchors, introducing different regularizations
[24] or constraints [25] to refine intrinsic structures, or
concatenating multi-scale bipartite graphs [26], [27] across
multiple views to achieve ensemble clustering.

By carefully reviewing existing BGC models in graph
machine learning, we find that a common design is con-
structing the bipartite graph directly from the input data,
i.e., only focusing on an unidirectional “encoding” pro-
cess. However, “encoding-decoding” is a prevalent design
in deep learning. The most representative model is auto-
encoder [28], Fig. 1 shows the sketch. AE is composed
of an encoder and a decoder. Encoder plays the role of
information extractor to extract discriminative embeddings
by multilayer neural networks. The decoder acts as a data
reconstructor to recreate the input data from the learned
intermediate representation. AE has gained great success,
and many popular models are derived, such as denoising
AE [29], VAE [30], GAE [31], MAE [32], widely applied
in dimensionality reduction, image processing, and infor-
mation retrieval [33]. It has also been extended to multi-
view learning and shows promising performance, e.g., it
integrates with generative models to fuse consistency and
complementarity, serving to predict missing instances. [34].

Enlightened by AE, we transfer the “encoding-
decoding” design into traditional graph machine learning
and propose a novel “auto-encoding” MVBGC framework,
called BGAE. Fig. 3 plots the framework. Firstly, we design
an “encoding” module. Considering directly constructing
the bipartite graph from input data may be unreliable, as
real-world data may involve noise, outliers, or redundancy.
Analogously to the encoder, we extract a consistent latent
representation across multiple views, and set it to the input
of the bipartite graph construction module. Then, we use
the graph manifold learning paradigm to learn a bipartite
graph, and further enforce it to hold connectivity constraint
to output discrete labels directly. Finally, we introduce a “de-
coding” module. Instead of almost perfectly duplicating the
input data from the intermediate representation, we recreate
the input data via the bipartite graph. Such a setting not
only provides feedback on the learning process, enabling
the learned representation not far from the input data to
retain the initial manifold, but also accords with the idea of
undercomplete AE that avoids “close to perfect” duplication
[28]. Fig. 2 visualizes the “benefits” of decoding learning.
Compared to the baselines that mistaken partitions with
poor performance (NMI: 28.82% and 45.48%), our proposed
BGAE well captures the initial manifold with promising
performance (NMI: 95.96%).

As a result, our end-to-end “auto-encoding” BGAE in-
tegrates representation learning, bipartite graph learning,
reconstruction learning, and label inference into a unified
framework. The contributions are outlined as follows:
1) Enlightened by the popular AE, we rethinking the tra-

ditional MVBGC paradigms in graph machine learning,
and find that existing models adopt a common design
that constructs the bipartite graph directly from the input
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Fig. 2: Visualization of “benefits” from the decoding module
on a synthetic dataset. “Decoding” learning provides feed-
back on optimization, enabling the learned representation
not far from input data, thereby retaining the initial mani-
fold. Detailed experimental settings are available in Table 5.

data, that is, only consider an unidirectional “encoding”
process, but lack the corresponding “decoding” learning.

2) We take the first step towards transferring the “encoding-
decoding” design into graph machine learning and pro-
pose a novel “auto-encoding” MVBGC model, termed
BGAE, integrating representation learning, bipartite
graph learning, reconstruction learning, and label infer-
ence into a unified framework. All modules are mutually
promoted and seamlessly integrated.

3) We design an efficient ADMM solver with linear com-
plexity respecting instances, making it can scale to large-
scale tasks. Extensive experiments empirically verify the
superiority of our novel design and the significance of
the “decoding” process.

2 RELATED WORK

2.1 Non-negative Matrix Factorization

Given the input data X ∈ Rd̃×n drawn from k clusters,
matrix factorization methods [35], [36] can decompose it
into a base matrix U and a coefficient matrix V. The most
representative method is non-negative matrix factorization
(NMF) [37] that holds both U and V to be non-negative, i.e.,

min
U,V

L̃(X,UV), s.t. U ≥ 0,V ≥ 0, (1)

where L̃(·) is the loss function commonly formulated in
Frobenius-norm or Kullback-Leibler divergence.
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Fig. 3: Framework of BGAE. For simplicity, consider a two-view image dataset (RGB and Depth). The input data {Xp}vp=1

are first encoded into a unified latent space by G(·). Then, we construct a bipartite graph Z in the latent semantic space
V. Finally, the bipartite graph is decoded by F(·) to recreate the input data. Therefore, our BGAE integrates “encoding”,
“bipartite graph construction”, and “decoding” modules, i.e. jointly minimize representation learning loss L1, bipartite
graph learning loss L2, and reconstruction learning loss L3, into a unified framework in graph machine learning settings.

TABLE 1: Basic notations

Notation Definition

n, v, k, m Number of samples, views, clusters, anchors
dp Feature dimension for the p-th view
d Latent feature dimension

α ∈ Rv×1 View weights in “encoding” process
γ ∈ Rv×1 View weights in “decoding” process

Xp ∈ Rdp×n Input data for the p-th view
Up ∈ Rdp×d Base matrix for input data Xp

V ∈ Rd×n Consistent latent representation
Wp ∈ Rdp×m Projection matrix
A ∈ Rd×m Anchor matrix
Z ∈ Rn×m Bipartite graph matrix

S ∈ R(n+m)×(n+m) Augmented graph of Z
L̃ ∈ R(n+m)×(n+m) Normalized Laplacian matrix of Z

Ep ∈ Rdp×n Auxiliary variables in ADMM
Λp ∈ Rdp×n ALM multipliers

Many variants [38], [39] have been derived based on
the NMF backbone, widely used for extracting low-rank
representation. Ding et al. [40] proposed semi-NMF by
removing the constraint on base matrix U, tackling the data
with mixed-signs, i.e.,

min
U,V

∥X−UV∥2F = min
U,V

n∑
i=1

∥xi −Uvi∥22 , s.t. V ≥ 0. (2)

Furthermore, Ding et al. [41] proposed a one-sided V-
orthogonal version to enlarge the diversity of the represen-
tation and hold the uniqueness of the solution, i.e.,

min
U,V

∥X−UV∥2F , s.t. U ≥ 0,V ≥ 0,VV⊤ = Id, (3)

where d denotes the feature dimension of V.

2.2 Bipartite Graph Construction
A bipartite graph describes the correlation between two sep-
arate sets of vertices, i.e., anchors/landmarks and instances.
Given an instance set X = {x1,x2, . . . ,xn} and an anchor
set A = {a1,a2, . . . ,am}, we can construct an undirected
bipartite graph Z = (X ,A, E ,Z) by building their edges

E , Z is the affinity matrix weighing the connections in Z .
Typically, anchors are selected in the original space with the
intention of recovering the complete point cloud.

Based on this, various BGC methods are proposed [23],
[25]. Particularly, the locality-preserving paradigm is pop-
ular with researchers, supposing that the original high-
dimensional feature space actually lies in a low-dimensional
manifold [42]. For the i-th sample, j-th anchor is connected
as a neighbor with probability zij . Intuitively, the anchor-
node pair with a shorter distance ∥xi − aj∥22 corresponds to
a larger probability zij , which is expressed by

min
Z

n∑
i=1

m∑
j=1

∥xi − aj∥22 zij + ζz2ij ,

s.t. Z1m = 1n, Z ≥ 0,

(4)

where ζ is a penalized parameter that can be tuned by grid
search or pre-determined following the technique [43]. Typ-
ically, anchors A are selected by k-means [26] or heuristic
sampling methods [21], [25].

Along this framework, Li et al. [25] proposed a structural
bipartite graph fusion model coupled with Laplacian rank
constraint. Nie et al. [44], and Chen et al. [24] introduced
feature selection and re-weighting mechanisms to select
valuable features. Lu et al. [45] designed a fusion scheme to
refine the representation. Yan et al. [46] incorporated feature
learning and pseudo-labels generated by the fused bipartite
graph to seek project direction and refined the graph by
manifold regularization.

3 METHODOLOGY
3.1 Motivation
Although various graph machine learning based MVBGC
models are proposed to pursue a “nice” bipartite graph,
they adopt a common design that constructs the bipartite
graph directly from the input data via Eq. (4), which means
that optimization merely involves an unidirectional “encod-
ing” process. However, “encoding-decoding” is a popular
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manner in unsupervised deep learning, and the most typical
one is AE [28]. Enlightened by this, this section carefully
transfers the insight from AE into graph machine learning,
and presents a novel “auto-encoding” BGAE framework.

3.2 The Proposed BGAE Framework

Firstly, we build an “encoding” module. In AE, the encoder
plays a role in extracting discriminative embedding G(·)
by neutral networks [28], i.e. mapping the original high-
dimensional data X into a low-dimensional semantic space
G(X). Analogously, our encoding module is designed in
a similar manner. Recall that NMF is widely applied for
dimensionality reduction, which can be used to learn new
representations [37]. However, an apparent deficiency of the
standard NMF with F -norm is that it is sensitive to outliers.
Concretely, the residual of each sample is measured in the
squared form ∥xi −Uvi∥22. Therefore, several outliers with
huge errors will easily prevail the objective [38]. Instead,
we utilize ℓ2,1-norm [47] based on the orthogonal backbone.
It is verified that ℓ2,1-norm is robust to noise or outliers,
and can hold the row rotation invariance property [47].
Moreover, to maximally explore and fuse the discriminative
information across multiple views, we learn the latent joint
representation. Therefore, our encoding module (represen-
tation learning loss L1) is formulated as

min L1 : min
α,Up,V

v∑
p=1

α2
p∥Xp −UpV∥2,1,

= min
α,Up,V

v∑
p=1

n∑
i=1

α2
p

∥∥xi
p −Upvi

∥∥
2
,

s.t.

{
α⊤1 = 1, αp ≥ 0,

VV⊤ = Id.

(5)

where V is the latent consistent representation, Up is the
view-specific base matrix, and αp measures the contribution
of different views. Actually, Eq. (5) is to impose ℓ2-norm
within a sample and ℓ1-norm among all instances across
multiple views. Compared to F -norm, ℓ2,1-norm measures
residuals by non-squared

∥∥xi
p −Upvi

∥∥
2
, reducing the im-

pact of outliers. Note that we relax the non-negative con-
straints, which enlarge the feasible region to fully explore
the intrinsic structures of input data with mixed-signs.

Then, we build a bipartite graph construction module.
Considering that the latent representation integrates the
discriminative information of the input data, we construct
a bipartite graph with locality-preserving property in the la-
tent semantic space instead of the original space as existing
methods do. Such a module (bipartite graph construction
loss L2) is formulated as

min L2 : min
A,Z

n∑
i=1

m∑
j=1

∥vi − aj∥22 zij ,

s.t. Z1m = 1n, Z ≥ 0,

(6)

where Z is the bipartite graph and A is the anchors learned
by constraint-free optimization.

Finally, we elaborate on how to build the “decoding”
module. In AE, the decoder recreates the input data from the
encoded representation via neural networks, i.e., F (G(X)).

However, in traditional settings, the first core question is which
variable should be used to recreate the input data, the latent
representation V or the bipartite graph Z? The former choice is
likely to be a “close to perfect” duplication of X, since V is
just extracted from X in Eq. (5), duplication is meaningless
for bipartite graph optimization. In deep learning, standard
AE also notices this problem and derives undercomplete AE
for message compression and dimensionality reduction [28].
Enlightened by this, we should design an undercomplete
“auto-encoding” framework instead of perfectly recreating
the input data, so that the latter choice is more reasonable
and practical. Furthermore, the second core question is how to
recreate the input data by the bipartite graph? The inconsistent
sizes of Z and {Xp}vp=1 make it difficult to build their corre-
lation. For simplicity, we introduce orthogonal projection to
hold their consistent feature dimension, thus the “decoding”
module (reconstruction loss L3) is formulated as

min L3 : min
γ,Z,Wp

v∑
p=1

γ2
p

∥∥∥WpZ
⊤ −Xp

∥∥∥2
F
,

s.t.


γ⊤1 = 1, γp ≥ 0,

Z1m = 1n, Z ≥ 0,

W⊤
p Wp = Im,

(7)

where Wp is the projection matrices, γp measures the capac-
ity of bipartite graph Z to recreate input data.

So far, we have carefully presented our motivation and
technical route. Note that loss of AE is to measure the
discrepancy between the input data and the reconstructed
representation via neural networks, i.e., L (X,F (G(X))).
However, in traditional machine learning scenarios, it is
difficult to exactly follow such a setting. For simplicity, we
directly combine the three losses L = L1 + L2 + L3. In
addition, we introduce Laplacian rank constraint to enforce
the bipartite graph holds clear k-connected components, so
that it can naturally infer discrete labels without any post-
processing. Our novel end-to-end “auto-encoding” BGAE
framework is as follows,

min L1 + L2 + L3 :

min
α,γ,Up,V,
A,Z,Wp

v∑
p=1

α2
p∥Xp −UpV∥2,1︸ ︷︷ ︸

Encoding

+
n∑

i=1

m∑
j=1

∥vi − aj∥22 zij︸ ︷︷ ︸
Bipartite Graph Construction

+
v∑

p=1

γ2
p

∥∥∥WpZ
⊤ −Xp

∥∥∥2
F︸ ︷︷ ︸

Decoding

,

s.t.



α⊤1 = 1, αp ≥ 0,

γ⊤1 = 1, γp ≥ 0,

VV⊤ = Id,

Z1m = 1n, Z ≥ 0,

W⊤
p Wp = Im,

rank(L̃) = n+m− k,
(8)

where L̃ = I − D− 1
2SD− 1

2 denotes the normalized Lapla-
cian matrix of S ∈ R(n+m)×(n+m), S and D are the aug-
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mented graph and diagonal matrix of Z defined by

S =

[
0 Z

Z⊤ 0

]
, D =

[
Dn 0

0 Dm

]
, (9)

where Dn = diag(Z1) = In and Dm = diag(Z⊤1) ∈
Rm×m. As noted in [25], Lemma 1 and Remark 1 illustrate
that such a connectivity constraint can guarantee clear k-
connected components of S and Z, and each component
naturally corresponds to a disjoint cluster.

Lemma 1. The multiplicity of eigenvalue zeros of the normalized
Laplacian matrix L̃ equals the number of connected components
in the graph associated with S.

Remark 1. The augmented graph S consists of a bipartite graph
matrix Z and its transposed form Z⊤. S and Z share the same
number of connected components.

Remark 2. Note that Eq. (6) does not adhere to the standard
bipartite graph learning paradigm in Eq. (4) as we remove the
regularizer ζ

∑n
i=1

∑m
j=1 z

2
ij = ζTr

(
ZZ⊤), where ζ is a hyper-

parameter requiring fine-tuning or heuristic method [43]. The
reason is that Eq. (7) inherently incorporates γ2

pTr
(
ZZ⊤), which

naturally plays a role of avoiding the sparse trivial solution.
Furthermore, γp can be optimized instead of the time-consuming
parameter-tuning process induced by η.

In summary, this section proposes a novel MVBGC de-
sign, termed “auto-encoding” BGAE. The encoding module
extracts a latent representation across multiple views. The
bipartite graph construction module introduces manifold
graph learning to explore intrinsic geometrical structures.
The decoding module recreates the input data via bipar-
tite graph, which provides feedback to learning process
that allows bipartite graph not far from the input multi-
view data, enforcing it contains complementary informa-
tion. Therefore, by jointly minimizing L = L1+L2+L3, the
bipartite graph balances consistency and complementary
properties across all views, which is a vital pursuit in multi-
view learning [34], [48]. Compared to most existing models
that only consider encoding input data into bipartite graphs
by Eq. (4), our novel design achieves end-to-end “encoding-
decoding” bipartite graph machine learning.

3.3 Optimization Algorithm
Since we impose ℓ2,1-norm, orthogonal constraint, and
Laplacian rank constraint, it is difficult to solve the model
directly. This section designs an ADMM solver.

Firstly, we derive the matrix form of Eq. (6), i.e.,
n∑

i=1

m∑
j=1

∥vi − aj∥22 zij

=
n∑

i=1

m∑
j=1

(vi − aj)
⊤
(vi − aj) zij

=
n∑

i=1

v⊤
i

 m∑
j=1

zij

vi − 2
n∑

i=1

m∑
j=1

v⊤
i zijaj

+
m∑
j=1

aj
⊤

(
n∑

i=1

zij

)
aj

=Tr
(
VDnV

⊤ − 2VZA⊤ +ADmA⊤
)

(10)

Then, considering that the non-convex Laplacian rank
constraint is difficult to deal with, we solve it with a re-
laxed solution. Denoting σi(L̃) is the i-th smallest eigen-
value of L̃. Note that L̃ satisfies semi-definite property, i.e.,
σi(L̃) ≥ 0. Once rank-k smallest σi(L̃) equals zero, the
rank constraint will be achieved, and S will be an ideal
graph preserving clear k-connected components structures.
According to Ky Fan’s Theorem [49], we have

∑k
i=1 σi(L̃) =

min
F⊤F=Ik

Tr
(
F⊤L̃F

)
, where F ∈ R(n+m)×k denotes the

graph embedding.
Finally, by introducing v auxiliary variables {Ep =

Xp−UpV}vp=1 to separate constraints and hold equivalence
during optimization, our model is transformed into the fol-
lowing Augmented Lagrangian Multiplier (ALM) problem

min
α,γ,Up,V,A,
Z,F,Wp,Ep,Λp

v∑
p=1

α2
p∥Ep∥2,1+

Tr
(
VDnV

⊤ − 2VZA⊤ +ADmA⊤
)
+

v∑
p=1

γ2
p

∥∥∥WpZ
⊤ −Xp

∥∥∥2
F
+ µTr

(
F⊤L̃F

)
+

β

2

v∑
p=1

∥∥∥∥Xp −UpV −Ep +
1

β
Λp

∥∥∥∥2
F

,

s.t.



α⊤1 = 1, αp ≥ 0,

γ⊤1 = 1, γp ≥ 0,

VV⊤ = Id,

Z1m = 1n, Z ≥ 0,

W⊤
p Wp = Im,

F⊤F = Ik,
(11)

where {Λp}vp=1 are ALM multipliers to penalize the dis-
crepancy between the original objective and the introduced
auxiliary variable, µ is a penalized parameter that should
be large enough to hold the rank-k smallest σi(L̃) infinitely
close to zero, and β is the ALM parameter.

We optimize Eq. (11) by block-coordinate descent strat-
egy that alternately updates each variable with others being
fixed. Algorithm 1 summarizes the overall workflow.

3.3.1 Update Up

With others being fixed, each Up is solved by

min
Up

β

2

v∑
p=1

∥∥∥∥Xp −UpV −Ep +
1

β
Λp

∥∥∥∥2
F

. (12)

Since no constraint is imposed on Up and VV⊤ = Id,
each Up can be updated independently by

min
Up

∥∥∥∥Up −
(
Xp −Ep +

1

β
Λp

)
V⊤

∥∥∥∥2
F

. (13)

Clearly, we have

Up =

(
Xp −Ep +

1

β
Λp

)
V⊤. (14)
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3.3.2 Update V

With others being fixed, V can be solved by

max
V

Tr (VM) , s.t. VV⊤ = Id, (15)

where M = 2ZA⊤ + β
∑v

p=1 Q
⊤
p Up and Qp = Xp − Ep +

1
βΛp. The analytical solution can be achieved by singular
value decomposition (SVD) [22].

3.3.3 Update Z

With others being fixed, Z is solved by

min
Z,F

Tr

 v∑
p=1

γ2
pZ

⊤Z+ 1n

(
diag

(
A⊤A

)⊤)
Z⊤−

2V⊤AZ⊤ − 2
v∑

p=1

γ2
pX

⊤
p WpZ

⊤

+ µTr
(
F⊤L̃F

)
,

s.t. Z1m = 1n, Z ≥ 0, F⊤F = Ik.
(16)

Since Eq. (16) involves two variables, we use the block-
coordinate descent method to update Z and F alternatively.
With Z being fixed, Eq. (16) is simplified to,

min
F

Tr
(
F⊤L̃F

)
, s.t. F⊤F = Ik. (17)

To efficiently solve Eq. (17), we solve the singular values
of Z rather than the eigenvalues of S. By decomposing F =[
Fn

Fm

]
, Eq. (17) can be rewritten as,

max
Fn,Fm

Tr
(
F⊤

nD
− 1

2
n ZD

− 1
2

m Fm

)
,

s.t. F⊤
nFn + F⊤

mFm = Ik.
(18)

Theorem 1 provides the analytical solution of Eq. (18).

Theorem 1. Supposing P ∈ Rn×k,O ∈ Rn×m,R ∈ Rm×k,
we have

max
P,R

Tr
(
P⊤OR

)
,

s.t. P⊤P+R⊤R = Ik.
(19)

The optimal solutions are P =
√
2
2 Uo and R =

√
2
2 Vo,

where Uo and Vo are the rank-k left and right singular vectors
of O.

Detailed proof is provided in supplementary material.
After optimizing F, we turn to optimize Z. We have

Tr
(
F⊤L̃F

)
=

n∑
i=1

m∑
j=1

tijzij = Tr
(
TZ⊤

)
, (20)

where tij =

∥∥∥∥ f in√
Dn[i,i]

− fjm√
Dm[j,j]

∥∥∥∥2
2

.

Eq. (16) can be rewritten as n row independent problem
w.r.t. Z, i.e.,

min
Z[i,:]

1

2

∥∥∥Z[i,:] − Z̃[i,:]

∥∥∥2
2
,

s.t. Z[i,:]1 = 1, Z[i,:] ≥ 0,

(21)

where Z̃[i,:] = − g⊤

2
∑v

p=1 γ2
p

, g⊤ = diag
(
A⊤A

)⊤ −(
2V⊤A+ 2

∑v
p=1 γ

2
pX

⊤
p Wp − µT

)
[i,:]

.

Theorem 2 gives the analytical solution of Eq. (21).

Theorem 2. The analytical solution of Eq. (21) is

Z[i,:] =
(
Z̃[i,:] + ϵi1

⊤
m

)
+
, (22)

where ϵi can be solved by Newton’s method efficiently.

Detailed proof is provided in [22].

3.3.4 Update Ep

With others being fixed, each Ep is independently solved by

min
Ep

α2
p ∥Ep∥2,1 +

β

2
∥Xp −UpV −Ep +

1

β
Λp∥2F , (23)

which can be further rewritten as the following compact
formulation

min
Ep

α2
p

β
∥Ep∥2,1 +

1

2
∥Ep −Hp∥2F , (24)

where Hp = Xp − UpV + 1
βΛp. According to [39], the

solution is

eip =

{ (
1− αp

β∥hi
p∥2

)
hi
p, if

∥∥hi
p

∥∥
2
>

αp

β ,

0, otherwise.
(25)

3.3.5 Update A

With others being fixed, A is solved by

min
A

Tr
(
−2VZA⊤ +ADmA⊤

)
. (26)

Taking the partial derivative on A, we have

∂

∂A
Tr
(
−2VZA⊤ +ADmA⊤

)
= −2VZ+ 2ADm.

(27)

By enforcing the partial derivative equals to 0, we have

VZ = ADm. (28)

Supposing (Dm)−1 exists, we have

A = VZ(Dm)−1. (29)

Remark 3. (Dm)−1 exists means that the column sum of the
bipartite graph Z ∈ Rn×m are always greater than 0. However,
such ideal cases do not always hold, and there is still a minimal
probability that the j-th column sum of Z is 0 in experiments.
That is, aj is an isolated anchor without building membership
with other instances. In experiments, we find that such undesir-
able cases may occur during inchoate iterations, and the existence
of isolated aj has no impact on the objective value, so it will
not affect exploring the final graph representation. Therefore, we
remove the isolated anchors directly.

3.3.6 Update Wp

With others being fixed, each Wp is solved by

max
Wp

Tr
(
W⊤

p Bp

)
, s.t. W⊤

p Wp = Im, (30)

where Bp = XpZ, Eq. (30) can be efficiently solved by SVD.
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Algorithm 1 BGAE

1: Input: Input data {Xp}vp=1, cluster number k, anchor
number m, latent dimension d, maximal iteration Γ.

2: Initialize {Up}vp=1, A, {Wp}vp=1, Z, V, α, γ, {Λp}vp=1.
3: while not converged and iteration less than Γ do
4: Optimize {Ep}vp=1 by updating Eq. (23).
5: Optimize {Up}vp=1 by updating Eq. (12).
6: Optimize A by updating Eq. (26).
7: Optimize {Wp}vp=1 by updating Eq. (30).
8: Optimize Z by updating Eq. (16).
9: Optimize V by updating Eq. (15).

10: Optimize α by updating Eq. (31).
11: Optimize γ by updating Eq. (33).
12: Optimize {Λp}vp=1 and β by updating Eq. (35).
13: end while
14: Output: The predicted clustering labels Ỹ.

3.3.7 Update α

With other variables being fixed, each αp is independently
optimized by

min
αp

v∑
p=1

α2
pτp, s.t. α ≥ 0,α⊤1 = 1, (31)

where τp = ∥Xp −UpV∥2,1. The solution of αp can be
straightly computed by Cauchy-Schwarz inequality, i.e.,

αp =
1/τp∑v
p=1 1/τp

. (32)

3.3.8 Update γ

With other variables being fixed, each γp is independently
optimized by

min
γp

v∑
p=1

γ2
pδp, s.t. γ ≥ 0,γ⊤1 = 1, (33)

where δp =
∥∥WpZ

⊤ −Xp

∥∥2
F

. The solution of γp can be
straightly computed by Cauchy-Schwarz inequality, i.e.,

γp =
1/δp∑v
p=1 1/δp

. (34)

3.3.9 Update Λp and β

Each Lagrangian multiplier Λp and β can be updated by

Λp =Λp + β (Xp −UpV −Ep) ,

β =ρβ,
(35)

where ρ controls the convergence speed and we empirically
set ρ = 2 in experiments.

3.4 Complexity Analysis

In graph machine learning, constructing similarity graphs
is necessary. Given a desktop with 64 GB RAM, a double
precision floating point format requires 8 bytes, the largest
matrix that can be stored is 92, 682×92, 682, and larger sizes
will incur out-of-memory error. This section carefully anal-
yses the complexities. For simplicity, we set g1 =

∑v
p=1 dp

and g2 =
∑v

p=1 d
2
p. Commonly, n ≫ d and n ≫ m.

TABLE 2: MVC datasets statistics

Dataset Samples Views Clusters Feature Dims

Yale 165 3 15 4,096/3,304/6,750
3sources 169 3 6 3,560/3,631/3,068
MSRCV1 210 6 7 1,302/48/512/100/256/210

Dermatology 358 2 6 12/22
ORL 3views 400 3 40 4,096/3,304/6,750
ORL 4views 400 4 40 256/256/256/256
SUN RGB-D 10,335 2 45 4,096/4,096

YouTubeFace20 63,896 4 20 944/576/512/640
YouTubeFace50 126,054 4 50 944/576/512/640

YouTubeFace100 195,537 4 100 944/576/512/640

TABLE 3: Comparison of algorithm complexity

Method Space Complexity Time Complexity

RMKM [50] O(n2 + n(g1 + k) + g1k) O(n2)
AMGL [51] O(n2v + n(g1 + k)) O(n3)
FMR [52] O(n2 + n(g1 + k)) O(n3)

PMSC [53] O(n2v + n(g1 + kv)) O(n3)
BMVC [54] O((n+ dmean)l) O(n)

LMVSC [26] O(n(g1 +mv) + g1mv) O(n)
SMVSC [18] O(nm+ (g1 +m)k) O(n)
SFMC [25] O(n(g1 +mv)) O(n)

FMCNOF [55] O(n(g1 +mv + k) +mk) O(n)
FPMVS [56] O(nk + (g1 + k)k) O(n)
SDAFG [45] O(n(g1 +mv)) O(n)
UDBGL [57] O(n(g1 +mv) + g1m) O(n)

FastMICE [21] O(n(g1 + k + kneibor +m+ v)) O(n)
Proposed O(n(g1 + d+m) + g1(d+m) + dm) O(n)

Time Complexity: The time complexity consists of nine
parts: (1) updating {Ep}vp=1 requires O (ng1d) complex-
ity, (2) updating {Up}vp=1 requires O (ng1d) complex-
ity, (3) updating A requires O (ndm) complexity, (4)
updating {Wp}vp=1 requires O (n(g1m+ g2)) complex-
ity, (5) updating Z requires O

(
n(g1m+ dm+m2)

)
com-

plexity, (6) updating V requires O
(
n(g1m+ dm+ d2)

)
complexity, (7) updating α requires O (ng1d) complex-
ity, (8) updating γ requires O (n(g1m+ g2)) complex-
ity, (9) updating {Λp}vp=1 requires O (ng1d) complex-
ity. So, the total time complexity for each iteration is
O
(
n(g1d+ g1m+ g2 + dm+ d2 +m2)

)
.

Space Complexity: The space complexity comes from stor-
ing huge matrices, i.e., {Ep}vp=1, {Xp}vp=1, {Up}vp=1, A,
{Wp}vp=1, Z, V, and {Λp}vp=1. The total space complexity
is O (n(g1 + d+m) + g1(d+m) + dm).

Therefore, the complexities are linear with n, enabling it
can scale to large datasets with n ≥ 100, 000.

4 EXPERIMENT

4.1 Experimental Settings
4.1.1 Synthetic Datasets
To visualize the “benefits” from the “decoding” learning
in retaining the initial manifold structures, we design a
synthetic two-moon data from two clusters, shown in Fig. 2
(a). Each moon consists of 100 samples, one moon is colored
with green dots and the other with pink dots.

4.1.2 Realistic Datasets
Table 2 lists ten public MVC datasets. Yale1 involves 165
grayscale images of 15 individuals. 3sources2 is a text

1. http://cvc.cs.yale.edu/cvc/projects/yalefaces/
yalefaces.html

2. http://mlg.ucd.ie/datasets/3sources.html
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TABLE 4: Summary of clustering metrics. The best results are symbolized in bold, the runner-up ones are underlined and
italic, “OOM” denotes out-of-memory errors, and “-” denotes time-out errors.

Datasets RMKM‡ AMGL FMR PMSC BMVC‡ LMVSC SMVSC SFMC‡ FMCNOF‡ FPMVS SDAFG‡ Proposed‡

ACC (%)

Yale 61.21±0.00 64.52±4.27 68.81±5.95 58.80±4.43 41.21±0.00 61.47±3.47 66.06±0.00 47.27±0.00 33.94±0.00 67.27±0.00 65.45±0.00 72.12±0.00
3sources 49.70±0.00 20.67±0.34 59.23±5.24 73.09±4.09 47.34±0.00 44.26±1.90 63.63±1.29 34.91±0.00 65.09±0.00 71.01±0.00 38.46±0.00 77.51±0.00
MSRCV1 71.43±0.00 76.44±6.30 77.48±6.40 47.45±4.23 26.67±0.00 83.73±7.20 70.51±4.98 60.48±0.00 47.14±0.00 71.95±5.36 70.95±0.00 85.71±0.00

Dermatology 74.86±0.00 22.57±0.59 81.72±5.66 80.75±4.46 63.97±0.00 79.02±6.63 78.64±5.41 49.44±0.00 62.01±0.00 82.96±7.44 56.70±0.00 89.11±0.00
ORL 3views 55.50±0.00 71.15±2.81 65.79±3.26 63.47±3.09 48.00±0.00 65.65±2.93 65.16±1.10 50.00±0.00 27.50±0.00 66.75±0.00 73.50±0.00 76.00±0.00
ORL 4views 47.00±0.00 59.73±2.78 25.21±1.10 21.48±1.02 43.25±0.00 61.50±2.96 47.76±2.36 37.00±0.00 21.50±0.00 54.63±1.49 57.75±0.00 65.00±0.00
SUN RGB-D 19.51±0.00 9.81±0.37 OOM OOM 21.02±0.00 17.87±0.39 23.34±0.38 11.02±0.00 19.67±0.00 23.26±0.50 16.85±0.00 24.78±0.00

YouTubeFace20 71.10±0.00 OOM OOM OOM 57.39±0.00 67.26±3.53 67.13±4.20 - 38.61±0.00 63.08±3.79 61.88±0.00 75.55±0.00
YouTubeFace50 OOM OOM OOM OOM 66.00±0.00 68.32±2.45 69.65±2.46 - 21.66±0.00 64.24±2.97 62.44±0.00 77.39±0.00

YouTubeFace100 OOM OOM OOM OOM 70.14±0.00 63.52±2.12 60.63±1.91 - 12.10±0.00 55.23±2.48 45.51±0.00 72.94±0.00
Average Rank 6.50 7.14 4.83 7.50 7.50 4.70 4.80 9.86 8.60 4.00 6.40 1.00

NMI (%)

Yale 64.71±0.00 67.73±1.86 74.72±3.38 63.74±2.98 45.58±0.00 65.43±1.92 69.83±0.00 54.27±0.00 39.50±0.00 71.06±0.00 69.20±0.00 73.11±0.00
3sources 35.02±0.00 8.07±0.43 45.96±2.69 67.06±3.08 48.86±0.00 33.13±1.89 54.35±1.62 6.28±0.00 51.96±0.00 61.72±0.00 10.37±0.00 66.09±0.00
MSRCV1 63.03±0.00 77.65±3.23 69.48±3.31 34.29±2.81 8.29±0.00 78.93±4.60 62.01±2.61 60.23±0.00 38.42±0.00 65.69±3.27 76.23±0.00 80.50±0.00

Dermatology 71.10±0.00 3.20±0.57 79.97±3.67 85.11±1.91 60.79±0.00 70.17±3.94 66.62±2.66 38.68±0.00 54.24±0.00 71.90±5.05 51.61±0.00 77.29±0.00
ORL 3views 76.28±0.00 87.64±1.07 81.20±1.38 80.93±1.39 69.15±0.00 83.35±1.13 84.85±0.29 81.58±0.00 49.23±0.00 86.26±0.00 88.80±0.00 87.96±0.00
ORL 4views 71.83±0.00 80.28±1.37 48.33±0.81 43.87±0.84 65.32±0.00 79.39±1.15 72.73±1.13 76.30±0.00 43.32±0.00 77.41±0.54 76.89±0.00 81.13±0.00
SUN RGB-D 27.81±0.00 18.46±0.66 OOM OOM 12.98±0.00 24.50±0.37 22.71±0.41 2.30±0.00 15.66±0.00 22.84±0.82 11.37±0.00 26.89±0.00

YouTubeFace20 78.34±0.00 OOM OOM OOM 70.65±0.00 76.78±1.34 78.36±2.39 - 45.45±0.00 74.30±1.95 73.18±0.00 81.17±0.00
YouTubeFace50 OOM OOM OOM OOM 81.90±0.00 82.43±0.78 83.63±0.85 - 43.03±0.00 82.08±1.07 77.18±0.00 86.43±0.00

YouTubeFace100 OOM OOM OOM OOM 82.23±0.00 81.38±0.60 79.90±0.77 - 29.96±0.00 77.06±1.53 61.43±0.00 84.37±0.00
Average Rank 6.25 6.14 5.50 7.00 7.90 4.60 4.80 9.29 8.90 4.20 6.20 1.60

Purity (%)

Yale 62.42±0.00 66.64±3.14 70.08±5.39 60.47±3.92 43.03±0.00 62.40±3.27 66.06±0.00 48.48±0.00 35.15±0.00 67.27±0.00 66.06±0.00 72.12±0.00
3sources 59.17±0.00 21.21±0.32 67.74±2.56 78.31±2.52 67.46±0.00 60.52±1.34 75.73±1.83 35.50±0.00 66.86±0.00 78.70±0.00 39.05±0.00 82.25±0.00
MSRCV1 74.76±0.00 80.45±4.29 79.01±4.16 49.91±3.78 27.14±0.00 85.25±5.56 71.51±4.02 62.86±0.00 50.48±0.00 72.33±5.01 70.95±0.00 85.71±0.00

Dermatology 75.70±0.00 23.12±0.50 84.79±2.87 85.37±1.89 65.08±0.00 80.97±4.29 80.35±3.73 50.00±0.00 62.85±0.00 83.55±6.84 66.48±0.00 89.11±0.00
ORL 3views 61.25±0.00 76.47±2.02 69.10±2.70 67.21±2.73 51.00±0.00 69.18±2.19 72.17±1.08 79.25±0.00 28.25±0.00 73.75±0.00 79.00±0.00 78.75±0.00
ORL 4views 53.00±0.00 66.92±2.07 26.48±1.14 23.90±1.08 47.50±0.00 65.68±2.53 51.91±2.16 78.00±0.00 21.75±0.00 58.97±1.39 63.00±0.00 69.50±0.00
SUN RGB-D 38.55±0.00 10.74±0.37 OOM OOM 21.13±0.00 37.42±0.53 32.64±0.65 11.47±0.00 25.15±0.00 32.77±1.15 17.65±0.00 37.52±0.00

YouTubeFace20 77.24±0.00 OOM OOM OOM 62.76±0.00 73.40±2.75 72.40±3.96 - 40.34±0.00 64.92±3.83 68.31±0.00 79.45±0.00
YouTubeFace50 OOM OOM OOM OOM 73.64±0.00 73.21±2.18 72.72±2.61 - 22.83±0.00 66.84±3.02 67.83±0.00 81.81±0.00

YouTubeFace100 OOM OOM OOM OOM 74.75±0.00 70.03±1.65 64.18±2.07 - 12.17±0.00 57.89±2.68 49.99±0.00 75.86±0.00
Average Rank 6.00 6.86 5.33 7.50 7.60 4.60 5.30 7.43 9.10 4.70 6.30 1.40

F-score (%)

Yale 42.68±0.00 41.47±3.53 56.30±4.88 43.23±4.15 21.15±0.00 46.42±2.74 52.60±0.00 31.28±0.00 17.97±0.00 54.19±0.00 45.91±0.00 58.12±0.00
3sources 44.16±0.00 26.80±0.30 56.03±4.84 67.76±4.40 45.93±0.00 43.64±1.98 56.95±1.14 37.77±0.00 59.00±0.00 62.81±0.00 36.74±0.00 66.88±0.00
MSRCV1 59.98±0.00 70.28±4.42 66.76±4.50 34.05±2.34 16.01±0.00 77.43±6.43 59.31±2.82 52.43±0.00 33.85±0.00 61.55±3.54 63.58±0.00 76.42±0.00

Dermatology 74.82±0.00 18.46±0.78 77.59±5.15 83.50±4.24 56.62±0.00 70.50±4.17 70.06±3.60 42.90±0.00 57.89±0.00 77.37±6.23 53.89±0.00 82.79±0.00
ORL 3views 41.34±0.00 53.73±6.36 54.00±3.15 52.57±3.06 31.60±0.00 56.52±3.38 55.98±0.76 32.35±0.00 13.80±0.00 58.73±0.00 47.51±0.00 63.35±0.00
ORL 4views 33.66±0.00 35.12±4.54 9.27±0.83 6.48±0.54 24.84±0.00 50.10±2.86 32.37±1.71 23.74±0.00 12.09±0.00 42.87±1.47 23.11±0.00 45.96±0.00
SUN RGB-D 13.15±0.00 6.46±0.22 OOM OOM 15.16±0.00 11.41±0.23 14.99±0.14 12.17±0.00 14.08±0.00 15.23±0.39 13.80±0.00 16.25±0.00

YouTubeFace20 65.59±0.00 OOM OOM OOM 49.04±0.00 62.43±2.91 61.68±5.99 - 25.84±0.00 57.81±4.00 42.07±0.00 70.40±0.00
YouTubeFace50 OOM OOM OOM OOM 57.09±0.00 62.49±2.45 63.52±2.56 - 15.67±0.00 56.89±3.18 24.29±0.00 71.52±0.00

YouTubeFace100 OOM OOM OOM OOM 59.77±0.00 56.47±2.41 49.79±2.75 - 6.33±0.00 37.44±5.64 5.57±0.00 59.58±0.00
Average Rank 6.38 8.00 5.17 6.33 7.10 4.30 4.80 9.43 8.30 3.80 7.50 1.50

‡ denotes stable algorithm.

dataset. MSRCV1 [58] contains 210 images from 7 clusters.
ORL 3views and ORL 4views3 are face datasets containing
400 images from 40 categories but with different views. SUN
RGB-D4 contains 10,335 real RGB-D images of room scenes.
YouTubeFace20, YouTubeFace50, and YouTubeFace100 are
face video datasets extracted from YouTube [21] with dif-
ferent number of clusters.

4.1.3 Compared Baselines
To evaluate the effectiveness of the proposed BGAE frame-
work, thirteen state-of-the-art baselines are collected. 1)
RMKM [50] proposes a robust MVC method using ℓ2,1-
norm. 2) AMGL [51] designs a multi-graph clustering model
with an auto-weighted strategy. 3) FMR [52] introduces
kernel dependence measure to extract latent representation
with nonlinear and high-order structures. 4) PMSC [53]
fuses multiple views in the partition level. 5) BMVC [54]
incorporates collaborative binary coding and binary clus-

3. https://cam-orl.co.uk/facedatabase.html
4. https://rgbd.cs.princeton.edu/

ter structure learning. 6) LMVSC [26] proposes sampling
anchors by k-means and concatenating multiple anchor
graphs to exploit complementary information. 7) SMVSC
[18] proposes to project multiple views into a latent space
and learn unified anchors through optimization. 8) SFMC
[25] restricts generating the same anchors across multiple
views and fuses a unified bipartite graph with Laplacian
rank constraint. 9) FMCNOF [55] designs an orthogonal
NMF variant and fuses a unified indicator matrix to predict
labels directly. 10) FPMVS [56] is a parameter-free extension
of SMVSC. 11) SDAFG [45] exploits structural diversity by
merging diverse anchor graphs into a large target graph
with connectivity constraints. 12) UDBGL [57] fuses view-
wise and view-consensus information to learn a unified
anchor graph and coupled with connectivity constraints to
hold discrete cluster structures. 13) FastMICE [21] intro-
duces the concept of random view groups to capture multi-
view relationships and devises a hybrid fusion method
to combine diversities of features, anchors, and neighbors,
achieving ensemble clustering.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363217

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on February 11,2024 at 02:41:21 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 9

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

(a) Dermatology X1

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

(b) Dermatology X2

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Anchors

(c) Dermatology V&A

o  40 clusters

(d) ORL 3views X1

o  40 clusters

(e) ORL 3views X2 (f) ORL 3views V&A

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

(g) MSRCV1 X1

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

(h) MSRCV1 X2

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

(i) MSRCV1 X3

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

(j) MSRCV1 X4

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

(k) MSRCV1 X5

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Anchors

(l) MSRCV1 V&A

Fig. 4: t-SNE visualization of the input multi-view data {Xp}vp=1 and the extracted latent representation V.

4.1.4 Technical Details
The codes of compared baselines are collected directly
from the authors’ homepage or GitHub without corrections,
hyper-parameters are carefully tuned following the authors’
suggestions, and we report the best metrics. For baselines
involving k-means, the results mean ± std are reported
by repeating 50 times to alleviate randomness. The cluster
number k is assumed pre-known following most experi-
mental settings [59], [60], [61].

For our BGAE, the anchor number m is fixed at k, the la-
tent dimension d of representation V varies in [k, 2k, . . . , 9k]
and d ≤ min

p
{dp}vp=1 should be satisfied. Following [25],

µ is heuristically updated by measuring the gap of k and
ι, where ι denotes the multiplicity of eigenvalue zeros.
Specifically, µ is initially set to 1 and iteratively updated
by µ = 2× µ if ι ≤ k or µ = µ

2 if ι > k + 1.
Performance is measured by accuracy (ACC), normal-

ized mutual information (NMI), purity, and F-score [62],
[63]. Experiments were performed on a desktop with In-
tel(R) i9 9900K CPUs @3.6GHZ, 64 GB RAM, and Matlab
2020b.

4.2 Effectiveness of BGAE Compared to Baselines
Table 4 reports clustering metrics, and we observe that:
1) Our novel BGAE achieves competitive performance and

ranks first in most cases. Compared to the runner-up
ones, ours achieves 3.31%, 4.43%, 1.98%, 6.15%, 2.50%,
3.50%, 1.44%, 4.45%, 7.74%, and 2.80% improvement of
ACC on ten datasets, respectively. In particular, our su-
periority is evident on large-scale datasets (n ≥ 38, 654),
demonstrating the effectiveness. Moreover, our end-to-
end model does not require post-processing, avoiding the
randomness of k-means.

2) RMKM, AMGL, FMR, and PMSC are MVC models with
space complexity O(n2), requiring to construct fully
connected graphs, they suffer “OOM” on large-scale
datasets (n ≥ 63, 896) and exhibit limited scalability,
while our BGAE can still handle such challenging tasks
with promising performance.

3) LMVSC and FPMVS are the two strongest MVBGC com-
petitors. However, the separation of clustering and post-
processing results in unstable performance and subop-
timal solutions. Mostly, all BGC baselines only consider
the “encoding” learning process but omit the “decoding”
process in bipartite graph learning, their performance is
inferior to ours.

4.3 Significance of the “Encoding” Module

To reveal the discrimination of the encoded representation
intuitively, Fig. 4 t-SNE visualizes the original data distribu-
tion {Xp}vp=1 and the latent representation V on MRSCV1
(7 clusters), Dermatology (6 clusters), and ORL 3views (40
clusters). We observe that:

1) Input data stacks together and shows complex curved or
folded manifold structures. The separability for disjoint
clusters is inconspicuous. By contrast, by extracting the
latent representation, the data show much clearer separa-
bility, even for ORL 3views that includes 40 clusters, the
decision boundaries are still distinct. Although the en-
coded latent representation may mistake the correlation
of instances caused by complex manifolds, subsequent
bipartite graph learning can further exploit intrinsic
structures and correct several mistaken memberships, as
shown in Fig. 6.

2) An interesting phenomenon is that the learned anchors
almost lie in the centroids of clusters, exhibiting dis-
criminative property, and conform to our intuitive and
ideal pursuit in bipartite graph learning. A reasonable
explanation is that we enforce the connectivity constraint
on the bipartite graph to ensure the k-connected com-
ponents, making the bipartite graph Z sparse enough to
satisfy such a constraint. Recalling anchors are optimized
without constraint, and our experimental setting m = k
contributes to approaching the intuitive result that each
anchor lies in the corresponding centroid of the cluster.
The results verify the reasonability of our unconstrained
optimization strategy on anchors A.
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Fig. 5: Ablation analysis of the “decoding” module by visualizing the bipartite graph representation.
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Fig. 6: Ablation analysis of the “decoding” module by quantifying the clustering metrics.

4.4 Ablation Analysis of the “Decoding” Module

To verify the significance of our novel “encoding-decoding”
design, Table 5 lists ablation study settings. For simplicity,
“(w/o) Dec V1” denotes our model that removes the “de-
coding” module. “(w/o) Dec V2” denotes “(w/o) Dec V1”
with a quadratic term of Z, i.e. introducing an additional
regularization term ζz2ij , where the balanced parameter ζ is
heuristically pre-determined following [43]. As a reference,
we also give the metrics of the latent representation V
coupled k-means to output labels, called ”LV KM”.

TABLE 5: Experimental settings of ablation analysis

Model L1 L2 L3 Extra Regularizer

(w/o) Dec V1 ✓ ✓ − −
(w/o) Dec V2 ✓ ✓ − ✓

Proposed ✓ ✓ ✓ −

Firstly, Fig. 5 visualize bipartite graphs on MSRCV1,
Dermatology, ORL 3views, YouTubeFace20, and YouTube-
Face50 datasets. Since we impose connectivity constraint,
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Fig. 7: Effect of latent feature dimension.
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Fig. 8: View weights α in representation learning process.

bipartite graphs show sparse representation. Caused by the
undesirable trivial solution, “(w/o) Dec V1” largely mis-
take the memberships of anchors and instances, immensely
destroying graph representation. Introducing additional
regularization can correct the mistaken memberships, as
shown in “(w/o) Dec V2”. However, since “(w/o) Dec V2”
ignores the guidance of the “decoding” process, it still
mistakes some memberships and degrades performance,
as shown in MSRCV1 and ORL 3views. Mostly, the extra
regularizer acts as a penalty term to avoid trivial solutions,
which leads to an undesirable hyper-parameter ζ without
practical interpretations, requiring additional parameter-
tuning or heuristic solutions.

Furthermore, Fig. 6 quantifies clustering metrics. We
observe that “(w/o) Dec V1” outputs dramatically poor
metrics. “(w/o) Dec V2” apparently improves clustering
metrics. “LV KM” introduces unstable performance caused
by the randomness of k-means. By contrast, our BGAE
achieves the best metrics and outperforms baselines with
large margins of 3.64%, 6.52%, 4.76%, 0.84%, 9.25%, 6.00%,
4.97%, 1.89%, 3.26%, and 3.44% of ACC, respectively. In
particular, our BGAE shows significant improvement over
“LV KM” in most cases, indicating that the bipartite graph
construction module can further explore and refine the
latent representation encoded from “encoding” module.

In summary, this is convincing evidence corroborating
the effectiveness of our novel MVBGC design and the im-
provement brought by the “decoding” module.

4.5 Effect of Latent Feature Dimension
Considering pre-determining the optimal latent feature di-
mension d is still a challenging problem in unsupervised
learning, Fig. 7 reports clustering metrics with varying
latent feature dimensions in the range [k, 2k, . . . , 9k] on
five datasets. As pointed in Section 4.1.4, d ≤ min

p
{dp}vp=1

should be satisfied, the maximum latent dimension avail-

able for ORL 4views and YouTubeFace100 is d = 6k
and d = 5k, respectively. We find that dimension-metric
curves show dataset-related results and do not increase
monotonously but fluctuate. The results coincide with the
knowledge that higher dimensions can enrich the volume
of information, but may also induce redundancy or noise.
How to pre-determine the optimal latent feature dimension
in unsupervised learning is still an open question, which
deserves future research.

4.6 View Weight Distribution
Fig. 8 plots the view contribution α in “encoding” module.
We observe that the distribution exhibits dataset-related
results. Due to potential noise or redundancy within the
input data, different views provide different contributions
to extracting latent representation, as shown on MRSCV1,
Dermatology, and ORL 3views. The results demonstrate
that designing flexible and adaptive fusion mechanisms is
important in multi-view learning. The γ distribution in the
“decoding” module is available in supplementary material.

4.7 Efficiency
Fig. 9 plots time consumption, we observe that:
1) Although our model requires comparative even more ex-

ecution time compared to full graph baselines on small-
scale datasets, such as Yale, 3sources, MSRCV1, and
ORL 3views, which is mainly caused by complex opti-
mization, unacceptable “OOM” on large-scale datasets
will not occur for our BGAE, demonstrating the superi-
ority of our promising scalability with linear complexity.

2) Although BGC baselines and ours share similar linear
complexity, our BGAE costs comparative or more run-
ning time due to ADMM solver. However, these baselines
omit the “decoding” process with degraded unstable
performance. Generally, we believe that the extra com-
putation is worthwhile for competitive performance.
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Fig. 9: Comparison of the relative logarithm running time. The compared SDAFG is the baseline.
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Fig. 10: Empirical validation of the convergence.

4.8 Convergence
Our solver uses a block-coordinate descent method. The
original objective in Eq. (8) is separated into eight sub-
problems, and each one has a closed-form solution. Al-
though the ALM parameter β increases iteratively, it con-
trols the convergence speed and generally has little impact
on the final results. Ideally, as β increases, the last term
of Eq. (11) will be close to 0, and the ALM objective
converges asymptotically to the original function bounded
by 0. According to previous research on ALM framework
[38], [39], the original function decreases monotonically with
iterations and thus converges to a local optimal solution.

Fig. 10 empirically validates the convergence of the
original function, further confirming the convergence on all
benchmark datasets. Our model typically converges within
20 iterations, demonstrating its efficiency. More experimen-
tal results are provided in supplementary material.

5 CONCLUSION

This paper revisits existing MVBGC paradigms and finds
that existing models adopt a common design that encodes
input data directly into bipartite graphs. Enlightened by
the popular AE in deep learning, we transfer the “auto-
encoding” design into traditional graph machine learning,
and propose a novel BGAE model, which consists of encod-
ing, bipartite graph construction, and decoding modules.
The encoding module extracts a latent representation from
the input data in a robust manner, the bipartite graph
construction module learns a discriminative bipartite graph,
and the decoding module recreates the input data. All these
modules are seamlessly integrated and mutually enhanced.
We design an ADMM solver with linear complexity respect-
ing instances. Empirical experiments on a synthetic dataset
visualize the “benefit” of decoding learning to retain the
initial manifold, and ablation analysis further verifies the

effectiveness. This paper investigates how to build “auto-
encoding” design in graph machine learning, we believe
these novel insights will promote more variants proposed
based on our novel design. This paper introduces ℓ2,1-norm
to hold robustness to noise or outliers. Recent uncertainty-
aware learning [64], [65] provides another solution that
can measure the evidence for predictions, so developing
trusted MVBGC that reduces uncertainty is meaningful. In
addition, this paper assumes that the input data is com-
plete. However, incomplete data within multi-view data is
more common and challenging in real-world scenarios. So,
another of our future work is to extend “auto-encoding”
design to incomplete scenarios.
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1 PROOF OF THEOREM 1
Theorem 1. Supposing P ∈ Rn×k,O ∈ Rn×m,R ∈ Rm×k, we have

max
P,R

Tr
(
P⊤OR

)
, s.t. P⊤P+R⊤R = Ik. (1)

The optimal solutions are P =
√
2
2 Uo and R =

√
2
2 Vo, where Uo and Vo are the rank-k left and right singular vectors of O.

Proof. Eq. (1) can be reorganized by

max
P,R

1

2
Tr

([
P⊤ R⊤] [ 0 O

O⊤ 0

] [
P

R

])
, s.t.

[
P⊤ R⊤] [P

R

]
= Ik. (2)

The optimum can be computed by

1

2

[
0 O

O⊤ 0

] [
P

R

]
=

[
P

R

]
∆ (3)

where ∆ is a diagonal matrix consist of eigenvalues of 1
2

[
0 O

O⊤ 0

]
.

By expanding Eq. (3), we have {
1
2O

⊤P = R∆
1
2OR = P∆

(4)

Then, we have 
(√

2
2 O

)(√
2
2 O

)⊤
P = P

(√
2∆
)2(√

2
2 O

)⊤ (√
2
2 O

)
R = R

(√
2∆
)2 (5)

We derive that P =
√
2
2 Uo and R =

√
2
2 Vo, where Uo and Vo denote the rank-k left and right singular vectors of O.

This completes the proof.

2 EXPERIMENTS

2.1 Comparison of performance with two recent baselines FastMICE and UDBGL
TABLE 1 compares the clustering metrics of UDBGL, FastMICE, and our BGAE. Since FastMICE and UDBGL can directly
output discrete clustering labels, they are “stable” methods without standard deviation. For simplicity, we report the
clustering metrics. Although our BGAE is inferior to FastMICE on ORL 3views and ORL 4views, ours performs better on
other datasets, especially on the large-scale ones. Overall, the results validate the effectiveness of our novel BGAE design.

2.2 View Weight Distribution
Fig. 1 shows view contribution γ in the “decoding” module, which shows similar distribution as α in the “encoding”
process, but with different magnitudes. Their difference accords with the idea of undercomplete AE that avoids “close to
perfect” duplication.
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TABLE 1: Comparing clustering metrics of FastMICE, UDBGL, and our BGAE. The best results are symbolized in bold.

Datasets UDBGL‡ FastMICE‡ Proposed‡ UDBGL‡ FastMICE‡ Proposed‡ UDBGL‡ FastMICE‡ Proposed‡ UDBGL‡ FastMICE‡ Proposed‡

ACC (%) NMI (%) Purity (%) Fscore (%)

Yale 0.5515 0.6848 0.7212 0.6389 0.6972 0.7311 0.5515 0.6848 0.7212 0.4192 0.5195 0.5812
3sources 0.4142 0.5621 0.7751 0.1803 0.5090 0.6609 0.5207 0.7219 0.8225 0.3410 0.5143 0.6688
MSRCV1 0.8048 0.8286 0.8571 0.8344 0.7661 0.8050 0.8048 0.8286 0.8571 0.7656 0.7266 0.7642

Dermatology 0.8408 0.7374 0.8911 0.8741 0.7281 0.7729 0.8464 0.7933 0.8911 0.8425 0.7269 0.8279
ORL 3views 0.5650 0.7375 0.7600 0.7623 0.8781 0.8796 0.6200 0.7700 0.7875 0.4334 0.6404 0.6335
ORL 4views 0.5850 0.6675 0.6500 0.7797 0.8258 0.8113 0.6275 0.6950 0.6950 0.4568 0.5600 0.4596
SUN RGB-D 0.2343 0.1854 0.2478 0.1631 0.2517 0.2689 0.2386 0.3720 0.3752 0.1427 0.1209 0.1625

YouTubeFace20 0.6962 0.6916 0.7555 0.8049 0.8039 0.8117 0.7676 0.7613 0.7945 0.4940 0.6482 0.7040
YouTubeFace50 0.7160 0.7158 0.7739 0.8152 0.8366 0.8643 0.7582 0.7601 0.8181 0.3037 0.6125 0.7152
YouTubeFace100 0.6150 0.6602 0.7294 0.7967 0.8285 0.8437 0.6855 0.7304 0.7586 0.3399 0.5807 0.5958

‡ denotes stable algorithm.
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Fig. 1: View weights γ in reconstruction learning process.

2.3 Variation of performance with respect to the number of views
For multi-view data, each individual view typically holds specific properties for a particular knowledge discovery task,
and multiple views exhibit heterogeneous properties with potential connections [1], [2]. By fusing complementary and
consistent information, MVC commonly achieves better embeddings or partitions than single-view clustering, which is
beneficial for subsequent clustering tasks [3], [4]. In our BGAE, we transfer the “auto-encoding” design into graph machine
learning to exploit the rich information across multiple views.

Fig. 2 experimentally investigates the variation of clustering metrics with respect to the number of views. We observe a
general trend is that clustering metrics increase with the number of views, indicating that introducing multiple views helps
to exploit more latent structures. Also, we observe that curves fluctuate when incorporating several views. A reasonable
explanation is that potential noise or poor-quality data within the views degrade performance. Overall, the results indicate
the importance of designing an effective fusion strategy in MVC.
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Fig. 2: Variation of performance with respect to the number of views.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, AUGUST 20XX 3

2.4 Convergence
Fig. 3 empirically validates the convergence on Yale, 3sources, ORL 3views, SUN RGB-D, and YouTubeFace20 datasets.
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Fig. 3: Empirical validation of the convergence on Yale, 3sources, ORL 3views, SUN RGB-D, and YouTubeFace20.
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