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ABSTRACT

We propose the MambaFormer-MOE, a mamba-based mixture-of-experts
(MOEs) model for multivariate time series prediction. There are three major fea-
tures of our model. 1. We propose a temporal modeling module based-on the
Mamba architecture to model temporal correlations with linear complexity. 2. We
propose a cross-variate correlation modeling mechanism based-on self-attention
to equip Mamba with multivariate time series prediction capability. 3. We pro-
pose a MOE mechanism that has experts that specialize in mixing the variates in
different ways. It makes the model generalizable to multivariate time series from
different domains. Our empirical results demonstrate that our model has SOTA
prediction performance on various multivariate time series datasets.

1 INTRODUCTION

Transformer has become successful in various domains including natural language processing, com-
puter vision, etc. Its attention mechanism shows tremendous generalization ability and scalability.
In the time series prediction domain, Transformer-based models are gaining tremendous popularity
and achieving state-of-the-art prediction performance.

However, the quadratic computation complexity of the attention mechanism in the Transformer ar-
chitecture has long been a major issue hindering its scalability in time series prediction tasks. Re-
garding such issue, many researchers try developing more computationally friendly architectures
for sequence modeling. A recent achievement is the Mamba architecture that has a linear compu-
tation complexity while still has a sequence modeling performance on par with the self-attention
mechanism. It is a good alternative method to model temporal correlations in time series sequence.
However, the only downside of Mamba is that it lacks proper mechanism to capture cross-variate
correlations in multivariate time series.

On the other hand, recent work discovers that in time series prediction tasks, the self-attention mech-
anism, the core of the Transformer architecture, is more suitable of modeling cross-variate correla-
tions across time series of variates rather than modeling temporal correlations along the time series
of each variate.

Based on the aforementioned observations, we propose a new multivariate time series prediction
neural architecture, MambaFormer-MOE. In this model, we intend to merge the advantages from
both the Mamba architecture and the self-attention mechanism. Regarding temporal correlation
modeling, we propose a Mamba-based module to utilize its sequence modeling capability and its
linear complexity so that the model complexity can linearly scale with the length of the multivari-
ate time series. To model the cross-variate correlations, we utilize the self-attention mechanism
that calculates the self-attention between different varieties of the time series. By doing this, we
can leverage its ability of capturing cross-varaite correlations while controlling its quadratic com-
plexity as a big-O of constant with respect to the number of variates of the time series. Our major
contributions are as follows.

• We propose a state-of-the-art multivariate time series prediction model with linear computation
complexity.

• We demonstrate the temporal modeling capability of the Mamba architecture

1



Under review as a conference paper at ICLR 2024

• We propose an MOE mechanism to increase the scalability and the generalizability of a time
series prediction model.

We organize the rest of the paper in the following way. Section 2 is the related work. Section 3 is
the introduction of our methodology. Section 4 is the experiment section. Section 5 is the discussion
and conlusion.

2 RELATED WORK

There are multiple lines of deep learning research regarding multivariate time series prediction de-
spite the difference of model architectures. The first line is about being able to model a time series
input with long history. The second line is to model time series as a combination of trend and sea-
sonality. The third line is to model the multi-resolution information of a time series. The fourth line
is to model time series in a generic way such that one model can apply on time series from various
domains without or with little adaptations. Last but not least, the fifth line tries to model time series
together with heterogenous covariates including static features and time-relevant features.

Long History Modeling. The Transformer architecture is a successor to solve the inefficiency and
ineffectiveness of recurrent neural networks modeling long sequence data (Vaswani et al., 2017).
Transformers have gained prominence in time series prediction (Beltagy et al., 2020; Salinas et al.,
2020; Lai et al., 2018), inspired by their success in Natural Language Processing and Computer
Vision. One challenge in using transformers in time series prediction is managing their’ quadratic
complexity due to the typically long sequences. To address this, many researchers have not only
optimized for prediction performance but also sought to reduce memory and computational com-
plexity. LogTrans (Li et al., 2019) proposes a transformer-based neural network for time series
prediction. They propose a convolution layer over the vanilla transformer to better capture local
context information and a sparse attention mechanism to reduce memory complexity. In their ver-
sion of sparse attention, the query only attends to a subset time steps spaced apart following a fixed
log-based stride pattern. Similarly, Informer (Zhou et al., 2021) proposes convolutional layers in be-
tween attention blocks to distill the dominating attention and a sparse attention mechanism where the
keys only attend to a subset of most dominant queries according to some dominance measurement.
Reformer (Kitaev et al., 2020) replaces the dot-product self-attention in the vanilla transformer with
a hashing-based attention mechanism to reduce the complexity.

Decomposition-based Modeling. Besides directly feeding the raw time series inputs to the model,
a different line of research is to treat a time series as a combination a trend series and a seasonality
series and model them in a decomposition way. Among transformer-based models, Autoformer (Wu
et al., 2021) introduces a series decomposition module to its transformer-based model to separately
model the seasonal component and the trend-cyclical of the time series. FEDformer (Zhou et al.,
2022) also models the decomposed time series and they introduce a block to extract signals by
transforming the time series to the frequency domain.

Multi-resolution-based Modeling Some works intend to model the multi-resolution or multi-scale
signals in the time series with a dedicated network design. Pyraformer (Liu et al., 2021) designs a
pyramidal attention module to extract the multi-scale signals from the raw time series. Crossformer
(Zhang & Yan, 2022) proposes a multi-scale encoder-decoder architecture to hierarchically extract
signals of different resolutions from the time series. Besides, STanHop (Wu et al., 2023a) is a multi-
resolution model based on modern hopfield. Its novelty is that it also includes an associative memory
module enabling quick reactions to sudden anomaly in the time series.

Foundation-model-based Modeling. PatchTST (Nie et al., 2023) is a transformer-based model fol-
lowing a channel-independence assumption. According to this assumption, a univariate time series
model is capable of modeling a multivariate time series by independently feeding each channel of
the multivariate time series as a univariate series into the model during training and testing. With
channel-independence, the same model architecture is immediately transferable to multivariate time
series of different domains. Besides channel-independence, PatchTST also proposes a patch encod-
ing mechanism by tokenizing the time series by segments of consecutive time steps. It is based
on the assumption that local patterns spanning a small segment of consecutive time steps are more
suitable to be the fundamental meaningful tokens compared to the fine-grained and noisy time steps
themselves. PatchTST has been a state-of-the-art multivariate time series prediction model and is
still having top-tier performance in comparison to some latest models. Recently, transformer-based
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large pretrained models show their potential of being the perfect paradigm for constructing a foun-
dation model. They demonstrate their capability in natural language processing (Devlin et al., 2018;
Liu et al., 2019; Lagler et al., 2013; Floridi & Chiriatti, 2020; Achiam et al., 2023; OpenAI, 2023;
Touvron et al., 2023a;b; Anil et al., 2023; Chowdhery et al., 2023; Zhang et al., 2022a), computer vi-
sion (Dosovitskiy et al., 2020; Radford et al., 2021; Yuan et al., 2021; Zhang et al., 2021; Zhai et al.,
2022; Yu et al., 2022; Li et al., 2022; 2023; Liu et al., 2024), and genomics modeling (Ji et al., 2021;
Zhou et al., 2023b; Dalla-Torre et al., 2023). They inspire time series researchers to adapt the same
paradigm to time series prediction. This adaptation is natural by adopting the channel-independence
assumption. LLMTIME (Gruver et al., 2024) is a zero-shot method to equip a large language model
(LLM), such as Llama and GPT-3, with a special tokenization method on time series. By doing
that, the LLM can directly generate the predicted future values of the time series. Their results
are comparable to domain-specific transformer-based model such as FEDFormer and Autoformer.
Rather than assuming the input time series is in the natural language domain like LLMTIME does,
Time-LLM (Jin et al., 2023) tries to utilize a pretrained LLM while add additional components to
bridge the time series domain and the natural language domain. They added an alignment module
that uses cross-attentions to align the patch-encoded input time series and the tokenized input natural
language prompts. Then, a concatenated embedding including the information from both the prompt
and the time series becomes the input to the frozen pretrained Llama model. Rather than keeping the
LLM frozen, GPT4TS (Zhou et al., 2023a) proposes to fine-tune some components of a pretrained
LLM on the time series data. They feed as an input the patch-encoded time series to a GPT-2 model
and only fine-tune the residual connections (He et al., 2016) and the LayerNorm layers (Ba et al.,
2016) in the transformer block (Vaswani et al., 2017). LLM4TS (Chang et al., 2023) follows the
same path. The difference is that in addition to the residual connections and LayerNorm layers,
they also fine-tune the self-attention module. More specifically, they use LoRA (Hu et al., 2021)
to fine-tune the three weight matrices of the self-attention module. Both LLMTIME, Time-LLM,
GPT4TS and LLM4TS adopt the channel-independence assumption. Both Time-LLM, GPT4TS
and LLM4TS outperform PatchTST. Instead of using a pretrained LLM, some researchers also try
taking an untrained LLM architecture and pretrain it exclusively on time series data. Lag-Llama
(Rasul et al., 2023) is a univariate time series foundation model that pretrains a Llama architecture
on a time series corpus with time series from various domains and of different lengths. Lag-Llama
does not make point-wise predictions. It predicts the parameters of a t-distribution (Student, 1908)
for each time step in the prediction horizon.

Time Series Modeling with Heterogenous Covariates. Most time series prediction models assume
the input includes only time series. Some researchers focus on a time series model that can simulta-
neously model various kinds of covariates that include additional information helping the time series
prediction. Temporal Fusion Transformer (Lim et al., 2021) proposes to first use a residual block
based on fully connected layers to encode static covariates, such as the location of the store, into a
context vector. Then, an LSTM module takes the context vector as a hidden states to help the time
series prediction. TiDE (Das et al., 2023) adopts a similar strategy. It also uses residual blocks of
fully connected layers to encode covariates. Its novelty is that it concatenates both the time series,
static covariates and time-relevant covariates into a flat vector and uses an architecture based on the
same type of residual blocks to do the final prediction.

Time Series Model Architectures. Transformer-based architectures are dominant in multivariate
time series prediction. However, some recent models based on linear layers (Zeng et al., 2023; Chen
et al.; Wang et al., 2024; Oreshkin et al., 2020; Challu et al., 2023; Zhang et al., 2022b) are showing
performance on par with transformer-based models. There are also time series models based on
convolutional neural networks (O’shea & Nash, 2015; Wu et al., 2023b; Franceschi et al., 2019) and
recurrent networks (Hochreiter & Schmidhuber, 1997; Lai et al., 2018; Franceschi et al., 2019). But,
their performance is not on par with transformers and linear-based architectures.
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3 METHODOLOGY

Problem Definition. We focus on the multivariate time series prediction problem. Given a mul-
tivariate time series input X = {X1, X2, ..., XT } ∈ NT×N of the history, we want to predict the
future time steps of the same multivaraite time series, Y = {XT+1, XT+2, ..., XT+H} ∈ NH×N .
T is the look back window, the number of time steps of the input, H is the horizon, the number of
time steps of the predicted output, and N is the number variates in the multivariate time series.

3.1 STRUCTURE OVERVIEW

State Space Models. Satet space models represent any recurrent modeling process that includes
latent variables as states. We use this term specifically for the structured state space model (S4). The
S4 model is to model a continuous system by mapping an input sequence, {x1, x2, ..., xt}, xt ∈ R,
to an output sequence, {y1, y2, ..., yt}, yt ∈ R. S4 includes four learnable parameters, ∆, A,B,C
and maps the input sequence (function) to the output sequence (function) through a hidden state,
h(t):

h′(t) = Ah(t) +Bx(t), A ∈ RN×N , B ∈ RN×D (1)

y(t) = Ch(t), C ∈ RN×D (2)

The above continuous system is discretized using a step size, ∆:

ht = Āht−1 + B̄xt, Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− I) ·∆B (3)

yt = Cht (4)

After discretization, the calculation of the model is efficient using a linear recursive approach Gu
et al. (2021). In addition, S4 is so named because the initialization process uses HiPPO to impose
structure on the state matrix A to improve the modeling of long-range dependency.

Mamba. Mamba proposes a data-dependent selection mechanism on top of S4 to better compress
the information in the sequence into the hidden state and a hardware-aware computation algorithm
to improve the computation efficiency.

3.2 MODEL ARCHITECTURE

4 MAIN RESULTS

5 ABLATION STUDY

6 CONCLUSION AND FUTURE WORK
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