
! TEXT2WORLD: Benchmarking Large Language Models for
Symbolic World Model Generation

Anonymous ACL submission

Abstract

Recently, there has been growing interest in001
leveraging large language models (LLMs) to002
generate symbolic world models from textual003
descriptions. Although LLMs have been exten-004
sively explored in the context of world mod-005
eling, prior studies encountered several chal-006
lenges, including evaluation randomness, de-007
pendence on indirect metrics, and a limited008
domain scope. To address these limitations, we009
introduce a novel benchmark, TEXT2WORLD,010
based on planning domain definition language011
(PDDL), featuring hundreds of diverse domains012
and employing multi-criteria, execution-based013
metrics for a more robust evaluation. We bench-014
mark current LLMs using TEXT2WORLD and015
find that reasoning models trained with large-016
scale reinforcement learning outperform oth-017
ers. However, even the best-performing model018
still demonstrates limited capabilities in world019
modeling. Building on these insights, we ex-020
amine several promising strategies to enhance021
the world modeling capabilities of LLMs, in-022
cluding test-time scaling, agent training, and023
more. We hope that TEXT2WORLD can serve024
as a crucial resource, laying the groundwork for025
future research in leveraging LLMs as world026
models.027

1 Introduction028

The significance of world models for intelligent be-029

havior has been historically acknowledged in early030

psychological theories, which posited that organ-031

isms employ internal representations of the exter-032

nal world for prediction and planning (Craik, 1967).033

Furthermore, LeCun (2022) extends this concept034

by highlighting world modeling as a core compo-035

nent of autonomous machine intelligence. In this036

paper, we primarily study symbolic world models037

(also known as domain models), which are formal038

representations of an environment’s dynamics and039

constraints. In recent years, Large Language Mod-040

els (LLMs) (OpenAI, 2022, 2023; Meta AI, 2024)041

have showcased their understanding of common- 042

world knowledge, making them promising candi- 043

dates for generating symbolic world models, which 044

requires inferring action dynamics and constraints 045

from solely natural language description. Some 046

works have already explored this across numerous 047

tasks, including planning (Hu et al., 2024b; Guan 048

et al., 2023), game design (Wang et al., 2023a, 049

2024), reinforcement learning (Tang et al., 2024) 050

among others. 051

Despite extensive exploration, previous work for 052

evaluating symbolic world model generation suf- 053

fers from several key limitations: (i) Limited Do- 054

main Scope: These studies are often confined to 055

a narrow set of domains (typically fewer than 20), 056

which limits the generalizability and applicabil- 057

ity of their findings (Oswald et al., 2024; Silver 058

et al., 2024; Wong et al., 2023). (ii) Evaluation 059

Randomness: Some works rely on LLM-based 060

evaluation methods, which may introduce addi- 061

tional margins of error (Wang et al., 2023a). Pre- 062

liminary experiments in Section 3.6 demonstrate 063

that the LLM-based evaluation exhibits a low inter- 064

annotator agreement with human annotators (Co- 065

hen’s κ = 0.10). (iii) Indirect Evaluation: Some 066

studies evaluate world models based on end-to-end 067

success rates in model-based planning, making it 068

difficult to identify specific failure modes (Guan 069

et al., 2023; Dainese et al., 2024). 070

Motivated by these issues, this paper introduces 071

a novel benchmark TEXT2WORLD based on the 072

Planning Domain Definition Language (PDDL) as 073

illustrated in Figure 1. Specifically, to address 074

the first issue, we initially gathered a broad set 075

of domains, which were then filtered through an 076

automated pipeline and manually curated to ensure 077

their quality, ultimately resulting in a collection 078

of hundreds of diverse domains. Furthermore, to 079

tackle the second issue, we designed multi-criteria, 080

execution-based metrics to ensure a more robust as- 081

sessment. Specifically, we not only employed struc- 082

1

tural similarity for an overall evaluation but also083

designed component-wise F1 scores to assess finer-084

grained aspects such as action dynamics. More-085

over, to overcome the third issue, we systemati-086

cally apply these metrics to assess the generated087

world model directly, eliminating reliance on indi-088

rect feedback mechanisms.089

We also performed data contamination analysis090

using n-gram matching (Touvron et al., 2023), re-091

vealing a lower contamination rate (µ = 0.04) com-092

pared to prior works (Guan et al., 2023; Smirnov093

et al., 2024), indicating that TEXT2WORLD effec-094

tively evaluates LLMs’ world modeling capabilities095

rather than pattern memorization.096

We used TEXT2WORLD to benchmark the world097

modeling capabilities of 16 different LLMs from098

9 model families. Experimental results in Table 1099

highlight several key findings: (i) The most ad-100

vanced LLMs still struggle with TEXT2WORLD;101

(ii) large reasoning models trained by reinforce-102

ment learning show stronger world modeling ca-103

pabilities; and (iii) error correction significantly104

improves model performance. To gain a deeper105

understanding, we performed a manual error anal-106

ysis and found that the majority were due to the107

LLMs’ inability to include essential preconditions108

or effects. We also explored several strategies to109

enhance the world modeling capabilities of LLMs.110

Specifically, we initially experimented with scaling111

the test-time budget and observed consistent im-112

provements as the test-time budget increased. Ad-113

ditionally, methods like fine-tuning and in-context114

learning contributed positively to model effective-115

ness. Moreover, we found that supervised fine-116

tuning on agent trajectory data yielded unexpected117

gains, underscoring the importance of robust world118

modeling for developing high-performing agents.119

To facilitate further research, benchmark and120

code are available at this anonymous URL.121

2 Preliminary122

2.1 World Model123

We formally define a symbolic world model as124

D = ⟨F,A⟩, where F represents the set of fluents125

(state variables represented as predicates) and A126

is the set of possible actions. Each fluent f ∈ F127

is a predicate of the form p(x1, ..., xn), where p is128

the predicate name and x1, ..., xn are typed vari-129

ables. Each action a ∈ A is defined as a tuple130

a = ⟨α,P, φ, E⟩ where: i) α denotes the action131

signature (identifier); ii) P represents a list of typed132

parameters (p1, ..., pk); iii) φ specifies the precon- 133

ditions: a logical formula over fluents that must 134

hold for the action to be applicable; and iv) E de- 135

fines the effects: a set of fluent literals describing 136

how the action changes the world state. 137

2.2 Task Definition 138

The task is formally defined as: M : N → 139

D,D |= N , where M is a mapping function (im- 140

plemented by an LLM) that generates world model 141

D from the natural language description N . |= 142

denotes semantic satisfaction. Each N contains 143

the following components: i) A general descrip- 144

tion describing the overall objective of the domain; 145

ii) A set of predicates NF = {f1, ..., fn} where 146

each predicate is described with its signature (e.g., 147

“(conn ?x ?y)”) and an explanation (e.g., “Indicates 148

a connection between two places ?x and ?y”); iii) 149

A set of actions NA = {a1, ..., am} where each 150

action is described with: its signature (e.g., “move 151

<?curpos> <?nextpos>”) and an explanation (e.g., 152

“Allows the robot to move from place <?curpos> to 153

place <?nextpos>”). Note that to evaluate LLMs’ 154

inherent world modeling capabilities, action de- 155

scriptions in NA are intentionally kept at a high 156

level, without explicit specifications of precondi- 157

tions φ and effects E . This design choice allows 158

us to assess how well LLMs can infer the under- 159

lying world dynamics and constraints from purely 160

descriptive text. A comparative analysis of model 161

performance conditioned on different description 162

styles is presented in Section 6.5. 163

2.2.1 Evaluation Metrics 164

We directly evaluate generated world models, ad- 165

dressing the ambiguity associated with indirect 166

evaluations (Guan et al., 2023; Dainese et al., 2024). 167

In addition, we propose using execution-based met- 168

rics, overcoming the randomness of LLM-based 169

evaluation (Wang et al., 2023a). Specifically, we 170

established the following evaluation metrics: (i) 171

Executability (EXEC.): Measures whether the gen- 172

erated PDDL can be successfully parsed and vali- 173

dated by standard PDDL validators. (ii) Structural 174

Similarity (SIM.): Quantifies the textual similarity 175

between the generated and ground truth PDDL us- 176

ing normalized Levenshtein ratio. (iii) Component- 177

wise F1 Scores: When generated PDDL achieves 178

executability (EXEC. = 1), we perform fine-grained 179

analysis by calculating the macro-averaged F1 180

score for each component type (predicates, actions, 181

etc.). More specifically, we compute F1 scores for 182

2

https://anonymous.4open.science/r/text-to-world-8B44/

You are tasked with converting a given natural
language description of…

PDDL Domain:
Let's think step by step.

Prompt

Syntax
Parser

Multi-criteria Evaluation

Automatic
Generation

Correct

Levenshtein Ratio

Predicates Parameters Preconditions Effects

General
This domain models a robot navigating a grid
environment with the objective of unlocking
doors and moving through the grid…

Task Description

Predicates
l (conn ?x ?y): Indicates a connection

between two places ?x and ?y, allowing
movement between them.

l …

Task-related State

Actions
l unlock <?curpos> <?lockpos> <?key>

<?shape>: Allows the robot to unlock a
door at place …

l …

Task-related Action Space

Automatic
Correction

Error
Feedback

(define (domain grid)

World Model

(:requirements :strips)

(:predicates (conn ?x ?y)…)

(:action unlock
:parameters (?curpos ?lockpos ?key ?shape)
:precondition (and (place ?curpos…)
:effect (and (open ?lockpos) …))

No Error /
Exceed Attempts

Text2World
Generation

World Model

Executability

Predicted
World Model

Structural Similarity

World Model

Component-wise F1

Executor
Wrong

Parser

Golden World
Model

Structural Similarity Score: 0.8

F1 Score

0.8 0.4 0.70.1

Figure 1: Overview of TEXT2WORLD.

predicates (F1PRED), parameters (F1PARAM), pre-183

conditions (F1PRECOND), and effects (F1EFF) by184

parsing both generated and ground truth PDDL185

into structured representations.186

3 Benchmark Construction187

The overall process of benchmark construction is188

shown in Figure 2. In this section, we provide a189

detailed explanation of each stage.190

3.1 Data Acquisition191

Our benchmark construction process began with192

collecting PDDL files from various public repos-193

itories and planning competitions. Through this194

initial collection phase, we accumulated 1,801 raw195

PDDL files. We performed several preprocessing196

steps to standardize the data format (e.g., convert197

files with BOM encoding to standard UTF-8). The198

processed files served as the foundation for our199

dataset construction.200

3.2 Data Filtering and Manual Selection201

To ensure the quality and reliability of202

TEXT2WORLD, we implemented a compre-203

hensive filtering pipeline: (i) Validation: We204

employed a PDDL domain parser to perform205

syntax validation on each file; (ii) Similarity206

Deduplication: We eliminated duplicate entries by207

computing pairwise cosine similarity on TF-IDF208

vectorized PDDL content, removing files with209

similarity scores exceeding 0.9; (iii) Complexity210

Control: We removed domains with over 40211

predicates or 20 actions to balance expressiveness 212

with practical utility. (iv) Token Length Filtering: 213

We removed files exceeding 5,000 tokens using 214

GPT-2 (Radford et al., 2019) tokenizer to ensure 215

compatibility with model context windows. 216

Additionally, we conducted manual selection to 217

eliminate domains that were not designed for 218

world modeling (such as blocksworld-mystery) 219

and low-quality cases that were not captured by 220

the automated filtering methods. After this process, 221

we obtained 264 high-quality PDDL domain 222

specifications. 223

3.3 Data Annotation 224

After obtaining the high-quality PDDL domains, 225

we manually annotated natural language descrip- 226

tions for each domain. To ensure the quality of 227

annotations, we recruited 6 computer science grad- 228

uates as annotators. The annotated description 229

followed the structured format described in Sec- 230

tion 2.2, and annotators were required to follow the 231

annotation criteria: (i) Descriptive Completeness: 232

Annotations must contain all required components; 233

(ii) Action Abstraction: Action descriptions should 234

avoid explicit references to formal preconditions 235

and effects; (iii) Inference-Enabling: Descriptions 236

should contain sufficient contextual information to 237

allow models to infer the underlying dynamics; (iv) 238

Natural Language Priority: Technical terminol- 239

ogy should be minimized in favor of natural lan- 240

guage explanations. Examples of TEXT2WORLD 241

can be found in Appendix A.1. 242

3

Standardized
Dataset

(a) Data Acquisition (c) Data Annotation & Quality
Assurance

Web Crawling
& Scraping

Domain File
Preprocessing

Manual Annotation

Final Dataset
Standardized

Dataset

(b) Data Filtering and
Manual Selection

Automatic
Sample Removal

Manual Selection

Internet Data Raw Dataset

Validation

Similarity Deduplication
Complex Control

Token Length Filtering

Raw Dataset

Descriptive Completeness Check

Action Abstraction Check

Inference-enabling Check
Natural Language Priority Check

Data Contamination Check

Regular Inspection

Re
ch

ec
k

Statistic Number

Domain Count

Domain 103
- Train 2
- Test 101

Token Count

Description 851.6 ± 515.2
- Min/Max [159, 2814]
Domain 1187.2 ± 1212.1
- Min/Max [85, 7514]

Line Count

Domain 75.4 ± 62.9
- Min/Max [9, 394]

Component Count

Actions 4.5 ± 2.8
- Min/Max [1, 16]
Predicates 8.1 ± 4.8
- Min/Max [1, 25]
Types 1.1 ± 1.3
- Min/Max [1, 8]

Figure 2: Left: Dataset construction process including: (a) Data Acquisition (§3.1); (b) Data Filtering and Manual
Selection (§3.2); (c) Data Annotation and Quality Assurance (§3.3 and §3.4). Right: Key statistics of Text2World.
Tokens are counted by GPT-2 (Radford et al., 2019) tokenizer. The style is referenced from Chen et al. (2024b).

3.4 Quality Assurance243

Manual Recheck To maintain rigorous quality244

standards throughout the annotation process, we es-245

tablished a review system supervised by two senior246

experts. These experts conducted regular inspec-247

tions of the annotations, ensuring accuracy and248

consistency. Inspectors must verify all data twice249

to determine if the annotated examples meet the250

specified annotation standards. Examples are ac-251

cepted only if both inspectors approve them. The252

verification results showed "almost perfect agree-253

ment" with a Fleiss Kappa (Landis and Koch, 1977)254

score of 0.82. Through this comprehensive quality255

control process, we compiled a final curated dataset256

of 103 domains with gold-standard descriptions.257

Data Contamination As shown by Carlini et al.258

(2021), LLMs can memorize training data rather259

than truly model the world. To assess potential260

contamination between LLMs’ training data and261

TEXT2WORLD, we generated complete PDDL do-262

mains from the first 20 tokens using GPT-4 (Ope-263

nAI, 2023) and calculated contamination rates264

based on tokenized 10-grams with up to 4 mis-265

matches (Touvron et al., 2023), excluding PDDL-266

specific keywords and variables. We also com-267

pared these results with previous studies (Guan268

et al., 2023; Smirnov et al., 2024). Figure 3 shows269

that TEXT2WORLD has a lower contamination rate270

(µ = 0.04 vs. µ = 0.47), suggesting its perfor-271

mance reflects domain understanding rather than272

memorization. However, the complete elimina-273

tion of contamination remains challenging due to274

PDDL’s widespread use.275

Prior Work Text2World
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

C
on

ta
in

m
en

t S
co

re

Figure 3: n-gram contamination rate of TEXT2WORLD
and prior works.

3.5 Data Analysis 276

This section provides some detailed data analysis 277

to better understand TEXT2WORLD. 278

Core Statistics We designated 2 domains as in- 279

context exemplars (train set), with the remaining 280

101 samples forming our test set. 281

Semantic Analysis We use LLMs to extract high- 282

level domain characteristics to better understand 283

the conceptual distribution of TEXT2WORLD, As 284

shown in Figure 4 (Bottom), common themes such 285

as path planning, constraint satisfaction, and task 286

allocation, among others, emerge. 287

Requirements Analysis A PDDL requirement 288

specifies a formal capability needed to express a do- 289

main, often reflecting its complexity. For instance, 290

:typing stands for allowing the usage of typing for 291

objects. As shown in Figure 4 (Top), there are eight 292

different requirement type in TEXT2WORLD. We 293

also provide an in-depth analysis of requirement 294

type in Appendix A.3. 295

4

26.6%

33.5%

8.5%

1.6%
7.4%

4.8%7.4%
10.1%

:strips
:typing
:negative-
preconditions
:disjunctive-
preconditions
:equality
:conditional-
effects
:action-costs
:adl

Figure 4: Top: The frequency of requirements dis-
tribution. Bottom: Word cloud of concepts in
TEXT2WORLD.

3.6 Preliminary Experiment296

In previous works, LLMs have been employed297

to evaluate the action dynamics of world mod-298

els generated by LLMs themselves (Wang et al.,299

2023a). To further assess the ability of LLMs300

to detect errors in world models, we conducted301

a preliminary experiment where we first used302

claude-3.5-sonnect for TEXT2WORLD. Sub-303

sequently, human annotators and the LLM inde-304

pendently evaluated the generated action dynamics305

to identify potential errors. The inter-annotator306

agreement between human ratings and LLM rat-307

ings, measured using Cohen’s κ, was 0.10, indicat-308

ing a low level of agreement. This suggests that309

predicting the correctness of PDDL domains using310

an LLM is particularly challenging, highlighting311

the need for more discriminative evaluation metrics.312

Prompting examples and more results can be found313

in Appendix A.2.314

4 Experiments315

4.1 Experimental Setup316

We evaluate several state-of-the-art LLMs, in-317

cluding GPT-4 (OpenAI, 2023), GPT-3.5 (Ope-318

nAI, 2022), Claude-3.5 (Anthropic), and LLaMA-319

3.1 (Meta AI), DeepSeek-v3 (Liu et al., 2024),320

CodeLlaMA (Roziere et al., 2023), LlaMA-2 (Tou-321

vron et al., 2023), etc. We also evaluated Large322

Reasoning Models (LRMs) trained using reinforce-323

ment learning, such as DeepSeek-R1 (DeepSeek- 324

AI et al., 2025), OpenAI-o1 (OpenAI, 2024) and 325

OpenAI-o3 (OpenAI, 2025). We set temperature 326

= 0 for each model for all experiments to main- 327

tain reproducibility. We employ tarski 1 library to 328

check syntactic correctness and executability. We 329

prompt LLMs to generate symbolic world mod- 330

els under a zero-shot setting with chain-of-thought 331

reasoning (Wei et al., 2022). In error-correction ex- 332

periments, LLMs refine outputs based on validator- 333

reported syntax errors, denoted as EC3 for k at- 334

tempts. Evaluation of open-sourced models were 335

conducted on NVIDIA A100 GPUs with 80GB 336

memory. We access proprietary models through 337

their official API platform. Prompt examples can 338

be found in Appendix B.2. 339

4.2 Experimental Results 340

Several conclusions can be drawn from Table 1: 341

(i) The most advanced LLMs still struggle with 342

TEXT2WORLD. For example, the best-performing 343

model, DeepSeek-R1, achieves F1 scores below 344

60% for both preconditions (F1PRECOND) and effects 345

(F1EFF) under the without error correction setting. 346

This highlights the limitations of current LLMs in 347

world modeling tasks. (ii) Large reasoning models 348

trained with reinforcement learning exhibit supe- 349

rior world modeling capabilities. These models, 350

such as DeepSeek-R1 (DeepSeek-AI et al., 2025), 351

outperform others in executability, structural simi- 352

larity, and component-wise performance, indicat- 353

ing that RL-based training enhances the ability of 354

models to generate structured and valid world mod- 355

els. (iii) The ability of models to benefit from 356

error correction is evident. For instance, GPT-4 357

(gpt-4o-mini) demonstrates a notable improve- 358

ment in executability, increasing from 48.5% to 359

72.3% after three correction attempts. 360

5 Analysis 361

5.1 Statistical Analysis 362

We conducted a one-way ANOVA (Girden, 1992) 363

to evaluate the impact of correction attempts on 364

model performance, excluding anomalous zero val- 365

ues. The results showed a significant improvement 366

with three correction attempts (F = 27.48, p = 367

0.00012), indicating that correction attempts lead 368

to a notable enhancement in model performance. 369

1https://github.com/aig-upf/tarski

5

https://github.com/aig-upf/tarski

Table 1: Performance comparison of different LLMs on TEXT2WORLD. ECk denotes the setting where models are
allowed k correction attempts (EC0: zero-shot without correction, EC3: with 3 correction attempts).

Model Family Version EXEC. ↑ SIM. ↑ F1PRED ↑ F1PARAM ↑ F1PRECOND ↑ F1EFF ↑

EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3

OPENAI-O1 o1-mini 49.5 69.3 82.5 82.2 48.4 66.3 36.4 49.7 28.9 38.0 31.7 42.1

OPENAI-O3 o3-mini 54.5 84.2 83.0 81.9 53.9 81.1 43.7 63.0 36.8 50.4 39.4 53.8

GPT-4
gpt-4o 60.4 75.2 84.5 84.1 59.6 72.1 56.5 68.1 49.3 56.4 47.8 56.7

gpt-4o-mini 48.5 72.3 82.6 82.2 48.1 70.1 47.1 67.3 34.9 47.5 38.2 52.7

GPT-3.5 turbo-0125 41.6 56.4 81.9 81.6 41.2 55.8 39.6 53.8 30.2 39.2 27.5 37.7

CLAUDE-3.5 sonnet 45.5 64.4 73.2 66.8 45.5 62.5 41.5 48.8 37.4 44.0 38.4 45.0

LLAMA-2
7b-instruct 0.0 0.0 45.5 33.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70b-instruct 0.0 0.0 48.7 48.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LLAMA-3.1
8b-instruct 0.0 0.0 74.3 74.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70b-instruct 0.0 0.0 83.6 79.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEEPSEEK
deepseek-v3 56.4 79.2 84.7 84.2 55.9 75.6 53.7 74.4 45.1 58.6 46.7 61.5
deepseek-r1 72.3 89.1 84.3 84.0 71.7 86.7 64.0 76.3 57.6 65.0 58.8 67.3

CODELLAMA

7b-instruct 17.8 22.8 60.2 57.6 17.8 18.8 17.2 18.2 11.3 12.2 10.7 11.1
13b-instruct 7.9 8.9 57.6 55.0 7.9 8.9 7.9 8.9 4.9 5.9 5.2 6.1
34b-instruct 7.9 8.9 34.2 7.6 7.9 8.6 7.9 8.4 5.0 5.0 5.4 5.4
70b-instruct 16.8 16.8 54.0 14.0 16.4 16.4 16.8 16.8 10.7 10.7 14.1 14.1

5.2 Error Analysis370

The interpretable nature of generating symbolic371

world models can be utilized for a deeper man-372

ual analysis of the failure modes. We select the373

results from claude-3.5-sonnect under the few-374

shot setting for manual error analysis. Errors are375

categorized into syntax and semantic errors, where376

syntax errors occur when the generated domain377

cannot be validated (EXEC. = 0), and semantic378

errors arise when the generated world model does379

not align with action dynamics or fails to follow380

the natural language description. The distribution381

for each error type and detailed explanations are382

presented in Appendix C.383

Syntax Errors Figure 5 (Left) shows the dis-384

tribution of syntax errors during correction.385

Common errors like UndefinedConstant and386

IncorrectParentheses decrease over correction387

steps, indicating improvements in syntax valida-388

tion, though errors like UndefinedDomainName389

and UndefinedType persist.390

Semantic Error Figure 5 (Right) illustrates391

the distribution of semantic errors. Seman-392

tic errors are categorized into four types: (i)393

DisobeyDescription involves direct violations394

of descriptions. (ii) IncompleteModeling, where395

the world model lacks necessary components.396

(iii) RedundantSpecifications refers to su-397

perfluous preconditions or effects; and (iv) 398

SurfaceDivergence involves surface-level vari- 399

ations that preserve semantic equivalence to gold 400

domain. In addition, since a domain may encom- 401

pass various action dynamics, different error types 402

can occur simultaneously. For instance, nearly 10% 403

of cases exhibited both IncompleteModeling and 404

RedundantSpecifications concurrently. 405

6 Exploration 406

In addition to the zero-shot CoT evaluation in 407

Section 4.2, we further evaluate the models on 408

TEXT2WORLD with five different strategies: (1) 409

Test-time Scaling; (2) In-Context Learning; (3) 410

Fine-tuning; (4) Agent Training; (5) Inference with 411

Concrete Description. 412

6.1 Test-time Scaling 413

Recently, test-time scaling has demonstrated re- 414

markable potential (OpenAI, 2024; DeepSeek-AI 415

et al., 2025). We use the error information from the 416

syntax parser as feedback and assess whether in- 417

creasing the test-time compute budget can enhance 418

the LLM’s performance. As shown in Figure 6, 419

the model exhibits consistent improvement with 420

increased test-time computation. More advanced 421

test-time scaling strategies may serve as a viable 422

approach to enhancing the model’s world modeling 423

ability (Chen et al., 2025). 424

6

Figure 5: Left: The distribution of syntax error types during the progression of correction. Right: The distribution of
semantic error types.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Correction Step
30

40

50

60

70

80

90

Av
er

ag
e

Va
lu

e
(%

)

GPT-4o-mini

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Correction Step

DeepSeek-v3

Exec. F1 pred F1 param F1 precond F1 eff

Figure 6: The performance of gpt-4o-mini (left) and
deepseek-v3 (right) under different test-time com-
pute budgets, showing consistent improvement with
increased compute.

6.2 In-Context Learning425

We also perform a few-shot evaluation in Sec-426

tion 6.2, where we carefully select demonstration427

“gripper” and “blocks” that are structurally sim-428

ilar but semantically distinct from the test cases429

to prevent data leakage. As shown in Table 2,430

we observe that different models exhibit varying431

degrees of improvement from in-context learning.432

For instance, claude-3.5-sonnect demonstrates433

a substantial enhancement, achieving over a 20%434

increase in the component-wise F1 score. However,435

for gpt-4o-mini, incorporating few-shot exam-436

ples resulted in a decrease in model performance.437

6.3 Fine-tuning438

We leverage the AgentGen (Hu et al., 2024b) frame-439

work to synthesize 601 PDDL domains and their440

corresponding descriptions for fine-tuning LLaMA-441

3.1 (Meta AI) to investigate potential improvements442

in their world modeling capabilities. As shown443

in Table 2, fine-tuning can lead to significant im-444

provements in model performance. For instance,445

the fine-tuned Llama-3.1-70B demonstrated perfor-446

mance comparable to GPT-4o-mini, highlighting447

that supervised fine-tuning is an effective method 448

for bridging the gap between open-source and pro- 449

prietary models. Moreover, larger models tend 450

to benefit more from supervised fine-tuning, with 451

the 70B LLaMA-3.1 showing greater improvement 452

than the 8B model. 453

6.4 Agent Training 454

Many studies have demonstrated that supervised 455

fine-tuning on agent trajectories can enhance a 456

model’s performance on agentic tasks (Hu et al., 457

2024b; Zeng et al., 2023) (i.e., agent training). 458

Some previous works also discussed that a good 459

agent model requires a sufficiently strong internal 460

world representation (LeCun, 2022). Therefore, in 461

this section, we explore whether agent training can 462

improve the model’s world modeling capabilities. 463

More specifically, we trained LLaMA-2-70B model 464

on AgentInstruct (Zeng et al., 2023). As shown in 465

Table 2, the model’s world modeling capabilities 466

are enhanced post-agent training, indicating a pos- 467

itive correlation between performance on agentic 468

tasks and the model’s world modeling abilities. 469

6.5 Inference with Concrete Description 470

As is discussed in Section 2.2, we intentionally 471

make the natural language description of a world 472

model at a high level. We refer to these high-level 473

descriptions as "abstract descriptions," in contrast 474

to more detailed "concrete descriptions" that ex- 475

plicitly specify preconditions and effects. Exam- 476

ples of both description types can be found in the 477

Appendix A.1.2. Using concrete descriptions sim- 478

plifies the task by requiring the model to directly 479

map the provided text to a world specification, by- 480

passing the need to infer symbolic action dynamics. 481

The observed consistent improvement (as shown 482

in Figure 7) supports the claim that the model’s 483

ability to deduce action dynamics from abstract 484

descriptions is still lacking. We also provide more 485

7

Table 2: The experimental results of models under different settings: (1) In-context learning (§6.2); (2) Fine-tuning,
and fine-tuning with LoRA (Hu et al., 2021) (§6.3); (3) Agent training (§6.4).

Model Family EXEC. SIM. F1PRED F1PARAM F1PRECOND F1EFF

EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3

In-Context Learning

CLAUDE-3.5-SONNET 45.5 64.4 73.2 66.8 45.5 62.5 41.5 48.8 37.4 44.0 38.4 45.0
w. 2-SHOT 78.2+32.7 88.1+23.7 83.9+10.7 82.3+15.5 77.0+31.5 86.1+23.6 75.2+33.7 82.1+33.3 65.6+28.2 71.3+27.3 67.2+28.8 73.4+28.4

DEEPSEEK-R1 72.3 89.1 84.3 84.0 71.7 86.7 64.0 76.3 57.6 65.0 58.8 67.3
w. 2-SHOT 69.3-3.0 90.1+1.0 83.8-0.5 83.5-0.5 68.4-3.3 87.7+1.0 64.6+0.6 79.1+2.8 56.0-1.6 66.9+1.9 57.6-1.2 68.9+1.6

GPT-4O-MINI 48.5 72.3 82.6 82.2 48.1 70.1 47.1 67.3 34.9 47.5 38.2 52.7
w. 2-SHOT 40.6-7.9 69.3-3 82.9+0.3 82.4+0.2 40.3-7.8 67.2-2.9 40.1-7 67.0-0.3 31.6-3.3 49.3+1.8 32.5-5.7 54.8+2.1

Fine-tuning (FT)

LLAMA-3.1-8B 0.0 0.0 74.3 74.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w. FT 52.5+52.5 68.3+68.3 80.8+6.5 80.6+5.7 51.4+51.4 65.4+65.4 48.5+48.5 60.6+60.6 31.5+31.5 38.1+38.1 32.4+32.4 40.2+40.2

LLAMA-3.1-70B 0.0 0.0 83.6 79.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w. LORA 48.5+48.5 70.3+70.3 83.8+0.2 82.3+3.1 47.9+47.9 68.5+68.5 48.5+48.5 66.4+66.4 39.9+39.9 52.8+52.8 40.6+40.6 52.1+52.1

Agent Training (AT)

LLAMA-2-70B 0.0 0.0 48.7 48.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w. AT 7.9+7.9 9.9+9.9 65.6+16.9 47.9-0.7 7.3+7.3 8.8+8.8 7.3+7.3 9.1+9.1 6.1+6.1 6.5+6.5 5.7+5.7 6.1+6.1

detailed experimental results in Appendix D.1.486

GPT-4
GPT-3.5

Claude-3.5

LLaMA-2 (7b)

LLaMA-2 (70b)

LLaMA-3.1 (8b)

LLaMA-3.1 (70b)

Deepseek-v3
0

20

40

60

80

Si
m

. (
%

)

90.7 89.0
84.7

48.4
53.5

84.1
89.7 90.1

Figure 7: Comparison of model performance on abstract
versus concrete domain descriptions, showing the base
score for abstract descriptions (blue) and the improve-
ment gained from concrete descriptions (green).

7 Related Work487

Neural world modeling is a long-standing research488

topic with widespread applications across various489

fields, including reinforcement learning (Ha and490

Schmidhuber, 2018b,a), robotics (Wu et al., 2023),491

and autonomous driving (Guan et al., 2024), among492

others. In recent years, LLMs trained on massive493

datasets have demonstrated zero-shot capabilities494

across a variety of tasks, including planning (Zhao495

et al., 2023; Qin et al., 2024; Huang et al., 2022;496

Hu et al., 2024a), robotics (Mu et al., 2024; Chen497

et al., 2024a), analog design (Lai et al., 2024), and498

more. Preliminary studies propose directly using499

LLMs as world models (Hao et al., 2023; Wang500

et al., 2024, 2023b; Li et al., 2022), by taking the501

state and action as input and predicting the next502

state, but the unreliability and limited interpretabil- 503

ity of LLM outputs can lead to accumulating errors. 504

Moreover, some studies have shown that autore- 505

gressive models perform poorly in predicting ac- 506

tion effects (Banerjee et al., 2020; Luo et al., 2023). 507

Tree-planner (Hu et al., 2023) instead proposes to 508

constructing the possible action space using LLMs 509

before executing. Another line of work focuses 510

on leveraging LLMs to construct symbolic world 511

models (Oswald et al., 2024; Silver et al., 2024; 512

Smirnov et al., 2024; Zhu et al., 2024; Wang et al., 513

2023a; Wong et al., 2023; Vafa et al., 2024). For 514

example, Guan et al. (2023) uses LLMs to generate 515

a PDDL domain model and relies on human feed- 516

back to correct errors. AgentGen (Hu et al., 2024b) 517

synthesizes diverse PDDL domains, aiming to cre- 518

ate high-quality planning data. Xie et al. (2024) 519

propose to finetune LLMs for predicting precon- 520

dition and effect of actions. Despite the growing 521

interest in this research direction, there is currently 522

a lack of a comprehensive benchmark in this area. 523

8 Conclusion 524

We present TEXT2WORLD, a novel benchmark 525

consisting of hundreds of domains designed to 526

evaluate the world modeling capabilities of large 527

language models (LLMs). Developed through a 528

meticulous and thorough process, TEXT2WORLD 529

provides a robust foundation for analysis. Addition- 530

ally, we conducted an extensive evaluation involv- 531

ing 16 different LLMs from 9 model families based 532

on TEXT2WORLD. We hope that TEXT2WORLD 533

will inspire future research in leveraging LLMs as 534

world models. 535

8

9 Ethical Considerations536

Data Access. We collected the TEXT2WORLD537

data from open-source repositories and ensured538

that these repositories are available for academic539

research in accordance with our commitment to540

ethical data use.541

Participant Recruitment. We recruited graduate542

students as annotators and required all participants543

to achieve an IELTS score of 6 or above. To miti-544

gate potential biases stemming from participants’545

geographical backgrounds, we minimized national546

differences in the dataset by focusing on human547

commonsense. All annotators provided informed548

consent and were compensated above the local min-549

imum wage—$10 per hour for standard annotators550

and $20 per hour for senior annotators.551

Potential Risk. After careful examination, we con-552

firmed that our dataset does not contain any per-553

sonal data (e.g., names, contacting information),554

and our data collection procedures adhere to ethi-555

cal guidelines.556

10 Limitation557

Due to the limited number of available domains558

online, we did not construct a large-scale training559

set. Future work should focus on expanding the560

dataset by incorporating additional data sources,561

such as synthesized data (Hu et al., 2024b), to cover562

a broader range of domains. Furthermore, although563

we conducted regular inspections to minimize the564

introduction of subjectivity into the dataset, the565

unavoidable influence of human subjectivity during566

manual annotation may introduce potential biases.567

9

References568

Anthropic. Introducing claude 3.5 sonnet.569

Pratyay Banerjee, Chitta Baral, Man Luo, Arindam Mi-570
tra, Kuntal Pal, Tran C Son, and Neeraj Varshney.571
2020. Can transformers reason about effects of ac-572
tions? arXiv preprint arXiv:2012.09938.573

Nicholas Carlini, Florian Tramer, Eric Wallace,574
Matthew Jagielski, Ariel Herbert-Voss, Katherine575
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar576
Erlingsson, et al. 2021. Extracting training data from577
large language models. In 30th USENIX Security578
Symposium (USENIX Security 21), pages 2633–2650.579

Junting Chen, Checheng Yu, Xunzhe Zhou, Tianqi580
Xu, Yao Mu, Mengkang Hu, Wenqi Shao,581
Yikai Wang, Guohao Li, and Lin Shao. 2024a.582
EMOS: Embodiment-aware heterogeneous Multi-583
robot Operating System with llm agents. Preprint,584
arXiv:2410.22662.585

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng,586
Jiaqi Wang, Mengkang Hu, Zhi Chen, Wanxiang587
Che, and Ting Liu. 2025. Ecm: A unified elec-588
tronic circuit model for explaining the emergence589
of in-context learning and chain-of-thought in large590
language model. arXiv preprint arXiv:2502.03325.591

Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao592
Xu, and Wanxiang Che. 2024b. M3CoT: A novel593
benchmark for multi-domain multi-step multi-modal594
chain-of-thought. In Proceedings of the 62nd Annual595
Meeting of the Association for Computational Lin-596
guistics (Volume 1: Long Papers), pages 8199–8221,597
Bangkok, Thailand. Association for Computational598
Linguistics.599

Kenneth James Williams Craik. 1967. The nature of600
explanation, volume 445. CUP Archive.601

Nicola Dainese, Matteo Merler, Minttu Alakuijala, and602
Pekka Marttinen. 2024. Generating code world mod-603
els with large language models guided by monte carlo604
tree search. arXiv preprint arXiv:2405.15383.605

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,606
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,607
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,608
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong609
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,610
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,611
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,612
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,613
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,614
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,615
Han Bao, Hanwei Xu, Haocheng Wang, Honghui616
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,617
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang618
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.619
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai620
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai621
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong622
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan623
Zhang, Minghua Zhang, Minghui Tang, Meng Li,624

Miaojun Wang, Mingming Li, Ning Tian, Panpan 625
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, 626
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, 627
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, 628
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, 629
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng 630
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing 631
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, 632
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, 633
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao 634
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan 635
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin 636
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, 637
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, 638
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi- 639
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, 640
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang 641
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng 642
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, 643
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, 644
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, 645
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu- 646
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, 647
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, 648
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, 649
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, 650
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean 651
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, 652
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi- 653
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, 654
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu 655
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen- 656
tivizing reasoning capability in llms via reinforce- 657
ment learning. Preprint, arXiv:2501.12948. 658

Ellen R Girden. 1992. ANOVA: Repeated measures. 84. 659
Sage. 660

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, 661
and Subbarao Kambhampati. 2023. Leveraging pre- 662
trained large language models to construct and utilize 663
world models for model-based task planning. Ad- 664
vances in Neural Information Processing Systems, 665
36:79081–79094. 666

Yanchen Guan, Haicheng Liao, Zhenning Li, Jia 667
Hu, Runze Yuan, Yunjian Li, Guohui Zhang, and 668
Chengzhong Xu. 2024. World models for au- 669
tonomous driving: An initial survey. IEEE Trans- 670
actions on Intelligent Vehicles. 671

David Ha and Jürgen Schmidhuber. 2018a. Recurrent 672
world models facilitate policy evolution. Advances 673
in neural information processing systems, 31. 674

David Ha and Jürgen Schmidhuber. 2018b. World mod- 675
els. arXiv preprint arXiv:1803.10122. 676

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, 677
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023. 678
Reasoning with language model is planning with 679
world model. arXiv preprint arXiv:2305.14992. 680

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 681
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 682

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2410.22662
https://arxiv.org/abs/2410.22662
https://arxiv.org/abs/2410.22662
https://doi.org/10.18653/v1/2024.acl-long.446
https://doi.org/10.18653/v1/2024.acl-long.446
https://doi.org/10.18653/v1/2024.acl-long.446
https://doi.org/10.18653/v1/2024.acl-long.446
https://doi.org/10.18653/v1/2024.acl-long.446
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

and Weizhu Chen. 2021. Lora: Low-rank adap-683
tation of large language models. arXiv preprint684
arXiv:2106.09685.685

Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu,686
Wenqi Shao, and Ping Luo. 2024a. Hiagent: Hier-687
archical working memory management for solving688
long-horizon agent tasks with large language model.689
arXiv preprint arXiv:2408.09559.690

Mengkang Hu, Yao Mu, Xinmiao Yu, Mingyu Ding,691
Shiguang Wu, Wenqi Shao, Qiguang Chen, Bin692
Wang, Yu Qiao, and Ping Luo. 2023. Tree-planner:693
Efficient close-loop task planning with large language694
models. arXiv preprint arXiv:2310.08582.695

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jian-696
guang Lou, Qingwei Lin, Ping Luo, Saravan Rajmo-697
han, and Dongmei Zhang. 2024b. Agentgen: Enhanc-698
ing planning abilities for large language model based699
agent via environment and task generation. arXiv700
preprint arXiv:2408.00764.701

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and702
Igor Mordatch. 2022. Language models as zero-shot703
planners: Extracting actionable knowledge for em-704
bodied agents. In International conference on ma-705
chine learning, pages 9118–9147. PMLR.706

Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Pod-707
dar, Mengkang Hu, David Z Pan, and Ping Luo. 2024.708
Analogcoder: Analog circuit design via training-free709
code generation. arXiv preprint arXiv:2405.14918.710

J. Richard Landis and Gary G. Koch. 1977. The mea-711
surement of observer agreement for categorical data.712
Biometrics, 33(1):159–174.713

Yann LeCun. 2022. A path towards autonomous ma-714
chine intelligence version 0.9. 2, 2022-06-27. Open715
Review, 62(1):1–62.716

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda717
Viégas, Hanspeter Pfister, and Martin Wattenberg.718
2022. Emergent world representations: Exploring a719
sequence model trained on a synthetic task. arXiv720
preprint arXiv:2210.13382.721

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,722
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi723
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.724
Deepseek-v3 technical report. arXiv preprint725
arXiv:2412.19437.726

Man Luo, Shrinidhi Kumbhar, Mihir Parmar, Neeraj727
Varshney, Pratyay Banerjee, Somak Aditya, Chitta728
Baral, et al. 2023. Towards logiglue: A brief sur-729
vey and a benchmark for analyzing logical reason-730
ing capabilities of language models. arXiv preprint731
arXiv:2310.00836.732

Meta AI. Introducing llama 3.1: Our most capable733
models to date.734

Meta AI. 2024. Introducing meta Llama 3: The most735
capable openly available LLM to date. Accessed:736
2024-04-18.737

Yao Mu, Junting Chen, Qinglong Zhang, Shoufa Chen, 738
Qiaojun Yu, Chongjian Ge, Runjian Chen, Zhix- 739
uan Liang, Mengkang Hu, Chaofan Tao, et al. 740
2024. Robocodex: Multimodal code generation 741
for robotic behavior synthesis. arXiv preprint 742
arXiv:2402.16117. 743

OpenAI. 2022. Openai: Introducing chatgpt. 744

OpenAI. 2023. Gpt-4 technical report. Preprint, 745
arXiv:2303.08774. 746

OpenAI. 2024. Learning to reason with llms. 747

OpenAI. 2025. Openai o3-mini. 748

James Oswald, Kavitha Srinivas, Harsha Kokel, Junkyu 749
Lee, Michael Katz, and Shirin Sohrabi. 2024. Large 750
language models as planning domain generators. In 751
Proceedings of the International Conference on Au- 752
tomated Planning and Scheduling, volume 34, pages 753
423–431. 754

Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu, 755
Yongheng Zhang, Yinghui Li, Min Li, Wanxiang Che, 756
and Philip S Yu. 2024. Large language models meet 757
nlp: A survey. arXiv preprint arXiv:2405.12819. 758

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 759
Dario Amodei, Ilya Sutskever, et al. 2019. Language 760
models are unsupervised multitask learners. OpenAI 761
blog, 1(8):9. 762

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 763
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 764
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 765
Code llama: Open foundation models for code. arXiv 766
preprint arXiv:2308.12950. 767

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B 768
Tenenbaum, Leslie Kaelbling, and Michael Katz. 769
2024. Generalized planning in pddl domains with 770
pretrained large language models. In Proceedings 771
of the AAAI Conference on Artificial Intelligence, 772
volume 38, pages 20256–20264. 773

Pavel Smirnov, Frank Joublin, Antonello Ceravola, and 774
Michael Gienger. 2024. Generating consistent pddl 775
domains with large language models. arXiv preprint 776
arXiv:2404.07751. 777

Hao Tang, Darren Key, and Kevin Ellis. 2024. World- 778
coder, a model-based llm agent: Building world mod- 779
els by writing code and interacting with the environ- 780
ment. arXiv preprint arXiv:2402.12275. 781

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 782
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 783
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 784
Bhosale, et al. 2023. Llama 2: Open founda- 785
tion and fine-tuned chat models. arXiv preprint 786
arXiv:2307.09288. 787

Keyon Vafa, Justin Y Chen, Jon Kleinberg, Sendhil 788
Mullainathan, and Ashesh Rambachan. 2024. Evalu- 789
ating the world model implicit in a generative model. 790
arXiv preprint arXiv:2406.03689. 791

11

http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/openai-o3-mini/

Ruoyao Wang, Graham Todd, Ziang Xiao, Xingdi Yuan,792
Marc-Alexandre Côté, Peter Clark, and Peter Jansen.793
2024. Can language models serve as text-based794
world simulators? arXiv preprint arXiv:2406.06485.795

Ruoyao Wang, Graham Todd, Eric Yuan, Ziang Xiao,796
Marc-Alexandre Côté, and Peter Jansen. 2023a.797
Bytesized32: A corpus and challenge task for gen-798
erating task-specific world models expressed as text799
games. arXiv preprint arXiv:2305.14879.800

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai,801
Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P802
Xing, and Zhiting Hu. 2023b. Promptagent:803
Strategic planning with language models enables804
expert-level prompt optimization. arXiv preprint805
arXiv:2310.16427.806

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten807
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,808
et al. 2022. Chain-of-thought prompting elicits rea-809
soning in large language models. Advances in Neural810
Information Processing Systems, 35:24824–24837.811

Lionel Wong, Gabriel Grand, Alexander K Lew, Noah D812
Goodman, Vikash K Mansinghka, Jacob Andreas,813
and Joshua B Tenenbaum. 2023. From word mod-814
els to world models: Translating from natural lan-815
guage to the probabilistic language of thought. arXiv816
preprint arXiv:2306.12672.817

Philipp Wu, Alejandro Escontrela, Danijar Hafner,818
Pieter Abbeel, and Ken Goldberg. 2023. Day-819
dreamer: World models for physical robot learning.820
In Conference on robot learning, pages 2226–2240.821
PMLR.822

Kaige Xie, Ian Yang, John Gunerli, and Mark Riedl.823
2024. Making large language models into world mod-824
els with precondition and effect knowledge. arXiv825
preprint arXiv:2409.12278.826

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao827
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:828
Enabling generalized agent abilities for llms. arXiv829
preprint arXiv:2310.12823.830

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,831
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen832
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A833
survey of large language models. arXiv preprint834
arXiv:2303.18223.835

Wang Zhu, Ishika Singh, Robin Jia, and Jesse Thoma-836
son. 2024. Language models can infer action seman-837
tics for classical planners from environment feedback.838
arXiv preprint arXiv:2406.02791.839

12

A Benchmark Construction 840

A.1 Example 841

A.1.1 Domain Example 842

(define (domain grid) 843
(: requirements :strips) 844
(: predicates (conn ?x ?y) (key-shape ?k ?s) (lock-shape ?x ?s) 845

(at ?r ?x) (at-robot ?x) (place ?p) (key ?k) (shape ?s) 846
(locked ?x) (holding ?k) (open ?x) (arm-empty)) 847

848
(: action unlock 849

:parameters (? curpos ?lockpos ?key ?shape) 850
:precondition (and (place ?curpos) (place ?lockpos) (key ?key) 851

(shape ?shape) (conn ?curpos ?lockpos) 852
(key-shape ?key ?shape) (lock-shape ?lockpos ?shape) 853
(at-robot ?curpos) (locked ?lockpos) (holding ?key)) 854

:effect (and (open ?lockpos) (not (locked ?lockpos)))) 855
856

(: action move 857
:parameters (? curpos ?nextpos) 858
:precondition (and (place ?curpos) (place ?nextpos) (at-robot ?curpos) 859

(conn ?curpos ?nextpos) (open ?nextpos)) 860
:effect (and (at-robot ?nextpos) (not (at-robot ?curpos)))) 861

862
(: action pickup 863

:parameters (? curpos ?key) 864
:precondition (and (place ?curpos) (key ?key) (at-robot ?curpos) 865

(at ?key ?curpos) (arm-empty)) 866
:effect (and (holding ?key) (not (at ?key ?curpos)) (not (arm-empty)))) 867

868
(: action pickup-and-loose 869

:parameters (? curpos ?newkey ?oldkey) 870
:precondition (and (place ?curpos) (key ?newkey) (key ?oldkey) 871

(at-robot ?curpos) (holding ?oldkey) 872
(at ?newkey ?curpos)) 873

:effect (and (holding ?newkey) (at ?oldkey ?curpos) 874
(not (holding ?oldkey)) (not (at ?newkey ?curpos)))) 875

876
(: action putdown 877

:parameters (? curpos ?key) 878
:precondition (and (place ?curpos) (key ?key) (at-robot ?curpos) 879

(holding ?key)) 880
:effect (and (arm-empty) (at ?key ?curpos) (not (holding ?key)))) 881

) 882

Listing 1: Grid PDDL

A.1.2 Abstract Description 883

General. This domain models a robot navigating a grid environment with the objective of unlocking 884

doors and moving through the grid. The robot can carry keys that match the shape of locks to unlock 885

doors. The environment includes places, keys with specific shapes, and doors (locks) with corresponding 886

shapes that need to be unlocked. 887

Predicates. The following predicates are used in the domain: 888

• (conn ?x ?y): Indicates a connection between two places ?x and ?y, allowing movement between 889

them. 890

• (key-shape ?k ?s): Indicates that key ?k has shape ?s. 891

• (lock-shape ?x ?s): Indicates that lock (or door) at place ?x has shape ?s. 892

• (at ?r ?x): Indicates that key ?r is at place ?x. 893

• (at-robot ?x): Indicates that the robot is at place ?x. 894

13

• (place ?p): Indicates that ?p is a place in the grid.895

• (key ?k): Indicates that ?k is a key.896

• (shape ?s): Indicates that ?s is a shape.897

• (locked ?x): Indicates that the place ?x is locked.898

• (holding ?k): Indicates that the robot is holding key ?k.899

• (open ?x): Indicates that the place ?x is open.900

• (arm-empty): Indicates that the robot’s arm is empty.901

Actions. The following actions are available in the domain:902

• unlock <?curpos> <?lockpos> <?key> <?shape>: Allows the robot to unlock a door at place903

<?lockpos> using a key of a specific shape.904

• move <?curpos> <?nextpos>: Allows the robot to move from place <?curpos> to place905

<?nextpos>.906

• pickup <?curpos> <?key>: Allows the robot to pick up a key at its current location.907

• pickup-and-loose <?curpos> <?newkey> <?oldkey>: Allows the robot to pick up a new key908

while dropping the one it was holding.909

• putdown <?curpos> <?key>: Allows the robot to put down a key it is holding.910

A.1.3 Concrete Description911

General. This domain models a robot navigating a grid environment with the objective of unlocking912

doors and moving through the grid. The robot can carry keys that match the shape of locks to unlock913

doors. The environment includes places, keys with specific shapes, and doors (locks) with corresponding914

shapes that need to be unlocked.915

Predicates. The following predicates are used in the domain:916

• (conn ?x ?y): Indicates a connection between two places ?x and ?y, allowing movement between917

them.918

• (key-shape ?k ?s): Indicates that key ?k has shape ?s.919

• (lock-shape ?x ?s): Indicates that lock (or door) at place ?x has shape ?s.920

• (at ?r ?x): Indicates that key ?r is at place ?x.921

• (at-robot ?x): Indicates that the robot is at place ?x.922

• (place ?p): Indicates that ?p is a place in the grid.923

• (key ?k): Indicates that ?k is a key.924

• (shape ?s): Indicates that ?s is a shape.925

• (locked ?x): Indicates that the place ?x is locked.926

• (holding ?k): Indicates that the robot is holding key ?k.927

• (open ?x): Indicates that the place ?x is open.928

• (arm-empty): Indicates that the robot’s arm is empty.929

14

Actions. The following actions are available in the domain: 930

• unlock <?curpos> <?lockpos> <?key> <?shape>: Allows the robot to unlock a door at place 931

<?lockpos> using a key of a specific shape if the robot is at place <?curpos>, the key matches the 932

lock’s shape, the robot is holding the key, there is a connection between <?curpos> and <?lockpos>, 933

and the destination is locked. After the action, the lock is no longer locked. 934

• move <?curpos> <?nextpos>: Allows the robot to move from place <?curpos> to place 935

<?nextpos> if there is a connection between them and the destination is open. After the move, the 936

robot is no longer at the original place. 937

• pickup <?curpos> <?key>: Allows the robot to pick up a key at its current location if the robot’s 938

arm is empty and it is at the same place as the new key. After the action, the robot is holding the key, 939

and the key is no longer at that location. 940

• pickup-and-loose <?curpos> <?newkey> <?oldkey>: Allows the robot to pick up a new key 941

while dropping the one it was holding if it is at the same place as the new key. After the action, the 942

robot is holding the new key, and the old key is at the robot’s current location. 943

• putdown <?curpos> <?key>: Allows the robot to put down a key it is holding if it is at a specific 944

place. After the action, the robot’s arm is empty, and the key is at that location. 945

A.2 Preliminary Experiment 946

The experimental results show that LLM’s effectiveness in detecting PDDL semantic errors is limited, 947

with an accuracy of 55.0%, a precision of 56.2%, a recall rate of 45.0%, an F1 score of 50.0%, and a ROC 948

AUC of 55.0. ROC AUC indicates that the model is close to random performance, making it difficult to 949

reliably distinguish between correct and incorrect PDDL domains. Below is the prompt used for LLMs to 950

detect semantic errors in generated PDDL domains: 951

952

You are an expert in automated planning systems and PDDL semantics. Your task is to 953
evaluate whether the LLM are physically accurate models of the world or whether 954
they don 't make sense by detecting semantic errors in generated PDDL domain. 955

You need carefully analyze the following PDDL domain by comparing it to the pddl 956
domain description , evaluate whether the generated pddl domain contains SEMANTIC 957
ERRORS in these key aspects: 958

1. Predicates consistency. 959
2. Action parameters validity. 960
3. Action preconditions completeness. 961
4. Action effects logical consistency. 962
5. Consistency with the description. 963

964
An example of semantic error would be: 965
1. Missing precondition constraints (e.g. executing "unlock -door" without holding a 966

key). 967
2. Contradictory effects (e.g. both adding and deleting the same predicate). 968
3. Incorrect predicate arguments (e.g. reversed parameter order). 969

970
Output Format: 971
{ 972
"evaluation ": "yes/no", 973
"error_type ": "[MissingPrecond|IncorrectEffect|MissingPredicate |...]" , 974
"confidence ": "high/medium/low", 975
"evidence ": "<specific code segment >", 976
"justification ": "<short justification >" 977
} 978

979
PDDL Description: 980
{PDDL_DESCRIPTION} 981

982
Generated PDDL: 983
{PDDL_DOMAIN} 984

15

A.3 More Details on Data Analysis985

Figure 8 shows the co-occurrence of PDDL requirements across domains, highlighting that :typing and986

:strips are the most prevalent features.987

:st
rip

s

:ty
pin

g

:ne
ga

tiv
e-p

re
co

nd
iti

on
s

:di
sju

nc
tiv

e-p
re

co
nd

iti
on

s

:eq
ua

lit
y

:co
nd

iti
on

al-
eff

ec
ts

:ac
tio

n-
co

sts :ad
l

:strips

:typing

:negative-preconditions

:disjunctive-preconditions

:equality

:conditional-effects

:action-costs

:adl

50.0 29.0 9.0 2.0 6.0 4.0 3.0 5.0

29.0 63.0 12.0 2.0 9.0 9.0 14.0 12.0

9.0 12.0 16.0 3.0 7.0 4.0 3.0 1.0

2.0 2.0 3.0 3.0 1.0 0.0 0.0 0.0

6.0 9.0 7.0 1.0 14.0 3.0 2.0 1.0

4.0 9.0 4.0 0.0 3.0 9.0 4.0 2.0

3.0 14.0 3.0 0.0 2.0 4.0 14.0 3.0

5.0 12.0 1.0 0.0 1.0 2.0 3.0 19.0

0

10

20

30

40

50

60

Figure 8: The co-occurrence matrix of requirements of TEXT2WORLD.

B More Details on Experiments988

B.1 Evaluation Metrics989

Levenshtein Ratio. The Levenshtein Ratio is a value between 0 and 1 that quantifies the similarity990

between two strings, such as a predicted PDDL domain and a golden PDDL domain. It is derived from the991

Levenshtein distance, which calculates the minimum number of character-level operations—insertions,992

deletions, or substitutions—needed to convert one string into the other. The ratio is then computed by993

dividing the Levenshtein distance by the length of the longer string, providing a measure of how closely994

the two strings match, where a value closer to 1 indicates high similarity and a value closer to 0 indicates995

significant differences.996

Component-wise F1 Scores. The F1 score is mainly used to measure the similarity between the predicted997

PDDL domain and the golden PDDL domain, specifically including predicate F1 and action F1. The998

range of this score is from 0 to 1, which is the harmonic mean of precision and recall.999

B.2 Prompt Examples1000

B.2.1 Error Correction1001

16

I would like you to serve as an expert in PDDL , assisting me in correcting erroneous 1002
PDDL code. I will provide you with the incorrect PDDL along with the error 1003

messages returned by the system. You should output your thought process firstly. 1004
You MUST enclose the COMPLETE corrected PDDL within ```pddl ```. 1005

Here are some hints to help you debug the pddl domain file: 1006
1. You should start by checking if all the essential domain constructs or domain 1007

definition constructs are present. Commonly included domains comprise: 1008
a. :domain declaration to name the domain. 1009
b. :requirements to specify the PDDL features used in the domain. 1010
c. :types to define any object types for categorizing entities in the planning 1011

problem. 1012
d. :constants (if necessary) to declare any objects that remain static 1013

throughout the planning problems. 1014
e. :predicates to define the properties and relations between objects that can 1015

change over time. 1016
f. :functions (if necessary) to define numeric functions for more complex 1017

domains. 1018
g. :action definitions for each action that agents can perform , including 1019

parameters , preconditions , and effects. 1020
2. You need to check the number of parameters of each actions. 1021
3. Having :typing in the domain indicates that it uses a hierarchy to organize 1022

objects. Therefore , it's crucial to clearly list all object types related to the 1023
planning task in a :types section. 1024

4. '-' should not appear in :types. 1025
1026
1027
1028

Round 0 1029
Incorrect PDDL: 1030
(: action clean -up 1031

:parameters (?robot - robot ?robotTile - tile ?tileToBeCleaned - tile) 1032
:precondition (and 1033

(robot -at ?robot ?robotTile) 1034
(up ?tileToBeCleaned ?robotTile) 1035
(clear ?tileToBeCleaned) 1036
(not (cleaned ?tileToBeCleaned)) 1037

) 1038
:effect (and 1039

(cleaned ?tileToBeCleaned) 1040
) 1041

) 1042
1043

(: action clean -down 1044
:parameters (?robot - robot ?robotTile - tile ?tileToBeCleaned - tile) 1045
:precondition (and 1046

(robot -at ?robot ?robotTile) 1047
(down ?tileToBeCleaned ?robotTile) 1048
(clear ?tileToBeCleaned) 1049
(not (cleaned ?tileToBeCleaned)) 1050

) 1051
:effect (and 1052

(cleaned ?tileToBeCleaned) 1053
) 1054

) 1055
1056

(: action up 1057
:parameters (?robot - robot ?robotTile - tile ?moveToNextTile - tile) 1058
:precondition (and 1059

(robot -at ?robot ?robotTile) 1060
(up ?moveToNextTile ?robotTile) 1061
(clear ?moveToNextTile) 1062

) 1063
:effect (and 1064

(not (robot -at ?robot ?robotTile)) 1065
(robot -at ?robot ?moveToNextTile) 1066

) 1067
) 1068

1069
(: action down 1070

:parameters (?robot - robot ?robotTile - tile ?moveToNextTile - tile) 1071

17

:precondition (and1072
(robot -at ?robot ?robotTile)1073
(down ?moveToNextTile ?robotTile)1074
(clear ?moveToNextTile)1075

)1076
:effect (and1077

(not (robot -at ?robot ?robotTile))1078
(robot -at ?robot ?moveToNextTile)1079

)1080
)1081

1082
(: action right1083

:parameters (?robot - robot ?robotTile - tile ?moveToNextTile - tile)1084
:precondition (and1085

(robot -at ?robot ?robotTile)1086
(right ?moveToNextTile ?robotTile)1087
(clear ?moveToNextTile)1088

)1089
:effect (and1090

(not (robot -at ?robot ?robotTile))1091
(robot -at ?robot ?moveToNextTile)1092

)1093
)1094

1095
(: action left1096

:parameters (?robot - robot ?robotTile - tile ?moveToNextTile - tile)1097
:precondition (and1098

(robot -at ?robot ?robotTile)1099
(left ?moveToNextTile ?robotTile)1100
(clear ?moveToNextTile)1101

)1102
:effect (and1103

(not (robot -at ?robot ?robotTile))1104
(robot -at ?robot ?moveToNextTile)1105

)1106
)1107
Error Information:1108
ParsingError: line 1:1 mismatched input ':action ' expecting 'define '1109
Corrected PDDL:1110

B.2.2 Zero-Shot Prompt1111

You are tasked with converting a given Planning Domain Definition Language (PDDL)1112
domain description into its corresponding formal PDDL domain. The description1113
will outline the essential components of the domains.1114

Your output should be a well -structured PDDL domain that accurately represents the1115
given description , adhering to the syntax and semantics of PDDL.1116

Your output pddl domain must be enclosed in ```pddl ```.1117
1118

You need to generate the corresponding domain pddl for the following description.1119
1120

PDDL Domain Description:1121
General1122
This domain is designed for a robot tasked with cleaning floor tiles. The robot can1123

move in four directions (up, down , right , left) relative to its current position1124
on a grid of tiles. The goal is to clean all the specified tiles by moving to1125

them and performing a cleaning action.1126
1127

Types1128
- **robot **: Represents the robot that performs the cleaning.1129
- **tile **: Represents the individual tiles on the floor that may need to be cleaned1130

.1131
1132

Predicates1133
- **(robot -at ?robot - robot ?robotTile - tile)**: Indicates that the robot is1134

currently at a specific tile.1135
- **(up ?tileAbove - tile ?tileBelow - tile)**: Indicates that one tile is directly1136

above another.1137
- **(down ?tileBelow - tile ?tileAbove - tile)**: Indicates that one tile is1138

directly below another.1139

18

- **(right ?tileOnRight - tile ?tileOnLeft - tile)**: Indicates that one tile is 1140
directly to the right of another. 1141

- **(left ?tileOnLeft - tile ?tileOnRight - tile)**: Indicates that one tile is 1142
directly to the left of another. 1143

- **(clear ?clearedTile - tile)**: Indicates that a tile is clear and robot can move 1144
there. 1145

- **(cleaned ?cleanedTile - tile)**: Indicates that a tile has been cleaned. 1146
1147

Actions 1148
- **clean -up <?robot > <?robotTile > <?tileToBeCleaned >**: Allows the robot (?robot) 1149

to clean a tile (? tileToBeCleaned) that is directly above its current position 1150
(? robotTile). 1151

1152
- **clean -down <?robot > <?robotTile > <?tileToBeCleaned >**: Allows the robot (?robot) 1153

to clean a tile (? tileToBeCleaned) that is directly below its current position 1154
(? robotTile). 1155

1156
- **up <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (?robot) to a tile 1157

(? moveToNextTile) directly above its current position (? robotTile). 1158
1159

- **down <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (?robot) to a 1160
tile (? moveToNextTile) directly below its current position (? robotTile). 1161

1162
- **right <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (?robot) to a 1163

tile (? moveToNextTile) directly to the right of its current position (? robotTile 1164
). 1165

1166
- **left <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (?robot) to a 1167

tile (? moveToNextTile) directly to the left of its current position (? robotTile) 1168
. 1169

PDDL Domain: 1170
Let 's think step by step. 1171

B.2.3 Few-Shot Prompt 1172

You are tasked with converting a given Planning Domain Definition Language (PDDL) 1173
domain description into its corresponding formal PDDL domain. The description 1174
will outline the essential components of the domains. Your output should be a 1175
well -structured PDDL domain that accurately represents the given description , 1176
adhering to the syntax and semantics of PDDL. 1177

Your output must strictly adhere to the format exemplified below. 1178
Here are some examples: 1179

1180
Example 0: 1181
PDDL Domain Description 1182
General 1183
You are a robot equipped with a gripper mechanism , designed to move and manipulate 1184

balls between different rooms. The domain focuses on the robot 's ability to 1185
navigate rooms , pick up balls , and drop them in designated locations. 1186

Types 1187
- **room **: Represents the different rooms within the environment. 1188
- **ball **: Represents the objects that the robot can pick up and move. 1189
- ** gripper **: Represents the robot 's mechanism for holding balls. 1190
Predicates 1191
- **(at-robby ?r - room)**: Indicates that Robby , the robot , is currently in room ?r 1192

. 1193
- **(at ?b - ball ?r - room)**: Indicates that ball ?b is located in room ?r. 1194
- **(free ?g - gripper)**: Indicates that the gripper ?g is not currently holding 1195

any ball. 1196
- **(carry ?o - ball ?g - gripper)**: Indicates that the gripper ?g is carrying ball 1197

?o. 1198
Actions 1199
- **move <?from > <?to >**: Allows Robby to move from one room to another. 1200
- **pick <?obj > <?room > <?gripper >**: Enables Robby to pick up a ball in a room 1201

using its gripper. 1202
- **drop <?obj > <?room > <?gripper >**: Allows Robby to drop a ball it is carrying 1203

into a room. 1204
1205

PDDL Domain 1206
```pddl 1207

19



(define (domain gripper -strips)1208
(:types1209

room - object1210
ball - object1211
gripper - object1212
)1213

(: predicates1214
(at-robby ?r - room)1215
(at ?b - ball ?r - room)1216
(free ?g - gripper)1217
(carry ?o - ball ?g - gripper))1218

(: action move1219
:parameters (?from - room ?to - room)1220
:precondition (and (at-robby ?from))1221
:effect (and (at-robby ?to)1222

(not (at-robby ?from))))1223
(: action pick1224

:parameters (?obj - ball ?room - room ?gripper - gripper)1225
:precondition (and1226

(at ?obj ?room) (at-robby ?room) (free ?gripper))1227
:effect (and (carry ?obj ?gripper)1228

(not (at ?obj ?room))1229
(not (free ?gripper))))1230

(: action drop1231
:parameters (?obj - ball ?room - room ?gripper - gripper)1232
:precondition (and1233

(carry ?obj ?gripper) (at-robby ?room))1234
:effect (and (at ?obj ?room)1235

(free ?gripper)1236
(not (carry ?obj ?gripper)))))1237

```1238
1239
1240

Example 1:1241
PDDL Domain Description1242
General1243
This domain represents a simplified version of the classic "blocks world" problem ,1244

where a robot arm can stack and unstack blocks. The domain includes actions for1245
picking up blocks from the table , putting down blocks onto the table , stacking1246
blocks on top of each other , and unstacking them. The goal is to manipulate the1247
blocks to achieve a specified configuration.1248

Predicates1249
(clear ?x): Indicates that there is no block on top of block ?x, making it1250

accessible for stacking or picking up.1251
(on-table ?x): Indicates that block ?x is directly on the table.1252
(arm -empty): Indicates that the robot 's arm is not holding any block.1253
(holding ?x): Indicates that the robot 's arm is currently holding block ?x.1254
(on ?x ?y): Indicates that block ?x is directly on top of block ?y.1255
Actions1256
- ** pickup <?ob >**: Picks up an object (?ob) from the table.1257
- ** putdown <?ob >**: Puts down an object (?ob) onto the table.1258
- **stack <?ob> <?underob >**: Stacks an object (?ob) on top of another object (?1259

underob), making the robot arm empty.1260
- ** unstack <?ob> <?underob >**: Unstacks an object (?ob) from another object (?1261

underob), making the robot arm no longer empty.1262
1263

PDDL Domain:1264
```pddl1265
(define (domain blocksworld)1266

(: requirements :strips)1267
(: predicates (clear ?x)1268

(on-table ?x)1269
(arm -empty)1270
(holding ?x)1271
(on ?x ?y))1272

1273
(: action pickup1274

:parameters (?ob)1275
:precondition (and (clear ?ob) (on-table ?ob) (arm -empty))1276
:effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob))1277

20



(not (arm -empty)))) 1278
1279

(: action putdown 1280
:parameters (?ob) 1281
:precondition (holding ?ob) 1282
:effect (and (clear ?ob) (arm -empty) (on-table ?ob) 1283

(not (holding ?ob)))) 1284
1285

(: action stack 1286
:parameters (?ob ?underob) 1287
:precondition (and (clear ?underob) (holding ?ob)) 1288
:effect (and (arm -empty) (clear ?ob) (on ?ob ?underob) 1289

(not (clear ?underob)) (not (holding ?ob)))) 1290
1291

(: action unstack 1292
:parameters (?ob ?underob) 1293
:precondition (and (on ?ob ?underob) (clear ?ob) (arm -empty)) 1294
:effect (and (holding ?ob) (clear ?underob) 1295

(not (on ?ob ?underob)) (not (clear ?ob)) (not (arm -empty))))) 1296
``` 1297

1298
You need to generate the corresponding domain pddl for the following description. 1299

1300
PDDL Domain Description 1301
General 1302
This domain is designed for a robot tasked with cleaning floor tiles. The robot can 1303

move in four directions (up, down , right , left) relative to its current position 1304
on a grid of tiles. The goal is to clean all the specified tiles by moving to 1305

them and performing a cleaning action. 1306
1307

Types 1308
- **robot **: Represents the robot that performs the cleaning. 1309
- **tile **: Represents the individual tiles on the floor that may need to be cleaned 1310

. 1311
1312

Predicates 1313
- **(robot -at ?robot - robot ?robotTile - tile)**: Indicates that the robot is 1314

currently at a specific tile. 1315
- **(up ?tileAbove - tile ?tileBelow - tile)**: Indicates that one tile is directly 1316

above another. 1317
- **(down ?tileBelow - tile ?tileAbove - tile)**: Indicates that one tile is 1318

directly below another. 1319
- **(right ?tileOnRight - tile ?tileOnLeft - tile)**: Indicates that one tile is 1320

directly to the right of another. 1321
- **(left ?tileOnLeft - tile ?tileOnRight - tile)**: Indicates that one tile is 1322

directly to the left of another. 1323
- **(clear ?clearedTile - tile)**: Indicates that a tile is clear and robot can move 1324

there. 1325
- **(cleaned ?cleanedTile - tile)**: Indicates that a tile has been cleaned. 1326

1327
Actions 1328
- **clean -up <?robot > <?robotTile > <?tileToBeCleaned >**: Allows the robot (?robot) 1329

to clean a tile (? tileToBeCleaned) that is directly above its current position 1330
(? robotTile). 1331

1332
- **clean -down <?robot > <?robotTile > <?tileToBeCleaned >**: Allows the robot (?robot) 1333

to clean a tile (? tileToBeCleaned) that is directly below its current position 1334
(? robotTile). 1335

1336
- **up <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (?robot) to a tile 1337

(? moveToNextTile) directly above its current position (? robotTile). 1338
1339

- **down <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (?robot) to a 1340
tile (? moveToNextTile) directly below its current position (? robotTile). 1341

1342
- **right <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (?robot) to a 1343

tile (? moveToNextTile) directly to the right of its current position (? robotTile 1344
). 1345

1346
- **left <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (?robot) to a 1347

21

tile (? moveToNextTile) directly to the left of its current position (? robotTile)1348
.1349

PDDL Domain1350

C More Details on Analysis1351

C.1 Overall1352

Table 3: Distribution of error types of claude-3.5-sonnect on TEXT2WORLD under few-shot setting.

Proportion (%) Number

Correct 23.76 24
Syntax Error 11.88 12
Semantic Error 64.36 65

All 100.00 101

The overall distribution for syntax errors and semantic errors is presented in Table 3.1353

C.2 Syntax Error1354

Table 4: Distribution of Syntax Errors in PDDL Generation (Total Samples: 66, a task may have 1 to 4 samples.)

Syntax Error Explanation Proportion (%)

UndefinedDomainName Missing mandatory (define (domain ...)) declaration in PDDL header 33.33
IncorrectParentheses Invalid empty/mismatched parentheses 3.03
UndefinedConstant Reference to undeclared constants in predicates or actions 13.64
MissingRequirements Absence of required PDDL extension declarations (e.g., :action-costs) 22.73
UndefinedType Undeclared parent type in hierarchical type definitions 18.18
UnsupportedFeature Use of parser-incompatible language features (e.g., either types) 3.03
TypeMismatch Parameter type conflict with declared type constraints 1.52
UndefinedVariable Undeclared variables in action preconditions/effects 1.52
DuplicateDefinition Multiple declarations of identical domain elements 3.03

The distribution and detailed explanation of each syntax error type are presented in Table 4.1355

C.3 Semantic Error1356

Table 5: Distribution of Semantic Errors in PDDL Generation (Total Samples: 91, a task may have multiple semantic
errors.)

Semantic Error Explanation Proportion (%)

DisobeyDescription Direct violation of semantic requirements explicitly stated in the task description. 14.29
IncorrectPredicate Incorrect or missing the declaration of predicates. 6.59
IncorrectAction Incorrect or missing the declaration of actions. 7.69

IncompleteModeling Incomplete world modeling compared to basic requirements. 58.24
IncorrectPrecondition The precondition of the action is deficient or incorrect. 29.67
IncorrectEffect The effect of the action is deficient or incorrect. 28.57

RedundantSpecifications Predicted domain includes superfluous preconditions or effects. 17.58
RedundantPrecondition Predicted domain includes superfluous preconditions. 10.99
RedundantEffect Predicted domain includes superfluous effects. 6.59

SurfaceDivergence Surface variations preserving semantic equivalence with ground truth. 9.89

The distribution and detailed explanation of each semantic error type are presented in Table 5.1357

22

D More Experimental Results 1358

D.1 Experimental Results with Concrete Description 1359

Table 6: Performance comparison of different LLMs on TEXT2WORLD using concrete domain description. ECk
denotes the setting where models are allowed k correction attempts (EC0: zero-shot without correction, EC3: with 3
correction attempts).

Model Family Version EXEC. ↑ SIM. ↑ F1PRED ↑ F1PARAM ↑ F1PRECOND ↑ F1EFF ↑

EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3

GPT-4 gpt-4o 60.4 75.2 90.7 90.3 59.4 71.8 57.1 69.1 55.3 65.1 54.1 65.2

GPT-3.5 turbo-0125 53.5 68.3 89.0 88.7 52.9 66.7 50.3 64.6 45.1 58.0 46.5 59.9

CLAUDE-3.5 sonnet 64.4 84.2 84.7 77.6 64.4 80.7 55.0 67.5 53.3 65.0 53.3 64.8

LLAMA-2
7b-instruct 0.0 0.0 48.4 32.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70b-instruct 0.0 0.0 53.5 52.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LLAMA-3.1
8b-instruct 0.0 1.0 84.1 83.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70b-instruct 1.0 1.0 89.7 85.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DEEPSEEK deepseek-v3 58.4 80.2 90.1 89.3 58.1 76.4 56.2 73.5 53.4 66.0 53.5 67.6

23

	Introduction
	Preliminary
	World Model
	Task Definition
	Evaluation Metrics

	Benchmark Construction
	Data Acquisition
	Data Filtering and Manual Selection
	Data Annotation
	Quality Assurance
	Data Analysis
	Preliminary Experiment

	Experiments
	Experimental Setup
	Experimental Results

	Analysis
	Statistical Analysis
	Error Analysis

	Exploration
	Test-time Scaling
	In-Context Learning
	Fine-tuning
	Agent Training
	Inference with Concrete Description

	Related Work
	Conclusion
	Ethical Considerations
	Limitation
	Benchmark Construction
	Example
	Domain Example
	Abstract Description
	Concrete Description

	Preliminary Experiment
	More Details on Data Analysis

	More Details on Experiments
	Evaluation Metrics
	Prompt Examples
	Error Correction
	Zero-Shot Prompt
	Few-Shot Prompt

	More Details on Analysis
	Overall
	Syntax Error
	Semantic Error

	More Experimental Results
	Experimental Results with Concrete Description

