

000 001 002 003 004 005 PROTEIN STRUCTURE TOKENIZATION VIA 006 GEOMETRIC BYTE PAIR ENCODING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

ABSTRACT

032 Protein structure is central to biological function, and enabling multimodal protein
033 models requires joint reasoning over sequence, structure, and function. A
034 key barrier is the lack of principled protein structure tokenizers (PSTs): existing
035 approaches fix token size or rely on continuous vector codebooks, limiting interpretability,
036 multi-scale control, and transfer across architectures. We introduce
037 **GEOBPE**, a geometry-grounded PST that transforms continuous, noisy, multi-
038 scale backbone conformations into discrete “sentences” of geometry while en-
039 forcing global constraints. Analogous to byte-pair encoding, GEOBPE generates
040 a hierarchical vocabulary of geometric primitives by iteratively (i) clustering Geo-
041 Pair occurrences with k-medoids to yield a resolution-controllable vocabulary;
042 (ii) quantizing each Geo-Pair to its closest medoid prototype; and (iii) reducing
043 drift through differentiable inverse kinematics that optimizes boundary glue angles
044 under an $SE(3)$ end-frame loss. GEOBPE offers compression ($>10\times$ reduction in bits-per-residue at similar distortion rate), data efficiency ($>10\times$ less training data), and generalization (maintains test/train distortion ratio of 1.0 – 1.1). It is
045 architecture-agnostic: (a) its hierarchical vocabulary provides a strong inductive
046 bias for coarsening residue-level embeddings from large PLMs into motif- and
047 protein-level representations, consistently outperforming leading PSTs across 12
048 tasks and 24 test splits; (b) paired with a transformer, GEOBPE supports uncondi-
049 tional backbone generation via language modeling; and (c) tokens align with
050 CATH functional families and support expert-interpretable case studies, offering
051 functional meaning absent in prior PSTs.
052

1 INTRODUCTION

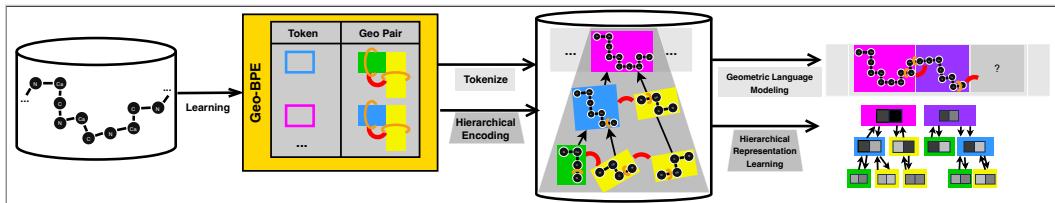
053 Protein language models (PLMs) trained on large sequence databases capture evolutionary con-
054 straints (Rives et al., 2021) and support de novo sequence design (Lin et al., 2023b), but they do not
055 explicitly model fold geometry and may underperform on tasks where function depends on struc-
056 tural interactions (Abramson et al., 2024; Gelman et al., 2025). In natural language processing,
057 byte-pair encoding (BPE) constructs a vocabulary by iteratively merging the most frequent sym-
058 bol pairs, producing a hierarchical representation of text (Larsson & Moffat, 2002). Despite BPE’s
059 success on sequential data, there is no geometric analog that can encode and decode protein back-
060 bone conformations. The central difficulty is discretizing continuous, noisy structural variability
061 while preserving global consistency. Because protein folds are organized into modular substructures
062 (Petsko & Ringe, 2004), a protein structure tokenizer should (a) build a hierarchical vocabulary of
063 structural motifs and (b) segment folds into hierarchical decompositions, producing symbolic and
064 interpretable representations of backbone geometry.

065 Recently, vector-quantized variational autoencoders (VQ-VAEs) have become the most popular class
066 of protein structure tokenizers (PSTs), as adopted by ESM3 (Hayes et al., 2025) and others. VQ-
067 VAEs learn an autoencoder that compresses and reconstructs a protein structure with N residues
068 to and from N quantized latent codes, which are discrete “words” drawn from a vocabulary of
069 learnable embeddings (Van Den Oord et al., 2017). While powerful, VQ-VAEs lack the efficiency,
070 interpretability and modularity of BPE tokenizers: (1) using a fixed codebook can create perfor-
071 mance bottlenecks and imbalance token usage frequency, handicapping downstream performance
072 (Yuan et al., 2025); (2) using vectors as tokens over real data hinders interpretability, as rows of a
073 2D matrix do not capture the hierarchical relationships between sub-words like in BPE; (3) lastly,

fixing all tokens to have the same size prevents multi-scale resolution, which is key to tasks that identify naturally occurring higher-level functional activity which span variable residue lengths.

Present work. We develop Geometric Byte-Pair Encoding (GEOBPE), a tokenizer that discretizes continuous protein backbones into symbolic “sentences” of structural motifs while learning a hierarchical vocabulary. The design is motivated by two requirements: (i) protein folds contain modular substructures that should be captured as reusable tokens, and (ii) discrete approximations must preserve global geometric consistency. To meet these requirements, GEOBPE alternates between local updates and global corrections. At each step, frequent motif pairs are clustered with k-medoids and replaced by representative prototypes, recursively building higher-order motifs. This local quantization inevitably introduces geometric drift, which GEOBPE corrects by optimizing boundary glue angles through differentiable inverse kinematics under an $SE(3)$ end-frame loss. The output after each iteration is a segmentation of the backbone into quantized motifs and glue parameters; the sequence of iterations yields a hierarchical decomposition of the fold, represented as a merge tree of structural motifs (Fig. 1). Our contributions are as follows: ① GEOBPE is the first geometry-grounded BPE analog for protein backbones, which builds a hierarchical vocabulary of motifs and tokenizes structures through an alternating global-local decomposition with glue-aware reconstruction. ② On benchmark datasets, GEOBPE traces a smooth Pareto front of compression-distortion tradeoffs, achieving up to $0.27\text{-}0.36\times$ the bits-per-residue of ProToken and strong out-of-distribution generalization (test/train RMSD ratio 1.16-1.28 vs. $6.4\times$ for VQ-VAE). It also matches downstream accuracy when trained on as little as 1% of the pretraining data. ③ Hierarchical vocabularies from GEOBPE improve representation quality on tasks such as binding site prediction and fold classification, and a transformer trained on its tokens enables unconditional backbone generation. ④ Tokens align with CATH domain annotations and are supported by expert case studies, providing functional protein insights and multi-resolution interpretability.

Figure 1: GEOBPE tokenizes a protein into discrete motifs linked by boundary glue angles and learns a hierarchical vocabulary of frequent structural primitives via k-medoids and recursively merging Geo-Pairs; at each step glue angles are optimized with differentiable inverse kinematics to preserve the global fold. Tokenization yields a merge tree that provides multi-resolution and interpretable representations of protein structure.



2 RELATED WORK

Protein Structural Alphabets. Structural alphabets approximate protein folds as successions of geometric motifs (Branden & Tooze, 2012). de Brevern et al. (2000) introduced 16 five-residue protein blocks from Protein Data Bank (PDB) structures, assigning fragments by RMSD. Later work showed that over 90% of residues can be covered by such alphabets (de Brevern et al., 2002) and analyzed their quality and specificity (de Brevern, 2005). Alphabet strings provide 1D encodings of 3D geometry, enabling the use of sequence alignment for fold analysis and prediction (Mahajan et al., 2015; Vetrivel et al., 2017). Camproux et al. (1999) proposed 12 building blocks via Hidden Markov Models (HMMs) and extended it to capture whole-protein conformational variability (Camproux et al., 2004). HMMs use inter-alpha-carbon distances within four residues as observed variables. Broader tertiary descriptors, such as inter-residue distances or moment invariants (Durairaj et al., 2020), capture non-contiguous context; Mackenzie (2016) found ~ 600 motifs describe more than half of structural space ($39 \cdot 10^6$ conformations), indicating variability collapses into limited modes. Such descriptors extend to protein-level retrieval and classification (Durairaj et al., 2020; Van Kempen et al., 2024; Barrio-Hernandez et al., 2023). GEOBPE builds on these insights by treating structural motifs as extensible primitives and dynamically adjusting alphabet size and token resolution, unlike fixed structural alphabets.

Protein Structure Tokenizers. Modern PSTs, most notably VQ-VAEs, construct structural alphabets by training deep autoencoders with vectorized codebooks that map continuous structure to discrete codes (Van Den Oord et al., 2017). Building on this idea, FoldSeek (Van Kempen et al., 2024)

introduced 3Di alphabets (20 discrete codes learned with VQ-VAE) that compress local structural features for efficient search and homology detection. Subsequent works integrate 3Di alphabets with PLMs: Heinzinger et al. (2024) translate between 3Di and amino acid sequences; Su et al. (2023) define “3Di-residue” tokens and show pretraining with this vocabulary improves prediction; and Li et al. (2024) use disentangled attention to jointly model 3Di and residue tokens with a structure quantization module. End-to-end VQ-VAEs avoid predefined descriptors by training equivariant encoders and decoders to tokenize structure directly, achieving near-perfect reconstruction but at high computational cost. Large-scale efforts such as ESM3 (Hayes et al., 2025), trained on 236 million structures, highlight the central role of tokenizers in scaling multimodal PLMs. Recent work benchmarks tokenizer performance itself: AIDO.St and ProTokens show that stronger compression improves retrieval (Van Kempen et al., 2024; Zhang et al., 2024c) but reduces reconstruction quality, and both Zhang et al. (2024c) and Lin et al. (2023a) integrate tokenizers tightly with transformers. GEOBPE differs by using its hierarchical vocabulary as an inductive bias for representation learning and by supporting geometry-grounded language modeling without latent space vector quantization.

Byte-Pair Encoding for Biological Data. BPE underlies modern language models and has been applied to biological sequences with mixed outcomes. On genomes, BPE achieves superior compression and improves over k-mers in language models (Dotan et al., 2024; Zhou et al., 2023), though Nguyen et al. (2023) find the opposite using Hyena. For functional tasks, BPE often performs best (Dotan et al., 2024), while on nucleotide-resolution tasks it can underperform (Lindsey et al., 2025). These results indicate tokenizer utility depends on task scale and architecture, motivating GEOBPE’s architecture-agnostic design and multi-scale resolution. Linguistic differences between text and biological sequences further complicate direct transfer: BPE tokens do not align with domain boundaries (Suyunu et al., 2024) or regulatory motifs (Lindsey et al., 2025). Other studies emphasize the importance of vocabulary design, reduced amino acid alphabets impair structure prediction (Ieremie et al., 2024), while BPE vocabularies of 50–200 tokens are often optimal for sequence tasks (Tan et al., 2024). Overall, existing tokenizers, including BPE, lack *versatility for protein structures*. GEOBPE extends BPE by grounding tokenization in geometry, exposing parameters for quantization, vocabulary, and efficiency, while uniquely providing fine-grained resolution control and a hierarchical motif vocabulary.

3 METHODS

We first establish backbone geometry notations in Sec. 3.1. Sec. 3.2 presents the GEOBPE algorithm, detailing its components for motif clustering, adaptive quantization, and glue-aware refinement. Finally, Sec. 3.3 formalizes the principles that an ideal protein structure tokenizer should satisfy and evaluates how GEOBPE meets them.

3.1 NOTATION & PRELIMINARIES

Global Backbone Formulation. Let a protein backbone $t^{(\tau)}$ with $N^{(\tau)}$ residues be represented by the Cartesian coordinates $\{(N_i, \text{CA}_i, C_i) \in \mathbb{R}^{3 \times 3}\}_{i=1}^{N^{(\tau)}}$ of backbone atoms (oxygen and C_β omitted). Define bond lengths, bond angles, and dihedrals:

$$\ell_i^{N-CA} = \|N_i - \text{CA}_i\|, \ell_i^{CA-C} = \|\text{CA}_i - C_i\|; \ell_i^{C-N} = \|C_i - N_{i+1}\|.$$

$$\theta_i^{NCAC} = \angle(N_i, \text{CA}_i, C_i), \theta_i^{CACN} = \angle(\text{CA}_i, C_i, N_{i+1}), \theta_i^{CNCA} = \angle(C_i, N_{i+1}, \text{CA}_{i+1}).$$

$$\psi_i = \angle(N_i, \text{CA}_i, C_i, N_{i+1}), \omega_i = \angle(\text{CA}_i, C_i, N_{i+1}, \text{CA}_{i+1}), \phi_i = \angle(C_i, N_{i+1}, \text{CA}_{i+1}, C_{i+1}).$$

We annotate these definitions in a toy

$(N^{(\tau)} = 2)$ example in Fig. 2 (top). The full internal representation thus contains $3N^{(\tau)} - 1$ bond lengths, $3N^{(\tau)} - 2$ bond angles, and $3N^{(\tau)} - 3$ dihedrals and is invariant to any $(R, t) \in \text{SE}(3)$.

Local Formulation (Bond–Residue). For residue i we define the *bond–residue* as the ordered triple $(N_i - \text{CA}_i), (\text{CA}_i - C_i), (C_i - N_{i+1})$ together with its internal angles. For $i < N^{(\tau)}$ this includes

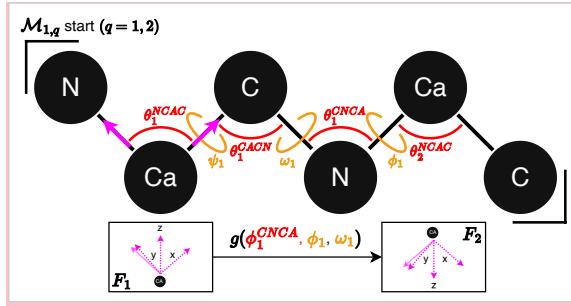


Figure 2: Backbone of toy example showing internal bond/dihedral angles, glues (T_1), motif $M_{1:2}$, and glue parameterization (G_1) of per-link transforms.

162 the lengths ℓ_i^{N-CA} , ℓ_i^{CA-C} , ℓ_i^{C-N} , the bond angles θ_i^{NCAC} , θ_i^{CACN} , and the peptide dihedral ψ_i about $CA_i - C_i$. For $i = N^{(\tau)}$, it includes only bond lengths $\ell_{N^{(\tau)}}^{N-CA}$, $\ell_{N^{(\tau)}}^{CA-C}$, 163 and angle $\theta_{N^{(\tau)}}^{NCAC}$ (the $(C-N)$ bond, $\theta_{N^{(\tau)}}^{CACN}$, $\theta_{N^{(\tau)}}^{CNCA}$, and $\{\psi, \omega, \phi\}_{N^{(\tau)}}$ dihedrals are absent). 164

165 **Glue Parameters Between Neighboring Bond-Residue.** Neighboring bond-residues i and $i+1$ are connected by a set of *glue* angles that place the bonds of residue $i+1$ relative to residue i . 166 These are $\Gamma_i = \{\theta_i^{CNCA}, \phi_i, \omega_i\}$, i.e., one bond angle θ_i^{CNCA} (to place $N_{i+1}-CA_{i+1}$) and 167 two dihedrals ϕ_i and ω_i (to orient $CA_{i+1}-C_{i+1}$ and the peptide plane). We adopt (ω, ϕ) here to 168 emphasize the two independent dihedral DOFs spanning the peptide and CA torsions. 169

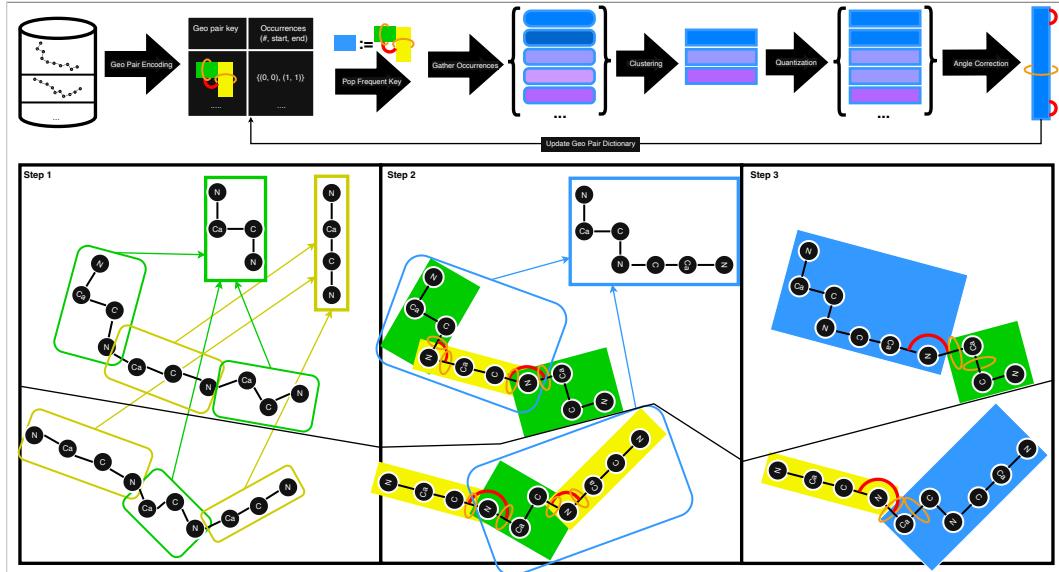
170 **Motif Formulation.** A *bond-residue motif* $\mathcal{M}_{p:q}$ is a contiguous block of bond-residues $i = 171 p, \dots, q$ ($1 \leq p \leq q \leq N^{(\tau)}$). Its internal parameter set is the union over the internal bond 172 lengths and angles of bond-residues p, \dots, q together with the internal glue angles $\{\Gamma_i\}_{i=p}^{q-1}$ 173 that connect consecutive bond-residues inside the motif. Given $q \leq r \leq N^{(\tau)}$, we obtain a 174 *Geo-Pair occurrence* $(\mathcal{M}_{p:q}, \Gamma_q, \mathcal{M}_{q:r})$ from the internal parameters of $\mathcal{M}_{p:q}$ and $\mathcal{M}_{q+1:r}$, plus the 175 *external glue angles* Γ_q connecting the last and first bond-residues of $\mathcal{M}_{p:q}$ and $\mathcal{M}_{q+1:r}$. 176

177 **Entry/Exit Frames.** For residue i , define $F_i = (R_i, t_i) \in \text{SE}(3)$ with origin $t_i = CA_i$ and axes 178 chosen so that the x -axis points from CA_i toward the C_i , the y -axis is the normalized component of 179 the $CA_i - N_i$ direction orthogonal to x , and the z -axis completes a right-handed triad. 180

181 **Per-Link Transform.** Define the transform between consecutive residue frames $G_i := 182 F_{i+1} F_i^{-1} \in \text{SE}(3)$. By construction, G_i is a deterministic function of the internal coordinates local 183 to the link $i \rightarrow i+1$, namely $G_i = g(\ell_i^{CA-C}, \ell_i^{C-N}, \ell_{i+1}^{N-CA}, \theta_i^{NCAC}, \theta_i^{CACN}, \theta_i^{CNCA}, \psi_i, \omega_i, \phi_i)$, 184 and, in particular, depends on the *glue set* $\Gamma_i = \{\theta_i^{CNCA}, \phi_i, \omega_i\}$, illustrated in Fig. 2 (bottom). 185

186 **Entry/Exit Transforms.** For a motif $\mathcal{M}_{p:q}$, define $F_{p:q}^{\text{entry}} := F_p, F_{p:q}^{\text{exit}} := F_q$. The *internal* 187 entry→exit transform is $T_{p:q}^{\text{int}} = F_{p:q}^{\text{exit}} (F_{p:q}^{\text{entry}})^{-1} = (G_{q-1}) \cdots (G_p)$, which depends only 188 on the internal coordinates of $\mathcal{M}_{p:q}$. The *external glue* transform between consecutive motifs $\mathcal{M}_{p:q}$ 189 and $\mathcal{M}_{q+1:r}$ is precisely the boundary link $T_{q \rightarrow q+1}^{\text{glue}} = F_{q+1} F_q^{-1} = G_q$, and is parameterized by 190 the glue set Γ_q (and the adjacent three bond lengths). 191

192 **Figure 3:** (Top) GeoBPE tracks a Geo-Pair Encoding, a dictionary mapping Geo-Pair keys to occurrences 193 at all times. Each step pops the most frequent Geo-Pair key, gathers the occurrences $(0, 0, 0, 0, \dots)$ and fixes 194 K prototypes $(\text{blue}, \text{red})$ to add to \mathcal{V} . All occurrences are quantized to the closest prototype (e.g. $0 \rightarrow \text{blue}$). 195 Glue angles $(\text{red}, \text{blue})$ are optimized to correct for the drift introduced. (Bottom) Toy example with two backbones; 196 we initialize residue-orientation modes using two prototypes $(\text{blue}, \text{red})$, pop the frequent Geo-Pair (blue) , 197 quantize occurrences $(\text{blue} \rightarrow \text{red})$, and optimize glue angles. 198



216 **Core GeoBPE notation.** We define the main objects used throughout the algorithmic description.
 217 We index training backbones by $\tau = 1, \dots, T$, writing the τ -th backbone as $t^{(\tau)}$ with
 218 $N^{(\tau)}$ residues. A *segmentation* of $t^{(\tau)}$ into bond-residue motifs is the ordered tuple $\mathcal{P}^{(\tau)} =$
 219 $(\mathcal{M}_{p_1:q_1}^{(t_\tau)}, \dots, \mathcal{M}_{p_{M_\tau}:q_{M_\tau}}^{(t_\tau)})$, with $1 = p_1 \leq q_1 < p_2 \leq \dots \leq q_{M_\tau} = N^{(\tau)}$. The corresponding
 220 *merge hierarchy* $\mathcal{F}^{(\tau)}$ is a binary forest whose frontier leaves, in order, equal $\mathcal{P}^{(\tau)}$; each internal
 221 node represents a merged motif and stores its span $[p:q]$.
 222

223 **Geo-pair keys and occurrences.** Given two adjacent motifs $(\mathcal{M}_{p:q}, \mathcal{M}_{q+1:r})$ and their boundary
 224 glue Γ_q , we define a canonical, hashable *geo-pair key* $\kappa = \text{COMPUTEGEOKEY}(\mathcal{M}_{p:q}, \mathcal{M}_{q+1:r})$
 225 (Alg. 22). For each key κ we collect its *occurrence set* $\mathcal{O}(\kappa)$ consisting of all such adjacent motif
 226 pairs across the dataset.
 227

228 **Prototypes and vocabulary.** For a geo-pair key κ , GEOBPE clusters its occurrences and stores a
 229 small set of representative prototypes $\mathcal{A}_\kappa = \{\Pi_j^{(\kappa)}\}_{j=1}^{K_{|\kappa|}}$, where each $\Pi_j^{(\kappa)}$ is the internal-parameter
 230 tuple of a medoid occurrence and $K : \mathbb{Z}^+ \setminus \{1\} \mapsto \mathbb{Z}^+$ controls how many prototypes by motif
 231 (bond) length. The *vocabulary* is the map $\mathcal{V} : \kappa \mapsto \mathcal{A}_\kappa$, initially containing residue-level
 232 codebooks $\mathcal{A}_3, \mathcal{A}_2$ and growing as new geo-pair keys are introduced.
 233

234 **Geo-pair dictionary and priorities.** At any time GEOBPE maintains a *priority-ordered* dictionary
 235 \mathcal{D} that maps each key κ to its occurrence set $\mathcal{O}(\kappa)$. Keys are ordered by tuples
 236

$$\pi(\kappa) = (\rho(\kappa), -|\mathcal{O}(\kappa)|, \kappa), \quad \rho(\kappa) = \mathbf{1}[\kappa \notin \text{dom}(\mathcal{V})],$$

237 so that compressible keys with existing prototypes ($\rho = 0$) are popped first, followed by a new key
 238 with the largest count $|\mathcal{O}(\kappa)|$ per iteration.
 239

3.2 GEOBPE ALGORITHM

240 GEOBPE (Algo. 1, Fig. 3) is organized around four components: (1) clustering motif
 241 (individual bond-residues once at the start, Geo-Pairs every step thereafter) occurrences into repre-
 242 sentative structural prototypes, (2) maintaining an ordered map to track frequent Geo-Pairs, (3) adap-
 243 tively hard-quantizing noisy Geo-Pairs to their assigned prototypes, and (4) applying rigid-body re-
 244 finement to enforce global geometric consistency.
 245

246 Components (1)-(4) are designed to answer three new key questions when re-interpreting BPE to
 247 work with continuous backbone geometry rather than discrete bytes: (a) how do we *ground* continuous
 248 backbone states to discrete keys for Geo-Pair *counting*, (b) how do we *update* the backbone
 249 states once we have popped the most frequent Geo-Pair, (c) how do we synchronize the Geo-Pair
 250 dictionary with how we updated the backbone states. Component (1) answers to (a), (3) & (4) to
 251 (b), and (2) to (c). The guiding question encompassing (a)-(c) is: **what is the exact relationship**
 252 **between the Geo-Pair dictionary** (needed for discrete BPE operations) **and the continuous back-**
 253 **bone states** (which should both reflect new keys and preserve original fidelity)? GEOBPE imple-
 254 ments a two-way connection through four stages: grounding, in which continuous motif states define
 255 discrete prototype keys; quantization, in which internal parameters are overwritten with those of the
 256 assigned prototypes; rigid-body refinement, in which backbone internal states self-correct to mini-
 257 mize global distortion; and synchronization, in which the Geo-Pair dictionary is re-synchronized to
 258 reflect the high-fidelity backbone states after quantization and refinement.
 259

260 **(1) Extracting Dominant Modes from a Set of Motif Occurrences.** The core subroutine invoked
 261 by GEOBPE is Algo. 6, which clusters a set of length L raw backbone fragments into K repre-
 262 sentative prototypes. This induces a hard quantization of the fragment space, since every possible
 263 occurrence is assigned to exactly one prototype. Because RMSD defines a metric over fragments,
 264 the clustering yields a Voronoi partition of this space. Importantly, the medoids are themselves ob-
 265 served fragments, so each quantized symbol retains a concrete structural interpretation: it represents
 266 the closest empirically observed conformation, providing a denoised approximation of local vari-
 267 ability. Each time we quantize, we substitute every non-medoid occurrence by its assigned medoid,
 268 replacing all internal parameters with the medoid’s internal parameters, making it an exact copy of
 269 that medoid (same length and per-position angles).
 270

271 **(2) Constructing a Structural Motif Alphabet.** GEOBPE begins by quantizing all bond-residues
 272 and glue angles (Algo. 18) and building an *ordered map* \mathcal{D} of discrete geo-pair grounding keys κ
 273 to occurrences $\mathcal{O}(\kappa)$ (Algo. 21, see *Core GeoBPE notation*). In each iteration (Algo. 9), GEOBPE

270 **Algorithm 1** GEOBPE: Protein structure tokenizer with geometric byte-pair encoding

271

272 **Require:** Backbones $\{t^{(1)}, \dots, t^{(T)}\}$ with lengths $N^{(\tau)}$; optional backbones $\{t^{(\xi)}\}$ to tokenize;

273 residue codebook sizes (K_3, K_2) ; glue-IK weights (w_R, w_t) ; maximum merge iterations S_{\max} .

274 **Ensure:** Final vocabulary \mathcal{V} (motif prototypes), final segmentations $\{\mathcal{P}^{(\tau)}\}$, final merge hierarchies

275 $\{\mathcal{F}^{(\tau)}\}$, and the priority-ordered geo-pair map \mathcal{D} .

276 1: **Empirical quantizer estimation (once).** Collect samples over all backbones for the 9 types

277 $\{\ell^{N-CA}, \ell^{CA-C}, \ell^{C-N}\}, \{\theta^{NCAC}, \theta^{CACN}, \theta^{CNCA}\}, \{\phi, \psi, \omega\}$. Wrap angles to $[0, 2\pi)$ and build

278 circular histograms with edges $0 = \beta_0 < \dots < \beta_B = 2\pi$ that tile the circle; define Q by

279 snapping to bin centers. For lengths, build linear histograms and snap to centers.

280 2: **Per-residue initialization** (Algo. 18). Cluster interior and terminal bond-residues via

281 RMSD_PARTITION to obtain codebooks $\mathcal{A}_3, \mathcal{A}_2$; overwrite each residue's internals by its as-

282 signed prototype. Set the initial segmentation for each backbone:

283

$$\mathcal{P}^{(\tau)} = (\mathcal{M}_{1:1}^{(t_\tau)}, \dots, \mathcal{M}_{N^{(\tau)}:N^{(\tau)}}^{(t_\tau)}).$$

284 **Initialize hierarchies:** for each τ , create a binary forest $\mathcal{F}^{(\tau)}$ whose leaves are the bond-residue

285 motifs $\mathcal{M}_{i:i}^{(t_\tau)}$, in order; its frontier equals $\mathcal{P}^{(\tau)}$. Initialize the vocabulary with base prototypes:

286

$$\mathcal{V} \leftarrow \{\text{residue-level keys} \mapsto \mathcal{A}_3, \mathcal{A}_2\}.$$

287

288 3: **Global glue refinement** (Algo. 12). Optimize all boundary glues $\Gamma_i = \{\theta_i^{CNCA}, \omega_i, \phi_{i+1}\}$ via

289 differentiable FK with (w_R, w_t) ; snap each to the nearest bin center using $Q_{\theta^{CNCA}}, Q_\omega, Q_\phi$.

290 4: **Build the priority-ordered geo-pair map** (Algo. 21). Using the frontier leaves of each $\mathcal{F}^{(\tau)}$

291 (equivalently, $\mathcal{P}^{(\tau)}$), construct the occurrence sets $\mathcal{O}(\kappa)$ and insert:

292

$$\mathcal{D}[(\rho(\kappa), -|\mathcal{O}(\kappa)|, \kappa)] \leftarrow \mathcal{O}(\kappa), \quad \rho(\kappa) = \mathbf{1}[\kappa \notin \text{dom}(\mathcal{V})].$$

293

294 5: **BPE loop – calls (Algo. 9) each step.**

295 6: **for** $s = 1$ to S_{\max} **do**

296 7: $(\{\mathcal{P}^{(\tau)}\}, \{\mathcal{F}^{(\tau)}\}, \mathcal{D}, \mathcal{V}) \leftarrow \text{STEP}(\{\mathcal{P}^{(\tau)}\}, \{\mathcal{F}^{(\tau)}\}, \mathcal{D}, \mathcal{V}, \{Q_{\theta^{CNCA}}, Q_\omega, Q_\phi\}, (w_R, w_t))$

297 8: **end for**

298 9: **Tokenize new/unseen backbones (Algo. 10) for each ξ ,**

299

$$(\mathcal{P}^{(\xi)}, \mathcal{F}^{(\xi)}) \leftarrow \text{TOKENIZE}(t^{(\xi)}, \mathcal{A}_3, \mathcal{A}_2, \mathcal{V}, \{Q_{\theta^{CNCA}}, Q_\omega, Q_\phi\})$$

300

301 10: **return** $\mathcal{V}, \{\mathcal{P}^{(\tau)}\}, \{\mathcal{F}^{(\tau)}\}, \mathcal{D}$ and (if given) $\{\mathcal{P}^{(\xi)}\}, \{\mathcal{F}^{(\xi)}\}$

305
306 pops the most frequent **Geo-Pair** key, runs Algo. 6 on mapped occurrences, quantizes the occur-
307 rences, runs rigid-body refinement, and updates \mathcal{D} to account for the new quantized backbone states.

308 **(3) Multi-Resolution & Adaptive (Re-)Quantization.** One-time quantization is a lossy procedure
309 and is only needed to index Geo-Pairs occurrences in the current step. Thus, each GEOBPE iteration
310 can re-quantize occurrences by referencing the original, even if prior iterations have quantized the
311 same regions already. This allows resolution to adapt based on the size of the motif (e.g., coarse-
312 grained for smaller motifs, fine-grained for larger ones), providing precise control over compression-
313 reconstruction tradeoffs (see App. A).

314 **(4) Minimizing Distortion via Rigid-Body Refinement.** Let $T_{i:j}^{\text{int}}$ denote the entry→exit SE(3)
315 map of a motif $\mathcal{M}_{i:j}$ determined by its internal coordinates. For an occurrence u with original motif
316 $\mathcal{M}_{i_u:k_u}^{(t_u)}$, the rounding step replaces it by its assigned medoid segment:

$$\mathcal{M}_{i_u:k_u}^{(t_u)} \longrightarrow \mathcal{M}_{i_{\widehat{m}_{c(u)}}:k_{\widehat{m}_{c(u)}}}^{(t_{\widehat{m}_{c(u)}})},$$

317 where $\widehat{m}_{c(u)}$ is the medoid index returned by RMSD_PARTITION (an index into \mathcal{S}). Let $T_u^{\text{occ}} :=$
318 $T_{i_u:k_u}^{\text{int}}$ and $T_u^{\text{med}} := T_{i_{\widehat{m}_{c(u)}}:k_{\widehat{m}_{c(u)}}}^{\text{int}}$. Rounding thus replaces T_u^{occ} by T_u^{med} , and the induced
319 discrepancy $\Delta T_u := T_u^{\text{occ}} (T_u^{\text{med}})^{-1}$ is the *drift* introduced by quantization. If left uncompensated,
320 products of such ΔT_u across a chain accumulate and move exit frames off their original targets. Each
321 boundary provides 3 *gluing* degrees of freedom (Γ_i) that can absorb this drift. To exactly recover the
322 products of such ΔT_u across a chain accumulate and move exit frames off their original targets. Each
323 boundary provides 3 *gluing* degrees of freedom (Γ_i) that can absorb this drift. To exactly recover the

324 original exit (in the idealized case), the boundary transform at the link $i_u - 1 \rightarrow i_u$ should satisfy:
 325

$$\overbrace{G_{i_u-1}^{\text{new}} T_u^{\text{med}}}^{\text{opt vars}} \approx G_{i_u-1}^{\text{orig}} T_u^{\text{occ}} \implies G_{i_u-1}^{\text{new}} \approx G_{i_u-1}^{\text{orig}} \Delta T_u,$$

326 where the quantization drift is $\Delta T_u := T_u^{\text{occ}} (T_u^{\text{med}})^{-1}$. Since G_{i_u-1} is controlled by only three
 327 gluing DOFs, we solve for $G_{i_u-1}^{\text{new}}$ in least squares via the end-frame fitting objective:
 328

$$\mathcal{L}_u(\Gamma_{i_u-1}) = w_R \|\log((\hat{R}_{k_u})^\top R_{k_u}^*)\|_2^2 + w_t \|\hat{t}_{k_u} - t_{k_u}^*\|_2^2,$$

329 with forward kinematics $\hat{F}_{k_u} = F_{i_u-1}^* G_{i_u-1}^{\text{new}} T_u^{\text{med}}$, $F_{k_u}^* = F_{i_u-1}^* G_{i_u-1}^{\text{orig}} T_u^{\text{occ}}$. When
 330 quantizing many motifs on the same backbone, performing this optimization each time can become
 331 computationally prohibitive. Instead, we adopt a global (batch) alternative which treats all gluing
 332 DOFs as parameters, with a global end-frame fitting loss. This provides maximum flexibility in drift
 333 compensation. The algorithmic details are in Algo. 19 and 12.
 334

335 **Transferring Hierarchical Inductive Biases.** GEOBPE adapts the receptive field of a base
 336 residue-level feature extractor Θ to that of the whole structure, connecting multiple scales through
 337 recursive aggregation. Algo. 1 emits merge hierarchies \mathcal{F} as a forest: leaf nodes represent residues
 338 and parent nodes represent motifs. The key insight is to use F as a recursive computation tree. Leaf
 339 nodes are initialized with pretrained features, then embeddings propagate up along the parent-child
 340 relations of \mathcal{F} until the forest roots (aligned with \mathcal{P}); a final step aggregates the forest roots
 341 into a protein-level contextual embedding; then they are propagated down until the leaf nodes.
 342 The final leaf nodes output residue-level embeddings induced by the hierarchical \mathcal{V} and informed by
 343 multi-scale GEOBPE tokenization. These features support supervised learning on fine-grained
 344 residue-level tasks (e.g., active site prediction) and coarse-grained global predictions (e.g., fold
 345 classification). See Algo. 15 for details.
 346

347 3.3 PRINCIPLES OF PROTEIN STRUCTURE TOKENIZATION

348 Let $\mathcal{X} = (\mathbb{R}^{3 \times 3})^*$ be the space of backbone coordinate tensors and let \mathcal{V} be a finite codebook. A
 349 tokenizer is a tuple $\mathbf{T} = (\mathcal{V}, \text{Enc}, \text{Dec})$: $\text{Enc} : \mathcal{X} \rightarrow \mathcal{V}^*$ mapping a structure \mathbf{x} to a finite token
 350 sequence $\mathbf{q} = \text{Enc}(\mathbf{x})$, $\text{Dec} : \text{Im}(\text{Enc}) \rightarrow \mathcal{X}$ mapping $\hat{\mathbf{x}} = \text{Dec}(\text{Enc}(\mathbf{x}))$. For dataset $\mathcal{D} \subset \mathcal{X}$ and
 351 distortion $d : \mathcal{X} \times \mathcal{X} \rightarrow [0, \infty)$ (e.g., Kabsch-aligned RMSD per residue), define:
 352

$$\Delta(\mathbf{T}; \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} d(\mathbf{x}, \text{Dec}(\text{Enc}(\mathbf{x}))), \quad \text{BPR}(\mathbf{T}; \mathcal{D}) = \frac{\text{L}(\mathbf{T}) + \sum_{\mathbf{x} \in \mathcal{D}} \text{L}(\text{Enc}(\mathbf{x}))}{\sum_{\mathbf{x} \in \mathcal{D}} N(\mathbf{x})} \text{ bits/res}$$

353 where $\text{L}(\mathbf{T}) \geq 0$ is the description length of $(\mathcal{V}, \text{Enc}, \text{Dec})$ and $N(\mathbf{x})$ is the residue count; under a
 354 uniform per-token code, $\text{L}(\text{Enc}(\mathbf{x})) = |\text{Enc}(\mathbf{x})| \log_2 |\mathcal{V}|$. We setup the following principles for an
 355 ideal tokenizer $\hat{\mathbf{T}}$ and empirically explore the degree GEOBPE satisfies them.
 356

357 **Principle 1: Pareto-optimal on \mathcal{D} .** $\hat{\mathbf{T}}$ is Pareto-optimal on \mathcal{D} iff no \mathbf{T}' satisfies $\text{BPR}(\mathbf{T}'; \mathcal{D}) \leq$
 358 $\text{BPR}(\hat{\mathbf{T}}; \mathcal{D})$ and $\Delta(\mathbf{T}'; \mathcal{D}) \leq \Delta(\hat{\mathbf{T}}; \mathcal{D})$, with at least one strict. We empirically explore this principle
 359 by evaluating Pareto-efficiency among leading PSTs and codebook configurations in Fig. 4.
 360

361 **Principle 2: Out-of-distribution (OOD) generalization.** $\hat{\mathbf{T}}$ generalizes OOD if, on unseen test set
 362 $\mathcal{D}_{\text{test}} \subset \mathcal{X}$, $\Delta(\mathbf{T}; \mathcal{D}_{\text{test}}) \approx \Delta(\mathbf{T}; \mathcal{D})$. We depict generalization gaps of leading PSTs in Fig. 4.
 363

364 **Principle 3: Downstream transfer via codebook/vocabulary.** Let \mathcal{V} be the vocabulary of \mathbf{T} and
 365 let $N(\mathbf{x})$ be the residue count. Let Θ parameterize a pretrained feature extractor. The codebook/vocabu-
 366 lary \mathcal{V} induces per-residue features $r_{\mathcal{V}}(\mathbf{x}) = \Psi_{\mathcal{V}}(F_{\Theta}(\mathbf{x})) \in (\mathbb{R}^d)^{N(\mathbf{x})}$. An ideal tokenizer
 367 of protein structures should go beyond pure compression; it should learn useful signals related to
 368 function. We loosely define the ability of a PST to transfer useful signals by test performance on
 369 a battery of downstream tasks when parameterizing samples \mathbf{x} by the vocabulary \mathcal{V} together with
 370 a feature extractor Θ . We benchmark downstream transfer of GEOBPE against others in Table 1
 371 (**GEOBPE-TRANSFER**).
 372

373 4 EXPERIMENTS

374 We answer ten research questions (Q1-Q10) to benchmark the performance, efficiency, and applica-
 375 tion integration potential of GEOBPE against other popular tokenizers.
 376

- **Tokenization Performance:** (Q1) How many bits are needed to store the tokenizer and tokenized inputs? (Q2) How faithful is the reconstruction? (Q3) How does performance generalize to unseen data? (Q4) How many samples are needed to train the tokenizer?
- **Token Efficiency:** (Q5) How frequent and balanced is vocabulary utilization? (Q6) Does small-scale language modeling generate better structures with **GEOBPE** or **VQ-VAE** tokens?
- **Downstream Transfer:** (Q7) How much transferrable signal does the tokenizer capture about the data? (Q8) How much does the vocabulary help on representation learning tasks?
- **Interpretability:** (Q9) How well do **GEOBPE** tokens agree with “ground-truth” domain annotations? (Q10) Can experts *understand* **GEOBPE** through real-world case studies?

Datasets. We follow the same dataset splits as in Yuan et al. (2025). Pretraining uses structures from the Protein Data Bank following OpenFold2’s protocol and retained a non-redundant subset of $\approx 48K$ protein chains, which were split into training/validation sets, with CAMEO and CASP14 reserved as held-out test sets for evaluating OOD generalization and token efficiency. For downstream evaluation, we use 8 datasets, spanning residue-level classification (ligand binding, catalytic, conserved, repeat, and epitope), residue-level regression (structural flexibility prediction), and protein-level classification. Together these datasets probe functional relevance, structural variability, token distinctiveness, and efficiency across a wide range of proteins. For citations and details, see App. B.

Baselines. We compare with VQ-VAEs, the leading family of discrete PSTs (Hayes et al., 2025; Van Kempen et al., 2024; Lin et al., 2023a; Yuan et al., 2025). They consist of (1) a structure encoder maps structure \mathbf{x} into a continuous representation $z \in \mathbb{R}^{N \times D}$; (2) a vector quantization layer discretizes each z_i by selecting $k_i = \arg \min_j d(z_i, q_j)$ from a learnable codebook $Q \in \mathbb{R}^{K \times D}$; and (3) a structure decoder reconstructs $\hat{\mathbf{x}} \approx \mathbf{x}$ from the discrete codes $q_k = \{q_{k_j}\}_{j=1}^L$. We also compare with Inverse Folding (IF) *continuous* PSTs, which skips the quantization step $\mathbf{z} \rightarrow q_k$ and trained to recover the amino acid sequence from z (Dauparas et al., 2022; Yang et al., 2023).

Downstream Transfer. For VQ-VAEs, Θ and \mathcal{V} are *jointly* learned, so we set $r_{\mathcal{V}}^{\text{VQ-VAE}}(\mathbf{x}) := r^{\text{VQ-VAE}}(\mathbf{x}) \leftarrow \text{Enc}(\mathbf{x})$. For **GEOBPE-TRANSFER**, we use $\Theta \leftarrow \text{ESM3}$ to demonstrate how $\mathcal{V}^{\text{GEOBPE}}$ can transfer useful signals from $\mathcal{F}_{\Theta}(\mathbf{x})$ to $r_{\mathcal{V}}(\mathcal{F}_{\Theta}(\mathbf{x}))$.

Performance Metrics. *Compression* measures Bits-Per-Residue (BPR), as defined in Sec. 3.3. *Distortion* (Δ) use standard RMSD and LDDT. *Token Efficiency* uses Codebook Utility Rate (UR), Perplexity (details in App. D) and Small Structure Language Model Evaluation (SSLM-Eval) (details in App. E). SSLM-Eval compares tokenizers (GEOBPE vs VQ-VAEs) via integration with a small $\sim 7.3M$ Transformer architecture after respectively tokenizing the pretraining data splits (Algo. 2). Under the same data, model, training and compute resources, the respective models generate new sentences, detokenizes them into structures, and we compare *relative* generation metrics (Algo. 3, 4, 5). *Downstream Transfer* covers 12 tasks (24 test splits) using AUROC (%) for functional site prediction, Spearman’s ρ (%) for flexibility prediction, and Macro F1 (%) for fold classification. *Expert Agreement* measures Domain & Segment Recall/Precision/F1/IOU (details in App. G).

Computational Complexity / Implementation Details. We analyze the theoretical complexity of GEOBPE in App. J and justify the steps we took towards efficient implementation and use.

5 RESULTS

Tokenizer Performance. We find GEOBPE and ProToken form the Pareto front under both $\Delta \in \{\text{RMSD}, \text{LDDT}\}$. GEOBPE achieves $0.271 - 0.358x$ and $0.016 - 0.021x$ the BPR of ProToken and ESM3, dropping LDDT by only 18–22% and 22–25%, which are impressive feats considering GEOBPE’s training data was only $\approx 7\%$ and 0.02% the size. We also observe GEOBPE’s strong OOD generalization, with test/train RMSD peaking at 1.16 (CAMEO) and 1.28 (CASP), showing negligible degradation reconstructing unseen data; VQ-VAE/AminoASeed, using identical data splits, show degradation as high as 6.4x test RMSD. Crucially, as the GEOBPE codebook grows, the variants trace a near-linear path along the Pareto front toward ProToken, elastically trading off BPR for lower distortion, a feature other tokenizers do not have (as codebook dimensions are fixed).

Token Efficiency. We report UR & Perplexity averaged over held-out test sets to gauge codebook/vocabulary usage on unseen data, the setting where the tokenizer is deployed. In Table 10, we see all methods except VQ-VAE and ESM3 achieve an average UR of $> 40\%$; all except VQ-VAE achieve 0.2 average Perplexity. An ideal tokenizer avoids codebook collapse, but exactly uniform token usage may not be desirable. We introduce SSLM-Eval to stress test whether codebook efficiency actually leads to generative efficiency. SSLM-Eval is a holistic way to compare tokeniz-

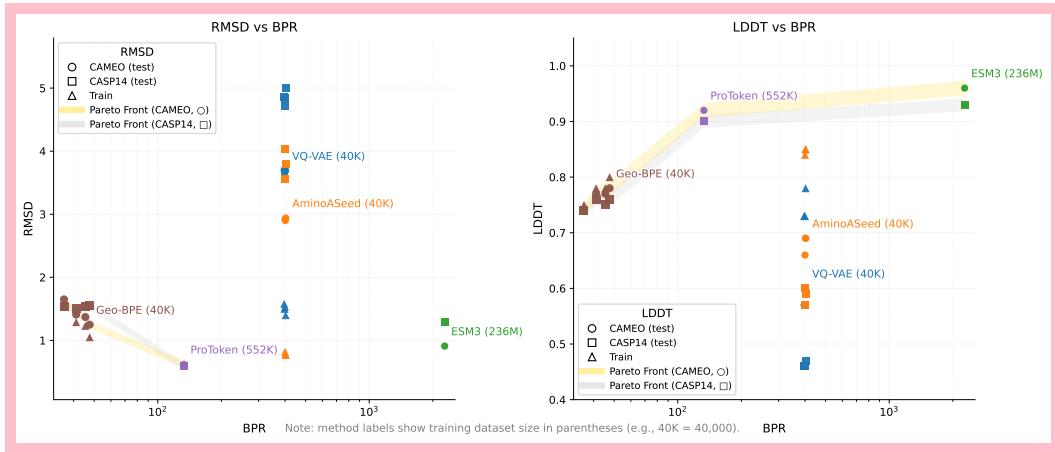


Figure 4: Plots of $(\text{BPR}(\mathbf{T}; \mathcal{D}), \Delta(\mathbf{T}; \mathcal{D}_{\text{test}}))$ across tokenizers for $\Delta \in \{\text{RMSD}, \text{LDDT}\}$. We vary $|\mathcal{V}| \in \{128, 256, 512, 1024\}$ for VQ-VAE/AminoASeed and $|\mathcal{V}| \in \{600, 2500, 6000, 21000\}$ for GEOBPE to sample multiple points; we observe GEOBPE sweeps a smooth tradeoff curve. [Hyperparameters in App. K](#).

ers using both encoder token efficiency *and* decoder’s generative efficiency. In Table 11, we find **GEOBPE-TRANSFER** is capable of generating 99% unique and designable backbones, achieving up to 49% higher scTM and maintaining higher diversity than both VQ-VAE methods using the same data splits. We visualize some realistic, novel backbones **GEOBPE-TRANSFER** generated in App. E.4. Interestingly, the “less-efficient” VQ-VAE generated 58% more diverse backbones, demonstrating uniform token usage can be counterproductive to language modeling.

Downstream Task Transfer. In Table 1, we see GEOBPE-induced features rank first, on average, across both function and structure property prediction tasks. The relative performance gaps 15.44% and 43.28% quantify the add-on benefits of GEOBPE-induced features. GEOBPE-induced features reverse the trend that discrete PSTs produce less informative representations for downstream tasks (due to quantization-related issues (Yuan et al., 2025)), highlighting that *hierarchical structure* from discrete vocabularies raises the ceiling on downstream transfer.

Further Ablations. We include a comprehensive series of ablation studies in App. A demonstrating GEOBPE’s *data-efficiency*, GEOBPE-TRANSFER’s *task-agnosticism*, GEOBPE tokenizer’s *scalability*, GEOBPE tokens’ *adaptive resolution* over iterations, and *performance vs runtime tradeoffs* in components (1), (3) & (4). Key findings include: (i) GEOBPE shows *better* OOD generalization when fitted on 1% training data; (ii) GEOBPE-TRANSFER predictions are no worse when GEOBPE was fitted with (a) 1% of the pretraining PDBs, (b) the downstream task-specific PDBs; (iii) GEOBPE performance gains diminish beyond $M_{\text{max}} = 5000$ randomly sampled motif occurrences used to extract prototypes, taming a complexity term that depends on M_{max} .

6 DISCUSSION

Case Study: Agreement with PFAM Annotations. We ran CATH Functional Families (FunFams) (Das et al., 2015b) to obtain domain boundaries and compared them against GEOBPE-derived motifs. Because sequence conservation is linked to structural preservation, we expect overlap between predicted motifs and functional domains. In Table 2, GEOBPE achieves 99.97% domain recall with mean $\text{F1} = 0.996$ and $\text{IOU} = 0.992$, showing near-perfect agreement across 10 datasets. *The agreement is not only geometric but also functional:* GEOBPE tokens frequently coincide with boundaries of ligand-binding grooves, transmembrane cavities, and scaffolding helices, capturing motifs that underlie molecular recognition and catalysis. This suggests GEOBPE does more than segment folds consistently: it surfaces interpretable structural primitives that map onto biochemical roles, offering a functional vocabulary absent in prior PSTs. Details are in App. G

Case Study: Human Expert Analysis of Interpretability. We conducted three expert evaluations of GEOBPE-derived hierarchies (App. H). Across proteins, the discovered motifs align with functionally meaningful substructures, including regions mediating ligand binding, molecular recognition, and structural gating. In the SLC25A20 transporter (Fig. 9), GEOBPE isolates a transmembrane binding cavity formed by helices and polar residues. In the 14-3-3:Tau complex (Fig. 10), it identifies a canonical phospho-binding groove stabilized by charged side chains. Recurrent local

486 **Table 1:** Downstream transfer performance benchmark. We underline and **bold** the best continuous and dis-
 487 crete PSTs, respectively; — indicates the best method across both. The relative performance v.s. ESM3 for
 488 **GEOBPE-TRANSFER** is included. Omitted rows in Table 6; **GEOBPE** hyperparameters are in App. K.

Task	Split	Continuous PST			Discrete PST					GEOBPE-TRANSFER (v.s. ESM3)
		ProteinMPNN	MIF	FoldSeek	ProTokens	ESM3	VanillaVQ	AminoAseed		
Functional Site Prediction (AUROC%)										
BindInt	Fold	51.83	50.38	53.18	44.66	44.30	47.25	47.11	59.19 (+33.61%)	
	SupFam	94.00	94.56	46.26	86.05	90.77	86.71	90.53	91.31 (+0.59%)	
BindBio	Fold	78.42	<u>85.79</u>	32.37	58.47	62.84	62.02	65.73	94.94 (+51.08%)	
	SupFam	81.00	<u>87.27</u>	52.44	60.47	65.22	62.92	68.30	95.94 (+47.10%)	
BindShake	Org	75.52	79.90	53.43	59.10	66.10	67.04	69.61	87.73 (+32.72%)	
	Fold	61.05	<u>59.62</u>	53.43	58.16	61.09	58.89	62.19	66.21 (+8.38%)	
CatInt	SupFam	93.40	96.49	51.41	83.85	89.82	85.00	91.91	88.65 (-1.30%)	
	Fold	82.49	<u>85.85</u>	56.33	67.68	65.33	67.58	65.95	95.01 (+45.43%)	
CatBio	SupFam	93.19	96.97	53.78	64.05	74.65	70.92	87.59	95.90 +28.47%	
	Fold	57.18	<u>58.43</u>	49.20	57.20	55.22	56.98	57.23	71.96 (+30.32%)	
Con	SupFam	84.68	<u>92.66</u>	51.31	70.64	80.53	74.60	86.60	84.84 (+5.35%)	
	...2 tasks omitted (Rep, Ept)...									
Average AUROC%		75.92	<u>79.82</u>	51.90	65.37	69.24	68.30	72.43	80.20 (+18.13%)	
Physicochemical Property Prediction (Spearman’s ρ%)										
FlexRMSF	Fold	62.37	59.60	15.35	13.81	44.53	44.22	44.63	40.89 (-8.17%)	
	SupFam	<u>59.24</u>	56.80	11.99	7.62	39.08	38.98	40.99	47.17 (20.70%)	
...2 tasks omitted (FlexBFactor, FlexNEQ)...										
Average ρ%		<u>54.41</u>	52.73	7.80	9.84	37.35	33.49	38.08	45.26 (+21.18%)	
Structure Property Prediction (Macro F1%)										
Homo	Fold	<u>25.66</u>	22.56	11.57	5.84	30.02	18.17	29.87	23.60 (-21.39%)	
	SupFam	30.83	<u>33.86</u>	4.67	6.17	24.89	22.10	38.38	47.28 (+89.96%)	
	Fam	63.33	<u>74.22</u>	15.34	18.33	54.42	47.18	69.78	85.75 (+57.47%)	
Average Macro F1%		39.94	<u>43.55</u>	10.51	10.11	36.44	29.15	46.01	52.21 (+43.28%)	

507 **Table 2:** We annotate 100 PDBs from each dataset and report % of 1,000 random equal-length segmentations
 508 that GEOBPE matches or outscores. Omitted columns are in Table 7. Secondary structure analysis in Table 15.
 509

		BindInt	BindBio	BindShake	CatInt	CatBio	Con		Average
Domain	Mean Recall	99.95 (98.35)	100 (100.0)	100 (100.0)	100 (100.0)	99.99 (93.55)	99.95 (98.0)	... columns omitted ...	99.97 (97.97)
	Mean Precision	98.9 (53.87)	99.62 (71.92)	99.76 (68.24)	99.28 (50.49)	99.33 (42.78)	99.19 (63.89)		99.25 (54.59)
	Mean F1	99.42 (86.48)	99.81 (83.63)	99.88 (76.49)	99.64 (62.56)	99.66 (61.04)	99.57 (87.03)		99.61 (76.82)
Segment	Mean IOU	98.86 (86.32)	99.62 (83.63)	99.76 (76.54)	99.28 (62.44)	99.32 (60.94)	99.14 (86.97)		99.22 (76.75)
	Mean Recall	100 (100.0)	100 (100.0)	100 (100.0)	100 (100.0)	100 (100.0)	100 (100.0)		100.00 (100.00)
	Mean Precision	97.16 (72.04)	81.84 (61.82)	97.64 (68.33)	90.4 (63.09)	98.87 (74.76)	98.92 (92.0)		95.11 (65.62)
									97.23 (65.62)

516 motifs (aromatic cages, polar bridges, helix-helix clamps) are combined into higher-order scaffolds
 517 that mirror established biochemical organization. *These hierarchies capture geometric regularities*
 518 *and also modular design principles conserved across folds and families.* Even in compact domains,
 519 such as nucleotide-recognition modules, GEOBPE motifs reveal the coupling between geometric
 520 curvature and chemical specificity, meaning that GEOBPE surfaces reusable motifs that are both
 521 interpretable and evolutionarily grounded.

522 **Limitations.** GEOBPE currently does not incorporate sequence or side chains, but *can* via direct
 523 extensions, e.g. taking the Cartesian product of the current vocabulary with amino acid types and
 524 augmenting the backbone formulation with type-dependent χ -angle spans. The present integration
 525 with small-scale Transformers is set up to compare tokenizers’ compatibility with language modeling
 526 on structure tokens; only *relative* backbone design metrics are relevant. Generative performance de-
 527 pends on model capacity and data scale, which are *orthogonal* to the tokenizer. In the separate SSLM
 528 scalability study, we see *steep gains in generative performance* when both LM parameter count and
 529 pretraining data increase ten-fold, conforming with scaling law expectations. The improved num-
 530 bers are preliminary evidence of GEOBPE’s promise as a tokenizer for large-scale PLMs, but are not
 531 competitive with state-of-the-art backbone design models.

7 CONCLUSION

532 We present GEOBPE, a principled geometry-grounded analog of BPE for protein folds. GEOBPE
 533 (a) captures natural conformational variability in protein backbones, (b) constructs a hierarchical
 534 vocabulary of structural motifs, and (c) produces hierarchical views of folds for downstream repre-
 535 sentation learning. Its hierarchies reveal conserved modular design principles that connect structure
 536 to function. Empirically, GEOBPE advances the state of the art in tokenizer performance, out-of-
 537 distribution generalization, token and generative efficiency, downstream transfer, and interpretabil-
 538 ity. These results establish GEOBPE as a foundation for structure-native protein language models.

540 8 REPRODUCIBILITY STATEMENT
541

542 We have included detailed descriptions of our method in the main text, to the extent we believe is
543 sufficient to reproduce our method. In App. M, we include mathematical descriptions and algorithm
544 pseudocodes for all mentioned algorithms and subroutines of a non-trivial nature. In App. K, we
545 list the key hyperparameters, their effects on algorithm behavior, and the default values used in our
546 experiments. We also note any deviations from the default values used to obtain the results reported
547 in the main text. In App. J, we analyze the computational complexity of our method; we also
548 describe practical implementation choices used to make the method efficient in practice.

550 REFERENCES
551

552 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
553 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
554 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.

555 Gustaf Ahdritz, Nazim Bouatta, Christina Floristean, Sachin Kadyan, Qinghui Xia, William
556 Gerecke, Timothy J O’Donnell, Daniel Berenberg, Ian Fisk, Niccolò Zanichelli, et al. Open-
557 fold: Retraining alphafold2 yields new insights into its learning mechanisms and capacity for
558 generalization. *Nature methods*, 21(8):1514–1524, 2024.

559 Inigo Barrio-Hernandez, Jingi Yeo, Jürgen Jänes, Milot Mirdita, Cameron LM Gilchrist, Tanita
560 Wein, Mihaly Varadi, Sameer Velankar, Pedro Beltrao, and Martin Steinegger. Clustering pre-
561 dicted structures at the scale of the known protein universe. *Nature*, 622(7983):637–645, 2023.

562 Matthias Blum, Antonina Andreeva, Laise Cavalcanti Florentino, Sara Rocio Chuguransky, Tiago
563 Grego, Emma Hobbs, Beatriz Lazaro Pinto, Ailsa Orr, Typhaine Paysan-Lafosse, Irina Pona-
564 mareva, et al. Interpro: the protein sequence classification resource in 2025; mode longmeta?;. *Nucleic acids research*, 53(D1):D444–D456, 2025.

565 Carl Ivar Branden and John Tooze. *Introduction to protein structure*. Garland Science, 2012.

566 AC Camproux, P Tuffery, JP Chevrolat, JF Boisvieux, and S Hazout. Hidden markov model ap-
567 proach for identifying the modular framework of the protein backbone. *Protein engineering*, 12
568 (12):1063–1073, 1999.

569 Anne-Cloude Camproux, Romain Gautier, and Pierre Tuffery. A hidden markov model derived
570 structural alphabet for proteins. *Journal of molecular biology*, 339(3):591–605, 2004.

571 Henriette Capel, Robin Weiler, Maurits Dijkstra, Reinier Vleugels, Peter Bloem, and K Anton Feen-
572 stra. Proteinglue multi-task benchmark suite for self-supervised protein modeling. *Scientific
573 Reports*, 12(1):16047, 2022.

574 The UniProt Consortium. Uniprot: the universal protein knowledgebase in 2025. *Nucleic Acids
575 Research*, 53(D1):D609–D617, 11 2024. ISSN 1362-4962. doi: 10.1093/nar/gkae1010. URL
576 <https://doi.org/10.1093/nar/gkae1010>.

577 Sayoni Das, David Lee, Ian Sillitoe, Natalie L Dawson, Jonathan G Lees, and Christine A Orengo.
578 Functional classification of cath superfamilies: a domain-based approach for protein function
579 annotation. *Bioinformatics*, 31(21):3460–3467, 2015a.

580 Sayoni Das, Ian Sillitoe, David Lee, Jonathan G Lees, Natalie L Dawson, John Ward, and Chris-
581 tine A Orengo. Cath funfhammer web server: protein functional annotations using functional
582 family assignments. *Nucleic acids research*, 43(W1):W148–W153, 2015b.

583 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
584 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning-
585 based protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.

586 Alexandre G de Brevern. New assessment of a structural alphabet. *In silico biology*, 5(3):283–289,
587 2005.

594 Alexandre G de Brevern, Catherine Etchebest, and Serge Hazout. Bayesian probabilistic approach
 595 for predicting backbone structures in terms of protein blocks. *Proteins: Structure, Function, and*
 596 *Bioinformatics*, 41(3):271–287, 2000.

597 Alexandre G de Brevern, Hélène Valadié, Serge Hazout, and Catherine Etchebest. Extension of a
 598 local backbone description using a structural alphabet: a new approach to the sequence-structure
 599 relationship. *Protein Science*, 11(12):2871–2886, 2002.

600 Edo Dotan, Gal Jaschek, Tal Pupko, and Yonatan Belinkov. Effect of tokenization on transformers
 601 for biological sequences. *Bioinformatics*, 40(4):btae196, 2024.

602 Janani Durairaj, Mehmet Akdel, Dick de Ridder, and Aalt DJ van Dijk. Geometricus represents pro-
 603 tein structures as shape-mers derived from moment invariants. *Bioinformatics*, 36(Supplement_2):
 604 i718–i725, 2020.

605 Sam Gelman, Bryce Johnson, Chase R Freschlin, Arnav Sharma, Sameer D’Costa, John Peters,
 606 Anthony Gitter, and Philip A Romero. Biophysics-based protein language models for protein
 607 engineering. *Nature Methods*, pp. 1–12, 2025.

608 Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
 609 Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
 610 of evolution with a language model. *Science*, 387(6736):850–858, 2025.

611 Michael Heinzinger, Konstantin Weissenow, Joaquin Gomez Sanchez, Adrian Henkel, Milot
 612 Mirdita, Martin Steinegger, and Burkhard Rost. Bilingual language model for protein sequence
 613 and structure. *NAR Genomics and Bioinformatics*, 6(4):lqae150, 2024.

614 Ioan Ieremie, Rob M Ewing, and Mahesan Niranjan. Protein language models meet reduced amino
 615 acid alphabets. *Bioinformatics*, 40(2):btae061, 2024.

616 Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult. Critical
 617 assessment of methods of protein structure prediction (casp)—round xiv. *Proteins: Structure,*
 618 *Function, and Bioinformatics*, 89(12):1607–1617, 2021.

619 Tim Kucera, Carlos Oliver, Dexiong Chen, and Karsten Borgwardt. Proteinshake: Building datasets
 620 and benchmarks for deep learning on protein structures. *Advances in Neural Information Pro-
 621 cessing Systems*, 36:58277–58289, 2023.

622 N Jesper Larsson and Alistair Moffat. Off-line dictionary-based compression. *Proceedings of the
 623 IEEE*, 88(11):1722–1732, 2002.

624 Mingchen Li, Yang Tan, Xinzhu Ma, Bozitao Zhong, Huiqun Yu, Ziyi Zhou, Wanli Ouyang, Bingxin
 625 Zhou, Pan Tan, and Liang Hong. Prosst: Protein language modeling with quantized structure and
 626 disentangled attention. *Advances in Neural Information Processing Systems*, 37:35700–35726,
 627 2024.

628 Xiaohan Lin, Zhenyu Chen, Yanheng Li, Zicheng Ma, Chuanliu Fan, Ziqiang Cao, Shihao Feng,
 629 Yi Qin Gao, and Jun Zhang. Tokenizing foldable protein structures with machine-learned artificial
 630 amino-acid vocabulary. *bioRxiv*, pp. 2023–11, 2023a.

631 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 632 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
 633 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023b.

634 LeAnn M Lindsey, Nicole L Pershing, Anisa Habib, Keith Dufault-Thompson, W Zac Stephens,
 635 Anne J Blaschke, Xiaofang Jiang, and Hari Sundar. The impact of tokenizer selection in genomic
 636 language models. *Bioinformatics*, pp. btaf456, 2025.

637 Craig O Mackenzie. A tertiary alphabet for the observable protein structural universe captures
 638 sequence-structure relationships. *Protein Sci*, 25:75, 2016.

639 Swapnil Mahajan, Alexandre G de Brevern, Yves-Henri Sanejouand, Narayanaswamy Srinivasan,
 640 and Bernard Offmann. Use of a structural alphabet to find compatible folds for amino acid se-
 641 quences. *Protein Science*, 24(1):145–153, 2015.

648 Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
 649 Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range
 650 genomic sequence modeling at single nucleotide resolution. *Advances in neural information*
 651 *processing systems*, 36:43177–43201, 2023.

652 653 Gregory A Petsko and Dagmar Ringe. *Protein structure and function*. New Science Press, 2004.

654 655 Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny, Pieter
 656 Abbeel, and Yun Song. Evaluating protein transfer learning with tape. *Advances in neural infor-*
 657 *mation processing systems*, 32, 2019.

658 659 Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
 660 Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
 661 scaling unsupervised learning to 250 million protein sequences. *Proceedings of the National*
 662 *Academy of Sciences*, 118(15):e2016239118, 2021.

663 664 Xavier Robin, Juergen Haas, Rafal Gumienny, Anna Smolinski, Gerardo Tauriello, and Torsten
 665 Schwede. Continuous automated model evaluation (cameo)—perspectives on the future of fully
 666 automated evaluation of structure prediction methods. *Proteins: Structure, Function, and Bioin-*
 667 *formatics*, 89(12):1977–1986, 2021.

668 669 Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. Saprot: Protein
 670 language modeling with structure-aware vocabulary. *BioRxiv*, pp. 2023–10, 2023.

671 672 Burak Suyunu, Enes Taylan, and Arzucan Özgür. Linguistic laws meet protein sequences: A com-
 673 parative analysis of subword tokenization methods. In *2024 IEEE International Conference on*
 674 *Bioinformatics and Biomedicine (BIBM)*, pp. 4489–4496. IEEE, 2024.

675 676 Yang Tan, Mingchen Li, Ziyi Zhou, Pan Tan, Huiqun Yu, Guisheng Fan, and Liang Hong. Peta:
 677 evaluating the impact of protein transfer learning with sub-word tokenization on downstream
 678 applications. *Journal of Cheminformatics*, 16(1):92, 2024.

679 680 Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
 681 Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
 682 scaffolding problem. *arXiv preprint arXiv:2206.04119*, 2022.

683 684 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 685 *neural information processing systems*, 30, 2017.

686 687 Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
 688 Cameron LM Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein struc-
 689 *ture search with foldseek*. *Nature biotechnology*, 42(2):243–246, 2024.

690 691 Yann Vander Meersche, Gabriel Cretin, Aria Gheeraert, Jean-Christophe Gelly, and Tatiana Ga-
 692 lochkina. Atlas: protein flexibility description from atomistic molecular dynamics simulations.
 693 *Nucleic acids research*, 52(D1):D384–D392, 2024.

694 695 Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
 696 Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. AlphaFold protein
 697 structure database: massively expanding the structural coverage of protein-sequence space with
 698 high-accuracy models. *Nucleic acids research*, 50(D1):D439–D444, 2022.

699 700 Iyanar Vetrivel, Swapnil Mahajan, Manoj Tyagi, Lionel Hoffmann, Yves-Henri Sanejouand,
 701 Narayanaswamy Srinivasan, Alexandre G De Brevern, Frédéric Cadet, and Bernard Offmann.
 702 Knowledge-based prediction of protein backbone conformation using a structural alphabet. *PloS*
 703 *one*, 12(11):e0186215, 2017.

704 705 Kevin E Wu, Kevin K Yang, Rianne van den Berg, Sarah Alamdari, James Y Zou, Alex X Lu, and
 706 Ava P Amini. Protein structure generation via folding diffusion. *Nature communications*, 15(1):
 707 1059, 2024.

708 709 Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan
 710 Wu, Qi Xie, Bonnie Berger, et al. High-resolution de novo structure prediction from primary
 711 sequence. *BioRxiv*, pp. 2022–07, 2022.

702 Kevin K Yang, Niccolò Zanichelli, and Hugh Yeh. Masked inverse folding with sequence transfer for
703 protein representation learning. *Protein Engineering, Design and Selection*, 36:gzad015, 2023.
704

705 Xinyu Yuan, Zichen Wang, Marcus Collins, and Huzefa Rangwala. Protein structure tokenization:
706 Benchmarking and new recipe. *arXiv preprint arXiv:2503.00089*, 2025.

707 Baoquan Zhang, Huaibin Wang, Chuyao Luo, Xutao Li, Guotao Liang, Yunming Ye, Xiaochen
708 Qi, and Yao He. Codebook transfer with part-of-speech for vector-quantized image modeling.
709 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
710 7757–7766, 2024a.

711 Chengxin Zhang, Xi Zhang, Lydia Freddolino, and Yang Zhang. Biolip2: an updated structure
712 database for biologically relevant ligand–protein interactions. *Nucleic Acids Research*, 52(D1):
713 D404–D412, 2024b.

714 Jiayou Zhang, Barthelemy Meynard-Piganeau, James Gong, Xingyi Cheng, Yingtao Luo, Hugo Ly,
715 Le Song, and Eric Xing. Balancing locality and reconstruction in protein structure tokenizer.
716 *bioRxiv*, pp. 2024–12, 2024c.

717 Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-
718 2: Efficient foundation model and benchmark for multi-species genome. *arXiv preprint
719 arXiv:2306.15006*, 2023.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756
757

A ABLATION STUDIES

758

GEOBPE is task-agnostic, and using task-specific data does not increase downstream performance of GEOBPE-TRANSFER. For each task i , let T_i^{task} be a tokenizer fitted using only $\mathcal{D}_i^{\text{train}}$ (with its own vocabulary \mathcal{V}_i but the same feature extractor F_Θ), and define $r_{\mathcal{V}_i}(\mathbf{x}) = \Psi_{\mathcal{V}_i}(F_\Theta(\mathbf{x}))$. We follow the same downstream transfer evaluation. We find an interesting result in Table 3, where directly training on the task-specific dataset does not meaningful change downstream prediction results. A closer look reveals the underlying reason is because the individual tokens do not differ significantly; motifs added to \mathcal{V} , in order, are similar across both **GEOBPE-TRANSFER** and **GEOBPE-TRANSFER** (task-specific). We can interpret this both positively and negatively. GEOBPE is insensitive to task-specific data and learns the “language” of protein folds consistently. This may be desirable for reusability of a tokenizer, as one does not need to retrain it for different data distributions, as all protein folds obey the same universal principles (Petsko & Ringe, 2004). At the same time, this upper bound tests whether the tokenizer can tailor its vocabulary to individual datasets for potentially higher scores, indicating GEOBPE by itself may lack the parameter capacity to overfit to individual tasks.

771

Table 3: **GEOBPE-TRANSFER** (1%) runs Algo. 1 with 1% of the pretrain training set, then uses the output vocabulary to induce features; **GEOBPE-TRANSFER** (task-specific) does not use pretraining data; instead it runs Algo. 1 with downstream data to learn a vocabulary. All use default value parameters in App. K.

774

Model	Functional Site Prediction (AUROC %)														Avg	
	Bindit (Fold)	Bindit (SupFam)	BindBio (Fold)	BindBio (SupFam)	BindShake (Org)	Carlit (Fold)	Carlit (SupFam)	CarBio (Fold)	CarBio (SupFam)	Con (Fold)	Con (SupFam)	Rep (Fold)	Rep (SupFam)	Ept (Fold)	Ept (SupFam)	Avg
GEOBPE-TRANSFER (1%)	59.98	90.17	95.00	95.89	87.73	66.28	88.73	94.95	95.95	71.75	84.56	56.37	72.87	61.83	77.55	80.12
GEOBPE-TRANSFER	59.19	91.31	94.94	95.94	87.73	66.21	88.65	95.01	95.90	71.96	84.84	56.44	72.98	64.78	77.06	80.20
GEOBPE-TRANSFER (task-specific)	60.16	89.93	95.10	95.92	87.73	65.98	88.82	94.98	95.90	71.85	85.92	56.33	72.72	65.78	77.04	80.12

Model	Physicochemical Property Prediction (Spearman’s ρ %)										Structure Property Prediction (Macro F1 %)											
	FlexRMSF (Fold)	FlexRMSF (SupFam)	FlexBFactor (Fold)	FlexBFactor (SupFam)	FlexNEQ (Fold)	FlexNEQ (SupFam)	Avg	Homo (Fold)	Homo (SupFam)	Homo (Fam)	Avg	FlexRMSF (Fold)	FlexRMSF (SupFam)	Avg	Homo (Fold)	Homo (SupFam)	Homo (Fam)	Avg				
GEOBPE-TRANSFER (1%)	40.42	47.55	34.74	32.21	56.78	55.32	44.50	21.65	50.25	84.87	52.26	40.89	47.17	35.61	56.65	53.98	45.26	23.60	47.28	85.75	52.21	
GEOBPE-TRANSFER												39.39	44.00	37.94	38.36	56.22	54.22	45.02	24.22	46.58	84.57	51.79
GEOBPE-TRANSFER (task-specific)																						

777

GEOBPE-TRANSFER maintains comparable downstream transfer performance even when **GEOBPE** was fitted on 1% of pretraining data. In Table 3, we see GEOBPE fitted on just 1% of the pretraining data is enough to transfer, on average, the same amount of performance downstream as **GEOBPE** fitted on the full dataset. There are no meaningful differences between **GEOBPE-TRANSFER** and **GEOBPE-TRANSFER** (1%), with **GEOBPE-TRANSFER** doing 1.7% better on physicochemical property prediction and **GEOBPE-TRANSFER** (1%) doing better 0.2% better on functionals ite prediction. These findings can be interpreted both positively and negatively for **GEOBPE** learned vocabularies: (1) they are *extremely informative*, learning useful signals to transfer downstream with as few as 300 PDB structures; (2) they *underfit* the data, with no noticeable improvements from using more data to learn the tokenizer. Taken together, these findings imply **GEOBPE** is a lightweight add-on on top of any pretrained features Θ , but feeding more data to **GEOBPE** yields diminishing downstream returns quickly.

779

GEOBPE-TRANSFER does not underfit the data for structure-related downstream tasks.

793

In Table 4, we see for physicochemical (residue-level regression) and fold-level tasks, the model indicates a clear propensity for more training data, with step-wise gains for every 20% of training data. 20% \rightarrow 100% training data sees performance lift significantly (+18.89% average ρ % and +45.35%, respectively). For residue-level classification tasks, the lift is only marginal (+1.28%). We hypothesize the cause is not limited capacity, but rather that the tasks are localized label predictions; a residue-level receptive field is sufficient when features are informative.

799

This shows GeoBPE’s data-efficiency at learning a vocabulary does not limit its capacity on downstream tasks that require multi-scale resolution (e.g. structural flexibility or fold-level classification), which existing fixed-size tokenizers cannot at both residue and structure-level. Thus, the data-efficiency strengths of GeoBPE *training* is orthogonal to downstream modeling. The structure-related tasks in Table 4 see large gains in performance with more training data, implying **GEOBPE-TRANSFER** scales to complex, hierarchical structural patterns that can only be learned from more data.

806

GEOBPE is data-efficient OOD, but more training data can lower training distortion.

808

In Table 5, we see **GEOBPE** (1%) consistently achieves lower distortion (\downarrow 7.7% RMSD averaged, \uparrow 0.06 LDDT summed across all four runs and both test splits) than **GEOBPE**. This suggests a small, well-chosen set of structures is enough for **GEOBPE** to achieve superior reconstruction on

810 **Table 4:** We use GEOBPE-TRANSFER from Table 1 (reported as 100%), then vary only the percent of downst-
 811 ream task training data available, fixing the same valid and test sets.

Task	Split	\model				
		20%	40%	60%	80%	100%
Functional Site Prediction (AUROC%)						
BindInt	Fold	58.78	61.18	59.79	59.45	59.19
	SupFam	89.55	89.88	90.42	90.71	91.31
BindBio	Fold	94.86	94.82	94.96	94.97	94.94
	SupFam	95.69	95.79	95.88	95.97	95.94
BindShake	Org	87.40	87.59	87.65	87.64	87.73
	Fold	64.66	65.55	66.94	66.29	66.21
CatInt	SupFam	87.96	88.27	88.78	88.73	88.65
	Fold	94.95	94.92	94.94	94.96	95.01
CatBio	SupFam	95.67	95.81	95.96	95.97	95.90
	Fold	71.42	71.37	71.72	71.74	71.96
Con	SupFam	83.77	84.02	84.76	84.76	84.84
	Fold	55.04	54.25	56.02	56.41	56.44
Rep	SupFam	73.24	75.18	75.89	71.58	72.98
	Fold	63.63	53.28	61.72	61.66	64.78
Ept	SupFam	71.21	49.39	73.59	76.01	77.06
	Average AUROC%	79.19	77.42	79.93	79.79	80.20
Physicochemical Property Prediction (Spearman's ρ%)						
FlexRMSF	Fold	41.49	43.33	38.48	39.02	40.89
	SupFam	34.74	45.41	44.61	47.06	47.17
FlexBFactor	Fold	23.90	27.86	33.83	34.82	37.28
	SupFam	23.80	25.46	37.70	36.49	35.61
FlexNEQ	Fold	54.40	56.07	55.98	57.53	56.65
	SupFam	51.12	53.77	52.52	54.96	53.98
Average ρ %		38.24	41.98	43.85	44.98	45.26
	Average Macro F1%	35.92	43.11	49.20	50.09	52.21

845 **Table 5:** We rerun the GEOBPE experiments used to trace out the Pareto Front in Fig. 4 by using 1% of
 846 pretraining data. We include raw numbers of Fig. 4 (bottom rows) for comparison. All other hyperparameter
 847 settings are kept the same (App. K).

	Train		Valid		CAMEO		CASP14	
	RMSD	LDDT	RMSD	LDDT	RMSD	LDDT	RMSD	LDDT
Geobpe (1%) ($ V = 600$)	1.72	0.74	1.63	0.73	1.66	0.73	1.53	0.72
Geobpe ($ V = 600$)	1.66	0.73	1.71	0.72	1.77	0.72	1.53	0.72
Geobpe (1%) ($ V = 2278$)	1.57	0.75	1.51	0.71	1.51	0.74	1.43	0.73
Geobpe ($ V = 2500$)	1.41	0.75	1.50	0.74	1.57	0.74	1.51	0.73
Geobpe (1%) ($ V = 5278$)	1.36	0.77	1.34	0.76	1.35	0.75	1.30	0.74
Geobpe ($ V = 6000$)	1.37	0.76	1.46	0.75	1.52	0.74	1.54	0.72
Geobpe (1%) ($ V = 20278$)	1.29	0.77	1.28	0.76	1.28	0.76	1.37	0.73
Geobpe ($ V = 21000$)	1.21	0.77	1.28	0.76	1.40	0.75	1.55	0.72

862 *OOD* structures, and more training data can introduce noise and hinder generalization. However,
 863 GEOBPE (1%) obtains $\uparrow 5.1\%$ averaged, $\downarrow 0.02$ LDDT summed across all four runs on the re-

spective training splits. A lower RMSD suggests GEOBPE better captures global structural fidelity; by constructing the vocabulary from the full pretraining dataset, it can choose more representative prototypes; hence, its vocabulary better preserves global fold. Meanwhile, a slightly lower LDDT indicates GEOBPE (1%) can capture a few local details in the 1% subset of structures better than GEOBPE. This suggests GEOBPE (1%) is more sensitive to the individual local interactions of the small set of structures it fitted with; GEOBPE considers vastly more structures. In summary, GEOBPE is preferred for fold-preserving *compression* of whole datasets, but GEOBPE (1%) can be feasible if not superior when GEOBPE is primarily used to tokenize unseen data.

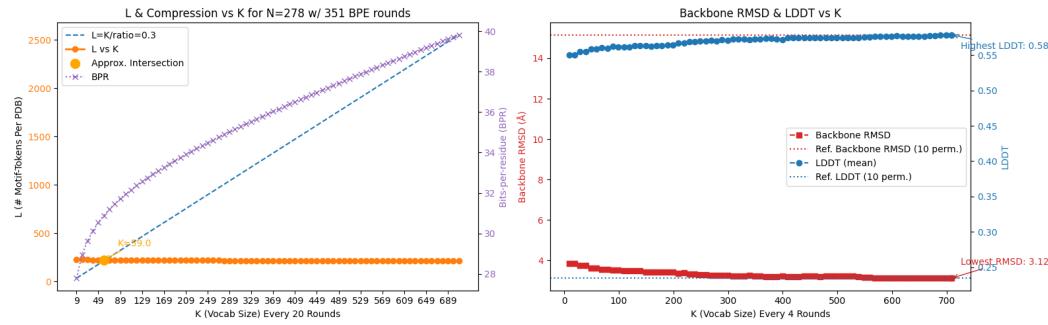


Figure 5: We plot the BPR (purple), length (orange), backbone distortion (RMSD, LDDT) as $|\mathcal{V}|$ across BPE steps. Ref. backbone RMSD/LDDT (dotted lines) uses random angle values for all internal angles, sampled from the empirical angle distribution.

GEOBPE is multi-resolution, revealing finer details as more tokens are introduced. In Fig. 5, we run a coarse-grained version of GEOBPE (small initial $|\mathcal{V}|$) to observe an interesting feature of GEOBPE’s design. As newly introduced tokens *re*-quantize the occurrences from the original data (span gathering step in Alg. 9, tokenization can adaptively *increase* the resolution if the new prototypes better capture the modes of variability for those occurrences than their previous quantization. We expose this via hyperparameters `bins` & `num_p` (see App. K), which tradeoff the super-resolution effect against coarse-graining effect at different token sizes, offering fine-grained control.

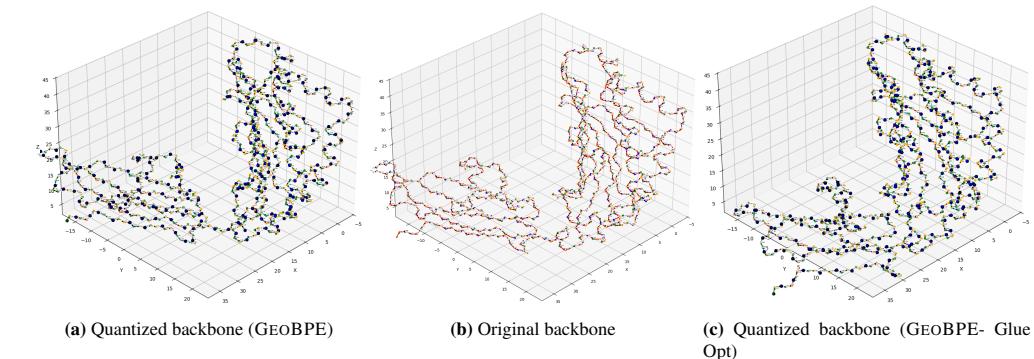


Figure 6: We ran an ablation for GEOBPE version with $|\mathcal{V}| = 600$, keeping all parameters the same but toggling whether glue opt is skipped in Alg. 18. We visualize the original (center), GEOBPE (left) and GEOBPE without glue opt (right) backbone states.

Rigid body refinement as an essential step for preserving fold integrity. If we omit the glue optimization from Algs 18 and 9 altogether, we see the effects in Fig. 6. For that experiment, we find avg. RMSD increase $1.66 \rightarrow 4.39$, and avg. LDDT drop $0.73 \rightarrow 0.69$ when glue opt is turned off. Rigid body refinement preserves the overall fold and modular architecture; turning it off causes individual domains to distort – the parallel strands drift apart – as well as the overall configuration to lose its integrity. Over the course of many time steps, global drift accumulate as local rounding occurs. Rigid body refinement is an indispensable subroutine for ensuring the overall quantization faithfully reproduces the fold integrity.

918 **Increasing M_{\max} beyond a certain threshold does not yield additional distortion benefits.** We
 919 did a study comparing GEOBPE ($\mathcal{V} = 6000$, $M_{\max} \leftarrow 5000$, full settings in App. K) with “higher-
 920 resolution” settings $\text{bins} \leftarrow \{1 : 5000\}$, $M_{\max} \leftarrow 20000$. Interestingly, we found overall RMS-
 921 D/LDDT did *not* improve (1.40 vs 1.39, 0.76 vs 0.75, both in favor of the incumbent) despite
 922 increased computational expenditure spent on Alg. 8. The most likely explanation is there is no
 923 marginal utility increasing M_{\max} beyond 5000, and differences in distortion rates are likely due to
 924 the numerical stability of Alg. 12 more so than the hyperparameters.

926 B DATASET DETAILS

928 **Training.** For training GEOBPE, we started with the pretraining data splits released by Yuan et al.
 929 (2025), which follows the same criteria used to train the OpenFold2 model Ahdriz et al. (2024).
 930 For VanillaVQ and AminoASeed baselines, we use the same splits as Yuan et al. (2025) directly.
 931 For GEOBPE, we further filtered the data down to only ones with complete backbone information
 932 (e.g. backbone dihedrals are not NaN, each residue contains N, CA and C), resulting in 34818
 933 structures. We further excluded structures shorter than 40 or longer than 512 residues, resulting in
 934 33992 structures for training GeoBPE and 3810 for validation (only used for E).

935 **Held-out testing.** We use CAMEO and CASP14 test sets for evaluating the generalization of tok-
 936 enizers (Robin et al., 2021; Kryshtafovych et al., 2021). For CASP14, we follow Yuan et al. (2025)
 937 and select only proteins released after the pretraining data cutoff date.

938 **Downstream Tasks.** Our 8 downstream tasks cover a breadth of structure and function-related
 939 predictions. They are divided into 3 categories and are assembled from 6 sources: InterPro (BindInt,
 940 Con, Rep) (Blum et al., 2025), BioLIP2 (BindBio, CatBio) (Zhang et al., 2024b), ProteinShake
 941 (BindShake) (Kucera et al., 2023), ProteinGLUE (Ept) (Capel et al., 2022), TAPE (Homo) (Rao
 942 et al., 2019) and ATLAS (FlexRMSF, FlexBFactor, FlexNEQ) (Vander Meersche et al., 2024).

- 943 **1. Functional site prediction:** Binding site prediction (BindInt), catalytic site (CatInt), conserved
 944 site prediction (Con), repeat motif prediction (Rep), epitope region prediction (Ept)
- 945 **2. Physicochemical property prediction:** Structural flexibility prediction, measured using metric
 946 RMSF (FlexRMSF), B-factor (FlexBFactor) and Neq (FlexNEQ)
- 947 **3. Structure classification (protein-level):** Remote homology detection (Homo)

948 **Functional site prediction** tasks predict whether each residue is in a site of functional importance
 949 (binding, catalytic activity or antibody recognition) or part of an evolutionary motif (conserved site
 950 or part of a repeated motif). PSTs which learn semantically meaningful signals like motif boundaries
 951 are expected to perform well on these tasks.

952 **Physicochemical property prediction** tasks predict the flexibility of each residue as a continuous
 953 value. Higher flexibility can be a clue that the residue may be more amenable to functional activity.
 954 PSTs that capture a fine-grained view of the localized protein dynamics are expected to predict
 955 residue-level flexibility well.

956 **Remote homology detection** is a multi-class fold classification problem. Proteins which belong to
 957 the same fold class can be distantly related or share similar functions on the whole. Therefore, PSTs
 958 that capture the overall fold-level geometry are expected to do well on this task.

959 For more dataset statistics and preparation details, see Yuan et al. (2025).

962 C ADDITIONAL RESULTS

964 **Main Text Tables.** Table 6 contains additional tasks Rep, Ept, FlexRMSF, and FlexBFactor. Table
 965 7 contains additional task data Repeat, Ept, Atlas, Homo. Task abbreviations are defined in App. B.

967 **Secondary Structure Element (SSE) Agreement Results.** We ran a new expert agreement eval-
 968 uation against the 8 basic SSEs (from DSSP). The summary is in 15. We do see above-random
 969 enrichment of SSEs in our tokens across all-metrics. The recall of existing SSEs is exceptional:
 970 98.28% block-level, 99.28% segment-level, averaged over datasets and SSEs. This indicates the
 971 ability to recapitulate the 8 known elements, while the milder precision (59.57 block, 77.80 seg-
 972 ment) hints that GeoBPE goes beyond SSEs. As prior agreement results and case studies show,

Table 6: Additional downstream transfer performance tasks. Setup follows Table 1.

Task	Split	Continuous PST				Discrete PST			
		ProteinMPNN	MIF	FoldSeek	ProTokens	ESM3	VanillaVQ	AminoAseed	GEOBPE-TRANSFER (v.s. ESM3)
Functional Site Prediction (AUROC%)									
Rep	Fold	77.63	74.53	47.71	53.20	74.70	75.99	74.97	56.44 (-24.44%)
	SupFam	80.71	83.11	52.54	77.25	82.36	82.09	84.57	72.98 (-11.39%)
Ept	Fold	62.84	68.78	54.56	52.49	63.69	59.28	62.16	64.78 (+1.71)%
	SupFam	64.84	82.98	50.53	61.92	61.97	67.24	72.02	77.06 (+24.35)%
Physicochemical Property Prediction (Spearman's ρ %)									
FlexBFactor	Fold	31.88	34.60	4.17	6.67	23.60	22.32	21.30	37.28 (+57.97%)
	SupFam	34.56	35.23	6.99	5.47	25.80	23.73	21.76	35.61 (+38.02%)
FlexNEQ	Fold	69.69	65.32	5.71	12.98	45.05	35.95	49.64	56.65 (+25.75%)
	SupFam	68.69	64.82	2.66	10.51	35.45	35.61	50.15	53.98 (+52.27%)

Table 7: Additional expert agreement results. Setup follows Table 2.

		Rep	Ept	Atlas	Homo
Domain	Mean Recall	99.93 (99.34)	100 (100.0)	99.93 (90.47)	99.98 (100.0)
	Mean Precision	99.2 (43.59)	99.75 (77.89)	98.44 (31.29)	99 (41.92)
	Mean F1	99.56 (81.86)	99.87 (82.68)	99.17 (67.37)	99.48 (79.07)
	Mean IOU	99.12 (82.18)	99.75 (82.68)	98.37 (67.07)	98.98 (78.78)
Segment	Mean Recall	100 (100.0)	100 (100.0)	100 (100.0)	100 (100.0)
	Mean Precision	98.76 (61.93)	95.52 (60.8)	96.09 (47.29)	95.91 (54.13)
	Mean F1	99.38 (61.93)	97.68 (60.8)	98 (47.29)	97.91 (54.13)

GeoBPE can find biologically meaningful regions (e.g. conserved homology, functional sites) and is not constrained to SSE boundaries, with the data dictating the exact high-level clusters.

D TOKEN EFFICIENCY METRICS

Let $v = \{1, \dots, K\}$ denote the codebook (size K). Given a corpus tokenized into a flat list of code indices, let c_j be the count of code j and $N = \sum_{j=1}^K c_j$ the total token count. We define the empirical unigram distribution

$$p(j) = \frac{c_j}{N} \quad \text{for } j \in v.$$

Utilization rate (UR). UR measures how many distinct codes are actually used:

$$\text{UR} = \frac{1}{K} |\{j \in v : c_j > 0\}| \in [0, 1].$$

We report UR in percent. UR is important for diagnosing codebook collapse, a well-known phenomenon in VQ-VAEs where only a small number of codes are actively used Zhang et al. (2024a). This creates a quantization bottleneck, handicapping the tokenizer’s performance and efficiency Yuan et al. (2025).

Unigram entropy and perplexity. Using the Shannon entropy (natural logarithm),

$$H = - \sum_{j \in v} p(j) \log p(j), \quad \text{PPL} = \exp(H).$$

This *codebook perplexity* reflects how uniformly codes are used (model-free, ignores sequence context).

Max-normalized perplexity. Because the maximum entropy at uniform is $\log K$ (hence $\text{PPL}_{\max} = K$), we also report the scale-free ratio

$$\widetilde{\text{PPL}} = \frac{\text{PPL}}{K} = \exp\left(\frac{H}{\log K} \cdot \log K\right) \frac{1}{K} = \exp(H - \log K) \in (0, 1].$$

E SMALL STRUCTURE LANGUAGE MODEL EVALUATION

Table 8: Secondary structure element (SSE) agreement results. Setup is the same as in Sec. G, but stratified over 8 basic secondary structure building blocks. Annotations are obtained from DSSP.

Metric / SSE	BindInt	BindBio	BindShake	CatInt	CatBio	Con	Repeat	Ept	Atlas	Homo
Mean recall H	29.11 (98.22)	33.13 (97.42)	30.76 (96.39)	33.97 (98.1)	32.93 (96.48)	29.11 (98.22)	33.13 (97.42)	30.76 (96.39)	33.97 (98.1)	32.93 (96.48)
Mean recall G	19.15 (99.4)	31.13 (98.61)	30.87 (98.55)	34.66 (98.75)	32.29 (98.71)	19.15 (99.4)	31.13 (98.61)	30.87 (98.55)	34.66 (98.75)	32.29 (98.71)
Mean recall I	10.42 (100.0)	30.75 (100.0)	17.59 (100.0)	10.85 (99.26)	30.85 (99.68)	10.42 (100.0)	30.75 (100.0)	17.59 (100.0)	10.85 (99.26)	30.85 (99.68)
Mean recall E	41.24 (99.56)	34.75 (98.46)	36.17 (97.49)	30.82 (97.51)	34.93 (97.99)	41.24 (99.56)	34.75 (98.46)	36.17 (97.49)	30.82 (97.51)	34.93 (97.99)
Mean recall B	38.13 (100.0)	32.24 (100.0)	38.72 (100.0)	40.22 (100.0)	31.67 (100.0)	38.13 (100.0)	32.24 (100.0)	38.72 (100.0)	40.22 (100.0)	31.67 (100.0)
Mean recall T	32.78 (98.74)	33.08 (97.4)	32.26 (96.41)	33.75 (96.67)	32.91 (97.08)	32.78 (98.74)	33.08 (97.4)	32.26 (96.41)	33.75 (96.67)	32.91 (97.08)
Mean recall S	33.92 (99.32)	33.29 (98.0)	32.91 (97.72)	36.01 (97.4)	33.12 (97.96)	33.92 (99.32)	33.29 (98.0)	32.91 (97.72)	36.01 (97.4)	33.12 (97.96)
Mean recall -	32.7 (97.81)	32.76 (97.17)	33.02 (96.16)	34.71 (96.86)	32.65 (96.03)	32.7 (97.81)	32.76 (97.17)	33.02 (96.16)	34.71 (96.86)	32.65 (96.03)
Mean precision H	31.34 (54.95)	34.06 (48.88)	31.33 (51.22)	35.54 (48.86)	33.32 (46.04)	31.34 (54.95)	34.06 (48.88)	31.33 (51.22)	35.54 (48.86)	33.32 (46.04)
Mean precision G	17.93 (79.42)	29.28 (65.93)	28.95 (62.87)	32.63 (65.07)	30.32 (64.77)	17.93 (79.42)	29.28 (65.93)	28.95 (62.87)	32.63 (65.07)	30.32 (64.77)
Mean precision I	10.09 (94.67)	29.93 (87.77)	16.55 (87.53)	10.37 (93.27)	30.16 (88.4)	10.09 (94.67)	29.93 (87.77)	16.55 (87.53)	10.37 (93.27)	30.16 (88.4)
Mean precision E	39.54 (47.86)	33.59 (46.21)	34.84 (45.6)	29.58 (53.03)	33.53 (45.56)	39.54 (47.86)	33.59 (46.21)	34.84 (45.6)	29.58 (53.03)	33.53 (45.56)
Mean precision B	26.8 (74.03)	21.86 (71.01)	26.66 (68.64)	26.21 (61.46)	21.2 (69.63)	26.8 (74.03)	21.86 (71.01)	26.66 (68.64)	26.21 (61.46)	21.2 (69.63)
Mean precision T	28.59 (53.66)	28.55 (50.1)	27.98 (50.94)	29.18 (52.52)	28.13 (48.36)	28.59 (53.66)	28.55 (50.1)	27.98 (50.94)	29.18 (52.52)	28.13 (48.36)
Mean precision S	26.78 (56.59)	25.28 (50.82)	24.66 (54.22)	26.52 (45.96)	25.0 (50.82)	26.78 (56.59)	25.28 (50.82)	24.66 (49.22)	26.52 (45.95)	25.0 (50.96)
Mean precision -	27.07 (54.17)	26.5 (48.75)	26.32 (44.84)	28.07 (51.65)	25.99 (48.15)	27.07 (54.17)	26.5 (48.75)	26.32 (44.84)	28.07 (51.65)	25.99 (48.15)
Mean f1 H	29.42 (61.79)	33.12 (60.16)	30.7 (62.58)	34.0 (59.45)	32.79 (58.18)	29.42 (61.79)	33.12 (60.16)	30.7 (62.58)	34.0 (59.45)	32.79 (58.18)
Mean f1 G	18.44 (83.1)	30.03 (72.52)	29.75 (70.88)	33.34 (72.73)	31.15 (72.15)	18.44 (83.1)	30.03 (72.52)	29.75 (70.88)	33.34 (72.73)	31.15 (72.15)
Mean f1 I	10.25 (95.59)	30.24 (89.98)	17.04 (89.31)	10.59 (94.02)	30.38 (90.53)	10.25 (95.59)	30.24 (89.98)	17.04 (89.31)	10.59 (94.02)	30.38 (90.53)
Mean f1 E	40.21 (59.65)	33.88 (60.28)	35.25 (59.17)	29.98 (63.68)	33.99 (60.01)	40.21 (59.65)	33.88 (60.28)	35.25 (59.17)	29.98 (63.68)	33.99 (60.01)
Mean f1 B	30.57 (75.28)	25.3 (73.05)	30.65 (71.04)	30.86 (74.54)	24.67 (71.8)	30.57 (75.28)	25.3 (73.05)	30.65 (71.04)	30.86 (74.54)	24.67 (71.8)
Mean f1 T	30.22 (62.79)	30.27 (61.7)	29.61 (63.41)	30.93 (64.04)	29.95 (61.29)	30.22 (62.79)	30.27 (61.7)	29.61 (63.41)	30.93 (64.04)	29.95 (61.29)
Mean f1 S	29.24 (61.77)	28.04 (58.79)	27.46 (57.52)	29.76 (54.36)	27.79 (59.56)	29.24 (61.77)	28.04 (58.79)	27.46 (57.52)	29.76 (54.36)	27.79 (59.56)
Mean f1 -	28.82 (61.51)	28.59 (60.08)	28.57 (59.89)	30.35 (63.51)	28.25 (60.75)	28.82 (61.51)	28.59 (60.08)	28.57 (59.89)	30.35 (63.16)	28.25 (60.75)
Mean iou H	28.4 (61.54)	32.22 (59.93)	29.94 (62.38)	32.95 (59.09)	31.96 (57.96)	28.4 (61.54)	32.22 (59.93)	29.94 (62.38)	32.95 (59.09)	31.96 (57.96)
Mean iou G	17.75 (83.07)	28.87 (72.45)	28.59 (70.78)	31.99 (72.63)	29.98 (72.11)	17.75 (83.07)	28.87 (72.45)	28.59 (70.78)	31.99 (72.63)	29.98 (72.11)
Mean iou I	10.09 (95.59)	29.58 (89.98)	16.52 (89.31)	10.31 (94.02)	29.67 (90.51)	10.09 (95.59)	29.58 (89.98)	16.52 (89.31)	10.31 (94.02)	29.67 (90.51)
Mean iou E	39.1 (59.46)	32.76 (59.84)	34.14 (58.81)	29.02 (63.37)	32.9 (59.53)	39.1 (59.46)	32.76 (59.84)	34.14 (58.81)	29.02 (63.37)	32.9 (59.53)
Mean iou B	26.79 (74.03)	21.86 (71.14)	26.66 (68.8)	26.21 (61.53)	21.62 (69.74)	26.79 (74.03)	21.86 (71.14)	26.66 (68.8)	26.21 (61.53)	21.2 (69.74)
Mean iou T	28.36 (61.64)	28.26 (59.8)	27.69 (61.71)	28.6 (62.33)	27.92 (59.16)	28.36 (61.64)	28.26 (59.8)	27.69 (61.71)	28.8 (62.33)	27.92 (59.16)
Mean iou S	26.63 (59.27)	25.15 (53.97)	24.47 (52.46)	26.41 (48.85)	24.9 (54.31)	26.63 (59.27)	25.15 (53.97)	24.47 (52.46)	26.41 (48.85)	24.9 (54.31)
Mean iou -	26.17 (57.07)	25.93 (54.13)	25.83 (53.73)	27.63 (57.52)	25.56 (53.91)	26.17 (57.07)	25.93 (54.13)	25.83 (53.73)	27.63 (57.52)	25.56 (53.91)
Segment recall H	29.35 (99.64)	33.14 (99.88)	30.94 (99.93)	33.77 (99.65)	33.07 (99.91)	29.35 (99.64)	33.14 (99.88)	30.94 (99.93)	33.77 (99.65)	33.07 (99.91)
Segment recall G	19.18 (100.0)	31.2 (100.0)	30.93 (100.0)	34.89 (100.0)	32.37 (99.85)	19.18 (100.0)	31.2 (100.0)	30.93 (100.0)	34.89 (100.0)	32.37 (99.85)
Segment recall I	10.42 (100.0)	30.79 (100.0)	17.63 (100.0)	10.91 (100.0)	30.94 (100.0)	10.42 (100.0)	30.79 (100.0)	17.63 (100.0)	10.91 (100.0)	30.94 (100.0)
Segment recall E	41.28 (100.0)	34.8 (99.36)	36.21 (99.38)	30.84 (100.0)	35.0 (99.68)	41.28 (100.0)	34.8 (99.36)	36.21 (99.38)	30.84 (100.0)	35.0 (99.68)
Segment recall B	38.01 (99.69)	31.7 (98.92)	38.05 (98.75)	37.95 (99.02)	31.2 (98.87)	38.01 (99.69)	31.7 (98.92)	38.05 (98.75)	37.95 (99.02)	31.2 (98.87)
Segment recall T	32.81 (99.4)	33.09 (99.07)	32.53 (98.25)	33.74 (98.46)	32.86 (98.61)	32.81 (99.4)	33.09 (99.07)	32.53 (98.25)	33.74 (98.46)	32.86 (98.61)
Segment recall S	33.73 (99.03)	33.02 (98.87)	32.5 (98.17)	35.39 (97.75)	32.77 (98.16)	33.73 (99.03)	33.02 (98.87)	32.5 (97.17)	35.39 (97.75)	32.77 (98.16)
Segment recall -	33.29 (98.57)	32.94 (98.35)	33.07 (98.3)	34.87 (98.83)	32.72 (98.52)	33.29 (98.57)	32.94 (98.35)	33.07 (98.3)	34.87 (98.83)	32.72 (98.52)
Segment precision H	39.24 (63.48)	34.23 (61.03)	34.32 (61.08)	29.43 (59.98)	33.02 (59.47)	39.24 (63.48)	34.23 (61.03)	34.32 (61.08)	29.43 (59.98)	33.02 (59.47)
Segment precision G	6.64 (82.35)	4.22 (72.63)	4.4 (71.91)	4.56 (75.06)	4.16 (70.14)	6.64 (82.35)	4.22 (72.63)	4.4 (71.91)	4.56 (75.06)	4.16 (70.14)
Segment precision I	1.96 (93.94)	2.25 (83.44)	1.2 (90.89)	0.68 (93.18)	1.68 (82.77)	1.96 (93.94)	2.25 (83.44)	1.2 (90.89)	0.68 (93.18)	1.68 (82.77)
Segment precision E	34.72 (64.4)	23.29 (64.43)	23.79 (64.45)	17.3 (65.59)	20.66 (63.88)	34.72 (64.4)	23.29 (64.43)	23.79 (64.45)	17.3 (65.59)	20.66 (63.88)
Segment precision B	1.28 (99.67)	1.08 (98.39)	1.18 (98.47)	1.2 (98.86)	0.96 (98.46)	1.28 (99.67)	1.08 (98.39)	1.18 (98.47)	1.2 (98.86)	0.96 (98.46)
Segment precision T	9.58 (70.95)	9.36 (72.49)	9.05 (71.02)	9.59 (71.1)	9.21 (72.8)	9.58 (70.95)	9.36 (72.49)	9.05 (71.02)	9.59 (71.1)	9.21 (72.8)
Segment precision S	8.12 (78.71)	6.83 (83.39)	6.37 (82.98)	7.36 (83.94)	6.53 (83.21)	8.12 (78.71)	6.83 (83.39)	6.37 (82.98)	7.36 (83.94)	6.53 (83.21)
Segment precision -	15.47 (81.35)	16.31 (81.4)	15.18 (80.22)	16.62 (79.37)	15.71 (81.36)	15.47 (81.35)	16.31 (81.4)	15.18 (80.22)	16.62 (79.37)	15.71 (81.36)
Segment f1 H	30.95 (63.48)	32.18 (61.08)	31.04 (61.09)	30.71 (60.2)	32.09 (59.54)	30.95 (63.48)	32.18 (61.08)	31.04 (61.09)	30.71 (60.2)	32.09 (59.54)
Segment f1 G	4.54 (82.35)	7.27 (72.63)	7.56 (71.91)	7.96 (75.06)	7.24 (70.1)	4.54 (82.35)	7.27 (72.63)	7.56 (71.91)	7.96 (75.06)	7.24 (70.1)
Segment f1 I	3.17 (93.94)	4.06 (83.44)	2.2 (90.89)	1.28 (93.18)	3.15 (82.77)	3.17 (93.94)	4.06 (83.44)	2.2 (90.89)	1.28 (93.18)	3.15 (82.77)
Segment f1 E	35.43 (62.51)	26.32 (64.46)	27.09 (64.47)	21.22 (65.66)	24.68 (63.9)	35.43 (62.51)	26.32 (64.46)	27.09 (64.47)	21.22 (65.66)	24.68 (63.9)
Segment f1 B	2.46 (99.67)	2.06 (98.38)	2.25 (98.44)	2.31 (98.86)	1.85 (98.46)	2.46 (99.67)	2.06 (98.38)	2.25 (98.44)	2.31 (98.86)	1.85 (98.46)
Segment f1 T	14.37 (71.22)	14.33 (73.02)	13.94 (71.35)	14.72 (71.68)	14.18 (73.37)	14.37 (71.22)	14.33 (73.02)	13.94 (71.35)	14.72 (71.68)	14.18 (73.37)
Segment f1 S	12.6 (79.62)	10.96 (83.99)	10.36 (83.6)	11.91 (84.44)	10.68 (83.93)	12.6 (79.62)	10.96 (83.99)	10.36 (83.6)	11.91 (84.44)	10.68 (83.93)
Segment f1 -	20.45 (84.94)	21.18 (86.73)	20.3 (86.08)	22.14 (85.95)	20.82 (88.68)	20.45 (84.94)	21.18 (86.73)	20.3 (86.08)	22.14 (85.95)	20.82 (88.68)

Table 9: Table 8 with averages over 10 datasets. We also report global averages over all 8 SSEs.

Metric	H	G	I	E	B	T	S	-	Avg (HGIEBTS-)
Mean recall	31.98 (97.32)	29.62 (98.80)	20.09 (99.79)	35.58 (98.20)	36.20 (100.00)	32.96 (97.26)	33.85 (98.08)	33.17 (96.81)	31.68 (98.28)
Mean precision	33.12 (49.99)	27.76 (67.61)	19.42 (90.31)	34.22 (47.65)	24.55 (68.95)	28.45 (51.71)	25.65 (50.71)	26.79 (50.23)	27.50 (59.57)
Mean f1	32.01 (60.45)	28.54 (74.28)	19.70 (91.89)	34.66 (60.56)	28.41 (71.15)	30.20 (62.65)	28.46 (58.40)	28.92 (61.08)	28.86 (67.56)
Mean iou	31.09 (60.18)	27.44 (74.21)	19.23 (91.88)	33.58 (60.20)	24.54 (69.05)	28.23 (60.93)	25.51 (53.77)	26.22 (55.27)	26.98 (65.69)
Segment recall	32.05 (99.80)	29.71 (99.97)	20.14 (100.00)	35.63 (99.77)	35.74 (99.05)	32.95 (98.77)	33.48 (98.36)	33.38 (98.51)	31.64 (99.28)
Segment precision	34.05 (61.01)	4.00 (74.42)	1.55 (88.84)	23.95 (64.15)	1.14 (98.77)	9.36 (71.67)	7.04 (82.45)	15.85 (81.10)	12.12 (77.80)
Segment f1	31.39 (61.04)	6.91 (74.41)	2.77						

1080 **Table 11:** We adopt the Small Structure Language Model evaluation protocol described in App. E. We sample
 1081 100 PDB structures. Best scTM and Designability scores are **bolded**. Underlined methods follow the evalua
 1082 -ion protocol in App. F.

Small Structure Language Model Evaluation					
Method	Codebook Size	scTM	Designability (scTM > 0.5)	Diversity (1 - mean TM)	Uniqueness (TM=0.5)
VQ-VAE	512	0.205	1%	0.752	98%
AminoASeed	512	0.186	1%	0.476	16%
GEOBPE	600	0.268	3%	0.768	99%
	2500	0.267	3%	0.766	99%
	6000	0.277	4%	0.763	98%
<u>GEOBPE (x10 data)</u>	<u>600</u>	<u>0.376</u>	<u>12%</u>	<u>0.743</u>	<u>83%</u>
<u>GEOBPE (x10 data, x10 params)</u>	<u>600</u>	<u>0.405</u>	<u>21%</u>	<u>0.731</u>	<u>76%</u>

1091

1092

1093 **Goals & Aims.** This section specifies a protocol used to compare the language modeling efficiency
 1094 of GEOBPE vs VQ-VAE tokens. The goal of SSLM was to create a small, isolated environment for
 1095 language model integration. Modeling is **intentionally minimalistic**—we train a small decoder-only
 1096 Transformer (7.3M) parameters over the same PDB splits used in Sec. 4 (48k structures). Fixing
 1097 the same data splits, training, model architecture and hyperparameters (App. E.6), the aim of this
 1098 experiment is to compare tokenizer options for a structure token language model. We emphasize the
 1099 generation quality of the resulting models should be compared *relatively*; all models trained would
 1100 be insufficient for real-world backbone design tasks. To bridge the gap with large-scale models, we
 1101 provide an orthogonal study on *scalability* in App. F, where we reran SSLM with 10x more data
 1102 and model parameters.

1102

1103 **Setup.** For GEOBPE, we use the joint geometric vocabulary learned by GEOBPE; for VQ-VAE,
 1104 we use their codebook. GEOBPE +SSLM incorporates the mask constraints used at generation time
 1105 (Alg. 4) during training to ensure consistency between training and sampling. The same procedure is
 1106 used for evaluating VQ-VAEs. For training and sampling, the only difference is dropping the mask
 1107 constraints. For inference, the samples are passed through the VQ-VAE decoder to construct back-
 1108 bone coordinates instead of assembling the backbone directly via Alg. 5. This required considerably
 1109 more resources, and we discuss how we implemented this in App. E.6.

1110

Algorithm 2 GEOLM-PRETRAIN — decoder-only next-token prediction on geometric tokens

1111

Require: Corpus of proteins $\{t_\tau\}_{\tau=1}^T$ with final segmentations $\{\mathcal{P}^{(\tau)}\}$ and assigned medoids; joint vocabulary
 1112 Σ and tokenizers from Alg. 16, 17; a decoder-only Transformer $\text{Tr}_\theta : \Sigma^* \rightarrow \Delta^{|\Sigma|}$ with causal mask; special
 1113 BOS/EOS (optional); training steps S , optimizer \mathcal{O} .

1114

Ensure: Trained parameters θ .

1115

1: **Dataset construction.** For each τ , build $x^{(\tau)} = \text{BACKBONETOSEQUENCE}(t_\tau)$ (Alg. 17). Let $L_\tau =$
 1116 $|x^{(\tau)}|$.

1117

2: **Objective.** For any sequence $x = (x_1, \dots, x_L)$, define

1118

$$\mathcal{L}_{\text{NTP}}(\theta; x) = - \sum_{t=1}^{L-1} \log p_\theta(x_{t+1} \mid x_{\leq t}), \quad p_\theta(\cdot \mid x_{\leq t}) = \text{softmax}(\text{Tr}_\theta(x_{\leq t})).$$

1119

3: **Training loop.**

1120

4: **for** $s = 1$ to S **do**

1121

5: Sample a minibatch $\mathcal{B} \subset \{1, \dots, T\}$.

1122

6: $\mathcal{L} \leftarrow \frac{1}{|\mathcal{B}|} \sum_{\tau \in \mathcal{B}} \mathcal{L}_{\text{NTP}}(\theta; x^{(\tau)})$.

1123

7: Update $\theta \leftarrow \mathcal{O}(\theta, \nabla_\theta \mathcal{L})$.

1124

8: **end for**

1125

9: **return** θ .

1126

1127

1128

1129

1130

1131

E.1 DATA PREPARATION AND SPLITS

1132

1133

Tokenization. We construct the joint vocabulary Σ (Alg. 16) and convert each protein t_τ into a
 token sequence $x^{(\tau)} = (x_1^{(\tau)}, \dots, x_{L_\tau}^{(\tau)})$ via BACKBONETOSEQUENCE (Alg. 17).

1134 **Algorithm 3** BUILDEMPIRICALPRIORS — length prior and first-token prior

1135

1136 **Require:** Training corpus of tokenized backbones $\{x^{(\tau)} = (x_1^{(\tau)}, \dots, x_{L_\tau}^{(\tau)})\}_{\tau=1}^T$ constructed by Alg. 17 (motif, then θ, ω, ϕ , repeating); valid sequence lengths satisfy $L_\tau \equiv 1 \pmod{4}$ and end in a *terminating* motif token.

1137

1138 **Ensure:** Discrete priors Π_L on lengths K and Π_{start} on the first token.

1139 1: **Length prior:** for every K with $K \equiv 1 \pmod{4}$, set

1140

1141
$$\Pi_L(K) \propto |\{\tau : L_\tau = K\}| \text{ and normalize } \sum_K \Pi_L(K) = 1.$$

1142

1143 2: **First-token prior:** over motif tokens only, set

1144

1145
$$\Pi_{\text{start}}(i) \propto |\{\tau : x_1^{(\tau)} = i\}|, \quad i \in \Sigma_{\text{med}}; \quad \sum_{i \in \Sigma_{\text{med}}} \Pi_{\text{start}}(i) = 1.$$

1146

1147 3: **return** $\Pi_L, \Pi_{\text{start}}$.

1149 **Algorithm 4** UNCONDITIONALGEOLMGENERATE — motif/glue token generation

1150

1151 **Require:** Trained decoder-only Transformer Tr_θ with vocabulary Σ from Alg. 16; id blocks

1152

1153
$$\Sigma_{\text{med}} = \{1, \dots, M\} \quad (1)$$

1154
$$\Sigma_\theta = \{M+1, \dots, M+B_\theta\} \quad (2)$$

1155
$$\Sigma_\omega = \{M+B_\theta+1, \dots, M+B_\theta+B_\omega\} \quad (3)$$

1156
$$\Sigma_\phi = \{M+B_\theta+B_\omega+1, \dots, M+B_\theta+B_\omega+B_\phi\}; \quad (4)$$

1157 terminating-motif set $\Sigma_{\text{term}} \subseteq \Sigma_{\text{med}}$ (motifs in the length-2 bond-residue class); priors $\Pi_L, \Pi_{\text{start}}$ (Alg. 3); temperature $\tau > 0$; maximum length K_{max} ; number of samples S .

1158

1159 **Ensure:** S unconstrained token sequences $\{x^{(s)}\}$ alternating motif and glue tokens and ending in a terminating motif.

1160

1161 1: Define the **type mask by position** (t starts at 1):

1162
$$t \equiv 1 \pmod{4} \Rightarrow \text{motif } (\Sigma_{\text{med}}), \quad t \equiv 2 \Rightarrow \theta (\Sigma_\theta), \quad t \equiv 3 \Rightarrow \omega (\Sigma_\omega), \quad t \equiv 0 \Rightarrow \phi (\Sigma_\phi).$$

1163

1164 2: **for** $s = 1$ **to** S **do**

1165 3: Sample a target cap $K^{\text{cap}} \sim \Pi_L$ and set $K^{\text{cap}} \leftarrow \min(K^{\text{cap}}, K_{\text{max}})$.

1166 4: Sample the first token $x_1^{(s)} \sim \Pi_{\text{start}}$ (so $x_1^{(s)} \in \Sigma_{\text{med}}$).

1167 5: **for** $t = 2, 3, \dots, K^{\text{cap}}$ **do**

1168 6: Compute last-position logits $z_t = \text{Tr}_\theta(x_{1:t-1}^{(s)})$ with causal masking; let $v = |\Sigma|$.

1169 7: Build a **hard mask** $m \in \mathbb{R}^v$ initialized to $-\infty$ and set:

1170

1171
$$\begin{cases} m_i \leftarrow 0 & \text{if } t \equiv 1 \pmod{4} \text{ and } i \in \Sigma_{\text{med}}, \\ m_i \leftarrow 0 & \text{if } t \equiv 2 \pmod{4} \text{ and } i \in \Sigma_\theta, \\ m_i \leftarrow 0 & \text{if } t \equiv 3 \pmod{4} \text{ and } i \in \Sigma_\omega, \\ m_i \leftarrow 0 & \text{if } t \equiv 0 \pmod{4} \text{ and } i \in \Sigma_\phi. \end{cases}$$

1172

1173

1174 8: **Termination constraint at motif positions:**

1175

- If $t \equiv 1 \pmod{4}$ and $t < K^{\text{cap}}$, then *disallow* early stop: set $m_i \leftarrow -\infty$ for all $i \in \Sigma_{\text{term}}$.
- If $t \equiv 1 \pmod{4}$ and $t = K^{\text{cap}}$, then *force* stop: set $m_i \leftarrow -\infty$ for all $i \in \Sigma_{\text{med}} \setminus \Sigma_{\text{term}}$.

1176 9: Form masked logits $\tilde{z}_t = z_t + m$ and sample

1177
$$x_t^{(s)} \sim \text{Categorical}(\text{softmax}(\tilde{z}_t / \tau)).$$

1178

1179

1180

1181 10: **(Optional early stop)** If $t \equiv 1 \pmod{4}$ and $x_t^{(s)} \in \Sigma_{\text{term}}$, then **break**.

1182 11: **end for**

1183 12: **end for**

1184 13: **return** $\{x^{(s)}\}_{s=1}^S$.

1185

1186 We tokenize the validation/test sets (unseen during GEOBPE training) via Algo. 10, a procedure

1187 analogous to BPE encoding. Sequences alternate strictly motif $\rightarrow \theta \rightarrow \omega \rightarrow \phi \rightarrow$ motif $\rightarrow \dots$ and end with a *terminating* motif token (length-2 bond-residue class), hence $L_\tau \equiv 1 \pmod{4}$.

1188 **Algorithm 5** DEQUANTIZEANDASSEMBLE — from tokens to a full backbone

1189

1190 **Require:** One generated sequence $x = (x_1, \dots, x_L)$ from Alg. 4; medoid dictionary $\{\text{id}_{\text{med}}(\kappa, j) \mapsto$

1191 $\Pi_j^{(\kappa)}\}$ where each prototype $\Pi_j^{(\kappa)}$ is a tuple of internal coordinates for a motif \mathcal{M} ; glue bin edges

1192 $\{\beta_b^\theta\}_{b=0}^{B_\theta}, \{\beta_b^\omega\}_{b=0}^{B_\omega}, \{\beta_b^\phi\}_{b=0}^{B_\phi}$ (circular edges for angles, linear for lengths if used); canonical seed triad

1193 (N_*, CA_*, C_*) and SEEDTRIAD.

1194 **Ensure:** A complete backbone $\{(N_i, \text{CA}_i, C_i) \in \mathbb{R}^3\}_{i=1}^{\hat{N}}$ assembled from the decoded motifs and glues.

1195 1: **Parse tokens into motifs and glues (fixed 4-cycle).** Let the motif indices be $t \in \{1, 5, 9, \dots\}$; write

1196 $x_t = \text{id}_{\text{med}}(\kappa^{(m)}, j^{(m)})$ for $m = 1, \dots, M$ where $M = \frac{L+3}{4}$. For each boundary $m = 1, \dots, M-1$,

1197 decode the three bins:

1198 $b_\theta = x_{4m-2} - M, \quad b_\omega = x_{4m-1} - (M+B_\theta), \quad b_\phi = x_{4m} - (M+B_\theta+B_\omega),$

1199 and **dequantize** to the bin midpoints

1200

1201 $\bar{\theta}_m = \frac{1}{2}(\beta_{b_\theta-1}^\theta + \beta_{b_\theta}^\theta), \quad \bar{\omega}_m = \frac{1}{2}(\beta_{b_\omega-1}^\omega + \beta_{b_\omega}^\omega), \quad \bar{\phi}_m = \frac{1}{2}(\beta_{b_\phi-1}^\phi + \beta_{b_\phi}^\phi).$

1202

1203 2: **Recover internal coordinates.** For each motif m , let $\Pi_{j^{(m)}}^{(\kappa^{(m)})}$ provide the internal bond lengths ℓ , bond

1204 angles θ , and dihedrals (ψ, ω, ϕ) across its span $\mathcal{M}^{(m)}$. Construct its internal entry→exit transform $T_{(m)}^{\text{int}}$

1205 (product of link transforms G_i inside the motif; see Preliminaries).

1206 3: **Forward kinematics assembly.**

1207 4: Initialize the entry frame by seeding the very first residue: $(N_1, \text{CA}_1, C_1) \leftarrow \text{SEEDTRIAD}(1)$ and form

1208 $F_1 = (R_1, t_1)$ as in the Entry/Exit frame definition.

1209 5: **Motif 1:** Traverse the links inside $\mathcal{M}^{(1)}$ using its internal coordinates to compute frames F_2, \dots, F_{q_1} (and

1210 atom positions) by repeated G_i multiplications; set the current exit frame $F_{(1)}^{\text{exit}} = F_{q_1}$.

1211 6: **for** $m = 1$ **to** $M-1$ **do**

1212 7: **Boundary glue:** form the boundary transform

1213 $T_{(m)}^{\text{glue}} = G_{q_m}(\theta^{\text{CNC}A} = \bar{\theta}_m, \omega = \bar{\omega}_m, \phi = \bar{\phi}_m),$

1214 i.e., the SE(3) map from the exit frame of $\mathcal{M}^{(m)}$ to the entry frame of $\mathcal{M}^{(m+1)}$ determined by the three

1215 dequantized glue angles (and adjacent bond lengths).

1216 8: Set the entry frame of $\mathcal{M}^{(m+1)}$ to

1217 $F_{(m+1)}^{\text{entry}} \leftarrow T_{(m)}^{\text{glue}} F_{(m)}^{\text{exit}}.$

1218

1219 9: **Motif $(m+1)$:** traverse its internal links to produce all residue frames and atom positions; update

1220 $F_{(m+1)}^{\text{exit}}.$

1221 10: **end for**

1222 11: **Concatenate atoms.** Collect the atoms from all traversals in order, yielding the backbone

1223 $\{(N_i, \text{CA}_i, C_i)\}_{i=1}^{\hat{N}}$, where \hat{N} is the total number of residues implied by the concatenated motif spans

1224 (the final motif is guaranteed terminating).

1225 12: **return** the complete backbone coordinates.

1226

1227

1228 **Splits.** We partition proteins at the *protein level* into train/validation/test (e.g., 80/10/10) to prevent

1229 leakage across chains.

1230

E.2 TRAINING OBJECTIVE WITH STRUCTURAL MASKS

1231 We train a causal Transformer Tr_θ with teacher forcing. To enforce legality at each position t , we

1232 apply the same *type mask by position modulo 4* used in generation (Alg. 4):

1233 $t \equiv 1 \pmod{4} \Rightarrow \Sigma_{\text{med}}, \quad t \equiv 2 \Rightarrow \Sigma_\theta, \quad t \equiv 3 \Rightarrow \Sigma_\omega, \quad t \equiv 0 \Rightarrow \Sigma_\phi,$

1234 setting logits for all other token types to $-\infty$ before the softmax.

1235 **Termination constraint at motif slots.** At motif positions ($t \equiv 1 \pmod{4}$), we impose the same

1236 termination rule as in Alg. 4: (i) if $t < L_\tau$, mask out terminating motifs Σ_{term} ; (ii) if $t = L_\tau$, mask

1237 out non-terminating motifs.

1242 **Loss.** With masks applied, the negative log-likelihood is
 1243

1244
$$\mathcal{L}_{\text{NTP}}(\theta; x^{(\tau)}) = - \sum_{t=1}^{L_{\tau}-1} \log p_{\theta}(x_{t+1}^{(\tau)} | x_{\leq t}^{(\tau)}), \quad p_{\theta}(\cdot | x_{\leq t}) = \text{softmax}(\tilde{z}_t),$$

 1245
 1246

1247 where \tilde{z}_t are masked logits. We optimize θ by minimizing the average NLL over the training set.
 1248

1249 **Early stopping.** We select checkpoints by validation loss with a patience of 5 epochs.
 1250

1250 E.3 UNCONDITIONAL SAMPLING FOR QUALITATIVE EVALUATION

1251 **Empirical priors.** We form the *length prior* Π_L and *first-token prior* Π_{start} from the training corpus
 1252 using BUILDEMPIRICALPRIORS (Alg. 3). Π_L is supported on legal lengths $K \equiv 1 \pmod{4}$; Π_{start}
 1253 is over Σ_{med} .
 1254

1255 **Constrained generation.** We sample with UNCONDITIONALGEOLMGENERATE (Alg. 4): draw
 1256 $K^{\text{cap}} \sim \Pi_L$ (clipped by a maximum), sample the first motif $x_1 \sim \Pi_{\text{start}}$, then autoregress under the
 1257 same positional type mask and termination constraint as training. Temperature and nucleus sampling
 1258 are optional ablations.
 1259

1260 **GEOBPE Dequantization and assembly.** Generated token sequences are mapped to full back-
 1261 bones via DEQUANTIZEANDASSEMBLE (Alg. 5): medoid tokens decode to internal coordinates
 1262 over their motif spans; glue-bin tokens decode to bin-midpoint angles; forward kinematics with the
 1263 seeded entry frame yields atom coordinates $\{(N_i, \text{CA}_i, C_i)\}_{i=1}^{\hat{N}}$.
 1264

1264 E.4 GENERATIVE QUALITY ASSESSMENT

1265 We evaluate unconditional samples produced by UNCONDITIONALGEOLMGENERATE (Alg. 4)
 1266 and assembled by DEQUANTIZEANDASSEMBLE (Alg. 5) using four structure-centric metrics based
 1267 on TM-score.¹
 1268

1269 **Setup.** From each model we draw a fixed number of backbones $\{\hat{\mathcal{B}}_n\}_{n=1}^N$ (legal lengths, terminal
 1270 motif constraint). Unless noted, metrics are computed on these *backbone geometries* without further
 1271 post-processing.
 1272

1273 **(1) scTM (self-consistency TM-score).** For each generated backbone $\hat{\mathcal{B}}$, we (i) design a sequence
 1274 \hat{s} with a standard inverse-folding model, (ii) predict a structure $\tilde{\mathcal{B}}$ from \hat{s} using a single-structure
 1275 predictor (e.g., ESMFold), and (iii) compute
 1276

$$\text{scTM}(\hat{\mathcal{B}}) = \text{TM-score}(\tilde{\mathcal{B}}, \hat{\mathcal{B}}).$$

1277 We report the mean scTM over the N samples.
 1278

1279 **(2) Designability (%) with scTM > 0.5.** A backbone is deemed *designable* if its self-consistency
 1280 exceeds the canonical threshold 0.5:
 1281

$$\text{Designability} = \frac{1}{N} \sum_{n=1}^N \mathbf{1}\{\text{scTM}(\hat{\mathcal{B}}_n) > 0.5\} \times 100\%.$$

1282 This is the fraction of samples for which a designed sequence refolds back to the generated backbone
 1283 at the fold level.
 1284

1285 We adopt the same workflow from Trippe et al. (2022); Wu et al. (2024), where ProteinMPNN
 1286 Dauparas et al. (2022) proposes 8 sequences per structure and OmegaFold Wu et al. (2022) is used
 1287 to compute scTM.
 1288

1289 **(3) Diversity (mean pairwise TM).** To quantify sample-to-sample diversity, we compute the mean
 1290 pairwise TM-score across the set (lower is more diverse):
 1291

$$\text{Diversity} = \frac{2}{N(N-1)} \sum_{1 \leq i < j \leq N} \text{TM-score}(\hat{\mathcal{B}}_i, \hat{\mathcal{B}}_j).$$

1294 (When N is large, we estimate this by uniform sub-sampling of pairs.)
 1295

¹TM-score is obtained with a standard implementation (e.g., TM-align); higher is better.

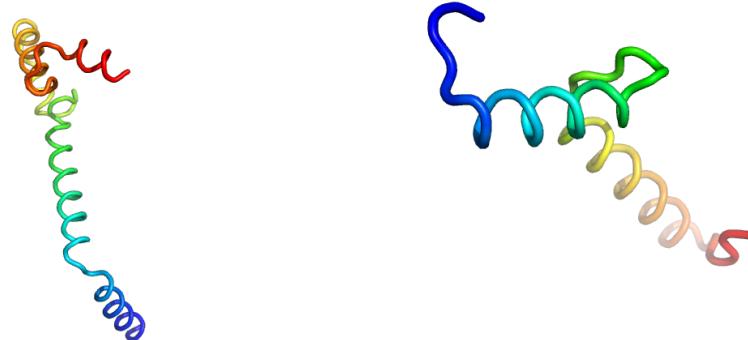
1296 (4) **Uniqueness (% non-duplicates at $\text{TM} < 0.5$).** We mark a sample as *unique* if its nearest
 1297 neighbor among the other generated backbones has TM -score < 0.5 :
 1298

$$1299 \text{Uniqueness} = \frac{1}{N} \sum_{n=1}^N \mathbf{1} \left\{ \max_{m \neq n} \text{TM-score}(\hat{\mathcal{B}}_n, \hat{\mathcal{B}}_m) < 0.5 \right\} \times 100\%.$$

1301 This measures the proportion of samples that are not near-duplicates under a fold-level threshold.
 1302

1303 **Reporting.** For each model we report the four metrics above on the same set size N (and the
 1304 same sampling priors and temperature). Codebook size and token perplexity are *not* used in these
 1305 downstream comparisons.

1306 **E.5 GENERATED BACKBONES**
 1307



1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321 (a) Generated backbone with scTM score 0.50

1322 (b) Generated backbone with scTM score 0.56
 1323

Figure 7: We visualize two backbones generated by **GEOBPE SSLM-Eval** (with default settings in App. K).

1324 In Fig. 7a, we see a long, well-structured and assembled α -helix, which is one of the most common
 1325 and stable secondary structures in proteins. The curved helical cap at the top resembles a common
 1326 N-terminal capping motif, which often stabilizes helices through hydrogen bonding networks or
 1327 electrostatic interactions. Such elongated α -helices are commonly found in transmembrane helices
 1328 or coiled-coil domains which are involved in dimerization and DNA-binding. The overall curvature
 1329 and spatial continuity also suggest potential compatibility with membrane proteins or structural
 1330 scaffolds, especially behave as substance binding receptors as well as ion channels.

1331 In Fig. 7b, we see a structure that resembles DNA-binding motifs or cytokine folds, which are quite
 1332 well-known for cellular signaling or regulation. The geometric density of this structure also suggests
 1333 a pre-organized hydrophobic core, which is critical for proper folding and stability in the cytoplas-
 1334 mic environment. This structure exhibits a compact bundle of helices with apparent crossing angles
 1335 which are similar to some small globular domains in common protein structures. The folding ap-
 1336 pears non-linear but in a quite controlled, manner which suggests potential tertiary structure forming
 1337 interactions such as hydrophobic-hydrophobic interaction.

1338 **E.6 IMPLEMENTATION DETAILS**
 1339

1340 **SSLM-Eval GEOBPE implementation and hardware details.** We train a small autoregressive
 1341 Transformer on discretized geometry tokens. We use a hidden size $d_{\text{model}} = 256$, $L = 8$ Transformer
 1342 layers with GELU activations, $H = 8$ attention heads, and feed-forward width $d_{\text{ff}} = 1024$. Token
 1343 and positional embeddings are summed, a LayerNorm is applied before the classifier, and the output
 1344 projection is weight-tied to the token embedding. A causal attention mask enforces left-to-right
 1345 prediction. Sequences are padded to a dataset-dependent maximum length (the 95th percentile of
 1346 training lengths by default). We optimize cross-entropy loss with Adam (learning rate 1×10^{-4}),
 1347 batch size 32, for up to 100 epochs with early stopping on validation perplexity. For unconditional
 1348 generation, we sample 100 sequences at temperature 1.0, drawing target lengths from the empirical
 1349 length prior (restricted to valid lengths by construction) and the first token from the empirical start-
 token prior; decoding proceeds token-by-token under the causal mask. On a single GPU, one epoch

1350 takes just under 10 mins and converges in ≈ 60 epochs (can vary across tokenizer settings). The data
 1351 splits are the same as those for pretraining (see App. B) – 33992, 3810 training/validation structures
 1352 for GEOBPE.

1353 **SSLM-Eval VQ-VAE implementation and hardware details.** We extend the distributed Light-
 1354 ning setup of Yuan et al. (2025) with a self-contained evaluation step at the end of each validation
 1355 epoch. Using 4 ranks, each GPU accumulates the epoch’s quantized token sequences from training
 1356 and validation; these are gathered and passed to a lightweight auxiliary trainer that uses the same
 1357 SSLM-Eval script as GEOBPE and hyperparameters. After convergence, we sample 100 new token
 1358 sequences, decode them with the VQ-VAE decoder into backbone coordinates, and write PDBs to
 1359 a directory named by the current epoch. We compute all non-SCTM metrics locally, then distribute
 1360 a heavier SCTM evaluation across ranks on sharded PDB subsets. Each rank produces its shard’s
 1361 results, and rank-0 merges them into a single summary that is logged to the trainer.

1362 F SCALING GEOBPE TO LARGER DATASETS AND MODELS

1363 **Goals & Aims.** The relatively minimalistic design of GEOBPE SSLM in App. E still begs the
 1364 question whether GEOBPE reliably scales to large datasets (e.g. ESM3 scale) as both a *tokenizer*
 1365 (GEOBPE only) and the foundational component of a language model (GEOBPE + SSLM). Thus,
 1366 we attempt to bridge this gap by (i) tokenizing a 10x larger dataset and benchmarking wall times,
 1367 and (ii) training a 10x larger SSLM model on the 10x larger tokenized corpus.

1369 F.1 TOKENIZING A 10X LARGER DATASET OF PREDICTED STRUCTURES

1370 **Setup.** We downloaded the 550K Swiss-Prot structure predictions from AlphaFold DB Consortium
 1371 (2024); Varadi et al. (2022), a $> 10x$ increase from our PDB pretraining dataset. We adopt the
 1372 pretrained $|V| = 600$ tokenizer used in the paper (Fig. 4, Tables 10 & 11) as a baseline (i.e.
 1373 tokenizers with larger $|V|$ will achieve lower distortion at the tradeoff of slower throughput).

1374 **Evaluation.** We log both wall-time and throughput taken to tokenize all 550k structures. We also
 1375 report the distortion against AlphaFold DB predictions. We split into five 110K increments, and
 1376 requested 5 jobs with 20 cores each. Each job writes each tokenized structure to a file, which allows
 1377 us to log the running throughput from start to finish.

1379 **Table 12:** We report throughput and distortion tokenizing 550k Swiss-Prot predicted structures with 5 jobs
 1380 of 20 cores each.

	Split (110K increments)					Total (5 splits).
	1	2	3	4	5	
Avg. Throughput (files/min)	35.54	45.40	35.45	36.64	38.29	191.32
RMSD	1.52	1.54	1.54	1.53	1.53	1.53
LLDT	0.79	0.79	0.79	0.79	0.79	0.79

1388 **Results.** The results are shown in Table. 12. With pooled avg. throughput of 191.32, all 550k
 1389 structures were tokenized in ~ 2 days. Discrepancies in throughput between jobs likely explained
 1390 by node traffic. We see all 5 splits achieve the same LDDT (0.79) and within 0.01 RMSD of
 1391 the average RMSD over all 5 splits (1.53). These are comparable to the tokenizer’s OOD test set
 1392 distortions in Fig. 4 (1.53 RMSD, 0.72 on CASP).

1393 **Conclusion.** Since GEOBPE has shown strong OOD generalization from our findings in Sec. 4,
 1394 it is expected to not degrade in performance. Thus, the right approach is tokenization (Alg. 10)
 1395 rather than retraining GEOBPE from scratch. In contrast with GEOBPE learning, tokenization is an
 1396 *embarrassingly parallel* procedure that easily scales with the number of cores. With 100 cores, the
 1397 entire process finished in ~ 2 days, or 200 CPU days. Further scaling by another 10x would only
 1398 take ~ 20 days with 100 CPUs, making GEOBPE a scalable solution for tokenizing large databases
 1399 of predicted structures.

1400 F.2 STRUCTURE LANGUAGE MODELING AT A 10X LARGER SCALE

1401 Once we have the tokenized dataset of 550k Swiss-Prot structures, we train a larger model and probe
 1402 whether generation quality of GEOBPE SSLM follows the expected improvements from scaling.

1404 **Setup.** We increased our Transformer to $\sim 10x$ parameters ($7.3M \rightarrow 65.9M$). We do so by
 1405 widening the Transformer layer and deepening the model: $d_{\text{model}} \leftarrow 2d_{\text{model}} = 512$, $L \leftarrow 2.5L = 20$
 1406 layers. $H \leftarrow 2 * H = 16$ attention heads, $d_{\text{ff}} \leftarrow 2 \cdot d_{\text{ff}} = 2048$. The rest of SSLM remains the same
 1407 (App. E).

1408 **Evaluation.** We used the same evaluation protocol (50-128 AAs, 10 each) of works such as ProtDiff
 1409 Trippel et al. (2022) and FoldingDiff Wu et al. (2024). Note that App. E did not follow this protocol;
 1410 we sampled from the size prior of our pretraining dataset (Alg. 3); the average generated protein
 1411 was ~ 214 AAs.

1412 **Results.** GeoBPE+SSLM with 10x more data and 10x more parameters **achieves an average scTM**
 1413 **of 0.4051, with 20.8% being Designable** ($\text{scTM} > 0.5$). This is notably higher than ProtDiff
 1414 (11.8%) and FoldingDiff (14.2%). Scaling only by 10x more data also delivers a respectable scTM
 1415 of 0.376, highlighting both scaling dimensions are throttles for generative performance. Uniqueness/diversity
 1416 also remain high (76.4% and 0.73).

1417 **Conclusion.** This result confirms that GEOBPE behaves according to scaling law expectations of
 1418 language modeling. The significant increase in designable backbones (4% \rightarrow 21%) from simply
 1419 using more data and parameters justifies further scaling of data and training resources. We hope
 1420 future works can adopt GEOBPE as a foundational component in future large-scale models and
 1421 explore the full potential of large-scale protein structure language model development.

G EXPERT AGREEMENT METRICS

1425 Our method segments a protein sequence into M contiguous residue spans $P_j = [p_j, q_j]$ with $q_j + 1 = p_{j+1}$ for $j = 1, \dots, M - 1$. We compare these segments against N ground-truth domain
 1426 annotations $D_i = [s_i, e_i]$. All sets below are sets of integer residue indices and $|\cdot|$ denotes cardinality
 1427 (length in residues). We report (i) *domain-level* alignment quality for each true domain using the best
 1428 consecutive block of predicted segments, and (ii) *segment-level* detection statistics at an Intersection-
 1429 over-Union (IoU) threshold τ . This combination captures both *how well* each domain is covered and
 1430 *how economically* the predicted segments explain the annotations, while remaining robust to small
 1431 boundary jitter.

1433 **Annotation source.** Ground-truth domains come from **CATH FunFams** Das et al. (2015b). They
 1434 are functional families defined by *profile HMM* hits trained on primary-sequence data Das et al.
 1435 (2015a;b). Our evaluation thus measures how well the predicted segmentation aligns with function-
 1436 ally coherent families derived from sequence-based HMM models.

1437 In our setting, individual predicted segments tend to be substantially shorter than the curated domain
 1438 annotations. A naive one-to-one comparison would systematically penalize predictions that must be
 1439 *combined* to cover a domain. To ensure a fair comparison, for each D_i we first select the single
 1440 best *consecutive* block of predicted segments S_i that maximizes IoU with D_i (below), then compute
 1441 per-domain scores and *macro-average* them so that each domain contributes equally, independent of
 1442 its length.

1443 **Notation and best block per domain.** For domains $D_i = [s_i, e_i]$ ($i = 1:N$) and predicted segments
 1444 $P_j = [p_j, q_j]$ ($j = 1:M$, with $q_j + 1 = p_{j+1}$), define

$$1446 (a_i, b_i) \in \arg \max_{1 \leq m \leq n \leq M} \frac{|D_i \cap \bigcup_{k=m}^n P_k|}{|D_i \cup \bigcup_{k=m}^n P_k|}, \quad S_i := \bigcup_{k=a_i}^{b_i} P_k.$$

1449 (Ties may prefer the shortest S_i or fewest segments.)

1450 **Domain-level scores (macro).** Let $\text{ov}_i = |D_i \cap S_i|$, $|D_i| = e_i - s_i + 1$, $|S_i| = \sum_{k=a_i}^{b_i} (q_k - p_k + 1)$.
 1451 Then

$$1453 \text{Recall}_i = \frac{\text{ov}_i}{|D_i|}, \quad \text{Precision}_i = \frac{\text{ov}_i}{|S_i|}, \quad F_{1,i} = \frac{2 \text{Recall}_i \text{Precision}_i}{\text{Recall}_i + \text{Precision}_i}, \quad \text{IoU}_i = \frac{\text{ov}_i}{|D_i| + |S_i| - \text{ov}_i}.$$

1455 Macro-averages:

$$1457 \overline{\text{Recall}} = \frac{1}{N} \sum_i \text{Recall}_i, \quad \overline{\text{Precision}} = \frac{1}{N} \sum_i \text{Precision}_i, \quad \overline{F_1} = \frac{1}{N} \sum_i F_{1,i}, \quad \overline{\text{IoU}} = \frac{1}{N} \sum_i \text{IoU}_i.$$

1458 *Interpretation:* recall rewards coverage; precision rewards compactness of S_i ; F_1 balances both;
 1459 IoU is thresholdable and scale-invariant.

1460 **Segment-level detection at IoU threshold τ .** Let $\mathcal{U} = \bigcup_{i: \text{IoU}_i \geq \tau} \{a_i, \dots, b_i\}$. Define

$$1462 \text{SegPrec} = \frac{|\mathcal{U}|}{M}, \quad \text{SegRec} = \frac{|\{i : \text{IoU}_i \geq \tau\}|}{N}, \quad \text{SegF}_1 = \frac{2 \text{SegPrec SegRec}}{\text{SegPrec} + \text{SegRec}}.$$

1464 *Interpretation:* SegPrec penalizes unused segments; SegRec penalizes missed/poorly aligned do-
 1465 mains. Sweeping τ yields a PR curve.

1466 **Randomization baseline and reporting.** Using 1000 uniform random partitions into M contiguous
 1467 spans of the same sequence, recompute all metrics under the same best-block protocol and average
 1468 over runs. We report using the format:

1469 $\text{ours (random-avg)},$

1471 e.g., $\overline{\text{IoU}} = 0.47 (0.18)$.

1472 **Notes.** In degenerate cases (e.g., $|S_i| = 0$ or a zero denominator), we adopt the standard convention
 1473 of returning 0 for the affected ratio or F_1 term.

1475 Together, the domain-level (overlap-quality) metrics and the segment-level (parsimony and cover-
 1476 age) metrics directly test the two desiderata of protein-domain segmentation: (i) accurate coverage
 1477 of each domain with minimal spillover, and (ii) a parsimonious set of segments that explain as many
 1478 domains as possible. Macro-averaging after selecting the best block per domain ensures fairness
 1479 when predicted segments are shorter than annotated domains, and the permutation baseline quanti-
 1480 fies how far performance rises above chance given the same M .

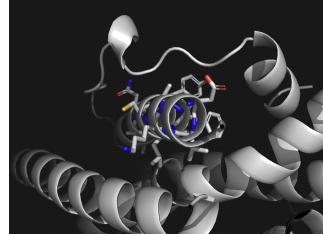
1482 H EXPERT CASE STUDIES

1484 **Individual Tokens Correspond to Secondary Structures.** Figure 8 is an example of a sin-
 1485 gle token GEOBPE discovers. It features an alpha helix that includes aromatic cage (formed
 1486 by Tryptophan / Tyrosine) and hydrogen bonding residue. It can be a common structure in
 1487 Nucleotide-recognition domains, especially the hydrogen bond donors/acceptors can serve for
 1488 specific molecular recognition (e.g., methylated lysines, nucleotide bases or acetyl groups) as
 1489 well as Neurotransmitter receptors. From interpretation, this motif is functionally specific.
 1490 It can serve as ligand binding pocket, which is tightly packed and
 1491 evolutionarily conserved. This could behave significantly in sub-
 1492 stance recognition. The tightly packed helical scaffold in this sepa-
 1493 rated motif is likely stabilizing the motif’s geometry and ensuring
 1494 specificity. Motif-scaffold synergy can also help to define a struc-
 1495 ture’s rigidity and flexibility.

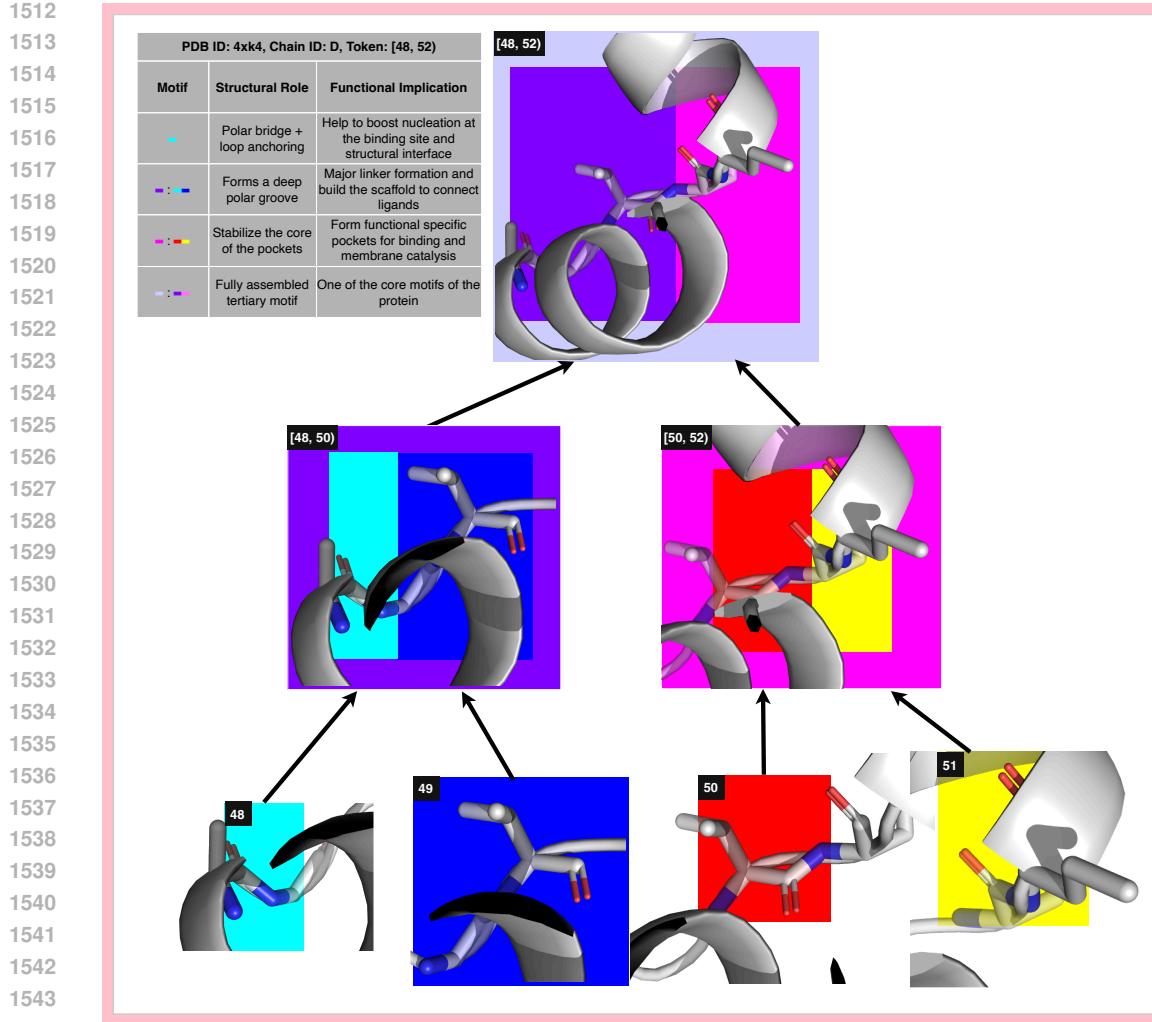
1496 **Merge Hierarchy of GEOBPE Reflects Combination of Sec- 1497 onary Structures for Driving Function.**

1498 **Figure 9.** 4xk4 is the human mitochondrial carrier protein
 1499 SLC25A20 (carnitine/acylcarnitine translocase). It’s a transmem-
 1500 brane transport protein within the mitochondrial inner membrane,
 1501 responsible for shuttling carnitine and acylcarnitine molecules
 1502 across the membrane. This a process critical to fatty acid oxidation
 1503 and energy metabolism. The core motif that the algorithm separated
 1504 out contain three similar domains, each with two transmembrane
 1505 helices and a loop. It appears to lie deep within the transmembrane domain, forming part of the
 1506 central binding cavity. From this know-how information, the 48-4 motif is really significant in the
 1507 following three aspects:

- 1508 1. It will serve for substrate recognition where the internal polar residues bind to the acylcarnitine
 1509 or carnitine head group via ionic and hydrogen bonds. It will also alter the transition state of the
 1510 during the transport cycles. For example, this motif can play a role in shift conformation between
 1511 open-to-cytoplasm and open-to-matrix states.
2. We also observe similar motifs are found in other SLC25 family members (e.g., ADP/ATP carriers), indicating a shared mechanism of transport.



1512 **Figure 8:** An exemplary
 1513 GEOBPE token spans back-
 1514 bone atoms of an alpha helix
 1515 (colored).



1545 **Figure 9:** Chain D of PDB 4xk4. Hierarchical Merge Tree for Token [48, 52]. GEOBPE arrived at this token
1546 by merging [48, 49] with [49, 50], [50, 51] with [51, 52], and [48, 50] with [50, 52].

1547
1548
1549 3. While the broader transmembrane region is dominated by repetitive helices, this localized motif
1550 exhibits a unique composition of diverse side chains, polar residues, and tightly packed interactions,
1551 reinforcing its functional specificity.

1552 **Figure 10.** 6FI4 is the crystal structure of a hybrid peptide composed of a C-terminally modified
1553 Tau protein segment bound to the human 14-3-3 σ protein, solved at 2.0 Å resolution via
1554 X-ray crystallography. 14-3-3 proteins are a family of conserved regulatory molecules that bind
1555 phosphoserine/phosphothreonine-containing motifs on target proteins and are central to cell cycle
1556 control, apoptosis, transcriptional regulation, and signal transduction. The hybrid peptide mimics
1557 Tau phosphorylation, which is relevant to neurodegenerative disease pathology like Alzheimer's
1558 disease. From this know-how information, the 29-4 motif is significant in the following two aspects:

1559 1. Phosphopeptide recognition and improve the binding Stability: This motif orchestrates recogni-
1560 tion of the Tau-derived phosphoserine motif via a precise network of hydrogen bonds and elec-
1561 trostatic complementarity. The Lys/Arg residues (seen in blue) form salt bridges with phosphate
1562 groups, stabilizing the interaction.
1563 2. The structure shared recognition fold across the 14-3-3 protein family: This motif, with its basic
1564 side chain tunnel and surrounding helices, represents a canonical recognition site. Similar struc-
1565 tural motifs are observed in all 14-3-3 isozymes when binding phosphoproteins and will serve
1566 for post-translational modification signaling.

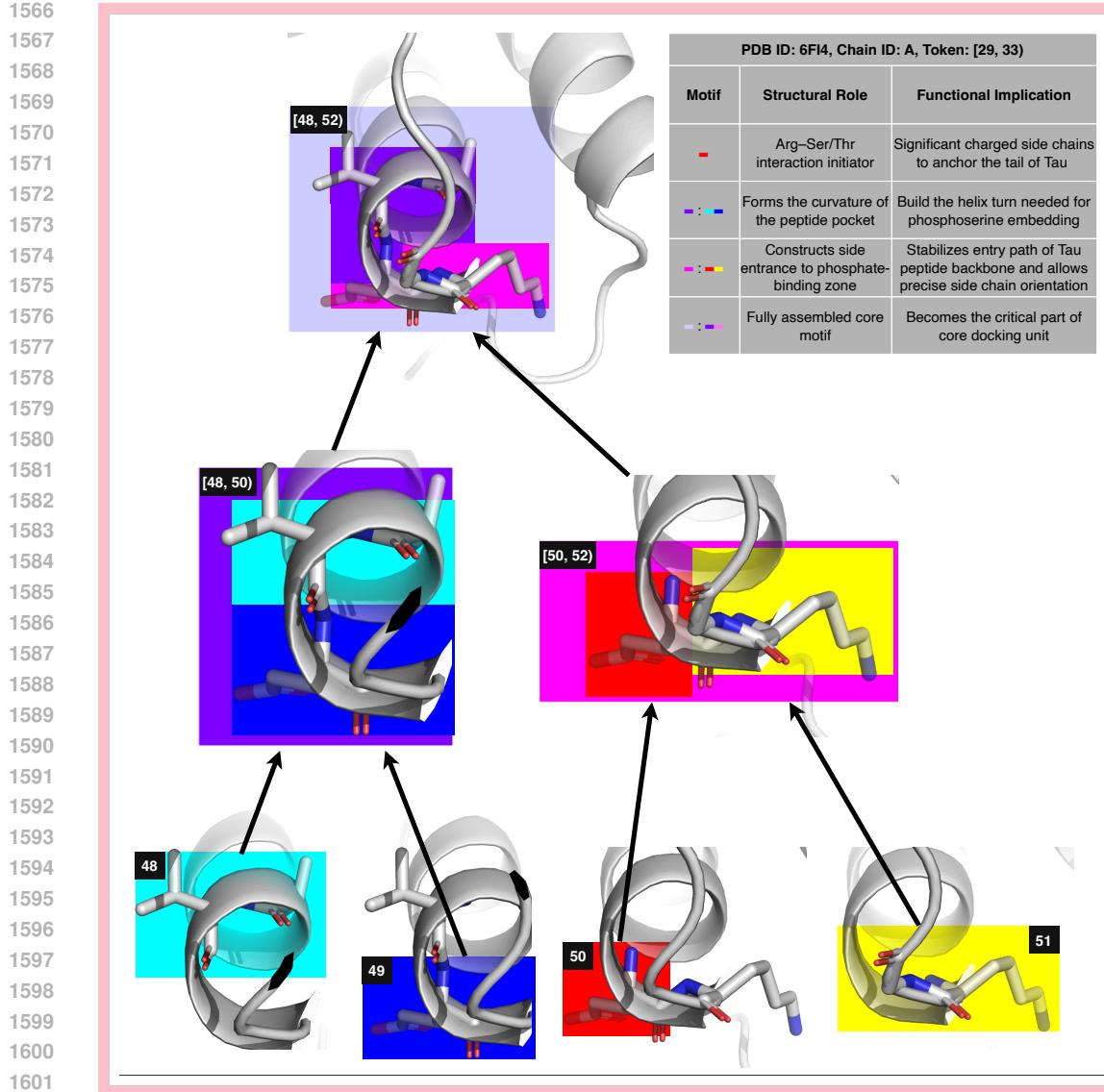


Figure 10: Chain A of PDB 6FI4. Hierarchical Merge Tree for Token [29, 33]. GEOBPE arrived at this token by merging [29, 30] with [30, 31], [31, 32] with [32, 33], and [29, 31] with [31, 33].

I PERFORMANCE ACROSS PROTEIN FOLD TYPES

Setup. We evaluate robustness of GEOBPE by computing distortion as defined in Sec. 3.3 across fold types, unusualness, and size with per-chain metrics. Structural “unusualness” is computed from Foldseek’s TM-align mode as $100 \times (1 - \text{TM})$ using the best hit against PDB. We also attach coarse labels: *categories* by best-hit TM-score (**Near-identical** ≥ 0.90 , **Same fold** $0.50\text{--}0.89$, **Distant** $0.30\text{--}0.49$) and flags indicating **very_small** (chains with < 70 residues) or **weak_coverage** (low query coverage).

Fold type labels. For fold analyses, each chain is annotated with a CATH fold label (topology-level code) and rendered as a human-readable *Class* \rightarrow *Architecture* title (multi-line axis label). We report per-fold distributions and means for RMSD and LDDT.

Plots and statistics reported. We use four concise views: (i) **Dual-axis scatter vs. unusualness**: RMSD (left, blue) and LDDT (right, orange), with per-bin mean \pm std and a fitted least-squares trend line. (ii) **Group boxplots (shared x-axis)**: side-by-side, dual-*y* box-and-whisker plots com-

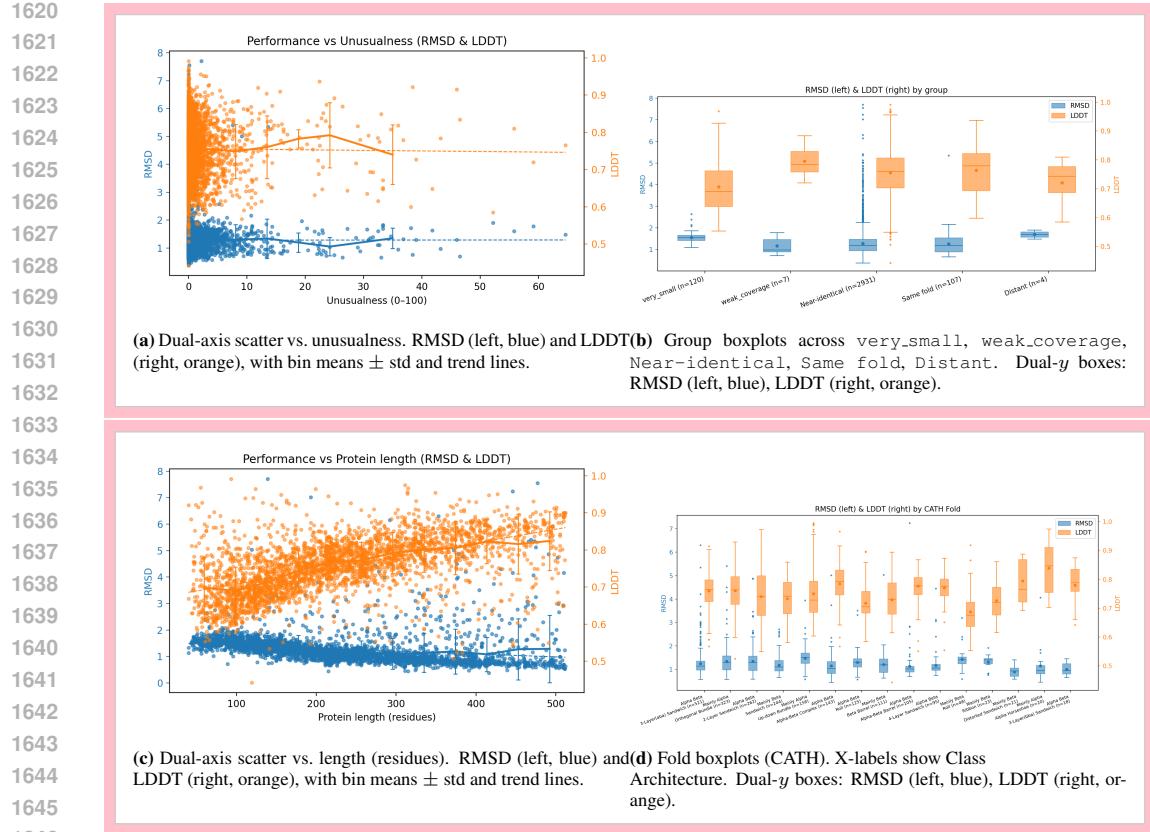


Figure 11: Plots for GEOBPE robustness evaluation. (A) vs. unusualness, (B) group distributions across flags and categories, (C) vs. length, (D) per-fold distributions. Numerical summaries (Pearson’s r with 95% CIs; group/fold means and medians) are in the accompanying CSVs.

pare distributions across {very_small, weak_coverage, Near-identical, Same_fold, Distant}; RMSD boxes map to the left axis (blue), LDDT boxes to the right axis (orange). (iii) **Dual-axis scatter vs. length:** RMSD (left) and LDDT (right) versus protein length, again with per-bin mean \pm std and a fitted trend line. (iv) **Fold boxplots:** side-by-side, dual- y box-and-whisker plots per frequent CATH (Class, Architecture) (top- N by support). Together, these views test how specific conditions (very small chains, weak alignment coverage, and decreasing fold similarity) modulate accuracy distributions, and whether protein size systematically correlates with errors. We report the following numbers and observations.

- **No degradation on unusual structures** In Fig. 11a, we see *no* correlation (Pearson’s r of 0.0091 for RMSD and -0.0096 for LDDT, 95% intervals of $(-0.0346, 0.00365)$ and $(-0.0451, 0.0260)$) between Distortion and Unusualness. Consistent with our OOD results in Fig. 4, we see GEOBPE is robust to distributional shifts. As a geometry-grounded tokenizer, GEOBPE captures energetically favorable motifs patterns, which are universal recurrences across all protein families and fold classifications.
- **No degradation on less common folds** In Fig. 11b, we see distortion remain stable on near identical or same fold to those in FoldSeek-DB. In Fig. 11d, there is no visual trend of degradation for less common fold types (left-to-right in Fig. 11d) of the ones shown. Inter-fold discrepancy is also low: among folds with $n \geq 100$, the least faithfully preserved fold type suffers from 30.2% higher RMSD than the most faithful.
- **More faithful to larger folds than smaller folds** In Fig. 11c, we see *weak* correlation (Pearson r of -0.2141 for RMSD and 0.5627 for LDDT, 95% intervals of $(-0.2477, -0.1799)$ and $(0.5379, 0.5865)$) between Distortion and Length. In Fig. 11b, we see distortion slightly elevates for very small folds. Among fold types with at least $n = 100$ samples, GEOBPE achieves lowest

1674 distortion (1.130 RMSD) on Alpha-Beta Barrels (cylindrically packed, stable folds) and highest
 1675 distortion (30% higher RMSD) on Mainly Alpha Up-down Bundles (smaller folds primarily of
 1676 alternating alpha helices). This suggests GEOBPE has a high propensity for packed but stable
 1677 folds (sandwiches, barrels).

1679 J COMPUTATIONAL COMPLEXITY

1681 **Notation.** Let $\{t^{(\tau)}\}_{\tau=1}^T$ be T backbones with lengths $N^{(\tau)}$, and let $N := \sum_{\tau=1}^T N^{(\tau)}$ be the total
 1682 residues. In each STEP iteration, the most frequent geo-pair key has M_t occurrences. We use K for
 1683 the number of medoids produced when clustering a key's occurrences (a small constant in practice).
 1684 For k-medoids we either: (i) cluster all M_t items, or (ii) cap with M_{\max} items. Let P be the *period*
 1685 at which GLUEOPTALL is invoked (see Alg. 9), and let C_{IK} denote the cost of one global IK pass
 1686 (see below). The ordered map \mathcal{D} stores key \rightarrow occurrence-set with a priority $(\rho, -|\mathcal{O}|, \kappa)$; each
 1687 insert/erase in \mathcal{D} costs $O(\log |\mathcal{D}|) = O(\log N)$.

1688 Component building blocks.

- 1689 • **k-medoids on m items:** $O(m^2)$ to build the pairwise RMSD matrix (constant fragment length),
 1690 plus a small constant number of assignment/update steps
- 1691 • **Priority map updates:** each merge touches $O(1)$ neighbor pairs; across the *entire* run there are
 1692 $O(N)$ merges $\Rightarrow O(N \log N)$ total map operations Every merge eliminates one boundary and
 1693 touches at most its two neighbors, so the total number of insert/erase operations in \mathcal{D} across the
 1694 full run is $O(N)$; with $O(\log N)$ per op, the total is $O(N \log N)$.
- 1695 • **Global IK (GLUEOPTALL) one pass:** forward kinematics is linear in links, so one pass costs
 1696 $C_{IK} = O(N \cdot S_{FK})$, where S_{FK} is the (small) number of optimizer steps \times the constant for-
 1697 ward/backward cost per link Periodic GLUEOPTALL adds $\frac{T}{P} O(N \log N)$ due to re-keying af-
 1698 fected boundaries.

1699 Worst-case complexity (no subsampling cap).

- 1700 • **ResInitTokens:** $O(N^2) + O(N \log N)$.
- 1701 • **Step loop over all iterations:** $O\left(\sum_t M_t^2\right) + O(N \log N)$.
- 1702 • **Periodic global glue opt:** $\frac{T}{P} \left(C_{IK} + O(N \log N)\right)$.
- 1703 • **Total (worst case):** $O(N^2) + O\left(\sum_t M_t^2\right) + O(N \log N) + \frac{T}{P} \left(C_{IK} + O(N \log N)\right)$.
- 1704 • **Total (with cap):** $O(M_{\max}^2) + O(T M_{\max}^2) + O(N \log N) + \frac{T}{P} \left(C_{IK} + O(N \log N)\right)$.

1705 In the worst case $M_t = \Theta(N)$ for many steps, $\sum_t M_t^2$ can reach $\Theta(N^2)$. Here M_{\max} controls
 1706 runtime. Putting it together, we can make the following statements about GEOBPE's computational
 1707 complexity:

- 1708 • **(Alg. 1) Training (discovering the vocabulary):** dominated by k-medoids calls and periodic IK:

$$1709 O(T M_{\max}^2) + O(N \log N) + \frac{T}{P} \left(C_{IK} + O(N \log N)\right).$$

- 1710 • **(Alg. 10) Tokenization (apply a learned vocabulary):** similar to training but without any k-
 1711 medoids calls and in terms of $N^{(\tau)}$:

$$1712 O(N^{(\tau)} \log N^{(\tau)}) + \frac{T}{P} \left(C_{IK} + O(N^{(\tau)} \log N^{(\tau)})\right).$$

- 1713 • **(Alg. 5) Detokenization (geometry reconstruction):** forward kinematics per link is $O(1)$; re-
 1714 constructing all atoms is $O(N)$.

1715 **Insights for efficient practice.** (i) Most structural variability concentrates in a small number of
 1716 modes; a modest M_{\max} suffices. (ii) Dictionary updates are *incremental*; our implementation uses
 1717 an ordered map. (iii) In practice, we choose $P = 10$; GlueOptAll calls are infrequent enough it does
 1718 not become an issue. If this becomes the practical bottleneck, we recommend GLUEOPT for local
 1719 IK updates instead, which drops the $O(N \log N)$ term.

1720 **Distortion is insensitive to M_{\max} .** In App. A, we observe that increasing M_{\max} yields no real
 1721 gains beyond 5000; any marginal gains are lost to the subsequent GlueOptAll call. This is because

medoids stabilize quickly on representative modes, capping clustering with M_{\max} preserves reconstruction quality while bounding the dominant $O(M_{\max}^2)$ term. This is backed by observations made by de Brevern et al. (2002); Mackenzie (2016) and others that the structural universe of possible elements are captured by a exponentially smaller number of modes.

Increasing GLUE_OPT_EVERY does not significantly hurt performance.

In Figs. 13b & 13a, we see GEOBPE behavior remains comparable between a run where the expensive glue optimization (all) is done every iteration, vs a run following our default recommendation of every ten iterations. The $\frac{T}{P}O(N \log N)$ term is often the key walltime bottleneck, as Table 13 shows. Therefore, increasing P would help amortize the expensive rigid body refinement routine across iterations.

Wall times from our experiments.

Table 13: Using 20 CPUs, we report our job’s wall-clock time. Underlined steps perform periodic glue optimization (period $P = 10$). They are followed by $P - 1$ GEOBPE steps. We report wall times for steps 0, 10, 20, 200; omitted steps interpolate predictably.

Function	Paper Reference (Algo, Line)	Time (HH:MM:SS)
<u>init_thresholds</u>	Algo 1 L1(Empirical Quantizer Estimation)	00:01:33
<u>init_res_tokens</u>	Algo 1 L2 (Per-residue Initialization)	02:16:02
glue_opt_all	Algo 1 L3 (Global glue refinement)	03:21:50
Step 0	Algo 1 L7 (Step) w/ Algo 9 L13 (glue opt all)	02:36:21
Steps 1-9	Algo 1 L7 (Step)	01:32:50
<u>Step 10</u>	Algo 1 L7 (Step) w/ Algo 9 L13 (glue opt all)	01:40:58
Steps 11-19	Algo 1 L7 (Step)	01:37:39
<u>Step 20</u>	Algo 1 L7 (Step) w/ Algo 9 L13 (glue opt all)	01:27:39
Steps 21-29	Algo 1 L7 (Step)	01:36:41
	...	
<u>Step 200</u>	Algo 1 L7 (Step) w/ Algo 9 L13 (glue opt all)	00:56:56
Steps 201-209	Algo 1 L7 (Step)	00:50:06
	...	

K HYPERPARAMETER DOCUMENTATION AND GUIDELINES

K.1 MAIN HYPERPARAMETERS AND REPRODUCIBLE SETTINGS

We describe the key parameters that govern GEOBPE’s behaviors in Table 14. For each, we report the default setting used by GeoBPE across most key results of the paper: Fig. 4, Tables 10 & 11 and App. A. We report any instances overriding the default settings here:

1. Token efficiency / SSLM-Eval (Tables 10, 11) set $\text{num_p} \leftarrow \{2:500, 3:2000\}$, $\text{bins} \leftarrow \{1:1000\}$ for codebook size $|\mathcal{V}| = 2500$ and $\text{num_p} \leftarrow \{2:1000, 3:5000\}$, $\text{bins} \leftarrow \{1:2000\}$ for $|\mathcal{V}| = 6000$.
2. Pareto-efficiency evaluation (Fig 4) further add the setting for $|\mathcal{V}| = 21000$ where $\text{num_p} \leftarrow \{2:1000, 3:20000\}$, $\text{bins} \leftarrow \{1:2000\}$. We vary num_p elastically moves along the Pareto-efficiency plot, trading off BPR for distortion. All runs use $w_t = 1.0$, which we discover from ablation studies (see Tables 17 & 18) has better performance than $w_t = 0.1$.
3. Downstream transfer experiments (Tables 1, 7) set $\text{num_p} \leftarrow \{2:2, 3:5, 5:1, 6:2, 8:1\}$, $\text{free_bonds} \leftarrow \text{False}$ and $\text{bins} \leftarrow \{1:50\}$, and $\text{bin_strategy} \leftarrow \text{histogram-cover}$ to adaptively coarsen the resolution. GEOBPE prioritizes learning fine-to-coarse hierarchical signals over low distortion for effective transfer.

K.2 HYPERPARAMETER SELECTION GUIDELINES

Which ones to prioritize. Only a few parameters in Table 14 dictate overall behavior, performance and runtime. Essential knobs are:

- **Vocabulary Growth**

- num_p (number of medoids)

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

Table 14: We report the main hyperparameters that affect GEOBPE behavior.

Parameter	Value	Meaning	Default Behavior
bin_strategy	histogram	Controls the strategy for empirical quantizer estimation (Alg. 1)	numpy.histogram with bins
bins	{1:500}	Controls the number of bins used by bin_strategy	Uses 500 quantiles
free_bonds	True	Whether to quantize bond lengths	Don't standardize
		Setting to False standardizes all bond lengths to precomputed values	Quantize with linear histograms
glue_opt	True	Whether to do Glue Opt in Algs 18, 9	Do Glue Opt
glue_opt_every	10	How often to run global glue opt (final line of Alg. 9)	Do every 10 iters
glue_opt_method	all	Whether to do batch glue opt (Alg. 12) or single-boundary glue opt (Alg. 19)	Do batch glue opt
glue_opt_prior	1.0	Prior weight encouraging optimized glues to match empirical distribution	1.0
w_R, w_t	1.0, 0.1	Rotation, translation loss term weights to IK loss (Alg. 19)	Weigh rotation error 10x translation error
max_num_strucs	5000	Max number of occurrences for clustering (M_{\max} in Alg. 6)	5000
num_p	{2:100, 3:500, 5:20, 6:100}	K determined by span length L in Alg. 6, L not in num_p round down to nearest key	Use $K = 100$ when $L = 2$ Use $K = 500$ when $L \geq 3$
rmsd_super_res	True	Whether to use occurrences from original backbone t_r or current backbone in Alg. 9	Use original states

- bins (quantizer strength)
- max_iter (or # iterations to run)

• Compression/Runtime Tradeoff

- glue_opt/glue_opt_method/glue_opt_every (glue optimization)

Aside from these, we suggest leaving the rest to default values.

Choosing num_p (medoids per step) and bins (angle/length quantization strength).

We define num_p via a step-wise schedule over motif sizes. For example,

$$\{2 : 2, 3 : 5, 5 : 10\}$$

(passed as `--num-p 2-2:3-5:5-10`) means:

- introduce 2 tokens for geometric keys with 2 bonds (C-terminal residue orientations),
- 5 tokens for keys with 3 bonds (all non-terminal residues),
- 10 tokens for all merged geometric keys with 5 or more bonds (every GeoBPE step after residue initialization).

The bins parameter uses the same syntax as num_p. For example,

$$\{1 : 100, 3 : 10\}$$

(passed as `--bins 1-100:3-10`) introduces 100 bins to discretize the angular histogram at initialization, with 10 bins for keys of size ≥ 3 . For brevity, BINS = n is shorthand for BINS = $\{1 : n\}$. The binning strategy is controlled by bin_strategy. If glue optimization produces angles outside the supported range, we snap them to the closest bin. In practice, we recommend increasing or decreasing bins in tandem with num_p.

Below we give practical recommendations by downstream use case.

GeoBPE for compression / reconstruction.

Intuition. Larger num_p values \rightarrow more medoids per step, which improves reconstruction quality (RMSD/LDDT) at the cost of a larger vocabulary and noisier merges. Empirically, we observe diminishing returns in reconstruction beyond settings such as

$$\text{num_p} = \{2 : 200, 3 : 1000\},$$

consistent with there being only a limited number of modes in the conformational variability of energetically favored backbone regions (Ramachandran landscape).

Recommendation. Use relatively large num_p to maximize reconstruction fidelity, but pair it with a high (yet not extreme) bins[size] to avoid a combinatorial explosion in the space of geometric keys. A good default for reconstruction-oriented use is

$$\text{bins} = \{1 : 500\},$$

combined with moderately large num_p.

GeoBPE for representation learning.

Intuition. GeoBPE emits both a sequence of tokens and a merge hierarchy, with the hierarchy providing the main inductive bias for downstream representation learning from residue to protein level. A useful hierarchy should:

1836 • capture higher-level patterns (from basic secondary structure elements to functional sites),
 1837 • avoid overfitting to high-frequency local vibrations.

1839 Here the goal shifts from pure compression to *coarsening*: we want motifs that aggregate meaningful
 1840 local structure without being overly fine-grained.

1841 *Recommendation.* Use relatively small `num_p` values and correspondingly small `bins`. For exam-
 1842 ple, the configuration used in our paper for representation learning was

$$1843 \quad \text{num_p} = \{2 : 2, 3 : 5, 5 : 1, 6 : 2, 8 : 1\},$$

1844 paired with

$$1846 \quad \text{bins} = \{1 : 50\}$$

1847 and the `histogram-cover` strategy. This yields coarser motifs and hierarchies that are better
 1848 suited to downstream predictive tasks.

1849 **Choosing the number of merge iterations.**

1850 At iteration t , GeoBPE increases the vocabulary size by looking up `num_p`:

$$1852 \quad |\mathcal{V}_{\text{final}}| \approx |\mathcal{V}_{\text{init}}| + \sum_{t=1}^T \text{num_p}[|\text{key}^{(t)}|],$$

1855 where T is the number of merge iterations. More iterations yield a larger and more varied vocabulary,
 1856 but each “word” (motif) is then used less frequently.

1857 The optimal stopping point depends on the downstream application.

1858 **GeoBPE for representation learning.**

1859 For representation learning, the merge hierarchy serves as an inductive bias: merged token pairs
 1860 tend to correspond to secondary structure segments and align with domain or homology hits. Here
 1861 GeoBPE should *coarsen* high-resolution details into higher-level motifs instead of growing an ex-
 1862 tremely large vocabulary.

1863 *Recommendation.* Use a moderate number of iterations, stopping once downstream validation met-
 1864 rics (e.g., AUROC, Spearman ρ , Macro-F1) plateau. In practice, this typically occurs well before
 1865 exhausting all possible merges; beyond that point, additional iterations mainly create very specific,
 1866 low-usage motifs that add complexity without improving downstream performance.

1867 **GeoBPE for compression / reconstruction.**

1868 GeoBPE is closest to its BPE origins when used as a compression algorithm: the goal is to reduce se-
 1869 quence length (increase compression), preserving geometry (minimize distortion), while monitoring
 1870 the amortized bits to store the growing vocabulary in the background.

1871 *Recommendation.* Allow fewer iterations and monitor the trade-off between bit-rate (i.e., BPR)
 1872 and reconstruction error (RMSD/LDDT). A general rule-of-thumb is to continue merging as long
 1873 as additional iterations lowers *either* BPR or distortion. Later, one can choose the right iteration
 1874 checkpoint to navigate the tradeoff. Thus, it is wise to stop immediately when both metrics begin
 1875 degrading simultaneously. On very high resolutions and a moderate dataset (e.g. our pretraining
 1876 dataset), this happens early on. The amortized bits used to grow the vocabulary generally outpace
 1877 the bits saved from decreasing the number of tokens per structure; this relationship reverses on lower
 1878 resolutions and larger datasets.

1879 **GeoBPE for language modeling.**

1880 When using GeoBPE as a tokenizer for protein language models, a common heuristic adapted from
 1881 NLP is to set the final vocabulary size such that

$$1883 \quad \frac{|\mathcal{V}|}{L} \approx \frac{N}{1000},$$

1885 where L is the average number of motifs per structure and N is the number of structures. Equiva-
 1886 lently, the total number of tokens

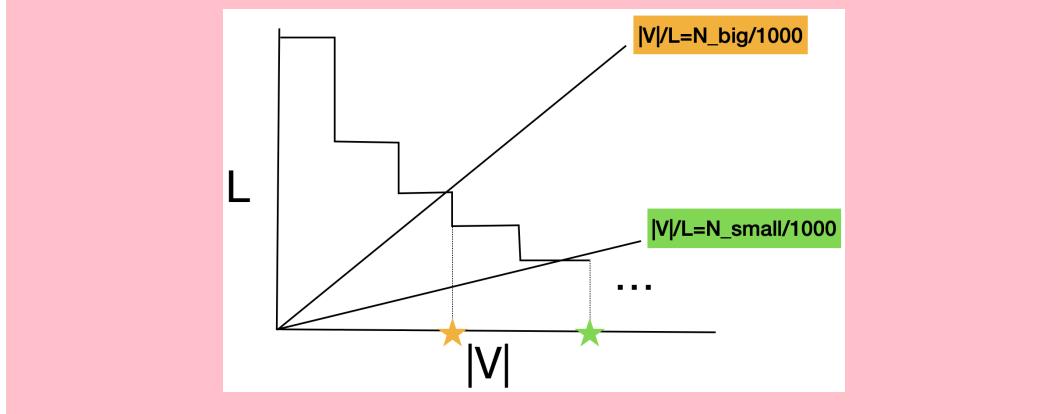
$$1887 \quad T \approx L \times N$$

1888 suggests a target vocabulary size $|\mathcal{V}| \approx T/1000$.

1889 Table 15 shows concrete numbers for different LM scales.

1890 **Table 15:** Heuristic vocabulary sizes $|\mathcal{V}|$ for GeoBPE when used as a tokenizer for protein language models
 1891 at different data and model scales.

1893 LM scale	1893 # structures N	1893 L (motifs / structure)	1893 $ \mathcal{V} \approx (L \times N) / 1000$	1893 Model params
1894 Toy / demo	1894 10^3	1894 100	1894 $\sim 10^2$	1894 $\sim 10^6$
1895 Small / usable	1895 10^4	1895 100	1895 $\sim 10^3$	1895 10–50M
1896 Base “GPT-small”	1896 10^5	1896 100	1896 $\sim 10^4$	1896 $\sim 10^8$
1897 Mid-scale	1897 10^6	1897 100	1897 $\sim 10^5$	1897 $\gtrsim 10^9$



1900 **Figure 12:** Illustration of the heuristic for choosing the number of merge iterations based on the target
 1901 vocabulary size $|\mathcal{V}|$ for language modeling. The marked point indicates the recommended stopping iteration
 1902 for a dataset with N structures.

1912 We implement a stopping criterion based on this heuristic: during training we track $|\mathcal{V}|$ as merges
 1913 accumulate (T decreases) and mark the iteration where the target $|\mathcal{V}|$ meets $T/1000$. In Fig. 12, this
 1914 iteration is highlighted (e.g., with a star) and concretely in the `run_{iter}.png` plots produced
 1915 in each run directory by our code.

1916 **Practical tip.** In practice, you can set a relatively large `max_iter` and let GeoBPE proceed for
 1917 many iterations while logging checkpoints. After training, select the checkpoint whose vocabulary
 1918 size and downstream metrics best match your target (compression, representation quality, or LM
 1919 tokenizer size), rather than trying to tune the exact stopping iteration a priori.

1920 K.3 SENSITIVITY STUDIES

1921 We show how sensitive GEOBPE behavior is to key hyperparameters by running ablation experiments
 1922 for selected hyperparameters, one at a time.

1923 $|\mathcal{V}|$ (NUM_P, # iterations) varies.

1924 In Table 16 is an ablation study varying NUM_P across runs and # iterations per run; $|\mathcal{V}|$ depends on
 1925 both. We also combine both into the throttle $|\mathcal{V}|$. We make the following observations:

- 1926 1. As NUM_P values become high, the unique GeoPair keys increase exponentially. Since each
 1927 iteration only looks at one key, the number of merges done falls off. Empirically, the top rows
 1928 show only marginal changes to distortion as iteration increases. We omitted them for brevity.
- 1929 2. As NUM_P values drop too low, GEOBPE becomes more of a coarsening algorithm (lots of
 1930 merges, repetitive patterns are preserved but higher frequencies are lost). When merges hap-
 1931 pen more often, more drift is introduced, so error quickly accumulates. We can see distortion
 1932 monotonically increase for the last run.
- 1933 3. There exists a tension between NUM_P and merge frequency, but glue opt is still potent enough
 1934 to manage drift accumulation. We see error decrease before increasing again, when eventually
 1935 merges overwhelm.

1944
 1945 **Table 16:** Cluster of runs that vary NUM_P; each row is a run; lower resolution runs include periodic check-
 1946 points to see how RMSD/LDDT/BPR changes over iterations.

1947	NUM_P	1948	$ V $	RMSD	LDDT	BPR	
1949	{2: 100, 3: 500, 5: 20, 6: 100, ...}	1950	600	1.66	0.73	36.02	
1951	{2: 500, 3: 2000, 5: 100, 6: 500, ...}	1952	2500	1.41	0.75	41.11	
1953	{2: 1000, 3: 5000, 5: 200, 6: 1000, ...}	1954	6000	1.37	0.76	45.44	
1955	{2: 1000, 3: 20000}	1956	21000	1.21	0.76	47.62	
1957	{2: 50, 5: 20, 6: 100, ...}	1958	5200	2.11	0.68	37.24	
1959		1960	65	1.78	0.71	30.81	
1961		1962	237	1.77	0.70	34.00	
1963		1964	388	1.72	0.70	35.88	
1965	{2: 10, 3: 50, 5: 1, 6: 5, 8: 1}	1966	521	1.71	0.70	37.33	
1967		1968	631	1.69	0.70	38.47	
1969		1970	739	1.71	0.70	39.54	
1971		1972	845	1.73	0.69	40.57	
1973		1974		109	3.96	0.53	27.26
1975		1976		309	4.07	0.53	30.81
1977		1978		508	4.23	0.53	33.46
1979		1980		707	4.50	0.53	35.93

BINS $\in \{50, 100, 300\}$. BINS controls the quantization of bond lengths, bond angles and torsion angles connecting motifs; it trades off structural fidelity for better coarsening. Geo-Pair keys are of the form $(\mathcal{M}_{p:q}, \Gamma_q, \mathcal{M}_{q:r})$, and the space of γ_q has size $\sim (\text{BINS})^3$ (since there are 3 glue angles). Importantly, it is orthogonal to NUM_P, which control the id's of $\mathcal{M}_{p:q}$ and $\mathcal{M}_{q:r}$, so it can be tuned independently. Fixing Hyperparameter Setting 3, we *increase* the number of bins used to discretize $\theta^{\text{CNCA}}, \omega, \phi$ angles by 2x, 6x. Fig. 13e uses the default value BINS = 50; Figs. 13a & 13d use BINS = 100, 300. Increasing BINS decreases frequency of merges by around the same factor, so we observe L vs K is flatter for higher BINS settings L decreases slower. Since BINS is an important control of resolution, decreasing it increases distortion (e.g. 3.12 \rightarrow 4.19 \rightarrow 5.76 RMSD). Distortion is not a priority consideration for transfer experiments. Since the goal is to compress local noise into meaningful global hierarchies, introducing distortion is *necessary* to cluster common motifs. Setting BINS too low can *misrepresent* the overall structure, so we recommend BINS = 50 as a good starting value.

GLUE_OPT_EVERY $\in \{1, 10\}$. Fig. 13b (GLUE_OPT_EVERY = 1) only shows a 6.2% decrease in RMSD and comparable LDDT vs Fig. 13a (GLUE_OPT_EVERY = 10). As the wall times in 13 shows, decreasing the frequency of glue_opt significantly accelerates GEOBPE, regardless of how many cores are available. App. J reveals glue_opt period P to directly dictate a rate-limiting term in GEOBPE's complexity. Thus, we adopt GLUE_OPT_EVERY = 10 as the default setting. We also suggest GEOBPE users to try setting GLUE_OPT_EVERY > 10 to balance the tradeoffs.

1986
 1987 **Table 17:** We performed the following sweep over (w_R, w_t) (order of magnitude changes to w_T/w_R); remaining settings match defaults (App. K).

(w_R, w_t)	Train		CAMEO		CASP14	
	GeoBPE (1%)	RMSD	LDDT	RMSD	LDDT	RMSD
(10, 0.1)	2.846	0.615	2.767	0.601	2.608	0.587
(1, 0.1)-default	1.718	0.739	1.656	0.734	1.526	0.721
(1.0, 1.0)	1.552	0.764	1.546	0.755	1.412	0.743
(0.1, 1.0)	1.537	0.767	1.532	0.758	1.396	0.745
(0.1, 10)	1.533	0.768	1.533	0.758	1.407	0.745

1998 **Table 18:** We compare the default (w_R, w_t) setting with $(1.0, 1.0)$, which in Table 17 resulted in lower distortion
 1999 for GEOBPE (1%).

2000	GeoBPE	Train		Valid		CAMEO		CASP14		
2001	$ V $	(w_R, w_t)	RMSD	LLDT	RMSD	LLDT	RMSD	LLDT	RMSD	LLDT
2002	600	(1, 0.1)-default	1.66	0.73	1.71	0.72	1.77	0.72	1.53	0.72
2003		(1.0, 1.0)	1.55	0.75	1.58	0.74	1.65	0.74	1.39	0.74
2004	2500	(1, 0.1)-default	1.41	0.75	1.50	0.74	1.57	0.74	1.51	0.73
2005		(1.0, 1.0)	1.29	0.78	1.36	0.77	1.41	0.77	1.33	0.76
2006	6000	(1, 0.1)-default	1.37	0.76	1.46	0.75	1.52	0.74	1.54	0.72
2007		(1.0, 1.0)	1.23	0.78	1.30	0.78	1.37	0.77	1.35	0.75
2008	21000	(1, 0.1)-default	1.21	0.77	1.28	0.76	1.40	0.75	1.55	0.72
2009		(1.0, 1.0)	1.05	0.80	1.12	0.79	1.25	0.78	1.35	0.76

2010
 2011
 2012 $\mathbf{w_R}/\mathbf{w_T} \in \{10^{-2}, \dots, 10^2\}$. Table 17 shows w_t is relatively more important than w_R for reconstruction. The interpretation is correct positions are more critical than correct orientations. We
 2013 observe diminishing returns once $w_t \geq w_R$ ($|\Delta_{LLDT}| \approx 10^{-3}$, $|\Delta_{RMSD}| \approx 10^{-2}$).
 2014

2015 **FREE_BONDS** $\in \{\text{False}, \text{True}\}$. **FREE_BONDS** decides whether bond lengths are free variables, or
 2016 standardized to fixed values. Generally, the backbone bond lengths are very close to fixed and most
 2017 workflows (e.g. X-ray diffraction, NMR, Cryo-EM) that solve structures make such assumptions.
 2018 GEOBPE is designed to be fully general, allowing variable bond lengths. In lieu of the known fact
 2019 that they have relatively narrow ranges, we ran a sanity check to see if GEOBPE is sensitive to
 2020 **FREE_BONDS**. Comparing Figs. 13c & 13e, we see the run with free bonds achieves only 1.69%
 2021 lower RMSD, which is negligible.
 2022

2023 L LARGE LANGUAGE MODEL USAGE

2024 We used LLMs mainly for polishing the writing, including prompts to check for grammar mistakes,
 2025 improving clarity of mathematical notation, and formatting the text to save space.

2029 M ALGORITHMIC DETAILS

2031 Additional notation for algorithms.

2032 We reuse all geometric and GeoBPE notation from Secs. 3.1–3.2. For convenience we collect the
 2033 additional symbols that appear only inside the algorithmic pseudocode.

2034 \mathcal{S}, \mathcal{A} Set of motif (or motif–pair) occurrences and its sampled subset used by RMSD_PARTITION
 2035 (Alg. 6); each $u \in \mathcal{S}$ indexes a motif $\mathcal{M}_{i_u:k_u}^{(t_u)}$.

2036 S_3, S_2 Collections of interior and terminal bond–residue occurrences used to build residue-level
 2037 codebooks $\mathcal{A}_3, \mathcal{A}_2$ (Algo. 18).

2038 $\widehat{\mathcal{M}}, c(\cdot)$ Medoid set and assignment map returned by RMSD_PARTITION, used as inputs to glue-
 2039 optimization routines (Algos. 19,12).

2040 $\mathcal{D}^{(*)}, \mathcal{O}^{(*)}(\kappa)$ Single-backbone geo-pair map and occurrence sets for a new backbone t^* during
 2041 tokenization (Algo. 10).

2042 $\Sigma, \Sigma_{\text{med}}$ Token dictionary used for geometric language modeling (Algos. 16, 17); Σ_{med} contains
 2043 only motif tokens; Σ also includes glue angle tokens.

2044 $\text{id}_{\text{med}}, \text{id}_{\text{bin}}$ Integer maps assigning token IDs to motif medoids (κ, j) and to glue-angle bins
 2045 (type, b), respectively.

2046 $x^{(\tau)}$ Token sequence encoding backbone t_τ obtained by alternating motif and glue-bin tokens
 2047 (Algo. 17).

2048 $h_i^\uparrow, c_i^\uparrow, \bar{h}_i, \bar{c}_i$ Upward and downward TreeLSTM states at node i in the up–down encoder (Al-
 2049 gos. 13–15).

2052 $z_{\tau,i}^{\text{res}}, z_{\tau}^{\text{prot}}$ Final residue-level and protein-level embeddings produced by the up–down encoder on
 2053 the merge hierarchy $\mathcal{F}^{(\tau)}$ (Algo. 15).
 2054

Algorithm 6 RMSD_PARTITION on motif–pair occurrences

2057 **Require:** Motif–pair occurrences $\mathcal{S} = \{u = 1, \dots, M\}$ with $\mathcal{M}_{i_u:k_u}^{(t_u)}$, common span length $L =$
 2058 $k_u - i_u + 1$, and either $\forall u, k_u = N^{(t_u)}$ or $\forall u, k_u < N^{(t_u)}$; target $K \geq 1$; optional M_{\max}, T, ε .
 2059
 2060 **Ensure:** Medoids $\widehat{\mathcal{M}} = \{\widehat{m}_1, \dots, \widehat{m}_K\} \subseteq \mathcal{S}$ and assignments $c : \{1, \dots, M\} \rightarrow \{1, \dots, K\}$.
 2061 1: For each $u \in \mathcal{S}$, compute $\mathbf{X}_u \in \mathbb{R}^{3L \times 3}$ via COMPUTE_COORDS($i_u:k_u$).
 2062 2: Let $\mathcal{A} \subseteq \mathcal{S}$ be a uniform sample without replacement of size $\min(M, M_{\max})$ (or $\mathcal{A} = \mathcal{S}$).
 2063 3: Build $D \in \mathbb{R}^{|\mathcal{A}| \times |\mathcal{A}|}$ with $D_{uv} = \text{KABSCH_RMSD}(\mathbf{X}_u, \mathbf{X}_v)$ for $u, v \in \mathcal{A}$.
 2064 4: Initialize $\mathcal{M} \leftarrow \{m_1, \dots, m_K\}$ as K distinct uniform indices from $\{1, \dots, |\mathcal{A}|\}$.
 2065 5: **for** $t = 1$ **to** T **do**
 2066 6: Assign: $c(u) \leftarrow \arg \min_{j \in \{1, \dots, K\}} D_{u,m_j}$ for all $u \in \mathcal{A}$.
 2067 7: Update each j : $\mathcal{C}_j = \{u \in \mathcal{A} : c(u) = j\}$. If $\mathcal{C}_j = \emptyset$, reseed m_j uniformly from \mathcal{A} ; else
 2068 2069
$$m'_j \leftarrow \arg \min_{u \in \mathcal{C}_j} \sum_{v \in \mathcal{C}_j} D_{uv}.$$

 2070
 2071 8: If $\sum_{j=1}^K D_{m_j, m'_j} < \varepsilon$ **break**; else set $m_j \leftarrow m'_j$ for all j .
 2072 9: **end for**
 2073 10: Map $\mathcal{M} = \{m_1, \dots, m_K\}$ (indices in \mathcal{A}) to $\widehat{\mathcal{M}} = \{\widehat{m}_1, \dots, \widehat{m}_K\}$ (indices in \mathcal{S}).
 2074 11: For each $u \in \mathcal{S}$, set $c(u) \leftarrow \arg \min_{j \in \{1, \dots, K\}} \text{KABSCH_RMSD}(\mathbf{X}_u, \mathbf{X}_{\widehat{m}_j})$.
 2075 12: **return** $\widehat{\mathcal{M}}$ and $c(\cdot)$.

Algorithm 7 KABSCH.RMSD(\mathbf{P}, \mathbf{Q})

2079 **Require:** $\mathbf{P}, \mathbf{Q} \in \mathbb{R}^{n \times 3}$ with $n = 3L$.
 2080 1: $\bar{\mathbf{p}} = \frac{1}{n} \sum_i \mathbf{P}_i, \bar{\mathbf{q}} = \frac{1}{n} \sum_i \mathbf{Q}_i$
 2081 2: $\tilde{\mathbf{P}} = \mathbf{P} - \bar{\mathbf{p}}, \tilde{\mathbf{Q}} = \mathbf{Q} - \bar{\mathbf{q}}$
 2082 3: $\mathbf{H} = \tilde{\mathbf{P}}^T \tilde{\mathbf{Q}}$, $\mathbf{U}\Sigma\mathbf{V}^T = \text{SVD}(\mathbf{H})$
 2083 4: $\mathbf{R} = \mathbf{U}\mathbf{V}^T$; if $\det(\mathbf{R}) < 0$, set $\mathbf{V}_{:,3} \leftarrow -\mathbf{V}_{:,3}$ and recompute $\mathbf{R} = \mathbf{U}\mathbf{V}^T$
 2084 5: $\mathbf{Q}_{\text{aligned}} = (\mathbf{Q} - \bar{\mathbf{q}})\mathbf{R}^T + \bar{\mathbf{p}}$
 2085 6: **return** $\sqrt{\frac{1}{n} \sum_{i=1}^n \|\mathbf{P}_i - \mathbf{Q}_{\text{aligned},i}\|^2}$

Algorithm 8 K_MEDOIDS on a precomputed distance matrix

2090 **Require:** Symmetric $D \in \mathbb{R}^{N \times N}$, number of clusters K , iterations T , tolerance ε .
 2091 **Ensure:** Medoid set $\{m_1, \dots, m_K\}$ and assignments $c(\cdot)$ on $\{1, \dots, N\}$.
 2092 1: Initialize medoids $\{m_j\}$ as K distinct random indices.
 2093 2: **for** $t = 1$ **to** T **do**
 2094 3: $c(u) \leftarrow \arg \min_j D_{u,m_j}$ for all u
 2095 4: **for** $j = 1$ **to** K **do**
 2096 5: $\mathcal{C}_j = \{u : c(u) = j\}$; if $\mathcal{C}_j = \emptyset$, re-seed m_j at random
 2097 6: $m'_j \leftarrow \arg \min_{u \in \mathcal{C}_j} \sum_{v \in \mathcal{C}_j} D_{uv}$
 2098 7: **end for**
 2099 8: If $\sum_{j=1}^K D_{m_j, m'_j} < \varepsilon$, **break**; else $m_j \leftarrow m'_j$ for all j
 2100 9: **end for**
 2101 10: **return** $\{m_j\}$ and $c(\cdot)$

2106

2107

2108

2109

Algorithm 9 STEP — one GEOBPE merge iteration

2110

Require: Current segmentations $\{\mathcal{P}^{(\tau)}\}_{\tau=1}^T$ and merge hierarchies $\{\mathcal{F}^{(\tau)}\}_{\tau=1}^T$ (frontier leaves of $\mathcal{F}^{(\tau)}$ equal $\mathcal{P}^{(\tau)}$); priority-ordered map \mathcal{D} with keys $\pi(\kappa) = (\rho(\kappa), -|\mathcal{O}(\kappa)|, \kappa)$ and values $\mathcal{O}(\kappa)$; current vocabulary \mathcal{V} (map: key \rightarrow prototype set); boundary-glue quantizers $Q_{\theta^{CNCA}}, Q_\omega, Q_\phi$; optional glue mode $\in \{none, each, all\}$ and, if *all*, a period.

2114

Ensure: Updated $(\{\mathcal{P}^{(\tau)}\}, \{\mathcal{F}^{(\tau)}\}, \mathcal{D}, \mathcal{V})$.

2115

1: **Select the merge key.**

2116

$$((\rho^*, -c^*, \kappa^*), \mathcal{O}(\kappa^*)) \leftarrow \text{FRONT}(\mathcal{D}).$$

2117

Write each occurrence as $(\mathcal{L}, \mathcal{R}) \in \mathcal{O}(\kappa^*)$ with $\mathcal{L} = \mathcal{M}_{p:q}^{(t_\tau)}$ and $\mathcal{R} = \mathcal{M}_{q+1:r}^{(t_\tau)}$.

2119

2: **Prototype assignment (create-or-assign).**

2120

3: **if** $\rho^* = 1$ (*no prototypes yet*) **then**

2121

4: Gather concatenated spans $\{\mathcal{M}_{p:r}^{(t_\tau)}\}$ from *original* t_τ for all $(\mathcal{L}, \mathcal{R}) \in \mathcal{O}(\kappa^*)$ (identical length).

2122

5: Run RMSD_PARTITION (Alg. 6) to obtain medoids and $c : \mathcal{O}(\kappa^*) \rightarrow \{1, \dots, K_{|\kappa^*|}\}$.

2123

6: Define $\mathcal{A}_{\kappa^*} = \{\Pi_j^{(\kappa^*)}\}_{j=1}^{K_{|\kappa^*|}}$ (medoid spans' internal-parameter tuples).

2124

7: Update vocabulary: $\mathcal{V}[\kappa^*] \leftarrow \mathcal{A}_{\kappa^*}$ and set $\rho^* \leftarrow 0$.

2125

8: **else**

2126

9: For each occurrence, set $c(\mathcal{L}, \mathcal{R}) = \arg \min_j \text{RMSD}(\mathcal{M}_{p:r}^{(t_\tau)}, \Pi_j^{(\kappa^*)})$ using $\mathcal{V}[\kappa^*]$.

2127

10: **end if**

2128

11: **Greedy, non-overlapping merges (and hierarchy updates).** For each backbone t_τ , sort occurrences by p and choose a maximal disjoint subset $S^{(\tau)}$ left-to-right. For every $(\mathcal{L}, \mathcal{R}) \in S^{(\tau)}$ with label $j = c(\mathcal{L}, \mathcal{R})$:

2129

1. **Form merged motif** $\widetilde{\mathcal{M}} = \mathcal{M}_{p:r}^{(t_\tau)}$ and *overwrite* its internals by the prototype:

2130

$$(\ell, \theta, \psi, \omega, \phi, \{\Gamma_i\}) \Big|_{\widetilde{\mathcal{M}}} \leftarrow \Pi_j^{(\kappa^*)}.$$

2131

2. **Update segmentation** $\mathcal{P}^{(\tau)}$: replace $(\mathcal{L}, \mathcal{R})$ by $\widetilde{\mathcal{M}}$.

2132

3. **Update hierarchy** $\mathcal{F}^{(\tau)}$: add a *parent* node for span $[p:r]$ with left child the node of \mathcal{L} and right child the node of \mathcal{R} ; update the *frontier* (replace the two leaves by their parent so the frontier again equals $\mathcal{P}^{(\tau)}$).

2133

4. **(Optional) single-boundary glue opt** at link $p-1 \rightarrow p$ if mode=*each*; re-snap the three boundary angles.

2134

12: **Update counts and priorities in** \mathcal{D} . For each merged $(\mathcal{L}, \mathcal{R})$:

2135

1. **Merged pair decrement:** remove this occurrence from $\mathcal{O}(\kappa^*)$; let the new count be c_{new} . Erase $\pi_{\text{old}} = (0, -c^*, \kappa^*)$ and, if $c_{\text{new}} > 0$, insert $(0, -c_{\text{new}}, \kappa^*) \mapsto \mathcal{O}(\kappa^*)$.

2136

2. **Neighbor decrements:** with neighbors \mathcal{L}^- and \mathcal{R}^+ (when defined), compute $k_L = \text{COMPUTEGEOKEY}(\mathcal{L}^-, \mathcal{L})$ and $k_R = \text{COMPUTEGEOKEY}(\mathcal{R}, \mathcal{R}^+)$. For each $k \in \{k_L, k_R\}$ whose count decreases to c_{new} , erase $(\rho(k), -c_{\text{old}}, k)$ and, if $c_{\text{new}} > 0$, insert $(\rho(k), -c_{\text{new}}, k)$.

2137

3. **Neighbor increments:** compute $k'_L = \text{COMPUTEGEOKEY}(\mathcal{L}^-, \widetilde{\mathcal{M}})$ and $k'_R = \text{COMPUTEGEOKEY}(\widetilde{\mathcal{M}}, \mathcal{R}^+)$ (when defined); increment their counts and (re)insert with priorities $(\rho(k), -c_{\text{new}}, k)$, where $\rho(k) = 1[k \notin \text{dom}(\mathcal{V})]$.

2138

13: **(Optional periodic global glue opt).** If mode=*all* and the schedule triggers, apply GLUEOPTALL (Alg. 12) to all modified backbones; recompute keys for their adjacent pairs, and for every affected key k , perform the same erase/insert priority update with $\rho(k) = 1[k \notin \text{dom}(\mathcal{V})]$. If $\text{FRONT}(\mathcal{D})$ then exposes a recurring key ($\rho = 0$) promoted by glue refinement, immediately re-invoke STEP (no new clustering).

2139

14: **return** $\{\mathcal{P}^{(\tau)}\}, \{\mathcal{F}^{(\tau)}\}, \mathcal{D}$, and \mathcal{V} .

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

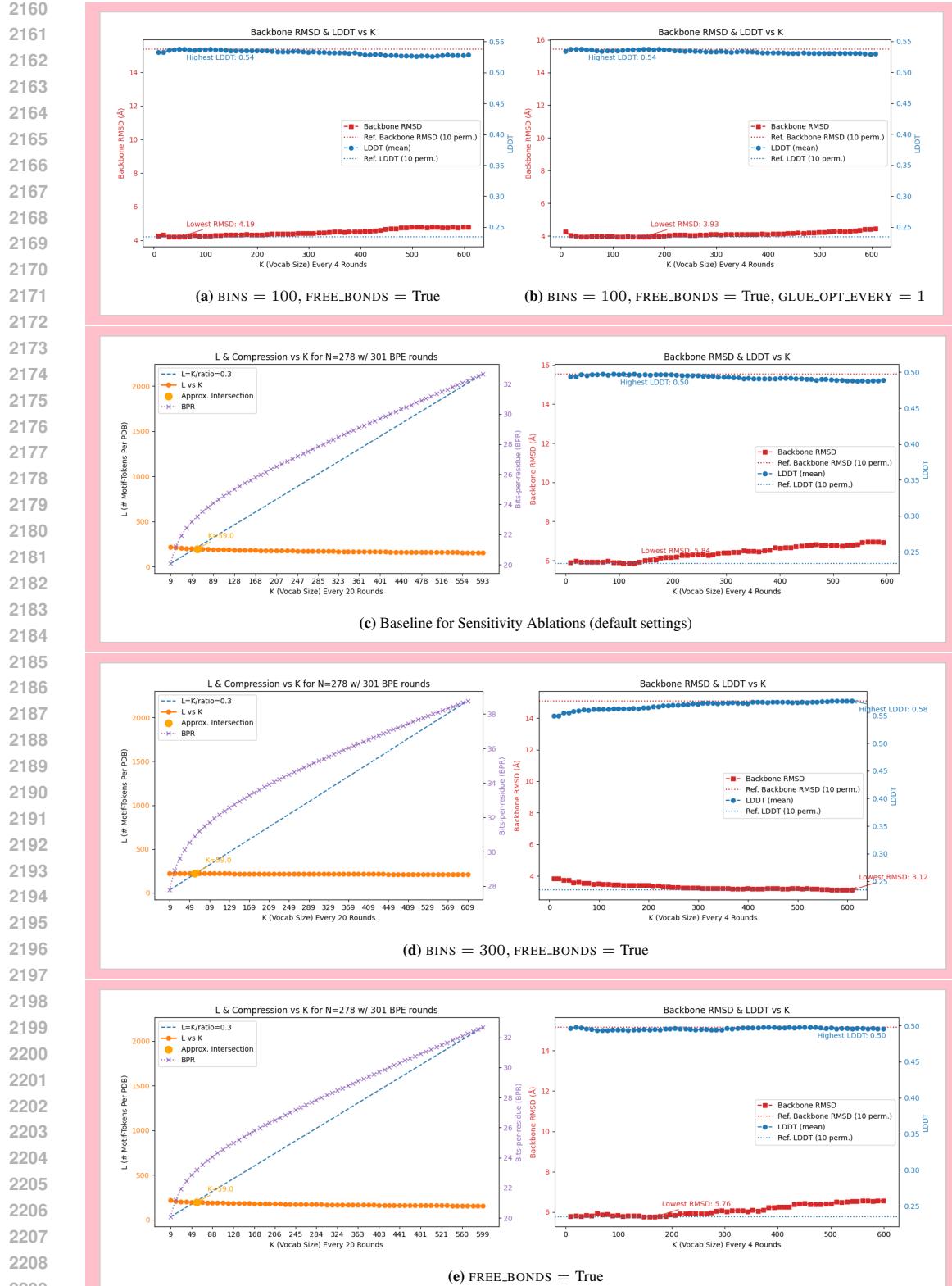


Figure 13: Sensitivity analysis on $\text{BINS} \leftarrow \{50 (\text{default}), 100, 300\}$, $\text{GLUE_OPT_EVERY} \leftarrow \{1, 10 (\text{default})\}$ and $\text{FREE_BONDS} \leftarrow \{\text{True}, \text{False} (\text{default})\}$. Rest of hyperparameters match defaults (Settings 3). We show GEOBPE (1%) progress plots at $\text{ITER} = 300$ for all ablation settings. L is # avg. tokens per structure; K is $|V|$; see K.2 for details.

2214
2215
2216
2217**Algorithm 10** TOKENIZE — use learned GEOBPE vocabulary to tokenize new backbone

Require: New backbone t^* (length N); learned residue codebooks $\mathcal{A}_3, \mathcal{A}_2$; learned vocabulary \mathcal{V} whose pair-keys are ordered by training insertion, written

$$\text{Order}(\mathcal{V}) = \langle \kappa_1, \kappa_2, \dots, \kappa_{|\mathcal{V}|} \rangle,$$

with each κ_ℓ mapped to its fixed prototype set $\mathcal{A}_{\kappa_\ell} = \{\Pi_j^{(\kappa_\ell)}\}_{j=1}^{K_{|\kappa_\ell|}}$; quantizers $Q_{\theta^{CNCA}}, Q_\omega, Q_\phi$; optional glue mode $\in \{\text{none}, \text{each}, \text{all}\}$ and (if all) a period P .

Ensure: Tokenized segmentation $\mathcal{P}^{(*)}$ and merge hierarchy $\mathcal{F}^{(*)}$ for t^* .

- 1: **Per-residue init (no new clustering).** Set $\mathcal{P}^{(*)} \leftarrow (\mathcal{M}_{1:1}^{(t^*)}, \dots, \mathcal{M}_{N:N}^{(t^*)})$. Assign each residue motif to the nearest element of \mathcal{A}_3 (interior) or \mathcal{A}_2 (terminal) by Kabsch-aligned RMSD, and overwrite its internal parameters accordingly.
- 2: **Initialize hierarchy.** Let $\mathcal{F}^{(*)}$ be a binary forest whose leaves (in order) are $\{\mathcal{M}_{i:i}^{(t^*)}\}_{i=1}^N$; its frontier equals $\mathcal{P}^{(*)}$.
- 3: **Optional one-time global glue.** If mode=*all*, run GLUEOPTALL (Alg. 12) on t^* once; snap $(\theta^{CNCA}, \omega, \phi)$ to Q .
- 4: **Build single-structure geo-pair map.** Compute $\mathcal{D}^{(*)} \leftarrow \text{BINHELPER}(t^*, \mathcal{P}^{(*)}, Q)$ (Alg. 11), which maps any geo-pair key κ to its occurrence set $\mathcal{O}^{(*)}(\kappa)$ on t^* . (Uses COMPUTEGEOKEY with raw medoid internals and quantized boundary glue.)
- 5: **Apply learned merges in training order (no new keys).**
- 6: **for** $s = 1$ to $|\mathcal{V}|$ **do**
- 7: $\kappa \leftarrow \kappa_s$ (the s -th key in $\text{Order}(\mathcal{V})$).
- 8: **if** $\kappa \notin \mathcal{D}^{(*)}$ **then**
- 9: **continue**
- 10: **end if**
- 11: **Assign prototypes (no clustering).** For each $(\mathcal{L}, \mathcal{R}) \in \mathcal{O}^{(*)}(\kappa)$ with $\mathcal{L} = \mathcal{M}_{p:q}^{(t^*)}, \mathcal{R} = \mathcal{M}_{q+1:r}^{(t^*)}$, set
- 12:
$$c(\mathcal{L}, \mathcal{R}) = \arg \min_{j \in \{1, \dots, K_{|\kappa|}\}} \text{RMSD}(\mathcal{M}_{p:r}^{(t^*)}, \Pi_j^{(\kappa)}).$$
- 13: **Greedy disjoint merges & hierarchy updates (left→right).** Order $\mathcal{O}^{(*)}(\kappa)$ by increasing p ; select the maximal disjoint subset $S^{(*)}$. For each $(\mathcal{L}, \mathcal{R}) \in S^{(*)}$ with label $j = c(\mathcal{L}, \mathcal{R})$:
 1. Form $\widetilde{\mathcal{M}} = \mathcal{M}_{p:r}^{(t^*)}$ and overwrite its internals by $\Pi_j^{(\kappa)}$.
 2. Update segmentation $\mathcal{P}^{(*)}$: replace $(\mathcal{L}, \mathcal{R})$ by $\widetilde{\mathcal{M}}$.
 3. *Update hierarchy $\mathcal{F}^{(*)}$:* add a parent for span $[p:r]$ with left child the node of \mathcal{L} and right child the node of \mathcal{R} ; update the frontier so it equals the new $\mathcal{P}^{(*)}$.
 4. If mode=*each* and the boundary $p-1 \rightarrow p$ exists, apply GLUEOPT (Alg. 19); snap its three angles to Q .
- 14: **Maintain the single-structure map.** For each merged $(\mathcal{L}, \mathcal{R}) \in S^{(*)}$, update $\mathcal{D}^{(*)}$ locally: remove the occurrence of κ ; decrement keys of neighbors $(\mathcal{L}^-, \mathcal{L})$ and $(\mathcal{R}, \mathcal{R}^+)$ (when defined); insert the new neighbor keys $(\mathcal{L}^-, \widetilde{\mathcal{M}})$ and $(\widetilde{\mathcal{M}}, \mathcal{R}^+)$ using COMPUTEGEOKEY.
- 15: **Optional periodic global glue.** If mode=*all* and $s \bmod P = 0$, run GLUEOPTALL on t^* ; then recompute keys adjacent to changed boundaries via COMPUTEGEOKEY and refresh their occurrences in $\mathcal{D}^{(*)}$.
- 16: **end for**
- 17: **return** $\mathcal{P}^{(*)}$ and $\mathcal{F}^{(*)}$.

2265
2266
2267

2268
2269
2270**Algorithm 11** BINHELPER — build geo-pair map for one backbone

2271 **Require:** Backbone t^* with current segmentation $\mathcal{P}^{(*)}$; quantizers $Q_{\theta^{CNCA}}, Q_\omega, Q_\phi$.
 2272 **Ensure:** $\mathcal{D}^{(*)} : \kappa \mapsto \mathcal{O}^{(*)}(\kappa)$.
 2273 1: Initialize $\mathcal{D}^{(*)} \leftarrow \emptyset$.
 2274 2: **for** each adjacent pair $(\mathcal{L}, \mathcal{R})$ in $\mathcal{P}^{(*)}$ **do**
 2275 3: $\kappa \leftarrow \text{COMPUTEGEOKEY}(\mathcal{L}, \mathcal{R})$ using:
 • *Raw* medoid internals for \mathcal{L} and \mathcal{R} (as assigned in initialization or prior merges);
 • boundary glue $(\theta^{CNCA}, \omega, \phi)$ snapped by Q .
 2276 4: Insert the occurrence $(\mathcal{L}, \mathcal{R})$ into $\mathcal{O}^{(*)}(\kappa)$.
 2277 5: **end for**
 2278 6: **return** $\mathcal{D}^{(*)}$.

2281
2282
2283**Algorithm 12** GLUEOPTALL — global differentiable inverse kinematics over glue angles

2284 **Require:** Medoids $\widehat{\mathcal{M}}$ and assignments $c(\cdot)$ from RMSD_PARTITION; occurrences $\mathcal{S} = \{u\}$ with
 2285 spans $\mathcal{M}_{i_u:k_u}^{(t_u)}$; target frames $F_i^{\star, (t)} = (R_i^{\star, (t)}, t_i^{\star, (t)})$ (with $F_1^{\star, (t)}$ from SEEDTRIAD); weights
 2286 (w_R, w_t) ; optimizer steps T and step size η
 2287 **Ensure:** Updated glues $\{\Gamma_i^{(t)}\}$ and frames $\{\widehat{F}_i^{(t)}\}$
 2288 1: **Snap internals:** for $u \in \mathcal{S}$, set internals of $\mathcal{M}_{i_u:k_u}^{(t_u)} \leftarrow$ those of its medoid $m(u) = \widehat{m}_{c(u)}$
 2289 2: **Init glues:** copy original $\Gamma_i^{(t)}$ for all backbones t and links $i = 1:N^{(t)}-1$ (these are the opti-
 2290 mization variables)
 2291 3: **Loss:**
 2292
$$\mathcal{L}(\Gamma) = \sum_t \sum_{i=2}^{N^{(t)}} \left(w_R \|\log((\widehat{R}_i^{(t)})^\top R_i^{\star, (t)})\|_2^2 + w_t \|\widehat{t}_i^{(t)} - t_i^{\star, (t)}\|_2^2 \right)$$

 2293 4: **Forward kinematics (FK):** with $\widehat{F}_1^{(t)} = F_1^{\star, (t)}$,
 2294
$$\widehat{F}_{i+1}^{(t)} = \widehat{F}_i^{(t)} \widehat{G}_i^{(t)} (\Gamma_i^{(t)}; \text{current internals}), \quad \widehat{G}_i^{(t)} \text{ from internals and } \Gamma_i^{(t)} = \{\theta_i^{CNCA}, \psi_i, \phi_{i+1}\}^2$$

 2295 5: **Optimize glues (autodiff):** for $s = 1:T$:
 2296 6: run FK, evaluate \mathcal{L} ; backprop $\nabla_\Gamma \mathcal{L}$; update all $\Gamma_i^{(t)}$
 2297 7: wrap $\psi, \phi \in (-\pi, \pi]$; project $\theta^{CNCA} \in (0, \pi)$
 2298 8: **return** $\{\Gamma_i^{(t)}\}, \{\widehat{F}_i^{(t)}\}$

2306
2307
2308**Algorithm 13** BINARY TREE–LSTM CELL (Tai et al., 2015)

2309 **Require:** Left $(h_\ell, c_\ell) \in \mathbb{R}^d \times \mathbb{R}^d$, right (h_r, c_r) ; $W \in \mathbb{R}^{5d \times 2d}$, $b \in \mathbb{R}^{5d}$
 2310 **Ensure:** $(h_p, c_p) \in \mathbb{R}^d \times \mathbb{R}^d$
 2311 1: $u \leftarrow \begin{bmatrix} h_\ell \\ h_r \end{bmatrix}; \quad \begin{bmatrix} i \\ f_\ell \\ f_r \\ o \\ g \end{bmatrix} \leftarrow Wu + b$
 2312 2: $i, f_\ell, f_r, o \leftarrow \sigma(\cdot); \quad g \leftarrow \tanh(g)$
 2313 3: $c_p \leftarrow f_\ell \odot c_\ell + f_r \odot c_r + i \odot g$
 2314 4: $h_p \leftarrow o \odot \tanh(c_p)$
 2315 5: **return** (h_p, c_p)

2321

2322
2323
2324
2325
2326
2327

Algorithm 14 DOWNWARD BINARY TREE–LSTM CELL

2328 **Require:** Parent downward $(\bar{h}_p, \bar{c}_p) \in \mathbb{R}^d \times \mathbb{R}^d$, sibling upward $(h_s, c_s); \widetilde{W} \in \mathbb{R}^{5d \times 2d}, \widetilde{b} \in \mathbb{R}^{5d}$
 2329 **Ensure:** $(\bar{h}_c, \bar{c}_c) \in \mathbb{R}^d \times \mathbb{R}^d$
 2330
 2331
 2332 1: $u \leftarrow \begin{bmatrix} \bar{h}_p \\ h_s \end{bmatrix}; \begin{bmatrix} \bar{i} \\ \bar{f}_p \\ \bar{f}_s \\ \bar{o} \\ \bar{g} \end{bmatrix} \leftarrow \widetilde{W}u + \widetilde{b}$
 2333
 2334
 2335 2: $\bar{i}, \bar{f}_p, \bar{f}_s, \bar{o} \leftarrow \sigma(\cdot); \bar{g} \leftarrow \tanh(\bar{g})$
 2336 3: $\bar{c}_c \leftarrow \bar{f}_p \odot \bar{c}_p + \bar{f}_s \odot c_s + \bar{i} \odot \bar{g}$
 2337 4: $\bar{h}_c \leftarrow \bar{o} \odot \tanh(\bar{c}_c)$
 2338 5: **return** (\bar{h}_c, \bar{c}_c)

 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347

Algorithm 15 UP–DOWN TREE ENCODER ON A FOREST (one protein)

2348 **Require:** Protein t_τ with $N^{(\tau)}$ residues; binary forest $\mathcal{F}^{(\tau)} = (V^{(\tau)}, E^{(\tau)})$ whose frontier (in
 2349 order) is $\mathcal{P}^{(\tau)}$; leaf embeddings $\{e_i^{(\tau)} \in \mathbb{R}^d\}_{i=1}^{N^{(\tau)}}$ (e.g., ESM3)³; internal-edge topological
 2350 order $E^{(\tau)} = \{(p, \ell, r)\}$; roots $R^{(\tau)} \subset V^{(\tau)}$; parameters $\Theta = \{W, b, \widetilde{W}, \widetilde{b}\}$; combiner $\oplus \in$
 2351 $\{\text{concat, sum}\}$.
 2352 **Ensure:** $z_\tau^{\text{prot}} \in \mathbb{R}^{d_z}; \{z_{\tau,i}^{\text{res}}\}_{i=1}^{N^{(\tau)}}$.
 2353
 2354 1: **Upward.** For leaves $i \leq N^{(\tau)}$: $h_i^\uparrow \leftarrow e_i^{(\tau)}, c_i^\uparrow \leftarrow 0$. For $(p, \ell, r) \in E^{(\tau)}$ in order:
 2355 $(h_p^\uparrow, c_p^\uparrow) \leftarrow \text{TREELSTMCELL}(h_\ell^\uparrow, c_\ell^\uparrow, h_r^\uparrow, c_r^\uparrow; W, b)$ (Alg. 13).
 2356
 2357 2: **Super-root.** $h_{\text{SR}}^\uparrow \leftarrow |R^{(\tau)}|^{-1} \sum_{r \in R^{(\tau)}} h_r^\uparrow$; set node SR with $(h_{\text{SR}}^\uparrow, c_{\text{SR}}^\uparrow = 0)$.
 2358 3: **Downward.** $(\bar{h}_{\text{SR}}, \bar{c}_{\text{SR}}) \leftarrow (0, 0)$. For each tree rooted at $r \in R^{(\tau)}$, recurse: for internal p with
 2359 children (ℓ, r) and given (\bar{h}_p, \bar{c}_p) ,
 2360 $(\bar{h}_\ell, \bar{c}_\ell) \leftarrow \text{DOWNTREELSTM}((\bar{h}_p, \bar{c}_p), (h_r^\uparrow, c_r^\uparrow); \widetilde{W}, \widetilde{b}),$
 2361 $(\bar{h}_r, \bar{c}_r) \leftarrow \text{DOWNTREELSTM}((\bar{h}_p, \bar{c}_p), (h_\ell^\uparrow, c_\ell^\uparrow); \widetilde{W}, \widetilde{b})$ (Alg. 14).
 2362
 2363 4: **Representations.** For any node v : $u_v^\downarrow \leftarrow \bar{h}_v$.
 2364 5: **if** $\oplus = \text{concat}$ **then**
 2365 6: $z_{\tau,i}^{\text{res}} \leftarrow [h_i^\uparrow; u_i^\downarrow] \in \mathbb{R}^{2d}$ ($i = 1:N^{(\tau)}$); $z_\tau^{\text{prot}} \leftarrow [h_{\text{SR}}^\uparrow; u_{\text{SR}}^\downarrow] \in \mathbb{R}^{2d}$
 2366 7: **else**
 2367 8: $z_{\tau,i}^{\text{res}} \leftarrow h_i^\uparrow + u_i^\downarrow \in \mathbb{R}^d$ ($i = 1:N^{(\tau)}$); $z_\tau^{\text{prot}} \leftarrow h_{\text{SR}}^\uparrow + u_{\text{SR}}^\downarrow \in \mathbb{R}^d$
 2368 9: **end if**
 2369 10: **return** $z_\tau^{\text{prot}}, \{z_{\tau,i}^{\text{res}}\}_{i=1}^{N^{(\tau)}}$.

 2370
 2371
 2372
 2373
 2374
 2375

2376
2377
2378
2379
2380
2381

Algorithm 16 BUILDJOINTVOCAB — medoids then glue–angle bins

2382
2383 **Require:** GEOBPE vocab $\mathcal{V} = \{\kappa \mapsto \mathcal{A}_\kappa\}$ with key introduction order $(\kappa^{(1)}, \dots, \kappa^{(S)})$; medoids
2384 $\mathcal{A}_\kappa = \{\Pi_j^{(\kappa)}\}_{j=1}^{K_{|\kappa|}}$; glue quantizers $Q_{\theta^{CNC}}$, Q_ω , Q_ϕ with bin centers $\{\mu_b^\theta\}_{b=1}^{B_\theta}$, $\{\mu_b^\omega\}_{b=1}^{B_\omega}$,
2385 $\{\mu_b^\phi\}_{b=1}^{B_\phi}$
2386 **Ensure:** Dictionary Σ ; maps $\text{id}_{\text{med}} : (\kappa, j) \mapsto \{1, \dots, |\Sigma_{\text{med}}|\}$ and $\text{id}_{\text{bin}} : (\text{type} \in \{\theta, \omega, \phi\}, b) \mapsto$
2387 $\{|\Sigma_{\text{med}}|+1, \dots, |\Sigma|\}$
2388 1: **Medoids (in introduction order):** $\Sigma_{\text{med}} \leftarrow []$.
2389 2: **for** $s = 1$ **to** S **do**
2390 3: **for** $j = 1$ **to** $K_{|\kappa^{(s)}|}$ **do**
2391 4: Append $\langle \kappa^{(s)}, j \rangle$ to Σ_{med} ; set $\text{id}_{\text{med}}(\kappa^{(s)}, j)$ to its index.
2392 5: **end for**
2393 6: **end for**
2394 7: **Glue bins (appended after medoids):** let $M = |\Sigma_{\text{med}}|$.
2395 8: $\text{id}_{\text{bin}}(\theta, b) = M + b$; $\text{id}_{\text{bin}}(\omega, b) = M + B_\theta + b$; $\text{id}_{\text{bin}}(\phi, b) = M + B_\theta + B_\omega + b$.
2396 9: $\Sigma \leftarrow \Sigma_{\text{med}} \cup \{\text{all glue-bin tokens}\}$ (*optional*: add BOS/EOS)
2397 10: **return** Σ , id_{med} , id_{bin}

2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409

Algorithm 17 BACKBONETOSEQUENCE — tokenize a segmented backbone

2410
2411 **Require:** Protein t_τ with segmentation $\mathcal{P}^{(\tau)} = (\mathcal{M}_{p_1:q_1}^{(t_\tau)}, \dots, \mathcal{M}_{p_M:q_M}^{(t_\tau)})$; for each $\mathcal{M}_{p_m:q_m}^{(t_\tau)}$ its
2412 key κ_m and medoid j_m (prototype $\Pi_{j_m}^{(\kappa_m)}$); boundary glue $\Gamma_{q_m} = \{\theta_{q_m}^{CNC}, \omega_{q_m}, \phi_{q_m+1}\}$ for
2413 $m = 1:M-1$; quantizers Q_θ , Q_ω , Q_ϕ ; token id maps from Alg. 16.
2414 **Ensure:** Token sequence $x^{(\tau)} = (x_1, \dots, x_L) \in \Sigma^L$.
2415 1: $x^{(\tau)} \leftarrow []$ (optionally prepend BOS/append EOS)
2416 2: **for** $m = 1$ **to** M **do**
2417 3: **Motif:** $x^{(\tau)}.\text{append}(\text{id}_{\text{med}}(\kappa_m, j_m))$
2418 4: **if** $m < M$ **then**
2419 5: **Glue quantize:** $b_\theta \leftarrow Q_\theta(\theta_{q_m}^{CNC})$, $b_\omega \leftarrow Q_\omega(\omega_{q_m})$, $b_\phi \leftarrow Q_\phi(\phi_{q_m+1})$
2420 6: **Emit (fixed order):** $x^{(\tau)}.\text{append}(\text{id}_{\text{bin}}(\theta, b_\theta))$; $x^{(\tau)}.\text{append}(\text{id}_{\text{bin}}(\omega, b_\omega))$;
2421 $x^{(\tau)}.\text{append}(\text{id}_{\text{bin}}(\phi, b_\phi))$
2422 7: **end if**
2423 8: **end for**
2424 9: **return** $x^{(\tau)}$

2425
2426
2427
2428
2429

2430
2431
2432 **Algorithm 18** RESINITTOKENS — initialize bond–residue codebook and quantize all residues
2433
2434 **Require:** Backbones $\{t^{(1)}, \dots, t^{(T)}\}$ with lengths $N^{(\tau)}$; targets K_3 (interior bond–residues), K_2
2435 (terminal bond–residues)
2436 **Ensure:** Codebooks $\mathcal{A}_3 = \{\Pi_j^{(3)}\}_{j=1}^{K_3}$, $\mathcal{A}_2 = \{\Pi_j^{(2)}\}_{j=1}^{K_2}$; labels $c^{(3)}, c^{(2)}$; backbones with per-
2437 residue internals set to their prototypes
2438 1: **Collect occurrences:**
2439 $\mathcal{S}_3 = \{u \equiv (\tau, i) : 1 \leq i < N^{(\tau)}, \mathcal{M}_{i:i}^{(t_\tau)} \text{ interior}\}, \quad \mathcal{S}_2 = \{u \equiv (\tau, i) : i = N^{(\tau)}, \mathcal{M}_{i:i}^{(t_\tau)} \text{ terminal}\}.$
2440 2: **Cluster interiors:** RMSD_PARTITION(\mathcal{S}_3, K_3) \rightarrow medoids $\widehat{\mathcal{M}}_3 = \{\widehat{m}_j^{(3)}\}_{j=1}^{K_3}$ and labels $c^{(3)}$:
2441 $\mathcal{S}_3 \rightarrow \{1, \dots, K_3\}$
2442 3: **Define interior prototypes:** for $j = 1:K_3$, let $u^* = \widehat{m}_j^{(3)}$ and
2443
2444 $\Pi_j^{(3)} = (\ell_{i_{u^*}}^{N-CA}, \ell_{i_{u^*}}^{CA-C}, \ell_{i_{u^*}}^{C-N}, \theta_{i_{u^*}}^{NCAC}, \theta_{i_{u^*}}^{CACN}, \psi_{i_{u^*}}, \omega_{i_{u^*}}, \phi_{i_{u^*}})$
2445 (omit undefined terms for a single residue if using a minimal parameterization).
2446 4: **Quantize interiors:** for $u = (\tau, i) \in \mathcal{S}_3$ with $j = c^{(3)}(u)$,
2447 $(\ell, \theta, \psi, \omega, \phi)|_{\mathcal{M}_{i:i}^{(t_\tau)}} \leftarrow \Pi_j^{(3)}.$
2448
2449 5: **Cluster terminals:** RMSD_PARTITION(\mathcal{S}_2, K_2) \rightarrow medoids $\widehat{\mathcal{M}}_2 = \{\widehat{m}_j^{(2)}\}_{j=1}^{K_2}$ and labels
2450 $c^{(2)} : \mathcal{S}_2 \rightarrow \{1, \dots, K_2\}$
2451 6: **Define terminal prototypes & quantize:** for $j = 1:K_2$, let $u^* = \widehat{m}_j^{(2)}$ and set the appropriate
2452 terminal tuple (e.g., $\ell_i^{N-CA}, \ell_i^{CA-C}, \theta_i^{NCAC}$) as $\Pi_j^{(2)}$; for $u = (\tau, N^{(\tau)})$ with $j = c^{(2)}(u)$,
2453
2454 $(\ell, \theta)|_{\mathcal{M}_{N^{(\tau)}:N^{(\tau)}}^{(t_\tau)}} \leftarrow \Pi_j^{(2)}.$
2455
2456 7: **return** $\mathcal{A}_3, \mathcal{A}_2, c^{(3)}, c^{(2)}$, and updated backbones

2457
2458
2459
2460
2461
2462 **Algorithm 19** GLUEOPT — single-boundary IK to absorb one rounding drift
2463
2464 **Require:** Occurrence u with motif $\mathcal{M}_{i_u:k_u}^{(t_u)}$ and medoid $\widehat{m}_{c(u)}$ from RMSD_PARTITION; frames
2465 $\{F_i^{\star, (t_u)}\}$ with $F_1^{\star, (t_u)}$ from SEEDTRIAD; weights (w_R, w_t) ; steps T , step size η
2466 **Ensure:** $\Gamma_{i_u-1}^{(t_u)}, \widehat{F}_{k_u}^{(t_u)}$

2467 1: **Snap internals:** replace $\mathcal{M}_{i_u:k_u}^{(t_u)}$ by its medoid $\mathcal{M}_{i_{\widehat{m}_{c(u)}}:k_{\widehat{m}_{c(u)}}}^{(t_{\widehat{m}_{c(u)}})}$; set $T_u^{\text{med}} \leftarrow T_{i_{\widehat{m}_{c(u)}}:k_{\widehat{m}_{c(u)}}}^{\text{int}}$
2468 2: **Drift:** $T_u^{\text{occ}} \leftarrow T_{i_u:k_u}^{\text{int}}; \Delta T_u \leftarrow T_u^{\text{occ}}(T_u^{\text{med}})^{-1}$
2469 3: **Vars:** $\Gamma_{i_u-1}^{(t_u)} = \{\theta_{i_u-1}^{\text{CNC}A}, \omega_{i_u-1}, \varphi_{i_u}\}$ are the *only* optimization variables⁴; init to originals
2470 4: **FK:** keep $F_{i_u-1}^{\star, (t_u)}$ fixed; for any $\Gamma_{i_u-1}^{(t_u)}$,
2471
2472
$$\widehat{F}_{k_u}^{(t_u)} = F_{i_u-1}^{\star, (t_u)} \widehat{G}_{i_u-1}^{(t_u)}(\Gamma_{i_u-1}^{(t_u)}) T_u^{\text{med}}$$

2473
2474 5: **Loss:**
2475
$$\mathcal{L}_u(\Gamma_{i_u-1}^{(t_u)}) = w_R \|\log((\widehat{R}_{k_u}^{(t_u)})^\top R_{k_u}^{\star, (t_u)})\|_2^2 + w_t \|\widehat{t}_{k_u}^{(t_u)} - t_{k_u}^{\star, (t_u)}\|_2^2$$

2476
2477 6: **Optimize (autodiff):** for $s = 1:T$: run FK & evaluate \mathcal{L}_u ; compute $\nabla_{\Gamma_{i_u-1}^{(t_u)}} \mathcal{L}_u$; update $\Gamma_{i_u-1}^{(t_u)}$
2478 (e.g., Adam, lr η); wrap $\psi, \varphi \in (-\pi, \pi]$, project $\theta^{\text{CNC}A} \in (0, \pi)$
2479 7: **return** $\Gamma_{i_u-1}^{(t_u)}, \widehat{F}_{k_u}^{(t_u)}$

2480
2481
2482
2483

2484
2485
2486
2487
2488

Algorithm 20 GLUEOPTALL (WRAPPER) — apply rounding, then call the core global IK over glues

Require: Medoids $\widehat{\mathcal{M}}$ and assignments $c(\cdot)$ from RMSD_PARTITION; a set of occurrences $\mathcal{S} = \{u\}$ to round, each $\mathcal{M}_{i_u:k_u}^{(t_u)}$; cached original exit frames for each backbone t (seeded by SEED-TRIAD); histogram bin centers & thresholds for $(\omega, \theta^{CNC\!A}, \varphi)$; prior weights; loss weights (w_R, w_t) .**Ensure:** Updated glue angles (snapped to bins) for all boundaries in all affected backbones; recomputed frames $\{\widehat{F}_i^{(t)}\}$.1: **(Quantize internals)** For each $u \in \mathcal{S}$, replace

$$\mathcal{M}_{i_u:k_u}^{(t_u)} \leftarrow \mathcal{M}_{i_{\widehat{m}_c(u)}:k_{\widehat{m}_c(u)}}^{(t_{\widehat{m}_c(u)})}$$

by copying the medoid's internal coordinates (hard assignment).

2: **(Ensure targets are cached)** For each backbone t , ensure original exit frames $\{(R_{occ}^{\star, (t)}[j], t_{occ}^{\star, (t)}[j])\}_{j=1}^{N^{(t)}-1}$ are available (compute once if missing).3: **(Global glue optimization)** Call the core routine GLUEOPTALL on all backbones:

$$\text{GLUEOPTALL}(\{t\}, \text{BinCenters}, \text{Thresholds}, \text{GluePrior}, w_R, w_t),$$

which jointly optimizes every boundary's glue triplet $\Gamma_i = \{\theta_i^{CNC\!A}, \omega_i, \varphi_{i+1}\}$ via differentiable FK and snaps each angle to the nearest histogram bin.4: **return** updated glues and frames $\{\widehat{F}_i^{(t)}\}$.2509
2510
2511
2512
2513
2514

Algorithm 21 BINGEOPAIRS — build the dictionary of geo-pair occurrences (with hierarchy)

Require: For each backbone $t^{(\tau)}$: its current segmentation $\mathcal{P}^{(\tau)} = (\mathcal{M}_{p_1:q_1}^{(t_\tau)}, \dots, \mathcal{M}_{p_{M_\tau}:q_{M_\tau}}^{(t_\tau)})$ and its merge hierarchy $\mathcal{F}^{(\tau)}$ whose frontier leaves, in order, equal $\mathcal{P}^{(\tau)}$; precomputed boundary-glue quantizers $Q_{\theta^{CNC\!A}}, Q_\omega, Q_\phi$ (used only at pair boundaries).**Ensure:** A priority-ordered map \mathcal{D} from keys to occurrence sets, with ordered keys $\pi(\kappa) = (\rho(\kappa), -|\mathcal{O}(\kappa)|, \kappa)$ where $\rho(\kappa) = \mathbf{1}[\kappa \notin \text{dom}(\mathcal{V})]$ indicates if the key already has prototypes.1: Initialize an empty ordered map \mathcal{D} .2: **for** $\tau = 1$ to T **do**3: Let $(\mathcal{M}_{p_1:q_1}^{(t_\tau)}, \dots, \mathcal{M}_{p_{M_\tau}:q_{M_\tau}}^{(t_\tau)})$ be the frontier leaves of $\mathcal{F}^{(\tau)}$ (these equal $\mathcal{P}^{(\tau)}$).4: **for** $j = 1$ to $M_\tau - 1$ **do**5: $(\mathcal{L}, \mathcal{R}) \leftarrow (\mathcal{M}_{p_j:q_j}^{(t_\tau)}, \mathcal{M}_{p_{j+1}:q_{j+1}}^{(t_\tau)})$ 6: $\kappa \leftarrow \text{COMPUTEGEOKEY}(\mathcal{L}, \mathcal{R})$ (raw medoid internals inside \mathcal{L}, \mathcal{R} ; boundary glue quantized by Q)7: Insert the occurrence $(\mathcal{L}, \mathcal{R})$ into $\mathcal{O}(\kappa)$.8: **end for**9: **end for**10: **for** each key κ with nonempty $\mathcal{O}(\kappa)$ **do**11: Set $\rho(\kappa) \leftarrow \mathbf{1}[\kappa \notin \text{dom}(\mathcal{V})]$.12: Insert $((\rho(\kappa), -|\mathcal{O}(\kappa)|, \kappa) \mapsto \mathcal{O}(\kappa))$ into \mathcal{D} .13: **end for**14: **return** \mathcal{D} .2536
2537

2538

Algorithm 22 COMPUTEGEKEY — discrete key for an adjacent motif pair

2539

Require: Adjacent motifs $\mathcal{L} = \mathcal{M}_{p:q}^{(t)}$, $\mathcal{R} = \mathcal{M}_{q+1:r}^{(t)}$ on backbone t

2540

Ensure: Canonical, hashable key κ for the geo-pair

2541

1: **Interiors (as stored post-quantization):**

2542

2543

$$\text{Int}(\mathcal{L}) = \left(\{\ell, \theta, \psi, \omega, \phi\} \big|_{i=p}^q, \{\Gamma_i\} \big|_{i=p}^{q-1} \right), \quad \text{Int}(\mathcal{R}) = \left(\{\ell, \theta, \psi, \omega, \phi\} \big|_{i=q+1}^r, \{\Gamma_i\} \big|_{i=q+1}^{r-1} \right)$$

2544

2545

2546

2547

(kept unchanged in the key).

2: **Boundary glue (quantized):**

2548

2549

$$\Gamma_q = (\theta_q^{CNC\,A}, \omega_q, \phi_{q+1}), \quad \tilde{\Gamma}_q = (Q_\theta(\theta_q^{CNC\,A}), Q_\omega(\omega_q), Q_\phi(\phi_{q+1}))$$

2550

(Q_• wrap to a fixed 2π interval before snapping).

2551

3: **Canonical record & hash:**

2552

2553

$$\text{rec} = (\text{Int}(\mathcal{L}), \tilde{\Gamma}_q, \text{Int}(\mathcal{R})), \quad \kappa \leftarrow \text{HASH}(\text{rec})$$

2554

2555

4: **return** κ

2556

2557

Algorithm 23 COMPUTE_COORDS — Internal \rightarrow Cartesian for a bond-residue motif $i:j$

2558

2559

Require: Internal geometry for $r = i, \dots, j$ (bond lengths/angles/dihedrals).

2560

Ensure: $\mathbf{X} \in \mathbb{R}^{3(j-i+1) \times 3}$ for $(N_i, \text{CA}_i, C_i, \dots, N_j, \text{CA}_j, C_j)$

2561

1: **Seed residue i :** $(N_i, \text{CA}_i, C_i) \leftarrow \text{SEEDTRIAD}(i)$

2562

2: $\mathcal{C} \leftarrow [N_i, \text{CA}_i, C_i]$

2563

3: **for** $r = i + 1$ **to** j **do**

2564

4: $N_r \leftarrow \text{PLACEDIHEDRAL}(\mathcal{C}[-3], \mathcal{C}[-2], \mathcal{C}[-1]; \ell_{r-1}^{C-N}, \theta_{r-1}^{CACN}, \psi_{r-1}); \mathcal{C}.\text{append}(N_r);$

2565

5: $\text{CA}_r \leftarrow \text{PLACEDIHEDRAL}(\mathcal{C}[-3], \mathcal{C}[-2], \mathcal{C}[-1]; \ell_r^{N-CA}, \theta_{r-1}^{CNC\,A}, \omega_{r-1}); \mathcal{C}.\text{append}(\text{CA}_r)$

2566

6: $C_r \leftarrow \text{PLACEDIHEDRAL}(\mathcal{C}[-3], \mathcal{C}[-2], \mathcal{C}[-1]; \ell_r^{CA-C}, \theta_r^{NC\,AC}, \varphi_r); \mathcal{C}.\text{append}(C_r)$

2567

7: **end for**

2568

8: $\mathbf{X} \leftarrow [N_i, \text{CA}_i, C_i, \dots, N_j, \text{CA}_j, C_j]$

2569

9: **return** \mathbf{X}

2570

2571

Algorithm 24 PLACEDIHEDRAL($a, b, c; L, \beta, \tau$)

2572

1: Right-handed local frame at c :

2573

2574

2575

$$\hat{\mathbf{b}} = \frac{c - b}{\|c - b\|}, \quad \mathbf{n} = \frac{(b - a) \times \hat{\mathbf{b}}}{\|(b - a) \times \hat{\mathbf{b}}\|}, \quad \tilde{\mathbf{n}} = \mathbf{n} \times \hat{\mathbf{b}}.$$

2576

2577

2: Local offset:

$$\mathbf{d} = [-L \cos \beta] \hat{\mathbf{b}} + [L \cos \tau \sin \beta] \tilde{\mathbf{n}} + [L \sin \tau \sin \beta] \mathbf{n}.$$

2578

2579

2580

3: Return $d = c + \mathbf{d}$.

2581

2582

2583

Algorithm 25 SEEDTRIAD(r) — seed triad for residue r

2584

Require: Canonical seed (N_*, CA_*, C_*) ; target $L_{CA-C} = \ell_r^{CA-C}$, $L_{N-CA} = \ell_r^{N-CA}$, and $\theta_{NCAC} = \theta_r^{NCAC}$.

2585

2586

2587

1: Place $\tilde{\text{CA}}_r$ on the ray from C_* toward CA_* at distance L_{CA-C} .

2588

2589

2: Let $\mathbf{u} = N_* - \tilde{\text{CA}}_r$ and $\mathbf{v} = C_* - \tilde{\text{CA}}_r$. Rotate \mathbf{u} about axis $\mathbf{u} \times \mathbf{v}$ to achieve angle θ_{NCAC} , then rescale to length L_{N-CA} ; translate by $\tilde{\text{CA}}_r$ to get N_r .

2590

2591

3: Set $C_r \leftarrow C_*$ and return $(N_r, \tilde{\text{CA}}_r, C_r)$.