Under review as a conference paper at ICLR 2026

BEYOND SIMPLE GRAPHS: NEURAL
MULTI-OBJECTIVE ROUTING ON MULTIGRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning-based methods for routing have gained significant attention in recent
years, both in single-objective and multi-objective contexts. Yet, existing meth-
ods are unsuitable for routing on multigraphs, which feature multiple edges with
distinct attributes between node pairs, despite their strong relevance in real-world
scenarios. In this paper, we propose two graph neural network-based methods
to address multi-objective routing on multigraphs. Our first approach operates
directly on the multigraph by autoregressively selecting edges until a tour is com-
pleted. The second model, which is more scalable, first simplifies the multigraph
via a learned pruning strategy and then performs autoregressive routing on the re-
sulting simple graph. We evaluate both models empirically, across a wide range of
problems and graph distributions, and demonstrate their competitive performance
compared to strong heuristics and neural baselineﬂ

1 INTRODUCTION

The field of neural combinatorial optimization has grown significantly in recent years and vehicle
routing problems in particular have attracted much attention (Zhou et al.|[2024a). While early works
focused on the Traveling Salesman Problem (TSP) (Vinyals et al., 2015 Bello et al., 2017)), new
learning-based methods for vehicle routing can solve a wide range of problems efficiently and ef-
fectively, often surpassing classical state-of-the-art heuristics (Zhou et al., 2024b; |[Drakulic et al.,
2025)). Yet, existing methods have one limitation in common: they assume problems are defined on
simple graphs. However, multigraph formulations, featuring several edges between each node pair,
become relevant as soon as there are competing edges that cannot be chosen between a priori. Such
situations typically occur when edges have more than one feature of interest, such as both travel time
and distance.

In spite of the high practical relevance of multigraph formulations (Lai et al., 2016; /Ben Ticha et al.,
2017), current learning-based methods are incapable of handling them due to two main reasons.
Firstly, many state-of-the-art neural solvers rely on transformers to encode the problem instance.
While these work well in the Euclidean setting (Kool et al) 2018)) and with some modifications
on asymmetric, directed graphs (Kwon et al.l [2021), they lack the capability to encode multigraph
structures. Secondly and more importantly, planning routes in multigraphs requires both selecting
the node order and which edges to traverse, making current decoding strategies unsuitable.

In this work, we aim to bridge the gap between learning-based methods for routing and accurate
network representations given by multigraphs. We focus on the Multi-Objective (MO) setting, as
several competing objectives naturally translates to several competing edges between each node
pair. Nevertheless, our methods are general and can easily be extended to single-objective settings.
Concretely, our main contributions are:

* We design models to handle multigraph inputs. To our knowledge, we present the first
neural solvers designed for such structures. In Appendix [A] we argue further why current
methods are insufficient, even when combined with graph transformations.

* Our models are also capable of handling a variety of MO routing problems on asymmetric
graphs. In contrast, current neural MO methods are either problem-specific or designed
exclusively for the Euclidean setting, where edge costs are symmetric and determined only

'Our code will be released publicly upon paper acceptance.

Under review as a conference paper at ICLR 2026

by the node coordinates. The non-Euclidean, asymmetric setting is generally viewed as
more practically relevant (Boyaci et al., 2021)).

* We propose two separate models based on Graph Neural Networks (GNNs): One edge-
based working directly on the multigraph and one dual-task model that first prunes the
multigraph into a simple graph and then selects routes. The former is simple but slow
while the latter is more complex but faster.

» Experimentally, we show that both our approaches achieve competitive results for several
routing problems on asymmetric graphs and multigraphs, including variants of the multi-
objective TSP and multi-objective capacitated vehicle routing problem.

2 RELATED WORK

2.1 LEARNING FOR ROUTING

Motivated by the success of end-to-end learning in fields such as image classification and lan-
guage modeling, neural solutions for routing have gained increasing attention during the last years.
Broadly, methods can be classified by how they obtain tours. Two prominent alternatives are autore-
gressive construction, based on iterative building of tours one node at a time, and non-autoregressive
construction, that outputs heatmaps in a one-shot fashion for down-stream decoding with some
search method. Examples from the first category include [Vinyals et al.| (2015); Kool et al.| (2018));
Kwon et al.| (2020). Examples from the second category are Joshi et al.| (2019); [Fu et al.| (2021);
Sun & Yang| (2023)). For a more comprehensive discussion of these methods, we refer the reader to
Appendix [B| which presents additional related work.

The literature on MO routing is more sparse than in the single-objective case. A key contribution
was made by |Lin et al.|(2022)), who proposed an autoregressive construction approach using a single
neural model to learn the Pareto set of solutions. Regarding asymmetric problems, the only existing
learning-based methods we are aware of are those introduced by Santiyuda et al.[(2024)) and |[Zhou
et al.| (2025). However, both these approaches are tailored to specific problems and have been
evaluated within narrowly defined domains. In contrast, our method is capable of addressing a
broad class of routing problems and is evaluated across various problems and settings.

2.2 ROUTING ON MULTIGRAPHS

The multigraph representation has gained increasing attention in the operations research literature
on Vehicle Routing Problems (VRPs) in recent years. |Garaix et al.| (2010) performed the first study
in this regard and later works include those by [Lai et al.[|(2016)); [Ben Ticha et al.| (2017;[2019) and
Tikani et al.|(2021). A consistent finding is that the multigraph representation leads to considerably
improved solutions compared to planning on simple graphs. For example, in the VRP with time
windows, Ben Ticha et al.|(2017) reported cost reductions of up to 10.5% on real-world instances,
while |Lai et al.| (2016) found average savings of around 5% for a heterogeneous VRP. However,
these benefits typically come at the cost of increased problem complexity. Learning-based methods
can thus fill a clear need for new solvers in this area, as they have proven to be efficient, effective
and broadly applicable. To the best of our knowledge, this work presents the first learning-based
approach to address combinatorial routing problems such as the TSP and VRPs on multigraphs. In
contrast, current studies either use traditional heuristics or exact solvers.

3 PROBLEM FORMULATION

We define a general multi-objective routing problem as

min f (), (1)

mwell
where f : II — R™ with m > 1. Here, m € II represents a feasible route in the multigraph G,
encoded as a sequence of edges, and f(7) is the associated cost vector.

The solution to an MO routing problem is a set of objective values known as the Pareto Front (PF)
with associated routes in the Pareto Set (PS). Formally, we define the PS as

PS:={mcIl|Ar cIl: f(z') < f(m)},)

Under review as a conference paper at ICLR 2026

where f(n') < f(m) denotes that f(7') dominates f (), meaning
file') < film) Vi=1,....m,
fi(7") < fi(m) for at least one 4.
Correspondingly, the Pareto Front (PF) is defined as the image of the Pareto Set under f, that is,
PF:= {f(m) € R™|m € PS}. 4)
Intuitively, the PS represents solutions for which no strictly better alternative exists.

3)

To obtain this set, we utilize a typical method: decomposition through scalarization. The idea is to
translate the MO problem into several subproblems that can be solved separately. Let A € R™ such
that \; > 0Viand) ; A = 1 be a vector that controls the preference among the objectives. Then,
under Linear Scalarization (LS), the single-objective cost is fy(m) = >, A fi(m) and the corre-
sponding subproblem is min, f (7). Unfortunately, it is well-known that there may be solutions in
the PS that do not solve an LS subproblem for any preference A\ (Ehrgott, 2005). The Chebyshev
scalarization has more favorable properties. Let z; < min, f;(7) be an ideal value for objective i.
Then, the Chebyshev scalarized cost is

fa(m) = max{Ai|fi(m) — 2]} (5)

Given a solution in the PS, there always exists a preference A and corresponding Chebyshev sub-
problem for which the solution is optimal (Choo & Atkins} |1983).

In our context of multigraphs, it is interesting to consider how problems simplify under scalarization.
We highlight an important result for the Multi-Objective TSP (MOTSP), in which the total cost of a
tour is the sum of the vectorial costs of the traversed edges. The proof of the following proposition
is omitted due to its simplicity. Given a linear scalarization defined by a preference vector A, define
the reduced graph G(\) by removing any edge whose scalarized cost is strictly worse than that of a
parallel edge.

Proposition 1. Let f)(m) denote the linearly scalarized cost and let II(\) C 11 be the set of feasible
tours on the pruned graph G()\). Then, the optimal value of the scalarized subproblem is preserved:

gleiﬁlf,\(ﬁ) :ngl_}](f}\)f,\(ﬂ) (6)

This illustrates that a multigraph representation is sometimes easy to handle using pruning. How-
ever, under Chebyshev scalarization or for more complex problems (e.g., with edge attributes that
contribute nonlinearly to the cost), similar results might not be available. As such, we propose to
learn which parallel edge is optimal while simultaneously learning to construct the optimal route
for each preference A. Moreover, by explicitly taking into account the multigraph representation
when designing our models, we obtain better results and faster inference than if we pre-prune the
multigraphs, even for the MOTSP.

4 GNN-BASED MULTIGRAPH SOLVER

In the following, we propose two approaches based on GNNs for solving MO multigraph routing
problems. We call our method GNN-based Multigraph Solver (GMS) and propose an edge-based
variant constructing routes autoregressively directly on the multigraph as well as a variant with two
decoders that first prunes and then constructs routes.

Both variants require an encoder that i) can handle input data structured as multigraphs and ii)
works with and outputs edge embeddings. While there are multiple GNN architectures that fit this
description, we utilize the Graph Edge Attention Network (GREAT) of |Lischka et al.| (2025), since
it has been applied in an autoregressive framework and shown competitive performance for non-
Euclidean single-objective routing problems.

Specifically, we utilize the Node-Based (NB) version of GREAT. We refer the reader to [Lischka
et al.| (2025) for details. Here, it suffices to say that the core component of an NB GREAT-layer is
an attention sublayer, that utilizes attention scores o’ and o’ to compute a temporary node-feature
z for each node ¢ according to

x; = (Z ol Wier || Z alh Wl”ep). (7

leE+(7) l'eE~ (i)

Under review as a conference paper at ICLR 2026

Here, || is the concatenation operation, e; denotes an edge embedding for edge I, W and W/’ are
trainable weight matrices and £ (i), E~ (i) denote outgoing and incoming edges respectively. New
edge embeddings are then computed according to

e; =Wy (l'start(l) || Iend(l))) ©

where start(!) and end(!) denote the start and end nodes of the directed edge ! and W5 is another
trainable matrix. The attention layers are arranged into a single GREAT-layer together with feed-
forward layers, residual connections and normalization according to the original transformer archi-
tecture (Vaswani et al.||2017). Note that the residual connections are important as they allow parallel
edges to have differing embeddings.

4.1 EDGE-BASED GMS

Vanilla node-based construction is insufficient for our purpose, as it relies on predicting the next
node in the route, while we also require an edge-selection between the current node and the next.
Thus, we propose an end-to-end edge-based model that instead predicts the next edge, and thereby
implicitly the next node. We call this Edge-based GMS (GMS-EB).

We visualize GMS-EB in Figure The encoder, consisting of . GREAT-layers, outputs edge
embeddings. Using them, the decoder constructs valid tours autoregressively. Given the instance
s and incomplete route 71,41 in construction step ¢, the decoder selects edge 7; with probability
Po(n) (¢ | m1:¢-1,5). Thus the probability of the whole route 7 is

T
Poon) (T | 8) = poexy (1 | 5) H oo (e | T1—1,8).)

t=2
Here, 6()\) is the weights of the model given the current preference A. AsNavon et al.| (2021) and
Lin et al.[(2022), we utilize a Multi-Layer Perceptron (MLP) hyper-network to preference-condition
the decoder, while keeping the encoder preference-agnostic. Consequently we form the decoder
weights according to 04ec(A) = MLP(A) and set §(A) = [fenc, faec(A)]- Regarding the decoder
architecture, it is an edge-based variant of the Multi-Pointer (MP) decoder from [Jin et al.| (2023).
We detail this component further in Appendix

()
Note that a multigraph with N nodes and M edges between Multigraph Instance s o
each pair of nodes has O(M N?) edges in total. More- Encoder l @ 0
over, the decoder must be run O(N) times to construct a ST TS Y
full tour and we roll out O(N) sample trajectories accord- ' [x | GREATNB |
ing to the POMO framework (Kwon et al., |2020). Hence, I K
= e

an edge-based decoder scales as O(é\/[N*) compared to a Autoregr. Edge
node-based one that scales as O(N°). Consequently, we loop Emb. Pref. A
propose a second architecture that employs a node-based O e A2
decoder and thereby scales better to higher node counts in | Edge-based

. . 1 MP Decoder network
terms of memory requirements and runtime. ' ‘

1

4.2 DUAL HEAD GMS M

Action: Next Edge ¢ (’)

For a node-based decoder, we need to ensure that the action \ J
of f:hpOSlng a node unlqpely defines which edg.e to Chqose. Figure 1: Edge-based GMS and its
This is achieved by pruning parallel edges, leaving a unique -

- . . most important components.
one between each node pair. In general, choosing this edge
is not trivial. As such, we propose to learn the choice using a dual decoder setup.

We call this approach Dual Head GMS (GMS-DH) and it is visualized in Figure 2] The key is that
we insert another decoder before the final GREAT layer, which uses intermediate edge embeddings
to select the parallel edge to keep. Let E;; be the set of edges between the node pair (7, 5). The
selection-decoder produces the probability g5 /\)(l | 4,7,s) of retaining [€ E;;. As we treat each
node pair independently and select one edge per pair, the probability of the joint selection £ of active
edges is

dny (€ 1 9) = [T a0 | start(D), end(D), 5). (10)
leg

Under review as a conference paper at ICLR 2026

Again, the weights 9 (\) are generated by an MLP hyper-network. We detail the architecture for the
selection-decoder further in Appendix

The edge choice from the first decoder is fed back into the encoder, where the embeddings of cor-
responding edges are aggregated into node embeddings using equation [/| After this final GREAT
layer, we find it beneficial to add a small number of standard transformer layers to obtain more
expressive node embeddings for the second decoder, which constructs routes.

The routing-decoder is a preference-conditioned version of the multi-pointer decoder (Jin et al.,
2023). Similarly to the edge-based version above, given the partial tour 7;.,_1, this decoder outputs
the probabilities pg(») (¢ | 71.4—1, 8,) for the next construction step, where 7; now denotes a node
and the probability depends on the edge choice £.

Remark that when applying GMS-DH to simple graphs, we simply remove the first decoder. Also
note that this architecture ensures that the first L; — 1 layers only need to be run once for each
instance as they are preference-agnostic and utilize the entire multigraph. This reduces the runtime
compared to letting the encoder be preference-aware or pruning the multigraph for each preference
before encoding.

From a broader perspective, our approach in GMS-DH N
can be viewed as a combination of non-autoregressive Multigraph Instance s Pref. \
and autoregressive construction. As a drawback, the Encoder l v
edge choice can no longer depend on the context given | ¢~~~ """ T 3
by the partial tour. Instead, it must be chosen before (L1 —1)x| GREATNB
starting roll-out. Edge Emb. Selection
Decoder
Filter

Our first proposed model, GMS-EB, is trained us-

’

1

1

1

1

:

1
4.3 TRAINING ALGORITHM !

1

1

1 Action: Edge

1

1

1

1

)

ing the Multi-Objective REINFORCE from [Lin et al. Selection £
(2022)). Given a preference A ~ A and instance s ~ S, Lo x| Transformer - .
the model parameterizes a policy pg(x) (- | s) accord- | ‘o ______t=== "
ing to equation[9] A tour 7 is associated with a Cheby- Node &0
shev reward corresponding to the negative scalarized Prei’ A 3 Emb. | Autoregr. loop
cost equation E]: { Hyper-]_{ Node-based J)
network 1| MP Decoder :
Ry(m) = —max{Ailfi(m) — 2f}. (D) | b
. R A ® _7
The objective during training is to maximize Action: Next Node ¢ N /
~ —@
J(G) = EWNpg,ANA,(QNS[R)\(ﬂ')L (12) ~ o

Figure 2: Dual head GMS and its most im-

To stabilize the training, we form a baseline by (s;) by
portant components

rolling out K tours for the same instance s; and aver-
aging the reward, according to the POMO framework
(Kwon et al., 2020). The policy gradient is then utilized to update the model weights and it is
approximated, given one preference A, as

B,K
L B
VI(O) ~ 55 > (Ra(mij) — ba(si)) Vo log(pea (mij | 5:)), (13)
=1

where B is the batch size of instances.
For the second model, the training is more involved. Given an edge selection £ ~ Q500 from the
selection-head according to equation the routing-head parameterizes a policy pg(x(- | 5,€) and

obtains a scalar reward R&z) () = Rx(m) by equation as usual. With a fixed 6, the objective for
this head is to maximize

J2(8) = B, Anh, 58, £y [RY (). (14)

On the other hand, the task of the selection-head is to ensure that the edge choice is optimal. Let
7(€) denote the optimal tour on the pruned graph given selection £. Then, define the reward and

Under review as a conference paper at ICLR 2026

objective function based on the optimal tour according to

R (€) = RA(7(E)),

i " (15)
J1(0) = Exnn, sns, £ngy (R (E)]-
As the optimal tour 7 is not available, we approximate it using Ko sampled tours 71, ..., Tg, ~
poo (- |, €):
R&l)(c‘)) ~ max Ry(mg). (16)

k=1,.... K>

A baseline bf\l)(si) for the selection-head is formed by averaging R") over K samples while a

baseline bE\Q) (si,&;j) for the routing-head is formed by averaging over the K'» samples for a fixed s;
and &;;. Thus, we approximate the policy gradients with

B K,
_ 1 2
VA(0) ~ 5= D (B E) — 00 (1)) Vilos(as(E5 | 51)),
b i=1
B,K1,K (17
1 B 1,02
Vi (0) = BK.K, > (R(f)(mjk) - b(xz)(sm&j)) Vo log(pe(miji | si,€iz))-
i,5,k=1

We outline the training of GMS-DH in Algorithm 1]

In addition, we utilize a form of curriculum learning to speed up training for both models. We start
by training on small graph sizes and then gradually increase the problem size. For GMS-DH in the
multigraph setting, we also start by training the routing-head on simple graphs to ensure that the
approximation equation [I6]is accurate even during the initial epochs of multigraph training. Further
details regarding the curriculum learning can be found in Appendix D}

5 EXPERIMENTAL STUDIES

In this section we show the empirical performance for our two proposed methods on several rout-
ing problems across multiple instance sizes and distributions. We compare against evolutionary
algorithms, neural baselines and state-of-the-art single-objective heuristics.

Problems. In the asymmetric sim- -
ple graph case we consider two stan- Algorithm 1 One batch of REINFORCE for GMS-DH

dard routing problems: The Multi- Input: Preference distribution A, instance distribution S,
Objective Traveling Salesman Prob- batch size B, number of samples per instance head 1, K,
lem (MOTSP) and Multi-Objective and head 2, Ko
Capacitated Vehicle Routing Problem 1: Sample preference A ~ A
(MOCVRP). Specifically, we consider Sample instances s; ~ S,i=1,...,B
bi-objective variants of these. In the Select edges &;; ~ qé(/\)(- [si),j=1,..., K1
MOTSP, we sample two distances for S _

) : i ample tours ;. ~ pox) (- | 85, Eij). k=1,..., Ko
each node pair. These are summarized (1))) (2)
over the tour to yield the objective val- Caleulate Ry (Eij), Ry (mijk), by " (i), b3 (545 €ij)
ues. Regarding the distances, we con- Calculate gradients VJ1(0), V.J2(0) with equation
sider both the TMAT (Kwon et al.| 0 < ADAM(0,V J1(6)), 0 < ADAM(6, V J5(0)),
2021) and XASY distributions (Gaile
et al.,[2022), where the former obeys the triangle inequality and the latter does not - making it more
difficult. For the MOCVRP, we sample one distance according to these distributions. We then let
the first objective be given by the total distance of a tour and the second objective by the makespan,
which is the longest trip for a single vehicle. The Euclidean version of this problem has been used
extensively for benchmarking in previous works (Lin et al., [2022).

AN A

In the multigraph setting, we consider the Multigraph MOTSP (MGMOTSP) with two objectives,
where we sample two-dimensional edge distances using distributions called FIXx and FLEXz.
Here, x denotes the number of edges between each node pair. In the FLEX-distribution, we sample
edge distances independently and remove edges which are dominated. In the FIX distribution we
first sample edges independently, but then rearrange by sorting, so that the an edge that is best in one

Under review as a conference paper at ICLR 2026

objective is the worst in the other objective. Thus, in the FIXz-distribution there are always exactly
x edges between each node pair, whereas FLEXx has at most x edges.

In Appendix |[E] we provide more in-depth explanations of the problems and distributions. We also
provide results on Euclidean problems and tri-objective problems in Appendix

Baselines. For the MOTSP and MGMOTSP, we utilize linear scalarization together with strong
single-objective methods in the form of LKH3 (Helsgaun, [2017) and Google OR-tools (Perron
& Furnon, [2019). We also benchmark against four Multi-Objective Evolutionary Algorithms
(MOEAs): MOGLS (Ishibuchi & Muratal [1998), MOEA/D (Zhang & Lil 2007), NSGA-II (Deb
et al.| [2002) and NSGA-III (Blank et al., 2019)). Below, we only show the results for the MOEA that
performs best in each scenario.

Finally, we also design a neural baseline based on the MatNet-architecture (Kwon et al.| [2021) as
encoder and a preference-conditioned MP network as decoder. We call this MatNet-Based Model
(MBM) and our motivation is that it is a method that can be used almost off-the-shelf”” by combin-
ing components from literature. In the multigraph setting, this architecture requires us to pre-process
the input by pruning edges until we obtain a simple graph, which we do using linear scalarization
following Proposition

In Appendix [C]and [F| we provide further details about the neural benchmark and MOEAs respec-
tively. In Appendix [H| we also show results for all MOEASs as well as some other weaker heuristics.

Model Settings. We train all models for 200 epochs using 100 000 randomly generated instances
per epoch with the ADAM optimizer (Kingma & Bal [2015). We use the batch size B = 64 and the
learning-rate n = 10~%. For each batch, we sample a preference A = (A1, \2) using A; ~ Unif[0, 1]
and Ay = 1 — \;. For GMS-EB we let the number of layers be L = 6, while GMS-DH has
L, = 5 and Ly = 2. Both models have embedding dimension 128 and use 8 attention heads in the
GREAT layers and MP decoders. Regarding the number of samples in the decoding, we set K1 = 4
for the selection-decoder during training and K; = 1 during inference. In the routing-decoder,
we always set K to the problem size as customary in the POMO framework (Kwon et al., [2020).
Finally, we augment the models during inference with a factor of 8. For MBM, this is done using the
original MatNet-augmentation (Kwon et al.|[2021)), while for GMS we use the scaling-augmentation
of |Lischka et al.| (2025)).

Metrics. We utilize the Hypervolume (HV) metric (Zitzler et al.,[2003)) to evaluate the performance
of the methods. Formally, for a given set of points S = {y1,...,yn} C R™ and a reference point
r € R™ that is dominated by all points in .S, the HV is defined as:

HV(S,r) = A <O[yi,r]> ; (18)

i=1
where A denotes the Lebesgue measure in R™, and [y;, r| represents the axis-aligned hyperrectangle

bounded by y; and r. Intuitively, a higher HV generally indicates better performance, since the points
in the obtained Pareto front are further from the reference.

We report the normalized HV, which is scaled to lie in the interval [0, 1], averaged over 200 test
instances. For the neural models and benchmarks relying on scalarization, we use 101 preferences
linearly spaced between A = (1, 0) and (0, 1) during inference to obtain the Pareto front. Apart from
the HV, we provide the HV gap compared to the best-performing method as well as the inference
time. In Appendix D} we also report some training times for the learning-based methods.

Hardware. We conducted training and inference for the learning-based methods using a single
NVIDIA Tesla A40 GPU with 48GB of VRAM. For the non-learning-based methods, evaluations
were performed on an Intel Xeon Gold 6338 CPU and, to enable a more fair comparison, we report
execution time based on solving multiple instances in parallel. Akin to Kwon et al.| (2021)), we set
the number of parallel processes to 8.

5.1 PERFORMANCE ON BENCHMARK PROBLEMS

We show the performance of GMS together with the other methods in Table [} Both variants of
GMS outperform most benchmarks on all problems. On the MOCVRP they are the best performing
methods, while only LKH outperform them on the MOTSP and MGMOTSP. This showcases that our

Under review as a conference paper at ICLR 2026

Table 1: MOTSP, MOCVRP and MGMOTSP with different instance sizes (50, 100) and distribu-
tions. Runtime is the total time for solving 200 instances. The best results (excluding LKH, our
baseline) are in bold and the second best are underlined. Remark that most neural MO solvers
benchmark on instances of roughly this size (Chen et al., [2023b; [Fan et al., 2025).

TMATS50 TMAT100 XASYS50 XASY100
HV Gap Time |[HV Gap Time |HV Gap Time |HV Gap Time
LKH 0.58 0.00% (6.4m)[0.63 0.00% (29m)|0.83 0.00% (6.9m)|0.90 0.00% (32m)
OR Tools 0.54 6.13% (29m) |0.59 7.12% (2.5h) |0.77 7.25% (24m) |0.85 6.06% (1.8h)
& MOEA/D [0.53 9.51% (3.7h) |0.50 20.9% (13h) |0.73 12.68% (3.6h) |0.70 22.22% (13h)
S MBM 0.50 13.5% (3.9s) [0.56 11.2% (19s) |0.75 10.37% (3.7s) |0.84 7.41% (19s)
= MBM (aug) 052 102% (27s) |0.58 9.17% (2.4m)|0.76 8.28% (27s) |0.85 6.34% (2.4m)
GMS-EB 0.57 1.50% (25s) |0.63 1.45% (3.6m)|0.81 2.94% (25s) |0.88 3.03% (3.6m)
GMS-DH 0.57 2.36% (4.1s) [0.62 2.76% (20s) [0.80 4.12% (3.9s) |0.86 4.87% (20s)
GMS-EB (aug) |0.57 1.14% (3.3m)|0.63 1.13% (29m) |0.82 2.06% (3.3m)|0.88 2.76% (28m)
GMS-DH (aug) |0.57 1.76% (28s) |0.62 2.19% (2.6m)|0.81 2.84% (28s) |0.87 3.85% (2.6m)

| TMATS50 | TMAT100 | XASYS50 | XASY100
MOEA/D |0.41 13.98% (24h) |0.19 58.70% (76h) |0.65 13.88% (24h) |0.42 47.23% (83h)
§ MBM 0.47 1.33% (6.2s) [043 4.50% (27s) |0.70 6.57% (6.2s) |0.60 24.47% (27s)
5 MBM (aug) 0.47 0.99% (41s) [0.44 3.29% (3.3m)|0.72 4.13% (42s) |0.64 19.60% (3.4m)
g GMS-EB 047 0.25% (36s) |0.45 0.57% (4.2m)|0.74 1.89% (36s) |0.79 1.23% (4.3m)
GMS-DH 0.47 0.76% (6.8s) [0.45 1.46% (32s) |0.72 4.13% (6.6s) [0.77 3.60% (33s)
GMS-EB (aug) (0.47 0.00% (5.0m)|0.45 0.00% (33m) |0.75 0.00% (4.9m)|0.80 0.00% (48m)
GMS-DH (aug) |0.47 0.36% (47s) |0.45 0.79% (4.3m)|0.74 1.65% (47s) |0.79 1.21% (4.7m)

| FLEX2-50 | FLEX2-100 | FIX2-50 | FIX2-100
LKH 0.90 0.00% (6.3m)[0.94 0.00% (31m)|0.92 0.00% (6.3m)|0.95 0.00% (30m)
OR Tools 086 4.21% (24m) |0.91 3.46% (1.8h)|0.90 2.59% (24m) |0.93 2.25% (2.0h)

-9

Z MOEA/D |0.74 17.50% (18h) |0.68 28.46% (9%h) |0.78 15.42% (18h) |0.72 24.69% (91h)
gMBM 086 5.21% (13s) [0.91 3.72% (44s) [0.90 2.46% (13s) [0.93 2.41% (44s)
E’J MBM (aug) 0.87 3.98% (1.7m)|0.91 3.28% (5.9m)|0.91 1.66% (1.7m)|0.93 2.10% (5.9m)
GMS-EB 0.88 2.00% (56s) [0.93 1.81% (9.1m)|091 1.27% (57s) [0.94 1.33% (9.2m)
GMS-DH 0.89 1.84% (13s) 092 2.11% (49s) 091 1.73% (12s) |0.93 2.13% (52s)
GMS-EB (aug) {0.89 1.50% (7.5m)|0.93 1.47% (1.2h) [0.91 1.02% (7.5m)[0.94 1.09% (1.2h)
GMS-DH (aug) |0.89 1.45% (1.5m)|0.93 1.61% (6.6m)[0.91 1.40% (1.5m)|0.93 1.92% (6.6m)
GMS-DHPP |0.77 14.24% (33s) |0.83 12.53% (2.3m)|0.82 10.51% (33s) |0.85 10.39% (2.3m)

architectures are generally applicable across a variety of distributions, instance sizes and problems.
As for the baseline neural method, MBM, it performs quite well across many cases, especially on the
MGMOTSP, but severely under performs on some distributions, e.g., XASY 100 for the MOCVRP.

However, MBM is usually slightly faster than GMS-DH, owing to the MatNet architecture being
faster and more memory-efficient than GREAT (for a comparison, see the results by [Lischka et al.
(2025)). GMS-DH has a small advantage for the MGMOTSP with 50 nodes due to only encoding
each multigraph once, but this is offset again for 100 nodes. Nonetheless, both GMS models remain
efficient relative to the other benchmarks, despite the slower scaling of GMS-EB. In particular,
GMS-DH as well as GMS-EB without augmentation are significantly faster than LKH.

Apart from the previously mentioned benchmarks, we also evaluate a variant of GMS-DH with Pre-
Pruning (GMS-DH PP) applied before the encoder in the MGMOTSP setting. This pre-pruning is
the same as for MBM, and the selection head is removed accordingly.

The poor performance of GMS-DH PP in Table [T highlights the importance of explicitly designing
for the multigraph structure, even when a theoretically sound pruning strategy is available. Since
GMS-DH PP requires re-running the encoder for each preference, it is approximately 3 x slower
than GMS-DH. We also hypothesize that the pre-pruning step shifts the data distribution in a way
that GMS-DH is ill-equipped to model, resulting in performance that is worse than MBM with the
same pruning strategy. Indeed, in our experience GMS-DH PP tends to produce Pareto fronts with
poor diversity, clustered around central preference regions.

Under review as a conference paper at ICLR 2026

5.2 ZERO-SHOT GENERALIZATION

We also test our models on larger instances not seen during training, and report the results in Table
[2l Both GMS-DH and GMS-EB remain competitive across both problems and all distributions in

this zero-shot setting.

5.3 A DIFFICULT MULTIGRAPH PROBLEM

Finally, we revisit one of the main motivations
behind this work: routing for problems without

Table 2: MOTSP and MGMOTSP for larger in-
stances (zero-shot generalization). Performance
over 100 instances.

1 iori ed lecti Th 1 TMAT200 XASY200

C earha prlr(;rl edge selection. us, vlve eva E- HV Gap Time |HV Gap Time
ate the performance on a more complex prob-

! Sp ificallv. i ired by B TP h pt I a LKH 0.67 0.00% (1.2h)|0.95 0.00% (1.3h)
em. specihically, mspired by [ben _licha et al.| & oR Tools |0.62 7.89% (6.5h) [0.90 4.46% (4.0h)
(2017), we consider an MGMOTSP with Time- % GMS-EB |0.66 1.86% (17m) |0.92 2.78% (17m)
Windows (MGMOTSPTW). Each edge is asso- GMS-DH | 0.65 3.59% (1.0m)|0.90 5.22% (1.0m)
glated with a time and distance, Whl.le the objec- & | FLEX2-200 | FIX2.200
tives correspond to the number of violated time- &

windows and the total distance. Remark that, un- g LKH 097 0.00% (1.2h)10.97 0.00% (1.2h)
. .. R . & OR Tools |0.94 2.53% (3.9h) |0.95 1.73% (4.0h)
llke the MGMOTSP, it is not clear in this Ca}se = GMS-EB [0.95 1.74% (50m) [0.96 1.34% (50m)
which edges can be pruned due to the more in- GMS-DH [0.95 2.27% (2.2m)|0.94 2.56% (2.2m)

tricate time-window objective.

Besides MBM with linear pre-pruning and
MOEAs, we benchmark against a simplified ver-
sion of GMS-DH in order to ablate its ability to
learn which edges are optimal. In this simplified
version, we replace the selection-decoder with a

Table 3: MGMOTSPTW on the FLEX2 and
FIX2 distributions with 50 nodes. Performance
over 200 instances. In GMS-DH Simple, the
selection-decoder is replaced with a simple prun-

simple function that removes edges with subop- ing function.

timal linear cost. Compared to pre-pruning the
multigraph before the encoder, this approach is

FLEX2-50
Gap Time

FIX2-50

HV Gap Time

v

smarter, as it removes the need to reencode. Fur-

.. . MOEA/D [0.60 32.79% (34h) |0.60 35.73% (36h)

thermore, this simple variant actually performs
; ; MBM 0.80 11.09% (14s) [0.64 31.18% (14s)
quite well on the MGMOTSP, which we show — Gpy o) ‘0.81 10.10% (1.8m)|0.66 28.58% (1.9m)

and discuss in Appendix

. . GMS-EB 0.89 0.97% (60s) |0.93 0.55% (59s)
We display the results for MGMOTSPTW in Ta- GMS-DH 0.85 5.10% (13s) [0.91 1.74% (12s)
ble 3] Our two models are the best performing ~GMS-EB (aug) 10.90 0.00% (7.9m)|0.93 0.00% (7.9m)
ones by quite a large margin. Notably, vanilla GMS-DH (aug) |0.87 2.69% (1.6m)|0.92 0.78% (1.7m)
GMS-DH also outperforms the simplified vari- GMS-DH Simple|0.83 7.01% (13s) [0.85 8.93% (12s)

ant, which illustrates the value of learning to se-
lect beneficial edges in comparison to using a
simple pruning heuristic.

6 CONCLUSION

In this paper, we propose two learning-based approaches for solving multi-objective routing prob-
lems, such as the MOTSP, on multigraphs and asymmetric graphs. Both methods utilize graph neu-
ral networks for encoding the graph structure but differ in their route construction strategies. The
first method is edge-based and directly builds tours on the multigraph, while the second employs a
two-stage decoding process, consisting of non-autoregressive pruning of the multigraph followed by
route construction.

Empirical results show that both methods perform well across a variety of settings. While the edge-
based model is simpler and usually demonstrates slightly superior performance, the second model
is more scalable due to lower memory and runtime demands.

Finally, we highlight that our models can be valuable in all routing scenarios where multigraphs
are appropriate, i.e., when there are multiple competing edges between each node pair. In future
work, we plan to use our setup to address single-objective problems with hard constraints as well as
stochastic variants.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we have included the source code (excluding pre-trained models to
minimize file size) in the supplementary material. If the paper is accepted, we will release the
full code online, including pre-trained models, for public access. The code required to generate
both training and test instances is provided, along with the random seeds used for testing. All
hyperparameters necessary to reproduce the experiments are specified in the main text or in the
Appendix (provided below after the references).

REFERENCES

Lilla Beke, Michal Weiszer, and Jun Chen. A Comparison of Genetic Representations and Initial-
isation Methods for the Multi-objective Shortest Path Problem on Multigraphs. SN Computer
Science, 2(3):176, 2021.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural Combi-
natorial Optimization with Reinforcement Learning. In International Conference on Learning
Representations, volume 5, 2017.

Hamza Ben Ticha, Nabil Absi, Dominique Feillet, and Alain Quilliot. Empirical Analysis for the
VRPTW with a Multigraph Representation for the Road Network. Computers & Operations
Research, 88:103-116, 2017.

Hamza Ben Ticha, Nabil Absi, Dominique Feillet, and Alain A. Quilliot. Multigraph Modeling
and Adaptive Large Neighborhood Search for the Vehicle Routing Problem with Time Windows.
Computers and Operations Research, 104:113-126, 2019.

Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaoxin Wu, and Jie Zhang. Learning to
Handle Complex Constraints for Vehicle Routing Problems. In Advances in Neural Information
Processing Systems, volume 37, 2024.

Julian Blank and Kalyanmoy Deb. pymoo: Multi-Objective Optimization in Python. IEEE Access,
8:89497-89509, 2020.

Julian Blank, Kalyanmoy Deb, and Proteek Chandan Roy. Investigating the Normalization Proce-
dure of NSGA-IIL. In Evolutionary Multi-Criterion Optimization, pp. 229-240, 2019.

Burak Boyaci, Thu Huong Dang, and Adam N. Letchford. Vehicle Routing on Road Networks:
How good is Euclidean Approximation? Computers & Operations Research, 129:105197, 2021.

Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, and Siyuan Chen. Efficient Meta
Neural Heuristic for Multi-Objective Combinatorial Optimization. In Advances in Neural Infor-
mation Processing Systems, volume 36, 2023a.

Jinbiao Chen, Zizhen Zhang, Zhiguang Cao, Yaoxin Wu, Yining Ma, Te Ye, and Jiahai Wang. Neural
Multi-Objective Combinatorial Optimization with Diversity Enhancement. In Advances in Neural
Information Processing Systems, volume 37, 2023b.

Jingxiao Chen, Ziqin Gong, Minghuan Liu, Jun Wang, Yong Yu, and Weinan Zhang. Looking
Ahead to Avoid Being Late: Solving Hard-Constrained Traveling Salesman Problem, 2024.
arXiv:2403.05318.

Xinyun Chen and Yuandong Tian. Learning to Perform Local Rewriting for Combinatorial Opti-
mization. In Advances in Neural Information Processing Systems, volume 32, 2019.

E. U. Choo and D. R. Atkins. Proper Efficiency in Nonconvex Multicriteria Programming. Mathe-
matics of Operations Research, 8(3):467-470, 1983.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast and Elitist Multiob-

jective Genetic Algorithm: NSGA-II. [EEE Transactions on Evolutionary Computation, 6(2):
182-197, 2002.

10

Under review as a conference paper at ICLR 2026

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO:
Bisimulation Quotienting for Efficient Neural Combinatorial Optimization. In Advances in Neu-
ral Information Processing Systems, volume 37, 2023.

Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. GOAL: A Generalist Combinatorial Opti-
mization Agent Learner. In International Conference on Learning Representations, volume 13,
2025.

Matthias Ehrgott. Multicriteria Optimization. Springer Berlin, Heidelberg, 2005.

Mingfeng Fan, Yaoxin Wu, Zhiguang Cao, Wen Song, Guillaume Sartoretti, Huan Liu, and Guohua
Wu. Conditional Neural Heuristic for Multiobjective Vehicle Routing Problems. IEEE Transac-
tions on Neural Networks and Learning Systems, 36(3):4677-4689, 2025.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a Small Pre-trained Model to Arbi-
trarily Large TSP Instances. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, 2021.

Eliza Gaile, Andis Draguns, Emils Ozolins§, and Karlis Freivalds. Unsupervised Training for Neural
TSP Solver. In Learning and Intelligent Optimization, 2022.

Thierry Garaix, Christian Artigues, Dominique Feillet, and Didier Josselin. Vehicle Routing Prob-
lems with Alternative Paths: An Application to On-Demand Transportation. European Journal of
Operational Research, 204(1):62-75, 2010.

Keld Helsgaun. An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Constrained Traveling
Salesman and Vehicle Routing Problems. Technical report, Roskilde University, 2017.

André Hottung and Kevin Tierney. Neural Large Neighborhood Search for the Capacitated Vehicle
Routing Problem. In 24th European Conference on Artificial Intelligence, 2020.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph Neural Network
Guided Local Search for the Traveling Salesperson Problem. In International Conference on
Learning Representations, 2022.

Hisao Ishibuchi and Tadahiko Murata. A Multi-Objective Genetic Local Search Algorithm and its
Application to Flowshop Scheduling. /EEE Transactions on Systems, Man, and Cybernetics, Part
C, 28(3):392-403, 1998.

Andrzej Jaszkiewicz. Genetic Local Search for Multi-objective Combinatorial Optimization. Euro-
pean Journal of Operational Research, 137(1):50-71, 2002.

Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, 2023.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An Efficient Graph Convolutional Net-
work Technique for the Travelling Salesman Problem, 2019. arXiv:1906.01227.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, volume 3, 2015.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, Learn to Solve Routing Problems! In
International Conference on Learning Representations, volume 7, 2018.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy Optimization with Multiple Optima for Reinforcement Learning. In Advances in
Neural Information Processing Systems, volume 33, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix
Encoding Networks for Neural Combinatorial Optimization. In Advances in Neural Information
Processing Systems, volume 34, 2021.

P. Lacomme, C. Prins, and M. Sevaux. A Genetic Algorithm for a Bi-objective Capacitated Arc
Routing Problem. Computers & Operations Research, 33(12):3473-3493, 2006.

11

Under review as a conference paper at ICLR 2026

David S.W. Lai, Ozgun Caliskan Demirag, and Janny M.Y. Leung. A Tabu Search Heuristic for
the Heterogeneous Vehicle Routing Problem on a Multigraph. Transportation Research Part E:
Logistics and Transportation Review, 86:32-52, 2016.

Clément Legrand, Diego Cattaruzza, Laetitia Jourdan, and Marie-Eléonore Kessaci. Improving
Neighborhood Exploration into MOEA/D Framework to Solve a Bi-Objective Routing Problem.
International Transactions in Operational Research, 32(1):117-143, 2025.

Kaiwen Li, Tao Zhang, and Rui Wang. Deep Reinforcement Learning for Multiobjective Optimiza-
tion. IEEE Transactions on Cybernetics, 51(6):3103-3114, 2021.

Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto Set Learning for Neural Multi-Objective Com-
binatorial Optimization. In International Conference on Learning Representations, volume 10,
2022.

Attila Lischka, Filip Rydin, Jiaming Wu, Morteza Haghir Chehreghani, and Baldzs Kulcsar. A
GREAT Architecture for Edge-Based Graph Problems Like TSP, 2025. arXiv:2408.16717.

Songwei Liu, Jun Chen, and Michal Weiszer. Multi-objective Multigraph A* Search with Learning
Heuristics based on Node Metrics and Graph Embedding. In IEEE International Conference on
Intelligent Systems, volume 11, 2022.

Hao Lu, Xingwen Zhang, and Shuang Yang. A Learning-based Iterative Method for Solving Vehicle
Routing Problems. In International Conference on Learning Representations, 2020.

Yongfan Lu, Zixiang Di, Bingdong Li, Shengcai Liu, Hong Qian, Peng Yang, Ke Tang, and Aimin
Zhou. Towards Geometry-Aware Pareto Set Learning for Neural Multi-Objective Combinatorial
Optimization, 2024. arXiv:2405.08604.

Francesca Maggioni, Guido Perboli, and Roberto Tadei. The Multi-path Traveling Salesman Prob-
lem with Stochastic Travel Costs: Building Realistic Instances for City Logistics Applications.
Transportation Research Procedia, 3:528-536, 2014.

Aviv Navon, Aviv Shamsian, Gal Chechik, and Ethan Fetaya. Learning the Pareto Front with Hy-
pernetworks. In International Conference on Learning Representations, volume 9, 2021.

Laurent Perron and Vincent Furnon. Or-tools, 2019. https://developers.google.com/
optimization/.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A Differentiable Meta Solver for Combina-
torial Optimization Problems. In Advances in Neural Information Processing Systems, volume 35,
2022.

Gemilang Santiyuda, Retantyo Wardoyo, Reza Pulungan, and Vincent F. Yu. Multi-Objective Re-
inforcement Learning for Bi-Objective Time-Dependent Pickup and Delivery Problem with Late
Penalties. Engineering Applications of Artificial Intelligence, 128:107381, 2024.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Opti-
mization. In Advances in Neural Information Processing Systems, volume 37, 2023.

Roberto Tadei, Guido Perboli, and Francesca Perfetti. The Multi-Path Traveling Salesman Problem
with Stochastic Travel Costs. EURO Journal on Transportation and Logistics, 6(1):3-23, 2017.

Hamid Tikani, Mostafa Setak, and Emrah Demir. Multi-Objective Periodic Cash Transportation
Problem with Path Dissimilarity and Arrival Time Variation. Expert Systems with Applications,
164:114015, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural In-
formation Processing Systems, volume 30, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks. In Advances in Neural
Information Processing Systems, volume 28, 2015.

12

https://developers.google.com/optimization/
https://developers.google.com/optimization/

Under review as a conference paper at ICLR 2026

Michal Weiszer, Edmund K. Burke, and Jun Chen. Multi-objective Routing and Scheduling for Air-
port Ground Movement. Transportation Research Part C: Emerging Technologies, 119:102734,
2020.

Hong Wu, Jiahai Wang, and Zizhen Zhang. MODRL/D-AM: Multiobjective Deep Reinforcement
Learning Algorithm Using Decomposition and Attention Model for Multiobjective Optimization.
In Artificial Intelligence Algorithms and Applications, 2020.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. GLOP: Learning
Global Partition and Local Construction for Solving Large-scale Routing Problems in Real-time.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, 2024.

Qingfu Zhang and Hui Li. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decom-
position. IEEE Transactions on Evolutionary Computation, 11(6):712-731, 2007.

Zizhen Zhang, Zhiyuan Wu, Hang Zhang, and Jiahai Wang. Meta-Learning-Based Deep Reinforce-
ment Learning for Multiobjective Optimization Problems. IEEE Transactions on Neural Networks
and Learning Systems, 34:7978-7991, 2021.

Guanghui Zhou, Xiaoyi Li, Dengyuhui Li, and Junsong Bian. Learning-Based Optimization Algo-
rithms for Routing Problems: Bibliometric Analysis and Literature Review. IEEE Transactions
on Intelligent Transportation Systems, 25(11):15273-15290, 2024a.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Xu Chi. MV-
MoE: Multi-Task Vehicle Routing Solver with Mixture-of-Experts. In International Conference
on Machine Learning, volume 41, 2024b. URL https://openreview.net/forum?id=
1sQnneYa8p.

Ying Zhou, Lingjing Kong, and Hui Wang. A Multiobjective Edge-Based Learning Algorithm for
the Vehicle Routing Problem with Time Windows. Information Sciences, 715:122223, 2025.

Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and Viviane Grunert da Fon-
seca. Performance Assessment of Multiobjective Optimizers: an Analysis and Review. [EEE
Transactions on Evolutionary Computation, 7(2):117-132, 2003.

A EXTENDED MOTIVATION

In this section, we further motivate our approach by explaining why simple transformations of the
underlying multigraph, combined with vanilla node-based construction, are unsuitable in the context
of vehicle routing problems.

Firstly, it is possible to translate a multigraph into a simple graph by using its line graph, which is
shown on the left side of Figure[3] This entails replacing each edge with a node and connecting those
new nodes which share endpoints. In our context of fully connected graphs with M parallel edges,
this results in O(M N?) nodes in the line graph and O(M?N3) edges. By utilizing node-based
construction (that is, selecting one node at a time sequentially) on the new graph with N POMO
samples and in N steps, the complexity in the decoding would thus be O(M N*).

Another, related, approach is to introduce virtual end-point nodes for each parallel edge incident to a
specific node, which is shown on the right side of Figure[3] Again, this leads to a higher node count,
as each edge in the original graph is represented using one virtual node, yielding O(M N?2) total
nodes. While the complexity of the total number of edges is lower in this case (O(M N?), since we
introducs only one edge per virtual node), for standard node-based decoding the complexity remains
O(MN?).

One can note that both these transformations combined with node-based construction resemble
GMS-EB in terms of complexity and underlying mechanism. At its core, GMS-EB treats each
edge as a node in the decoding. However, as GMS-EB works on the original graph, we believe it to
be significantly more interpretable. Moreover, GMS-DH obtains lower complexity (O(N?)) in its
decoding, since it is node-based in the original graph.

13

https://openreview.net/forum?id=lsQnneYa8p
https://openreview.net/forum?id=lsQnneYa8p

Under review as a conference paper at ICLR 2026

© Original nodes
O Virtual nodes

Transformation 1 / \Transformation 2

Figure 3: Two possible graph transformations to convert multigraphs into simple graphs. For sim-
plicity, we show both transformations on a graph that is not fully connected.

In summary, while it is possible to work on transformed simple graphs instead of underlying multi-
graphs, we obtain significant advantages by not doing so. Optimizing architectures on transformed
graphs constitutes another research direction that would be interesting to pursue, but is beyond the
scope of this work. As shown by the occasionally poor performance of MBM on asymmetric simple
graphs in Table [T] it seems unlikely that such an “off-the-shelf” architecture would work well on
much larger graphs induced by transforming multigraphs.

B EXTENDED RELATED WORK

Here, we complement the literature review in the main text with a more thorough discussion of
related work.

B.1 SINGLE-OBJECTIVE LEARNING FOR ROUTING

In the autoregressive paradigm, Vinyals et al.|(2015]) were early to propose learning solutions to the
TSP. They utilized an oracle solver for supervised learning, and Bello et al.|(2017) later introduced
reinforcement learning for training. By using attention models and inherent symmetries in the prob-
lem, first Kool et al.| (2018) and then |Kwon et al.|(2020) obtained greatly improved optimality gaps
on various routing problems. Regarding asymmetric problems, Kwon et al.| (2021) proposed Mat-
Net, a mixed-attention architecture working on bi-partite graphs. More recent works are Jin et al.
(2023)); |Drakulic et al.| (2023); [Chen et al.| (2024); |Bi et al.| (2024). These papers have improved
results, can handle constraints better and can scale to even larger problems than previously. Another
recent notable contribution was made by |Drakulic et al.|(2025)), who proposed a jointly trained gen-
eralist model to solve a multitude of combinatorial optimization problems, including examples from
routing.

In the non-autoregressive category, some works are Joshi et al.[(2019); |[Fu et al.| (2021); Q1u et al.
(2022); |Sun & Yang| (2023). Typically, these methods require more sophisticated procedures than
simple sampling in the decoding, such as Monte—Carlo tree search, to perform competitively, but
scale better to large instances due to lower space and time complexity. Thus, an interesting recent
work combining autoregressive and non-autoregressive construction to solve large instances (up to
10° nodes for the TSP) while maintaining performance is|Ye et al.| (2024)).

Besides constructive approaches, improvement-based methods usually obtain great results, but with
longer running-times, by refining initial solutions. Some examples are Chen & Tian|(2019);|Lu et al.
(2020); |[Hottung & Tierney|(2020); Hudson et al.| (2022).

14

Under review as a conference paper at ICLR 2026

B.2 MULTI-OBJECTIVE LEARNING FOR ROUTING

Early works treating MO routing using learning utilize multiple models, where one model is re-
sponsible for one preference between the objectives (Li et al., [2021; Wu et al.| |2020). This quickly
becomes infeasible as the number of models required grows exponentially with the number of ob-
jectives (Ehrgott, |2005). Pareto-set learning for multi-objective routing using a single model was
proposed by [Lin et al.|(2022). They used the hyper-networks of [Navon et al.| (2021) to condition
the decoder on the preference. Recent studies that feature improved results with a similar condi-
tioning method include [Fan et al.| (2025) and |[Lu et al.| (2024). An alternative approach is to use
meta-learning to train a single model that can be quickly fine-tuned over a few steps to solve indi-
vidual subproblems. Two representative works in this direction are |Zhang et al.| (2021) and (Chen
et al. (2023a).

Another significant recent work is that of |Chen et al.| (2023b), in which two diversity enhancement
methods are introduced. The authors combine these methods with both the meta-learning approach
and hyper-network approach to achieve improved results.

Besides tackling asymmetric problems, our work is novel in the MO routing setting as most meth-
ods utilize autoregressive construction, while one of our models combine autoregressive and non-
autoregressive construction.

B.3 ROUTING ON MULTIGRAPHS

We note that apart from vehicle routing problems, which are the focus in this article, much research
has been dedicated to MO shortest path problems on multigraphs. Successful approaches for these
problems include genetic algorithms (Beke et al.| 2021)), A*-related methods (Weiszer et al., 2020)
and hybrid approaches combining A* with learning (Liu et al.,[2022). These methods all aim to find
a Pareto set of shortest paths between two destinations.

C ARCHITECTURE DETAILS

Here, we highlight some of the main components in the model architectures that are not described
in the main text.

C.1 EDGE-BASED DECODER IN GMS-EB

In GMS-EB, we utilize an edge-based multi-pointer decoder which is inspired by Jin et al.| (2023).
Its mathematical formulation is the following. Given trainable weight matrices W, Wy, W3, W, we
form the query, representing the current routing context, as

1
qt = Wleﬂl + W2€7'rt_1 + N(WBegraph + W4€Visited)~ (19)

Here, e denotes an edge-embedding from the encoder, 7 is the first visited edge and 7;_; the most
recently visited edge. Moreover, we utilize an enhanced context in which egp,py is the sum of all
embeddings in the graph and eyigj«eq is the sum over the visited edges according to

t—1
Cuisied =) €,y (20)
t=1
Let H be the number of heads/pointers. The score for edge [is formed according to

H
1 1
o = — —— (Wig)T (WFE,) — Scalar cost(1). 21
1 th::l\/gk(h‘]t)(n ki) () 2D

Note that the key k; is the embedding e; for the edge and dj, is its dimension. Similarly to the original
article, we subtract a cost to speed up the exploration and ensure that costly edges are considered
less favorable from the start. In our case, the cost is multi-objective so we must scalarize it. We find
that both Chebyshev and linear scalarization work well for this purpose. The last step is to form the
logits as

(22)

{c tanh oy if [connects current and unvisited node
u; =
—00

15

Under review as a conference paper at ICLR 2026

Finally, softmax is applied to transform the logits to probabilities.

In our case, we also preference-condition the decoder using a hyper-network. This is done by letting
a multi-layer perceptron generate the weights W1, W, W3, Wy and (W), WhHHE .

C.2 SELECTION-DECODER IN GMS-DH

The task of this decoder is to prune parallel edges in the intermediate stage of GMS-DH, leaving
only one between each node pair. Initially, we apply Ls GREAT NB layers on the edge embeddings
from the encoder to obtain embeddings specialized for this task. In the experiments we set L3 =
2. These layers are not preference conditioned and hence they do not need to be rerun for each
preference. Next, given two nodes, we want to compute the probability of retaining each (directed)
edge in between. For this purpose, we essentially utilize a multi-pointer score calculation similar
to equation Given a node pair (z, j), and the set of edges in between, F;;, let the query be the
average embedding according to

1
%= 1By > e (23)
I eE;;
Moreover, let the key k; be the embedding e;. Then, form the score for edge [as
1 &1
= = > —=Wilaij)" (Wyky) — Scalar cost(l), 24
u H};\/@(i) (Wy'ki) — Scalar cost(l) (24)

where ¢ = start(!) and j = end(l). Again, note that we subtract a scalar cost to improve exploration.
Also note that (W, W,’f)hH:1 are generated by a hyper-network. Final edge probabilities are then
computed using tanh-clipping and softmax as

u; = ctanh(ay),

= exp(u;) (25)
ves, op(ur)

C.3 MATNET-BASED BENCHMARK MODEL

We visualize this architecture in Figure 4] The encoder consists of L MatNet-layers (Kwon et al.,
2021)), while the decoder consists of an MP decoder (Jin et al., 2023)) preference-conditioned with a
hyper-network.

The MatNet-architecture operates on bipartite graphs. It utilizes mixed-score attention layers to-
gether with fully-connected layers and normalization as in standard transformer layers (Vaswani
et al.,|2017). These attention layers “mix” internally computed attention scores with external infor-
mation from e.g., a distance matrix D. To accommodate the use of many edge features represented
by distance matrices, D1, ..., Dy, in our multi-objective setting, we follow the idea in Appendix A
of the original paper. That is, we mix the internal attention score with all distance matrices using an
MLP with f + 1 inputs.

(A
For the node-input to the initial MatNet-layer, in the ab- Multigraph Instance s (pruned)
sence of node-features we use zero-vectors for the “row” Encoder L 0
nodes and one-hot vectors for the ”“column” nodes, as ;T TS, & »
in the original paper. If there are node features, e.g., ' Lx MaNet || © ©
demand in the MOCVRP, we use these as “row” input I K
s : EL) 9 2 . -

while keeping the qne-hot column input. This allows Autoregr. Node
us to augment each instance by sampling several one-hot loop Emb. Pref. A
combinations rather than scaling the instance as is done (T T EEEEEE v
for GMS. : Node-based Hyper-

1 MP Decoder |! network

I 1

1

Lastly, we note that MatNet is not well-defined on
multigraphs due to the fact that the distance matri- | “=-----1 i T AN
ces Dy, ..., Dy represent unique edge features between Action: Next Node 7, \3 /
nodes. Thus, we must pre-prune a multigraph before ' -
passing it through the encoder. This can be done with b g

Figure 4: MatNet-Based Model (MBM).
16

Under review as a conference paper at ICLR 2026

Table 4: Number of parameters and time per epoch for the models. For GMS-DH, the parameters in
the decoder refers to both decoders.

| #Params Enc. | #Params Dec. | Epoch SG | Epoch MG

MBM 2.38M 266K 4.7m 4.7m
GMS-DH 2.06M 1.08M 8.4m 24m
GMS-EB 1.98M 266K S5lm 1.7h

some sort of heuristic in the general case, but under linear scalarization and considering the MOTSP,
an optimal pruning method is to remove edges with suboptimal scalarized cost. We utilize this prun-
ing method for both multigraph problems. It can then be noted that the encoder needs to be rerun
for each new preference, which results in a slower architecture than if the encoding is done once.

D MODEL TRAINING

Here we outline the curriculum learning which we briefly discussed in the main text. We also present
an analysis of training performance.

D.1 CURRICULUM LEARNING DETAILS

For both GMS-EB and GMS-DH we utilize a simple curriculum learning approach, with the purpose
to decrease training times and to improve performance on large problems. The idea is simple: we
train on small instances before training on large instances with the same distribution.

For instances with 20 nodes, we do not use any such curriculum. For instances with 50 nodes we
start by training for 100 epochs on 20 nodes and then train on 50 nodes for 100 epochs. Finally,
for instances with size 100, we start by training for 100 epochs on size 20. Then, for GMS-DH, we
train for 50 epochs on size 50 and 50 epochs on size 100. As GMS-EB takes quite long to train for
100 nodes, we are satisfied with training for 100 epochs on size 50 for this model and then fine-tune
it for 10 epochs on size 100, resulting in 210 epochs in total. Remark that our curriculum is quite
arbitrary, but the model performance is not contingent on this exact setup.

Additionally, we start by training GMS-DH for 5 epochs (included in the first 100 epochs) on the
XASY distribution with 20 nodes. This is because the selection-decoder relies on a reward signal
from the routing-decoder. As such, we find that performance and rate of convergence improves if
the routing-decoder is pre-trained on simple graphs to obtain a stable and accurate signal. We also
find that stability increases if we freeze the parameters of the shared encoder with respect to the
loss of the selection-decoder. That is, only the loss from the routing-decoder is utilized to calculate
encoder gradients.

D.2 TRAINING TIMES

Table] shows the number of parameters for the models as well as training time per epoch for one
problem on a Simple Graph (SG) and Multigraph (MG). The SG problem is the MOTSP with 50
nodes, while the MG problem is the MGMOTSP with 50 nodes and 2 parallel edges. It can be
noted that GMS-EB takes a very long time to train, especially on multigraphs, while GMS-DH is
more efficient and MBM is the most efficient. In fact, MBM is not affected by the multigraph
representation as it works on pruned graphs.

We want to highlight that the training performance is a weakness of GMS. However, these models
are very sample efficient, which is illustrated on examples with 20 nodes (that is, without curriculum
learning) in Figure[5] Moreover, we try to remedy this weakness through the curriculum approach.
When utilizing the curriculum learning, it is often enough to train on the small instance sizes to
obtain a majority of performance and the rest is obtained after a few epochs of training on the larger
instance. This can be seen in Figure [which showcases two examples with 50 nodes.

E ROUTING PROBLEMS AND DISTRIBUTIONS

In this section, we detail the distributions and routing problems which we solve.

17

Under review as a conference paper at ICLR 2026

HV ratio (%)

100

Ne}
ot

Nej
o

MOTSP TMAT20

MGMOTSP FLEX2-20

100

98

96

| | |
0 50 100 150 200

Epoch

0 50 100 150 200
Epoch

—— MBM —— GMS-EB —— GMS-DH

Figure 5: HV as percentage of best performance for models during training. GMS-EB and GMS-DH
reach close to their final performance quickly and are more sample-efficient than MBM.

HV ratio (%)

100

o)
ot

Nel
o

MOTSP TMATS50

MGMOTSP FLEX2-50

[T [[

100

98 : .
96 : '
94 | i
| ! | | | : | |
0 50 100 150 200 O 50 100 150 200
Epoch Epoch
—=— GMS-EB —— GMS-DH --- Instance Size Switch

Figure 6: HV as percentage of best performance for GMS during training. It is enough to train on
20 nodes to obtain a majority (=~ 98%) of the performance. After 5 epochs of training on instances
with 50 nodes, the models reach > 99.5% of their final performance.

E.1 DISTRIBUTIONS

The following distributions for node distances are used across the problems on simple graphs.

* EUC - Euclidean. Here, we sample node coordinates uniformly and independently in the

18

unit square. These are utilized to construct a distance matrix using the Euclidean distance.
For a problem with m node distances (e.g., the MOTSP with m objectives) we sample m
pairs of coordinates independently.

TMAT - Asymmetric distance matrix obeying the triangle inequality (Kwon et al., [2021).
The distance matrix is first populated with random independent elements and then post-
processed until the triangle inequality is satisfied. For a problem with m distances, we
sample m matrices independently.

XASY - Extremely asymmetric distance matrix (Gaile et al [2022)). The distance matrix
does not satisfy the triangle inequality. It is obtained by independently sampling each
element uniformly between 0 and 1. Again, we sample all m matrices independently.

Under review as a conference paper at ICLR 2026

The following distributions are used for problems on multigraphs.

* FLEXx - Flexible number of edges between each node pair. Here we sample = vectors of
dimension m representing edge attributes for edges between a node pair. Each attribute for
each edge is sampled uniformly between 0 and 1. Then we remove dominated edges until
only a Pareto set of edges remains.

* FIXz - Fixed number of edges between each node pair. We start by sampling x vectors
in the same way as the FLEX-distribution. Then we sort each attribute so that no edge
is dominated. For m = 2, we sort one attribute in descending order and one attribute in
ascending order. For m = 3 (showed in Appendix [H), we sort one attribute in descending
order, one in ascending order and keep one attribute in random order.

Note that neither FLEXz nor FIXx obeys the triangle inequality, although such an assumption holds
for real instances. We highlight that these distributions are utilized since they are simple and easy to
sample from, creating a more transparent picture of the model performance. Motivated by the fact
that XASY seems more difficult to learn than TMAT, we hypothesize that the triangle inequality
would contribute positively to model performance.

E.2 MOTSP

Problem Description. In the multi-objective traveling salesman problem the goal is to visit all
nodes/customers and return to the starting position. The Euclidean version of this problem has
been widely treated in the learning-for-routing community, e.g., by |[Lin et al.| (2022) and [Fan et al.
(2025). In our case, we sample m distances, corresponding to the m objectives, between each pair
of customers. The goal is to design a tour that minimizes the sum of the distances. A tour can start
from any node.

Data Generation. Edge distances are sampled according to the EUC, TMAT and XASY distribu-
tions above.

Model Details. There are no node features for this problem, hence both the GREAT-based and
MatNet-based encoders have the two distances as edge features, while the latter uses zero-vectors as
“row” input.

Evaluation Details. For all distributions in the bi-objective case, we utilize (15, 15), (30, 30) and
(60, 60) as reference for HV calculation for 20, 50 and 100 nodes respectively. In the zero-shot
experiments, we have (90,90) as reference for 150 nodes and (120, 120) for 200 nodes. In the
tri-objective case, we use (15,15,15). (30, 30,30) and (60,60, 60) for 20, 50 and 100 nodes re-
spectively.

E.3 MOCVRP

Problem Description. In the multi-objective capacitated vehicle routing problem, a truck starts at
a depot and must pick up goods from a specified number of customers. The vehicle has a fixed
capacity while each customer has a demand. When the capacity is full, the vehicle must return to
the depot. As many vehicles as required can be utilized to meet the demand of all customers.

Similarly to the TSP, this problem has been widely treated in the Euclidean setting using learning-
based methods. As is common in the multi-objective setting (Lin et al [2022), we assume one
objective is the traveled distance, while the other is the longest tour for a single vehicle (makespan).
As such, each node pair is only associated with one distance.

Data Generation. We assume that the capacity of the truck is 30, 40 and 50 for 20, 50 and 100 nodes
respectively, while the demands are sampled uniformly from the set {1,...,9}. This is the same
setting as in e.g., Kool et al.| (2018) and [Lin et al.|(2022). Edge distances are sampled according to
the EUC, TMAT and XASY distributions.

Model Details. In the decoding, we augment the routing context (represented by the query ¢;) with
the current load of the vehicle. For the GREAT-based encoders, we let the features of an edge be
its distance as well as the demand of the customer at the end. On the other hand, the MatNet-based
encoders only utilize the distance as an edge-feature while the demand is used as a node feature.

19

Under review as a conference paper at ICLR 2026

Evaluation Details. For all distributions, we utilize (15, 3), (40, 3) and (60, 3) as reference for HV
calculation for the three considered instance sizes.

E.4 MGMOTSP

Problem Description. As for the MOTSP, the goal of the multigraph MOTSP is to visit all nodes
and return to the start. The only difference is that the underlying structure is a multigraph. Similarly,
we define m distances for each node pair and these are associated with the objectives of the problem.

While this variant of the TSP on a multigraph has not been treated before to our knowledge (neither
using learning nor other methods), some stochastic single-objective variants have been proposed by
e.g.,(Tadei et al.[(2017)) and Maggioni et al.| (2014). Moreover, we believe that the MGMOTSP is a
suitable benchmark problem for our solvers, as it is simple and easy to find good baselines for.

Data Generation. We sample distances between the nodes according to the FLEXx and FIXz
distributions.

Model Details. As the MOTSP, the MGMOTSP lacks node features. Hence, we utilize the same
setup for the models as in the MOTSP. Moreover, for the MatNet-based model, we sparsify the
underlying multigraph given each preference before it is fed into the encoder. This is done by
removing all edges with suboptimal linearly scalarized cost compared to a parallel edge. To make
this pruning strategy exact, we train MBM using linear reward instead of the Chebyshev reward.

Evaluation Details. For the FLEXx distribution in the bi-objective case, we utilize (15,15),
(30, 30) and (60, 60) as reference for instance sizes 20, 50 and 100, regardless of x. In the zero-shot
experiments we set the references to (90,90) and (120, 120) for FLEXz with 150 and 200 nodes.
For FIXz, the reference is given by (N, N), where N is the node count. When considering three
objectives, we use (15,15, 15), (30, 30, 30) and (60, 60, 60) for FLEXx and (N, N, N) for FIXz.

E.5 MGMOTSPTW

Problem Description. The goal in MGMOTSPTW is to create a tour that visits all customers and
returns to the starting position. However, in this case we assume there is a fixed depot and that
each customer/node is associated with a time-window. Preferably, the vehicle should arrive within
the time-window for each customer. As such, we let one objective be the number of violated time-
windows while the other is the traveled distance. Accordingly, each edge connecting two locations
is associated with a travel time and a distance.

Multi-objective problems with similar objectives are fairly widespread in literature (Legrand et al.,
2025)), although not on multigraphs. In the multigraph framework, this problem is reminiscent of the
vehicle routing problem with time-windows of Ben Ticha et al.|(2017), but with a second objective
that is the soft variant of the time-window constraint.

Data Generation. Distances and travel times are sampled according to the FLEXx and FIXz dis-
tributions. Additionally, we sample time-windows according to the “medium” distribution of (Chen
et al.| (2024) and Bi et al.| (2024). In this setting, time-windows are sampled uniformly and inde-
pendently, which results in difficult instances where there is a true trade-off between optimal paths
and paths satisfying the time-window constraint. We also argue that this premise is simple for initial
evaluation of our models, especially in comparison to e.g., the hard” instances of |Chen et al.|(2024),
which test out-of-distribution generalization.

Further, we assume that the vehicle can depart immediately from each customer, i.e., that there is no
service time, and that no waiting occurs, even if a vehicle arrives before the starting time. The latter
is for simplicity, as in general how long the vehicle should wait at a node is a decision in itself. We
also argue that this assumption is fairly realistic.

Model Details. In the decoder, we enhance the routing context with an embedding of the current
time. In the encoder, the node features in this case are the starting time and end time of the service,
while the edge features are distance and travel time. Consequently, we augment the input features of
GREAT so that an edge is associated with its distance, travel time and the time-window of the ending
node. As usual for MatNet, the node features are used as “row” inputs while the edge features are
used in the distance matrix.

20

Under review as a conference paper at ICLR 2026

Note that in this case, pruning of the multigraph for MatNet is not obvious. For instance, removing
an edge with a high travel time but low distance might not be optimal if traversing that edge would
result in no violated time-windows anyway. For simplicity, we apply the same simple pruning
method as for the MGMOTSP. That is, we form the scalarized cost of each edge using a linear
combination of its travel time and distance, then we remove all edges apart from the best one. We
also choose the linear reward instead of the Chebyshev reward for MBM.

Evaluation Details. In this case, we let the reference value corresponding to the time-window
violation be N + 5, while the reference value corresponding to the distance is the same as in the
MGMOTSP case.

F SETUP FOR MOEAS

As a base for the implementation of NSGA-II, NSGA-III and MOEA/D, we utilized PymO(ﬁ (Blank
& Deb, 2020) and as a base for MOGLS, we utilized GeneticLocalSearCh,TSPE] (Li et al.l 2021).
For the former three, we limit the number of iterations to 1000 while the latter is limited to 10000.
Additionally, local search strategies are a necessity for efficient usage of genetic algorithms in com-
binatorial optimization. For the MOTSP, we utilized the 2-opt heuristic of Jaszkiewicz|(2002), while
we utilized the problem-specific local search and chromosome decoding strategy of Lacomme et al.
(2006)) for the MOCVRP.

However, in both cases we find that by accepting the best local move instead of just an improving
one, the performance on large asymmetric problems improves substantially. As this affects the
runtime negatively (due to the need to search through all moves), we limit the number of local
moves in each search depending on the problem size. Additionally, for the algorithms not requiring
preference weights for each individual (NSGA-II and NSGA-III), we must calculate such weights
to compare the improvements. In the bi-objective case, this is done using the strategy of [Lacomme
et al.| (2006) according to

w1 (S) = (f1(S) = fM™)/(F = ™),

@(5) = (a(5) — F)/(AP™ — 75, 6
wi (S) = w1 (S)/(w1(S) + wa(9)),

wy(S) = wa(S)/(w1(S) + wa(9)),

where S is the solution being improved and ™", f/a% 4 = 1,2 are minimum and maximum values
for the respective objectives.

In the multigraph setting, we design our own setup to tailor the MOEAs. To start with, inspired by
one representation from [Beke et al.| (2021) regarding shortest path problems, we let a chromosome
for a tour be given by a permutation of the nodes multiplied with 100 added with the index of
the edge to the next node. For example, in an MGMOTSP with 2 parallel edges and 5 nodes, a
chromosome might be

(101, 302, 201, 501, 402).

For the mutation operator, we randomly either change one edge or reverse a segment of the tour.
For the crossover, we utilize an edge recombination operator. Regarding the local search, we use a
variant of 2-opt where we again accept the best local move. A local move is defined by a standard
2-opt move with the nodes, together with new edge selections given the changed node order. This
edge selection is found by choosing the edge with the lowest linearly scalarized cost between nodes
that were previously not neighbors or have changed order.

We want to stress that the focus in this study is not to design evolutionary algorithms, we simply
want baselines to compare against. We find that the proposed approach is somewhat efficient for
small node counts, but performs quite badly for large graphs.

Zhttps://pymoo.org/
*https://github.com/kevin031060/Genetic_Local_Search_TSP

21

https://pymoo.org/
https://github.com/kevin031060/Genetic_Local_Search_TSP

Under review as a conference paper at ICLR 2026

Table 5: Ablation of the learned pruning in vanilla GMS-DH by replacing it with a simple pruning
function. Results are for the MGMOTSP. The performance of GMS-DH PP from Table[I]is repeated
for convenience.

FLEX2-50 FIX2-50
HV Gap |HV Gap

GMS-DH Learned (Ch. Reward) |0.89 1.84% [0.91 1.73%
GMS-DH Learned (Lin. Reward) | 0.88 2.74% |0.91 1.66%
GMS-DH Simple (Ch. Reward) |0.88 2.00% |0.90 1.82%
GMS-DH Simple (Lin. Reward) |0.88 2.65% [0.91 1.76%
GMS-DH PP (Lin. Reward) 0.77 14.24%(0.82 10.51%

G ABLATION STUDY

Here, we present additional results obtained by replacing the selection-decoder in GMS-DH with
a simple pruning function that discards edges with suboptimal linearly scalarized cost. As shown
in Section [5.3] this approach performs rather poorly on the MGMOTSPTW. However, it is more
reasonable to assume that it will yield good results for the MGMOTSP.

To ensure a fair comparison, we evaluate both learned pruning and simple pruning using linearly
scalarized rewards and Chebyshev rewards. In the linear case, simple pruning is optimal by Propo-
sition[I] Moreover, the learned pruning model is trained using /; = 4 edge selections per instance.
Accordingly, we use 4x more POMO samples when training the model with simple pruning to
match the training budget.

Ablation results are shown in Table 5] For the MGMOTSP, simple and learned pruning perform
quite similarly (although learned pruning shows a slight advantage under Chebyshev rewards for
both distributions). Indeed, these results illustrate that it can be a smart approach to replace the
selection-decoder in GMS-DH if a sound heuristic or exact pruning method is available. However,
pruning after the encoder clearly outperforms pre-pruning (as used in GMS-DH PP), both in terms
of solution quality and runtime, since pre-pruning requires reencoding the graph for each preference.

H COMPLEMENTARY NUMERICAL RESULTS

In this section, we show additional numerical results for more problems, distributions, benchmarks
and instance sizes.

H.1 PROBLEMS ON SIMPLE GRAPHS

Table [6] and [7] show results for the MOTSP and MOCVRP respectively. Apart from the benchmarks
in the main text, we present the performance of three simple greedy heuristics on the MOTSP:
Nearest Neighbor (NN), Nearest Insertion (NI) and Farthest Insertion (FI). Like LKH and OR-tools,
these utilize the linear scalarization to transform the MO problem into single-objective subproblems.
Additionally, we show results on Euclidean instances (EUC). For these, there are many existing
models in literature and thus we replace MBM with the Conditional Neural Heuristic (CNH) of [Fan
et al.| (2025). This model is augmented with the Euclidean augmentation of |Lin et al.| (2022).

On the EUC distribution, our models are generally slightly worse than CNH. This is to be expected
though, as a common pattern in previous studies is that architectures built for directed graph inputs
perform worse on EUC than those specialized for coordinate inputs (Lischka et al.| 2025} |[Kwon
et al., 2021)).

H.2 MULTIGRAPH PROBLEMS

We display additional results for the MGMOTSP and MGMOTSPTW in Tables 810} As for the
MOTSP, we include NN, NI and FI for MGMOTSP. In the case of MGMOTSPTW, we also include
results for LKH and OR-tools when treating the problem as the MGMOTSP. That is, we neglect the
time-windows and treat the time duration of each edge exactly as the distance. We call these methods
implicit LKH and implicit OR-tools, as they implicitly minimize the time-window violations by

22

Under review as a conference paper at ICLR 2026

Table 6: MOTSP with different instance sizes (20, 50 and 100) and distributions.

EUC20 EUCS50 EUC100

HV Gap Time |HV Gap Time |HV Gap Time
LKH 0.52 0.00% (2.6m)|0.58 0.00% (14m) |[0.68 0.00% (1.2h)
OR Tools 0.51 097% (2.0m)|0.57 1.83% (15m) [0.67 1.57% (1.3h)
NN 046 11.44% (1.9s) |0.51 11.42% (7.1s) |0.63 8.23% (25s)
NI 047 8.53% (11s) |0.52 9.97% (1.8m)|0.63 7.82% (12m)
FI 0.50 3.44% (13s) |0.55 5.79% (2.1m)|0.65 4.96% (14m)
MOGLS 0.51 0.79% (1.0h) [0.58 0.74% (3.8h) |0.68 1.16% (32h)
NSGA-II 0.50 2.63% (44m) |0.52 11.18% (3.4h) |0.54 21.13% (12h)
NSGA-III 0.50 3.56% (46m) |0.50 14.07% (3.4h) |0.53 21.82% (12h)
MOEA/D 0.51 0.87% (56h) |0.57 2.53% (3.6h) |0.63 8.08% (13h)
CNH 0.51 1.16% (6.5s) |0.57 1.84% (7.1s) |0.67 1.89% (25s)
CNH (aug) 0.51 0.85% (17s) |0.57 1.26% (44s) |0.67 1.45% (3.1m)
GMS-EB 0.51 093% (2.0s) |0.57 1.98% (25s) |0.67 2.34% (3.6m)
GMS-DH 0.51 1.30% (1.1s) |0.57 2.64% (3.8s) |0.67 2.49% (20s)

GMS-EB (aug) |0.51 0.81% (14s) |0.57 1.57% (3.3m)|0.67 2.09% (28m)
GMS-DH (aug) |0.51 0.93% (5.3s) |0.57 191% (27s) |0.67 2.24% (2.6m)

| TMAT20 | TMATS50 | TMAT100
LKH 0.58 0.00% (2.3m)|0.58 0.00% (6.4m)|0.63 0.00% (29m)
OR Tools 0.56 3.01% (3.3m)|0.54 6.13% (29m) [0.59 7.12% (2.5h)
NN 0.48 16.66% (1.9s) |0.47 18.34% (7.0s) |0.54 15.25% (25s)
NI 0.53 8.78% (11s) |0.50 13.17% (1.8m)|0.55 13.24% (12m)
FI 0.54 6.60% (13s) |0.52 10.65% (2.0m)|0.57 10.84% (14m)
MOGLS 0.54 7.72% (20m) | 0.40 30.90% (2.7h) |0.38 40.03% (15h)
NSGA-II 0.57 2.17% (44m) |0.51 12.91% (3.5h) |0.47 25.98% (12h)
NSGA-III 0.57 2.87% (45m) |0.50 14.54% (3.5h) |0.46 27.53% (13h)
MOEA/D 0.57 1.43% (56m)|0.53 9.51% (3.7h) |0.50 20.93% (13h)
MBM 0.57 2.29% (1.3s) |0.50 13.51% (3.9s) [0.56 11.16% (19s)
MBM (aug) 0.58 0.96% (5.6s) |0.52 10.17% (27s) |0.58 9.17% (2.4m)
GMS-EB 0.58 0.88% (2.2s) |0.57 1.50% (25s) |0.63 1.45% (3.6m)
GMS-DH 0.58 1.08% (1.3s) |0.57 2.36% (4.1s) [0.62 2.76% (20s)

GMS-EB (aug) {0.58 0.67% (15s) |0.57 1.14% (3.3m)|0.63 1.13% (29m)
GMS-DH (aug) |0.58 0.79% (5.6s) |0.57 1.76% (28s) |0.62 2.19% (2.6m)

\ XASY20 \ XASY50 \ XASY100
LKH 075 0.00% (2.3m)|0.83 0.00% (6.9m)[0.90 0.00% (32m)
OR Tools 071 5.49% (3.0m)|0.77 7.25% (24m)|0.85 6.06% (1.8h)
NN 0.60 20.11% (1.8s) |0.70 16.32% (7.0s) [0.80 10.94% (25s)
NI 0.61 17.76% (11s) |0.66 21.37% (1.8m)|0.73 18.88% (12m)
FI 0.60 19.57% (12s) |0.64 23.62% (2.1m)|0.72 20.42% (14m)
MOGLS 0.65 13.23% (19m) |0.51 39.16% (2.6h) |0.47 47.82% (19h)
NSGA-II 072 4.06% (44m) |0.70 15.63% (3.5h) |0.64 29.74% (13h)
NSGA-IIT 071 456% (45m)|0.70 16.64% (3.5h) |0.63 30.13% (13h)
MOEA/D 073 2.68% (56m) |0.73 12.68% (3.6h) |0.70 22.22% (13h)
MBM 0.68 9.10% (1.4s) [0.75 1037% (3.7s) |0.84 7.41% (19s)
MBM (aug) |0.70 5.86% (5.58) |0.76 8.28% (27s) |0.85 6.34% (2.4m)
GMS-EB 073 1.95% (2.3s) |0.81 2.94% (25s) |0.88 3.03% (3.6m)
GMS-DH 073 237% (1.9s) |0.80 4.12% (3.9s) |0.86 4.87% (20s)

GMS-EB (aug) {0.74 1.30% (15s) |0.82 2.06% (3.3m)|0.88 2.76% (28m)
GMS-DH (aug) |0.74 1.57% (5.8s) |0.81 2.84% (28s) |0.87 3.85% (2.6m)

reducing the time the tour takes. Additionally, for the MGMOTSP, we show results for FLEX5 and
FIX5, i.e., when there are 5 parallel edges between each node pair.

H.3 GENERALIZATION TO LARGER INSTANCES

In Tables [TTHI3] we report more generalization results for our methods in the MOTSP and MG-
MOTSP cases. Notably, even when introducing significantly more edges by testing on FLEX10 and
FIX10, our methods remain competitive zero-shot.

23

Under review as a conference paper at ICLR 2026

Table 7: MOCVRP with different instance sizes (20, 50 and 100) and distributions.

EUC20 EUC50 EUC100

HV Gap Time |HV Gap Time |HV Gap Time
MOGLS 0.23 3.35% (4.1h)|0.17 37.39% (26h) |0.00 100.00% (108h)
NSGA-II 0.23 0.13% (2.6h)|0.27 2.14% (24h) |0.20 18.91% (75h)
NSGA-III 023 0.21% (2.7h)]0.26 2.91% (25h) |{0.20 21.23% (75h)
MOEA/D 0.23 0.90% (2.9n)]0.26 2.73% (25h) |0.23 7.40% (73h)
CNH 023 0.77% (5.0s) |0.27 0.59% (9.5s) |0.25 0.56% (29s)
CNH (aug) 0.23 0.00% (29s) [0.27 0.00% (58s) [0.25 0.00% (3.6m)
GMS-EB 0.23 0.30% (3.4s)[0.27 0.44% (33s) |0.25 0.56% (4.1m)
GMS-DH 0.23 133% (2.35)[0.27 1.11% (6.6s) |0.25 1.36% (30s)

GMS-EB (aug) [0.23 0.13% (22s) |0.27 0.18% (4.7m)|0.25 0.32% (54m)
GMS-DH (aug) [0.23 0.90% (10s) |0.27 0.66% (46s) |0.25 0.92% (4.1m)

TMAT20 TMATS0 TMAT100
MOGLS 0.40 1.78% (4.1h)|0.31 35.06% (28h) [0.05 89.38% (116h)
NSGA-II 0.40 1.38% (2.7h)|0.36 23.04% (23h) [0.13 71.72% (76h)
NSGA-III 0.40 1.98% (2.7h)|0.35 2591% (24h) [0.12 74.11% (76h)
MOEA/D 0.39 2.59% (3.0h)|0.41 13.98% (24h) |0.19 58.70% (76h)
MBM 040 1.14% (2.4s)|0.47 133% (6.2s) |0.43 4.50% (27s)
MBM (aug) 0.40 0.86% (10s) [0.47 0.99% (41s) |0.44 3.29% (3.3m)
GMS-EB 0.40 0.25% (3.55)]0.47 0.25% (36s) |045 0.57% (4.2m)
GMS-DH 0.40 0.64% (2.5s)|0.47 0.76% (6.8s) |0.45 1.46% (32s)

GMS-EB (aug) |0.41 0.00% (23s) |0.47 0.00% (5.2m)|0.45 0.00% (33m)
GMS-DH (aug) |0.40 0.32% (10s) |0.47 0.36% (47s) (045 0.79% (4.3m)

| XASY20 | XASYS50 | XASY100
MOGLS 0.59 2.39% (4.0h)|0.49 34.85% (2%h) [0.13 83.50% (121h)
NSGA-II 0.60 1.24% (2.7h)|0.55 27.19% (24h) |0.28 64.39% (85h)
NSGA-III 0.59 2.21% (2.7h)|0.52 31.06% (25h) [0.25 68.40% (86h)
MOEA/D 0.59 3.24% (3.0h)|0.65 13.88% (24h) |0.42 47.23% (83h)
MBM 0.57 595% (2.3s)]0.70 6.57% (6.2s) |0.60 24.47% (27s)
MBM (aug) 0.59 3.06% (10s) |0.72 4.13% (42s) |0.64 19.60% (3.4m)
GMS-EB 0.60 1.44% (3.5s)]0.74 1.89% (36s) [0.79 1.23% (4.3m)
GMS-DH 0.58 3.40% (2.4s)[0.72 4.13% (6.6s) |0.77 3.60% (33s)

GMS-EB (aug) [0.61 0.00% (23s) 0:75 0.00% (5.0m) 0:80 0.00% (48m)
GMS-DH (aug) [0.60 1.29% (10s) |0.74 1.65% (47s) |0.79 121% (4.7m)

H.4 TRI-OBJECTIVE PROBLEMS

Finally, we show results when considering three objectives, rather than two as in the previous cases.
In this case, we restrict ourselves to the MOTSP and MGMOTSP problems. We display the results
in Tables[T4]and [T3] Generally, our methods seem to scale well with the number of objectives. The
exception is GMS-DH on the XASY distribution for the MOTSP with 100 nodes, which seems to
underperform compared to, for example, MBM and OR tools. Otherwise, both GMS-EB and GMS-
DH show competitive results with a comparably short inference time. As expected, CNH performs
slightly better on the Euclidean distribution compared to our methods.

24

Under review as a conference paper at ICLR 2026

Table 8: MGMOTSP on FLEXx with different instances sizes (20, 50 and 100) and number of edges
2,5).

FLEX2-20 FLEX2-50 FLEX2-100

HV Gap Time |[HV Gap Time |HV Gap Time
LKH 0.85 0.00% (1.2m)[0.90 0.00% (6.3m)|0.94 0.00% (31m)
OR Tools 0.82 3.30% (3.0m)|0.86 4.21% (24m)|0.91 3.46% (1.8h)
NN 0.74 13.34% (1.9s) [0.81 10.38% (7.1s) |0.88 6.71% (25s)
NI 0.75 11.13% (9.6s) |0.78 13.13% (1.7m)|0.84 11.32% (12m)
FI 0.75 11.98% (12s) |0.77 14.30% (2.0m)|0.83 12.20% (14m)
MOGLS 0.71 16.29% (1.9h) |0.49 45.84% (2%h) |0.34 64.38% (129h)
NSGA-II 0.81 5.06% (1.3h) [0.74 17.62% (15h) |0.64 31.98% (103h)
NSGA-III 0.80 5.82% (1.3h) [0.74 18.48% (15h) | 0.63 33.01% (104h)
MOEA/D 0.80 6.02% (1.4h) |0.74 17.50% (18h) | 0.68 28.46% (99h)
MBM 0.82 3.30% (4.4s) |0.86 5.21% (13s) [0.91 3.72% (44s)
MBM (aug) 0.84 1.50% (32s) |0.87 3.98% (1.7m)|0.91 3.28% (5.9m)
GMS-EB 0.83 1.61% (4.0s) |0.88 2.00% (56s) [0.93 1.81% (9.1m)
GMS-DH 0.84 1.34% (3.2s) |0.89 1.84% (13s) |0.92 2.11% (49s)

GMS-EB (aug) [0.84 0.95% (34s) [0.89 1.50% (7.5m)|0.93 1.47% (1.2h)
GMS-DH (aug) | 0.84 0.86% (19s) [0.89 1.45% (1.5m)[0.93 1.61% (6.6m)

| FLEX520 | FLEX5-50 | FLEX5-100
LKH 0.93 0.00% (1.3m)[0.95 0.00% (6.4m)[0.97 0.00% (30m)
OR Tools 091 151% (2.9m)[0.93 2.01% (25m)|0.96 1.60% (1.8h)
NN 0.86 6.78% (1.8s) |0.90 5.24% (7.2s) |0.94 3.33% (28s)
NI 0.88 5.48% (9.5s) [0.89 6.41% (1.7m)|0.92 5.45% (12m)
FI 0.87 5.89% (11s) [0.89 7.03% (2.0m)|0.92 5.89% (14m)
MOGLS 0.84 9.71% (2.4h)|0.69 27.67% (52h) |0.57 41.21% (222h)
NSGA-II 0.88 5.19% (1.4h) |0.80 16.61% (31h) [0.71 26.79% (215h)
NSGA-III 0.87 5.85% (1.4h) [0.79 17.48% (31h) [0.70 27.98% (215h)
MOEA/D 0.88 5.07% (1.5h) |0.82 13.49% (30h) [0.76 22.05% (210h)
MBM 0.90 238% (4.4s)[0.93 2.48% (13s) [0.96 1.71% (45s)
MBM (aug) |0.92 1.26% (32s) |0.93 2.12% (1.7m)|0.96 1.44% (5.9m)
GMS-EB 0.92 0.87% (8.1s) [0.94 1.08% (2.3m)[0.96 1.11% (23m)
GMS-DH 0.92 1.03% (3.55) |0.94 1.64% (16s) [0.96 1.66% (1.3m)

GMS-EB (aug) [0.92 0.59% (1.1m)[0.95 0.86% (18m)|0.96 0.96% (3.0h)
GMS-DH (aug) [0.92 0.64% (23s) [0.94 131% (2.2m)[0.96 1.45% (9.9m)

25

Under review as a conference paper at ICLR 2026

Table 9: MGMOTSP on FIXz with different instances sizes (20, 50 and 100) and number of edges
(2,5).

FIX2-20 FIX2-50 FIX2-100

HV Gap Time |[HV Gap Time |[HV Gap Time
LKH 0.85 0.00% (1.2m)[0.92 0.00% (6.3m)|0.95 0.00% (30m)
OR Tools 0.83 2.42% (29m)|0.90 2.59% (24m) [0.93 2.25% (2.0h)
NN 0.77 9.86% (1.9s) [0.86 6.34% (7.1s) |0.91 4.23% (25s)
NI 0.78 8.39% (9.6s) [0.85 7.95% (1.7m)|0.88 7.14% (12m)
FI 0.78 9.23% (11s) |0.84 8.82% (2.0m)|0.88 7.89% (14m)
MOGLS 0.74 13.68% (1.9h) |0.65 29.64% (2%h) |0.54 42.73% (122h)
NSGA-II 0.81 5.64% (1.3h) |0.77 16.56% (1%h) |0.69 27.86% (96h)
NSGA-III 0.80 6.85% (1.3h)|0.75 18.79% (1%h) |0.66 30.17% (95h)
MOEA/D 0.80 6.20% (1.4h) |0.78 15.42% (18h) |0.72 24.69% (91h)
MBM 0.84 1.57% (4.4s) |0.90 2.46% (13s) [0.93 2.41% (44s)
MBM (aug) 085 0.50% (32s) [0.91 1.66% (1.7m)|0.93 2.10% (5.9m)
GMS-EB 0.84 1.46% (3.9s) |091 127% (57s) |0.94 1.33% (9.2m)
GMS-DH 0.84 137% (3.2s) |091 1.73% (12s) |0.93 2.13% (52s)

GMS-EB (aug) 0:85 0.99% (28s) 0;91 1.02% (7.5m)|0.94 1.09% (1.2h)
GMS-DH (aug) |0.85 0.82% (18s) |0.91 1.40% (1.5m)|0.93 1.92% (6.6m)

FIX5-20 FIX5-50 FIX5-100
LKH 0.84 0.00% (56s) [0.89 0.00% (6.2m)[0.91 0.00% (29m)
OR Tools 0.82 141% (3.0m)|0.87 1.78% (25m)|0.90 1.78% (2.0h)
NN 079 597% (1.9s) |0.85 4.22% (7.2s) |0.88 3.11% (25s)
NI 0.79 4.98% 9.8s) |0.84 527% (1.7m)|0.86 5.24% (12m)
FI 079 6.00% (11s) [0.83 6.45% (2.0m)|0.85 6.37% (14m)
MOGLS 074 11.00% (2.5h) [0.67 24.51% (38h) [0.62 32.11% (253h)
NSGA-II 079 5.96% (1.5h) |0.72 18.65% (32h) |0.63 30.45% (216h)
NSGA-III 0.77 7.78% (1.5h) |0.69 21.60% (32h) [0.60 33.77% (218h)
MOEA/D 079 5.44% (1.5h) [0.77 13.45% (31h) [0.71 22.40% (230h)
MBM 0.82 1.45% (4.4s) [0.87 234% (13s) [0.89 1.94% (dds)
MBM (aug) |0.83 0.47% (32s) |0.87 1.82% (1.7m)|0.90 1.69% (5.9m)
GMS-EB 0.83 1.05% (8.1s)|0.88 1.03% (2.3m)[0.90 1.08% (23m)
GMS-DH 0.82 1.75% (3.5s) |0.86 2.96% (16s) |0.88 3.44% (1.3m)

GMS-EB (aug) [0.83 0.77% (1.Im)|0.88 0.89% (19m)|0.90 0.99% (3.0h)
GMS-DH (aug) [0.83 121% (23s) [0.86 2.38% (2.2m)|0.89 2.98% (9.8m)

Table 10: MGMOTSPTW on FLEXx and FIXx with different instances sizes (20, 50).

FIX2-50
HV Gap Time

FIX2-20
HV Gap Time

FLEX2-50
HV Gap Time

FLEX2-20
HV Gap Time

Implicit LKH 0.27 66.74% (1.1m)|0.14 84.11% (6.7m)|0.28 67.24% (1.3m)|0.15 84.24% (6.5m)
Implicit OR Tools | 0.24 70.78% (3.4m)|0.13 85.34% (25m) |0.25 71.02% (3.4m)|0.14 85.49% (26m)
MOGLS 0.64 22.92% (2.7h) |0.35 60.96% (21h) |0.62 28.85% (2.8h) |0.41 55.72% (21h)
NSGA-II 0.69 16.55% (2.4h) |0.51 43.47% (35h) [0.73 15.93% (2.7h) [0.56 39.66% (35h)
NSGA-III 0.69 16.01% (2.5h) |0.50 44.53% (36h) |0.71 18.88% (2.5h) [0.53 43.42% (35h)
MOEA/D 0.75 9.19% (2.7h) |0.60 32.79% (34h) |0.74 14.99% (2.8h) |0.60 35.73% (36h)
MBM 0.72 12.89% (4.9s) |0.80 11.09% (14s) |0.53 38.64% (4.9s) |0.64 31.18% (14s)
MBM (aug) 0.73 11.98% (34s) |0.81 10.10% (1.8m)|0.54 38.10% (35s) |0.66 28.58% (1.9m)
GMS-EB 0.81 1.95% (4.3s) |0.89 0.97% (60s) [0.86 1.17% (4.3s) [0.93 0.55% (59s)
GMS-DH 0.80 3.37% (3.3s) |0.85 5.10% (13s) |0.85 2.47% (3.4s) (091 1.74% (12s)

GMS-EB (aug) |0.82 0.00% (31s) |0.90 0.00% (7.9m)|0.87 0.00% (31s) [0.93 0.00% (7.9m)
GMS-DH (aug) |0.82 0.33% (20s) |0.87 2.69% (1.6m)|0.87 0.46% (20s) [0.92 0.78% (1.7m)

GMS-DH Simple [0.76 8.18% (3.3s) |0.83 7.01% (13s) [0.76 12.07% (3.2s) |0.85 8.93% (12s)

26

Under review as a conference paper at ICLR 2026

Table 11: MOTSP for instances with more nodes.

EUC150 EUC200
HV Gap Time |HV Gap Time

LKH 0.73 0.00% (1.6h) |0.76 0.00% (3.0h)
OR Tools 0.72 1.38% (1.7h) | 0.75 1.24% (3.5h)
CNH ZS 0.72 2.04% (50s) |0.74 2.22% (1.3m)
GMS-EB ZS |0.71 2.71% (6.7m)|0.74 2.93% (17m)
GMS-DH ZS|0.71 2.82% (30s) [0.74 3.12% (1.0m)

| TMATIS0 | TMAT200

LKH 0.65 0.00% (39m) |0.67 0.00% (1.2h)
OR Tools 0.60 7.57% (3.3h) |0.62 7.89% (6.5h)
GMS-EB ZS [0.64 1.64% (6.7m)|0.66 1.86% (17m)
GMS-DH ZS|0.63 3.20% (30s) [0.65 3.59% (1.0m)

| XASYI50 | XASY200

LKH 0.93 0.00% (40m) |0.95 0.00% (1.3h)
OR Tools 0.88 5.12% (2.2h) |0.90 4.46% (4.0h)
GMS-EB ZS [0.90 2.77% (6.7m)|0.92 2.78% (17m)
GMS-DH ZS|0.88 5.10% (30s) [0.90 5.22% (1.0m)

Table 12: MGMOTSP for instances with more edges. The GMS models are those trained for
FLEX5-100 and FIX5-100.

FIX10-100

HV Gap Time |HV Gap Time

LKH 0.98 0.00% (16m) |0.86 0.00% (15m)
OR Tools 0.98 0.87% (57m) |0.84 1.63% (1.1h)
GMS-EB ZS |0.98 0.90% (23m) (0.84 1.49% (23m)
GMS-DH ZS|0.97 1.53% (1.1m)|0.82 4.11% (1.1m)

‘ FLEX10-100

Table 13: MGMOTSP for instances with more nodes.

FLEX2-150 FLEX2-200
HV Gap Time |HV Gap Time

LKH 0.96 0.00% (39m)|0.97 0.00% (1.2h)
ORTools |0.93 2.93% (2.1h) |0.94 2.53% (3.9h)
GMS-EB ZS [0.94 1.78% (18m) |[0.95 1.74% (50m)
GMS-DH ZS |0.94 2.17% (1.0m)|0.95 2.27% (2.2m)

| FLEX5-150 | FLEX5-200

LKH 0.98 0.00% (39m)|0.98 0.00% (1.2h)
ORTools |0.97 1.35% (2.1h) [0.97 1.15% (4.1h)
GMS-EB ZS |0.97 1.05% (45m)|0.97 1.02% (2.1h)
GMS-DH ZS |0.96 1.86% (1.7m)|0.96 2.03% (3.5m)

‘ FIX2-150 ‘ FIX2-200

LKH 0.96 0.00% (39m) [0.97 0.00% (1.2h)
OR Tools 0.94 1.96% (2.2h)|0.95 1.73% (4.0h)
GMS-EB ZS [0.95 1.35% (18m) [0.96 1.34% (50m)
GMS-DH ZS|0.94 2.38% (1.1m)|0.94 2.56% (2.2m)

| FIX5-150 | FIX5-200

LKH 0.92 0.00% (37m)|0.93 0.00% (1.2h)
ORTools |0.91 1.69% (2.5h) [0.92 1.59% (4.5h)
GMS-EB ZS [0.92 1.02% (46m) |0.92 0.98% (2.1h)
GMS-DH ZS |0.89 3.99% (1.7m)|0.89 4.46% (3.5m)

27

Under review as a conference paper at ICLR 2026

Table 14: Tri-objective MOTSP with different instance sizes and distributions. LKH and OR-tools
have 105 subproblems, while the number of preferences for the neural methods are in parentheses.

EUC20 EUC50 EUCI100
HV Gap Time |[HV Gap Time |HV Gap Time
LKH 0.33 0.00% (1.7m)|0.36 0.75% (14m)|0.46 0.35% (1.3h)
OR Tools 033 1.69% (2.2m)|0.35 4.08% (15m)|0.45 3.41% (1.3h)
MOGLS 0.33 0.24% (1.7h) |0.36 0.00% (13h) [0.46 0.00% (97h)
NSGA-II 0.28 14.99% (2.3h) [0.26 27.09% (16h) |0.32 31.75% (70h)
NSGA-III 0.28 16.43% (2.3h) |0.25 29.36% (15h) |0.31 33.95% (66h)
MOEA/D 0.25 23.47% (2.7h) |0.24 34.41% (16h) |0.28 39.74% (68h)
CNH (105) 032 4.69% (4.3s) |0.32 10.12% (7.8s) |0.43 7.93% (31s)
CNH (105, aug) 032 4.15% (18s) [0.33 8.95% (46s) |0.43 7.13% (2.9m)
CNH (1035) 0.33 0.99% (33s) |0.35 1.61% (1.1m)|0.46 1.06% (3.9m)
GMS-EB (105) 032 4.60% (2.1s) [0.32 10.04% (26s) |0.42 8.92% (3.7m)
GMS-EB (105, aug) |0.32 4.15% (15s) [0.33 8.84% (3.4m)|0.43 8.12% (29m)
GMS-EB (1035) 033 0.99% (21s) [0.35 2.88% (4.2m)|0.45 2.48% (36m)
GMS-DH (105) 032 4.72% (1.1s) |0.33 9.81% (3.9s) [0.42 8.94% (20s)
GMS-DH (105, aug) |0.32 4.03% (5.5s) |0.33 8.84% (28s) |0.42 8.32% (2.7m)
GMS-DH (1035) 033 1.29% (11s) |0.35 2.58% (37s) |0.45 2.48% (3.2m)

| TMAT20 | TMATS0 | TMAT100
LKH 042 0.00% (60s) [0.40 0.00% (6.8m)|0.46 0.00% (32m)
OR Tools 040 4.24% (3.3m)|0.37 8.45% (30m)|0.41 9.93% (2.7h)
MOGLS 0.36 14.59% (28m) |0.23 43.20% (3.0h) |0.21 53.58% (21h)
NSGA-II 039 6.53% (47m) [0.29 28.19% (3.6h) |0.24 46.33% (14h)
NSGA-III 0.39 7.39% (49m) | 0.29 28.68% (3.7h) |0.24 46.84% (13h)
MOEA/D 0.37 11.23% (1.1h) |0.28 31.68% (3.9h) |0.24 47.56% (13h)
MBM (105) 0.39 6.49% (1.1s) |0.30 24.80% (3.8s) [0.29 36.31% (20s)
MBM (105, aug) 040 3.51% (4.1s) [0.32 20.06% (28s) |0.31 32.82% (2.5m)
MBM (1035) 040 5.29% (11s) |0.31 23.06% (37s) |0.30 35.08% (3.2m)
GMS-EB (105) 041 2.77% (2.2s) |0.38 4.66% (26s) |0.44 4.42% (3.7m)
GMS-EB (105, aug) |0.41 2.29% (13s) |0.39 3.84% (3.4m)|0.44 3.76% (30m)
GMS-EB (1035) 041 1.43% (21s) [0.39 2.28% (4.2m)|0.45 2.24% (36m)
GMS-DH (105) 040 3.84% (1.2s) [0.37 8.50% (4.1s) |0.41 10.52% (20s)
GMS-DH (105, aug) |0.41 2.98% (4.3s) |0.38 6.86% (29s) |0.41 9.05% (2.6m)
GMS-DH (1035) 041 2.58% (11s) |0.38 6.39% (37s) |0.42 8.61% (3.2m)

| XASY20 | XASYS50 | XASY100
LKH 0.58 0.00% (1.2m)[0.66 0.00% (7.1m)|0.76 0.00% (34m)
OR Tools 0.53 7.94% (3.2m)|0.58 11.40% (24m) |0.69 9.96% (1.9h)
MOGLS 0.45 22.50% (26m) |0.28 56.83% (3.2h) [0.26 66.38% (23h)
NSGA-II 0.51 11.10% (47m) [0.45 31.12% (7.3h) |0.32 58.19% (14h)
NSGA-III 0.51 10.72% (48m) |0.46 29.65% (7.2h) |0.33 56.41% (14h)
MOEA/D 0.50 13.97% (1.0h) |0.42 35.95% (7.5h)|0.36 52.23% (14h)
MBM (105) 0.51 12.22% (1.2s) |0.56 15.05% (3.9s) [0.68 11.27% (19s)
MBM (105, aug) 0.53 8.55% (5.6s) [0.58 12.15% (28s) |0.69 9.67% (2.6m)
MBM (1035) 0.52 9.96% (11s) |0.58 11.60% (38s) |0.70 8.14% (3.1m)
GMS-EB (105) 0.54 596% (2.2s) |0.60 8.76% (26s) |0.71 7.35% (3.7m)
GMS-EB (105, aug) |0.55 4.45% (15s) |0.61 7.63% (3.4m)|0.71 6.91% (29m)
GMS-EB (1035) 0.56 3.11% (21s) [0.62 4.72% (4.2m)|0.73 4.15% (36m)
GMS-DH (105) 0.53 7.40% (1.1s) |0.56 14.19% (4.1s) |0.64 16.01% (20s)
GMS-DH (105, aug) | 0.55 5.06% (5.6s) |0.58 12.09% (29s) |0.66 13.81% (2.7m)
GMS-DH (1035) 0.55 497% (11s) |0.58 11.28% (38s) |0.66 13.92% (3.2m)

28

Under review as a conference paper at ICLR 2026

Table 15: Tri-objective MGMOTSP with different instance sizes and distributions. LKH and OR-
tools have 105 subproblems, while the number of preferences for the neural methods are in paren-

theses.

FLEX2-20 FLEX2-50 FLEX2-100

HV Gap Time |HV Gap Time |HV Gap Time
LKH 0.71 0.00% (1.1m)|0.76 0.00% (6.9m)|0.84 0.00% (32m)
OR Tools 0.68 4.87% (3.0m)|0.71 7.19% (25m) |0.78 6.21% (1.9h)
MOGLS 0.55 22.53% (3.5h) |0.22 71.03% (36h) | 0.15 82.42% (270h)
NSGA-II 0.60 16.12% (1.9h) [0.40 47.38% (21h) |0.27 67.52% (380h)
NSGA-III 0.60 15.30% (1.8h) [0.45 40.79% (20h) | 0.30 63.64% (380h)
MOEA/D 0.60 16.13% (3.2h) |0.44 42.45% (20h) |0.34 59.85% (370h)
MBM (105) 0.66 7.34% (4.6s) |0.69 9.28% (14s) |0.77 7.42% (47s)
MBM (105, aug) 0.69 3.04% (33s) [0.71 6.99% (1.8m)|0.78 6.17% (6.1m)
MBM (1035) 0.67 5.76% (46s) |0.71 6.18% (2.3m)|0.80 4.42% (7.7m)
GMS-EB (105) 0.67 530% (3.9s) |0.71 6.88% (58s) |0.79 5.46% (9.4m)
GMS-EB (105, aug) |0.68 3.69% (29s) [0.72 5.68% (7.8m)|0.80 4.83% (1.3h)
GMS-EB (1035) 0.69 2.66% (38s) |0.74 3.18% (9.5m)|0.81 2.80% (1.5h)
GMS-DH (105) 0.68 4.10% (3.1s) [0.71 6.52% (13s) |0.79 6.07% (53s)
GMS-DH (105, aug) |0.69 2.79% (18s) |0.72 5.15% (1.5m)|0.79 5.58% (6.9m)
GMS-DH (1035) 0.70 1.63% (30s) |0.73 3.39% (2.0m)|0.81 3.69% (8.4m)

| FIX2-20 | FIX2-50 | FIX2-100
LKH 0.76 0.00% (1.2m)[0.86 0.00% (7.1m)|0.90 0.00% (32m)
OR Tools 0.74 3.54% (3.1m)|0.83 3.93% (26m) |0.87 3.42% (2.0h)
MOGLS 0.63 17.63% (4.0h) |0.45 47.61% (36h) |0.38 58.28% (250h)
NSGA-II 0.63 17.65% (2.2h) [0.53 38.86% (23h) |0.44 51.33% (420h)
NSGA-III 0.65 15.29% (2.1h) [0.54 36.93% (22h) |0.43 52.54% (460h)
MOEA/D 0.64 16.14% (3.7h) |0.54 36.85% (1%h) |0.45 50.23% (450h)
MBM (105) 0.73 4.04% (4.6s) |0.81 532% (14s) |0.87 4.13% (47s)
MBM (105, aug) 0.75 1.47% (33s) |0.83 3.91% (1.8m)|0.87 3.43% (6.2m)
MBM (1035) 0.74 2.56% (46s) |0.83 3.86% (2.3m)|0.88 2.77% (7.7m)
GMS-EB (105) 074 3.77% (3.9s) |0.83 3.64% (58s) |0.87 3.19% (9.4m)
GMS-EB (105, aug) |0.74 2.73% (29s) [0.83 3.11% (7.7m)|0.88 2.89% (1.3h)
GMS-EB (1035) 075 1.81% (38s) [0.84 1.92% (9.5m)|0.89 1.76% (1.5h)
GMS-DH (105) 0.74 3.14% (3.1s) |0.83 3.88% (12s) |0.87 3.73% (54s)
GMS-DH (105, aug) |0.75 2.21% (18s) |0.83 3.52% (1.5m)|0.87 3.56% (6.9m)
GMS-DH (1035) 0.76 1.24% (29s) |0.84 2.22% (2.0m)|0.88 2.30% (8.4m)

29

	Introduction
	Related Work
	Learning for Routing
	Routing on Multigraphs

	Problem Formulation
	GNN-Based Multigraph Solver
	Edge-Based GMS
	Dual Head GMS
	Training Algorithm

	Experimental Studies
	Performance on Benchmark Problems
	Zero-Shot Generalization
	A Difficult Multigraph Problem

	Conclusion
	Extended Motivation
	Extended Related Work
	Single-Objective Learning for Routing
	Multi-Objective Learning for Routing
	Routing on Multigraphs

	Architecture Details
	Edge-Based Decoder in GMS-EB
	Selection-Decoder in GMS-DH
	MatNet-Based Benchmark Model

	Model Training
	Curriculum Learning Details
	Training Times

	Routing Problems and Distributions
	Distributions
	MOTSP
	MOCVRP
	MGMOTSP
	MGMOTSPTW

	Setup for MOEAs
	Ablation Study
	Complementary Numerical Results
	Problems on Simple Graphs
	Multigraph Problems
	Generalization to Larger Instances
	Tri-Objective Problems

