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Abstract
Conventional Task and Motion Planning (TAMP)
approaches rely on manually crafted interfaces
connecting symbolic task planning with continu-
ous motion generation. These domain-specific
and labor-intensive modules are limited in ad-
dressing emerging tasks in real-world settings.
Here, we present LLM3, a novel multi-modal
foundation model TAMP framework featuring a
domain-independent interface. Specifically, we
leverage the powerful reasoning and planning ca-
pabilities of foundation models to propose sym-
bolic action sequences and select continuous ac-
tion parameters for motion planning. Through a
series of simulations in a box-packing domain,
we quantitatively demonstrate the effectiveness
of our method. Ablation studies underscore the
significant contribution of motion failure reason-
ing to the success of LLM3. Furthermore, we
conduct qualitative experiments on a physical ma-
nipulator, demonstrating the practical applicabil-
ity of our approach in real-world settings. Code
is available:https://github.com/AssassinWS/LLM-
TAMP.

1. Introduction
Task and Motion Planning (TAMP) formulates a promising
methodology that hierarchically decomposes planning into
two stages: the high-level symbolic task planning stage
reasons over long-horizon abstract action sequences, and
the low-level continuous motion planning stage computes
feasible trajectories subject to geometric constraints. In
recent years, TAMP has enabled significant advances in
diverse applications (Dantam et al., 2016; Toussaint et al.,
2018; Garrett et al., 2021; Jiao et al., 2021; 2022; Su et al.,
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Figure 1. The proposed LLM3framework. (a) Traditional TAMP
frameworks rely on manually designed, domain-specific modules
for interfacing between task and motion planners. (b) In contrast,
we leverage a pre-trained LLM to iteratively propose refined plans
and action parameters, by reasoning on motion planning failures.

2023). However, a persistent challenge remains to properly
interface between the task planner and the motion planner
to efficiently solve TAMP, , generating action sequences
that satisfy both symbolic task goals and continuous motion
constraints.

Traditional TAMP approaches often rely on manually de-
signed modules to interface between symbolic and contin-
uous domains, as depicted in Figure 1(a). These modules
serve two key roles. First, they act as action parameter
samplers that generate real-valued parameters for symbolic
actions. Previous works propose to learn heuristic param-
eter samplers from data (Chitnis et al., 2016; Wang et al.,
2018), they are tailored to specific domains and lack general-
izability. Second, these modules implement mechanisms to
incorporate motion failure into the task planner to generate
improved action plans, by updating the symbolic state (Sri-
vastava et al., 2014). However, they usually require domain-
specific design by human experts. In summary, these mod-
ules are domain-specific and require substantial manual
effort to design, which hinders generalizability to novel
environments.

Recent Multi-Modal Foundation Models (Fei et al., 2022)
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Figure 2. The system diagram of the proposed LLM3framework. (a) We show an example of utilizing a pre-trained LLM for reasoning
and generating action sequences. (b) The feasibility of the proposed action sequence is verified by rollout with a motion planner and
transition function T . The motion planning feedback is saved into a trace that is provided to the LLM in the next iteration.

have demonstrated emergent capabilities in reasoning (Ko-
jima et al., 2022) and planning (Huang et al., 2022). Our
intuition is that pre-trained LLMs could provide a general
and domain-independent approach to interfacing between
symbolic and continuous domains for TAMP, eliminating
the need to design domain-specific modules manually.

In this paper, we present LLM3 (Large Language Model-
based Task and Motion Planning with Motion Failure Rea-
soning), an LLM-powered TAMP framework that reasons
over motion planning feedback for effective planning Fig-
ure 1(b). Specifically, LLM3observes object information
in point clouds from a RGB-D camera and then employs a
pre-trained LLM to (i) propose symbolic action sequences
towards the task goal, (ii) generate continuous action pa-
rameters that lead to feasible motion, and (iii) reason over
motion planning feedback to iteratively refine the proposed
symbolic actions and parameters.

We evaluate LLM3in a simulated tabletop box-packing task,
which poses challenges in reasoning about potential failure
modes, collisions, and unreachable areas, throughout the
sequential manipulation planning problem. Quantitative re-
sults demonstrate the effectiveness of LLM3, with ablation
studies verifying: (i) reasoning over motion feedback signif-
icantly improves success rates and planning efficiency, and
(ii) the LLM-based parameter sampler is substantially more
sample efficient than a random sampler. Furthermore, we
conduct real-robot experiments to show that LLM3can be

applied to real-world problems.

2. Related Work
2.1. Task and Motion Planning

Traditional TAMP approaches employ a high-level task plan-
ner to generate symbolic action sequences and a low-level
motion planner to generate motion trajectories. The task
planner requires pre-designed symbolic planning domains
represented in formatted representations, such as Planning
Domain Definition Language (PDDL). Significant efforts
have been made to develop manually engineered modules
that interface the task planner and motion planner, such as in-
corporating motion-level constraints into task planning (Gar-
rett et al., 2020; Jiao et al., 2021), making approximations
at the motion level (Hauser & Ng-Thow-Hing, 2011; Tou-
ssaint, 2015), and designing specialized communication
modules (Srivastava et al., 2014). However, manually defin-
ing task planning domains and interface modules to fully
capture real-world complexity is impractical. Furthermore,
as the action space grows, searching for geometrically fea-
sible symbolic action sequences becomes computationally
challenging without effective heuristics (Garrett et al., 2020).
In this work, we employ a pre-trained LLM as both the task
planner and the interface between task and motion. We
expect that semantic knowledge in the LLM can provide
domain-independent heuristics for TAMP.
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2.2. Robot Planning with Multi-Modal Foundation
Models

Recent Multi-Modal Foundation Models encode vast world
knowledge and exibit the emergent capability for plan-
ning (Huang et al., 2022; Li et al., 2022) through few-shot
or zero-shot in-context learning (Brown et al., 2020; Dong
et al., 2022). Pre-trained LLMs have been applied for task
planning of robots or embodied agents (Ahn et al., 2022;
Huang et al., 2023; Liang et al., 2023; Singh et al., 2023;
Wang et al., 2023b;a; Yao et al., 2022; Gong et al., 2023a;b;
Cui et al., 2024). Notably, Inner Monologue (Huang et al.,
2023) takes in textualized environment feedback and gener-
ate actions to execute, while ReAct (Yao et al., 2022) further
advanced this closed-loop approach by integrating reasoning
and acting. Voyager (Wang et al., 2023a) focus on devel-
oping open-ended embodied agents that iteratively replan
based on execution failure in PC games. Our usage of muti-
modal LLMs in TAMP is inspired by many of the above
works; however, the major difference is that we leverage the
LLM as the core component of our TAMP framework.

3. Method
The system diagram of LLM3is shown in Figure 2. Below,
we elaborate on the overall LLM3framework, reasoning
and planning with the pre-trained LLM, and the designed
motion planning feedback.

3.1. The LLM3 Framework

As shown in Figure 2, the LLM3framework iterates between:
(i) reasoning on previous motion failure and generating
an action sequence (, symbolic actions and continuous pa-
rameters) with a pre-trained LLM, and (ii) verifying the
feasibility of the action sequence with a motion planner.
Overall, the LLM3framework can be regarded as a search-
then-sample TAMP planner that generates action sequences
with incrementally improved quality, guided by the intrinsic
heuristics of the foundation model and the previous motion
failure. We expect LLM3to exhibit superior efficiency com-
pared to unguided planners that sample action parameters
randomly.

3.2. Planning and Reasoning with Foundation Models

We prompt a LLM to generate motion failure reasoning and
action sequences in text format. Since we want to limit the
domain-specific prior provided to the LLM, we use zero-
shot prompting (Kojima et al., 2022). We implement two
strategies for the LLM to generate a new action sequence
that improves on the previous one: (i) backtrack, where
we expect the LLM to backtrack to a previous action that
has feasible motion, and continual to generate actions that
complete the plan, and (ii) from scratch, where we expect
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Figure 3. The box-packing task setup in a simulated environ-
ment. (a) The task requires the robot to place one of (b) three sets
of objects fully into the basket. (c) In setting 1, the total object size
increases but the basket sizes remain the same. All baskets are fully
reachable by the robot. (d) In setting 2, the basket size increases,
but some portions of baskets are longer within the robot’s reach.

the LLM to directly generate a new action sequence that
attempts to avoid the motion failure happened in the history.

3.3. Synthesizing Motion Planning Feedback

We implement a ground action a by calculating a collision-
free trajectory τ with a sampling-based motion planner,
BiRRT (LaValle, 2006). By default, the motion planner
reports a binary signal that indicates whether there is a
feasible trajectory. It does not give more abstract-level feed-
back. We additionally synthesize semantically meaningful
motion-level feedback so that LLM3can improve on pre-
vious failures more effectively. We observe that typical
motion planning failures can be categorized into two types,
collisions and unreachability. In practice, we integrate the
motion planner with an additional IK solver and collision
checker for obtaining these feedbacks.

4. Simulation and Experiment
In simulations, we initially perform an ablation study on
our LLM3framework in two settings of the tabletop box-
packing task, quantitatively evaluating its effectiveness. Ad-
ditionally, we demonstrate the role of LLM as an informed
action parameter sampler by comparing it to a baseline uti-
lizing random sampling strategies. Finally, we validate the
proposed LLM3framework through experimentation on a
perception-integrated physical robotic manipulator, confirm-
ing its validity in real-world scenarios.

4.1. Simulation Setup

We developed a PyBullet-based simulation environment for
our box-packing tasks, as illustrated in Figure 3. In Setting
1, three different sets of objects are given with increasing
total sizes, while the size of the basket remains constant.
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Table 1. Ablation Study
Method Setting 1 Setting 2

Easy Medium Hard Small Medium Large

%SR #LM #MP %SR #LM #MP %SR #LM #MP %SR #LM #MP %SR #LM #MP %SR #LM #MP

LLM3Backtrack 100 1.6 11.8 100 4.4 28.4 60 11.4 39.8 60 11.4 39.8 80 9.5 50 50 13.5 44.8
Backtrack 100 1.8 12.6 90 6.3 32 40 15.1 55.3 40 15.1 55.3 30 14.6 16 30 15.8 48

LLM3Scratch 100 1.7 13.2 100 7 46.1 70 8.8 30.9 70 8.8 30.9 70 11.5 50.2 60 10.6 32
Scratch 100 2.4 17.6 60 12.3 45.3 50 13.7 42.8 50 13.7 42.8 30 16.2 45.7 40 13.2 24
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Figure 4. The real-world experiment on a physical robot. The figure to the left shows the box-packing task setup. Actions 1 to 8 are
proposed by LLM3and successfully carried out by the physical manipulator.

This task requires the LLM3to oversee potential collisions
between objects or the robot throughout the action sequence.
The LLM must reason why collisions occur and adjust previ-
ous actions to ensure feasible task and motion plans. Setting
2 involves placing the Set 3 objects into baskets of increas-
ing sizes. Here, the robot cannot access the entire basket
region but encounters a collision likelihood similar to the
most crowded condition in Setting 1. Throughout the simu-
lations, we utilize GPT-4 Turbo (OpenAI, 2023) as the LLM
planner and BiRRT (LaValle, 2006) as the motion planner,
with 100 attempts for each setting.

4.2. Ablation Study

The conducted ablation study compares the proposed
LLM3with baseline methods: 1) LLM3Backtrack: The
proposed LLM3framework backtrack variant. 2) Back-
track: It proposes plans with backtracking without mo-
tion planning feedback. 3) LLM3Scratch: The proposed
LLM3framework from scratch variant. It replans the entire
action sequence if any action fails, incorporating motion
planning feedback. 4) Scratch: It plans the action sequence
only once and executes the plan without any feedback.

Three evaluation criteria are considered: The number of
LLM calls (#LM), the total success rate %SR, and the num-
ber of motion planner calls #MP. The study results are sum-
marized in Table 1. It indicates that the LLM can reason
about failures from motion planning feedback, and propose
adjusted task plans and action parameters that are more

likely to produce feasible motions.

To validate the effectiveness of our proposed method in
a real-world setting, we conducted an experiment using
a Franka Research 3 manipulator. The robot observed a
single point cloud from a third-person-view RGB-D camera
(Kinect Azure), capturing the workspace containing various
objects such as blocks and a plate. To identify and locate
individual objects, we employed (Ren et al., 2024) for
object segmentation. This approach yielded per-object point
clouds, essential for planning and executing manipulation
tasks.

Figure 4 presents a qualitative evaluation of our method,
where the robot was tasked with placing all blocks on the
plate. The results demonstrate that our method enabled the
robot to successfully identify and manipulate objects despite
the uncertainties in the environment.

5. Conclusions
In this paper, we introduced LLM3, which leverages the rich
knowledge encoded in and the powerful reasoning capability
processed by LLMs. Our study also revealed that although
the LLM can generate action parameters more efficiently
than random samplers, it still necessitated multiple feedback
iterations and motion planner calls. Looking ahead, fine-
tuning multi-modal foundation models holds promise for
empowering robots to tackle emerging tasks in real-world
scenarios.
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