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ABSTRACT

Autoregressive (AR) models remain the standard for natural language genera-
tion but still suffer from high latency due to strictly sequential decoding. Recent
diffusion-inspired approaches, such as LlaDA and Dream, mitigate this by gener-
ating in parallel, yet they suffer from two core limitations: information loss, as
predictive distributions for non-finalized tokens are discarded at each step, and
premature commitment, where local decisions are made without sufficient global
coordination. We introduce Latent Refinement Decoding (LRD), a two-stage
framework with Latent Refinement and a Predictive Feedback Loop. The first stage
maintains masked positions as distributional mixtures of predicted tokens and the
mask embedding, allowing the model to establish more globally consistent beliefs.
The second stage progressively finalizes confident tokens while retaining uncertain
ones for iterative feedback. KL-divergence dynamics provide a principled and
reliable criterion for convergence and early stopping. Experiments across coding
(HumanEval +6.3, MBPP +2.6) and reasoning (GSM8K +2.9, Math500 +3.8) show
that LRD improves accuracy while delivering speedups of up to 10.6×, making it a
strong and versatile alternative for parallel sequence generation.

1 INTRODUCTION

Autoregressive (AR) models have long defined the standard for natural language generation (Brown
et al., 2020; Fei et al., 2025; Achiam et al., 2023; Yang et al., 2025), but their inherently sequential
token-by-token decoding imposes a fundamental bottleneck on inference latency (Touvron et al.,
2023; Sun et al., 2024). This constraint has motivated the development of parallel decoding paradigms.
Among them, diffusion-inspired approaches such as LlaDA (Nie et al., 2025) and Dream (Ye et al.,
2025) offer a particularly promising direction. By formulating text generation as an iterative re-
finement process and updating all token positions in parallel at each step, these methods provide a
compelling alternative to traditional AR decoding, achieving significant speedups while maintaining
competitive quality (Labs et al., 2025; Deepmind, 2025). Despite recent progress, diffusion language
models employ hard assignment strategies (Gong et al., 2025; Nie et al., 2025; Ye et al., 2025):
at each denoising step, they commit high-confidence positions to specific tokens while resetting
remaining positions to uniform [MASK] tokens. The predictive distributions from earlier steps are
discarded, limiting the model’s ability to build upon partial beliefs established in earlier iterations.

This design introduces two limitations: (i) Information loss from hard masking (Li et al., 2024): At
each denoising step, positions below confidence thresholds are reset to uniform [MASK] embeddings,
completely discarding their predictive distributions. This prevents uncertain positions from sharing
probabilistic information through self-attention, forcing each masked position to be predicted in
isolation. When mispredictions occur, the hard assignment yields infinite KL divergence from the
true posterior, as it assigns zero probability mass to the correct token. (ii) Inefficient convergence
dynamics (Luxembourg et al., 2025; Li & Cai, 2025): The binary nature of hard assignment creates
a dilemma: aggressive selection commits early and can lock in incorrect predictions, propagating
errors through later steps; conservative selection keeps many positions masked, which slows progress
and requires many denoising iterations. Moreover, using a fixed number of iterations ignores the
varying complexity across different generation tasks, wasting computation on simple cases while
potentially underserving complex ones.
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2. Model predicts the token distributions for all Mask positions.  

3. Retain lowest entropy token and remask others.  

Repeat 2 and 3 until no Mask tokens left.
……

1. Input Prompt and Mask Tokens

Prompt Token Mask token Prob dist.

.3 .4 .2.1

Phase 1. Latent Refinement

+ (1 − 𝛼𝛼)
Mask token

𝛼𝛼 . .

……

Token dist.

Mixed token
α·Top-p tokens embedding + (1−α)·mask token embedding

Iterative token dist. & mixing until global info is captured

(1) Low entropy Denoising (Baseline)

……

1. Model predicts the token dist. for all Mix Mask positions. 

2. Retain lowest entropy token and mix other MASK token.  

Repeat 1 and 2 until no MASK tokens left or Early Stop.

Phase 2 Predictive Feedback Loop

Mixed token

(2) Latent Refinement Decoding (ours)

Early Stop

The denoising order

Unmask tokens

Figure 1: Comparison between the existing decoding strategy and the proposed method. Different
colours represent distinct tokens, while gradient colours indicate predicted token representations. Top:
In the existing strategy, all [MASK] tokens share the same embedding and are repeatedly remasked if
not selected. Bottom: In LRD, Phase 1 refines each [MASK] embedding, and Phase 2 progressively
commits confident tokens while keeping uncertain ones soft for context-aware decoding.

To overcome these limitations, we move beyond purely discrete denoising and introduce Latent
Refinement Decoding (LRD), a hybrid framework that operates in both embedding and token spaces.
LRD restructures the denoising process into two coordinated stages. Phase 1: Latent Refinement
performs distribution-preserving updates entirely in the embedding space: for each masked position,
we form a mix embedding by mixing the [MASK] embedding with the entropy-normalised expecta-
tion over top-p predicted token embeddings, allowing the model to “think latently” in continuous
embedding space, establishing globally coherent beliefs before committing to discrete decisions. Once
the predictive distributions stabilise, Phase 2: Predictive Feedback Loop progressively converts
low-entropy positions into discrete tokens while keeping the remaining positions in soft form, feeding
each step’s predictions back into the next soft mixture; KL-based monitors govern the soft-to-hard
transition and enable adaptive early stopping. Specifically, the main contributions of LRD are:

1. Soft diffusion that enables continuous denoising in embedding space by mixing [MASK]
with weighted token representations. This preserves distributional information across steps
and enables cross-position refinement through self-attention.

2. Adaptive two-phase sampling that combines soft refinement for global coherence with hard
decoding for precise convergence. KL-based monitoring enables automatic phase transitions
and early stopping based on actual convergence rather than fixed iteration counts.

3. We validate LRD across diverse model families, generation lengths, and benchmarks span-
ning coding (HumanEval: +6.3, MBPP: +2.6) and reasoning (GSM8K: +2.9, Math500:
+3.8), consistently improving accuracy while achieving speedups of up to 10.6×.

2 PRELIMINARY

For dLLMs (Ou et al., 2024; Zheng et al., 2024; Shi et al., 2024; Gong et al., 2025), the forward
process corrupts data x0 ∈ {1, ..., V }L (a sequence of L tokens from vocabulary size V ) into
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progressively noisier versions x1, ...,xT . At each timestep, the forward process is defined as a
categorical distribution:

q(xt|xt−1) = Cat(xt;Q
⊤
t xt−1) (1)

where xt ∈ {0, 1}V×L is the one-hot representation of tokens at time t, and Qt ∈ [0, 1]V×V is the
transition matrix. Each token either remains unchanged with probability 1− βt or transitions to the
special [MASK] token with probability βt ∈ (0, 1): Qt = (1− βt)I+ βt1m

⊤, where I ∈ RV×V

is the identity matrix, 1 ∈ RV is an all-ones vector, and m ∈ {0, 1}V is the one-hot encoding of
the [MASK] token. Under continuous-time formulation with t ∈ [0, 1], the cumulative transition
matrix from x0 to xt becomes: Qt = α∗

t I+ (1− α∗
t )1m

⊤, where α∗
t =

∏t
s=1(1− βs) represents

the probability of a token remaining unmasked from time 0 to time t.

The reverse process pθ(xt−1|xt) aims to reconstruct the original data by iteratively denoising from
xT (fully masked) to x0 (clean text). At each denoising step t, the model predicts a distribution over
tokens for each position: p̂(i)θ (x0|xt) for position i.

In transformer-based diffusion models, each token is represented by a learnable embedding vector.
Let ev ∈ Rd denote the embedding for token v ∈ V , and e[MASK] ∈ Rd the embedding for the
[MASK] token. During the reverse process, traditional sampling strategies employ hard assignment,
selecting tokens based on prediction confidence:

v
(i)
t =

{
argmaxv∈V p̂

(i)
θ (v|xt), if i ∈ top-1({H(j)

t }Lj=1)

[MASK], otherwise
(2)

where H
(j)
t = −

∑
v p̂

(j)
θ (v|xt) log p̂

(j)
θ (v|xt) is the entropy at position j, and top-1 selects the

position with lowest entropy (highest confidence). This creates a binary embedding assignment: each
position uses either e[MASK] or a specific token embedding e

v
(i)
t

, resulting in complete information
loss for positions not selected. This binary decision mechanism creates a discontinuous mapping
from probability distributions to discrete embeddings: positions below the confidence threshold are
reset to pure [MASK] embeddings, completely discarding their distributional information p̂θ(·|xt),
resulting in abrupt information loss and suboptimal exploration of the posterior distribution.

3 METHODOLOGY

Effective discrete diffusion sampling requires maintaining sufficient uncertainty for exploration
while gradually incorporating token-specific information for convergence. To achieve this balance,
we propose LRD: instead of binary decisions that abruptly switch between pure noise ([MASK])
and deterministic tokens, we create intermediate representations through continuous embedding
interpolation. Specifically, we construct mixed embeddings that blend [MASK] and token embeddings
weighted by prediction uncertainty, where high-entropy positions retain more mask-like characteristics
(preserving exploration) while low-entropy positions incorporate more token information (enabling
commitment). This enables a gradual denoising trajectory where the noise-signal ratio smoothly
decreases, yielding better-calibrated probability distributions for subsequent sampling steps.

3.1 SOFT DIFFUSION

Our method operates in the embedding space rather than discrete token space. At each timestep t, we
maintain a set of soft embeddings Et = {ẽ(1)t , . . . , ẽ

(N)
t } where

ẽ
(i)
t = (1− α

(i)
t ) · e[MASK] + α

(i)
t ·

∑
v∈T (i)

t+1

p̄
(i)
t+1(v) · ev (3)

Here, ev ∈ Rd denotes the embedding of the token v ∈ T (i)
t+1, where T (i)

t+1 is the top-p nucleus set.
e[MASK] is the [MASK] embedding, p̄(i)t+1(v) denotes the probability mass of token v at position i,
renormalised to the nucleus set T (i)

t+1. The coefficient α(i)
t ∈ [0, 1] controls the interpolation strength.

The mixing weight αt is controlled by entropy:

α
(i)
t = rf · Ĥ(i)

t+1 = rf · (1 +
∑|V |

k=1 p
(i)
t+1(k) log p

(i)
t+1(k)

log |V |
) (4)
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where p
(i)
t+1(k) refers to the probability distribution over the full vocabulary, rf ∈ (0, 1] sets the

maximum token proportion. Since the entropy of a categorical distribution over a vocabulary of
size V lies in [0, log |V |], we divide by log |V | to normalise it into [0, 1]. This design ensures that
uncertain positions stay mask-like while confident ones commit to tokens. Formal justification and
stability analysis are deferred to Appendix D.

Consider the absorbing discrete diffusion process where the true posterior distribution q∗(xt−1|xt, x0)

represents optimal denoising. For masked positions where x
(i)
t = [MASK], Bayes’ rule yields:

q∗(x
(i)
t−1|x

(i)
t = [MASK], x(i)

0 ) =
α∗
t−1 − α∗

t

1− α∗
t

δ
x
(i)
0

+
1− α∗

t−1

1− α∗
t

δ[MASK] (5)

where the detailed derivation is provided in Appendix B. Hard assignment approximates this by a
degenerate distribution q̂hard ∈ {δ

x̂
(i)
0
, δ[MASK]}. If x̂(i)

0 ̸= x
(i)
0 , then q̂hard assigns zero probability

where q∗ is positive, leading to KL(q∗∥q̂hard) = ∞. Moreover, positions that remain masked
are represented by a fixed embedding e[MASK], which conveys no distributional information to
neighbouring positions.

Latent Refinement Decoding mitigates both issues. First, q̂soft assigns non-zero probability to all
tokens, ensuring the true token retains a positive mass even under misprediction. Second, the weighted
mixture

∑
v p̄

(i)
t (v)ev can be viewed as the expected embedding under the model’s belief at position i.

Since self-attention is linear in the embeddings, this representation propagates uncertainty information
across positions, enabling different tokens to condition on each other’s belief states.

3.2 ADAPTIVE SAMPLING WITH SOFT-TO-HARD SCHEDULING

The optimal denoising strategy must balance two objectives: preserving sufficient uncertainty for
exploration while progressively reducing entropy for convergence. Latent Refinement Decoding
provides a smooth relaxation in the embedding space, where gradient-based updates are well behaved
and guarantee contraction toward fixed points. This geometry enables rapid early progress, as
the gradients carry informative signals across the entire vocabulary. However, Latent Refinement
Decoding cannot fully collapse distributions to one-hot states, since embeddings always encode
mixtures rather than discrete commitments. As a result, convergence slows in later stages when
sharper updates are required for final token generation.

To overcome this limitation, we adopt a two-phase schedule. Phase 1 exploits the favourable geometry
of soft embeddings to quickly reach a stable neighborhood of the optimum. Once the model’s
predictive distributions stabilise (D(t)

KL < τrefine), Phase 2 transitions to hard assignment, which
enables decisive discrete optimisation within the well-conditioned basin. This design follows the
principle of graduated optimisation: begin with a smooth relaxation to encourage global exploration,
then progressively sharpen the objective to encourage convergence.

Phase 1: Latent Refinement via Soft Embeddings. During the initial refinement phase, the model
iteratively refines predictive distributions through soft embedding propagation without committing to
any discrete tokens. Starting from t = T (fully masked), we compute soft embeddings using Equa-
tion 3, where predictions p(i)t (v) = dLLMθ(Ẽt)(i) are conditioned on the previous soft embeddings
rather than discrete tokens. This allows distributional information to propagate across timesteps.

As refinement progresses, the soft embeddings approach a fixed point where the model’s predictions
become self-consistent, that is, the output distribution given the current soft embeddings closely
matches the distribution encoded in those embeddings. At this convergence point, the model has
extracted all available information from the global distributional structure and further soft refinement
yields diminishing returns. We detect this saturation by monitoring the KL divergence between
consecutive predictions:

D(t)
KL =

1

L

L∑
i=1

DKL(p
(i)
t ∥p(i)t+1) (6)

When D(t)
KL < τrefine, the belief state has stabilised, indicating that the model can no longer benefit

from the soft embedding’s global information and requires discrete commitments to make further
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progress. This triggers the transition to Phase 2, where discrete token generation can exploit the
well-initialised distributions from Phase 1. Alternatively, if convergence is not achieved within
Trefine steps, we still transition to Phase 2 for computational efficiency, as extended refinement shows
diminishing returns while incurring additional computational cost.

Phase 2: Predictive Feedback Loop. Once convergence is detected at timestep t∗, we switch to
Predictive Feedback decoding for the remaining timesteps t ∈ [t∗, 0]. We modify the standard hard
assignment (Equation 2) by replacing [MASK] embeddings with soft embeddings for unselected
positions:

e
(i)
t =

{
e
argmaxv p

(i)
t (v)

, if i ∈ top-1({H(j)
t }Lj=1)

ẽ
(i)
t , otherwise

(7)

This preserves the distributional information from Phase 1’s refinement in uncommitted positions,
providing richer context for subsequent decoding steps while still allowing confident positions to
make discrete commitments.

During decoding, we continue monitoring D(t)
KL (Equation 6). If D(t)

KL < τdecode, the predictive
distributions over the whole sentence have converged to a stable configuration and further iterations
would be redundant. This early stopping mechanism terminates the generation and outputs the final
sequence, ensuring computational efficiency without sacrificing output quality. In practice, this allows
the model to adaptively adjust its generation length based on the problem complexity rather than
using a fixed number of steps.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We evaluate our method on two representative diffusion-based language models: LLaDA 8B (Nie
et al., 2025; Zhu et al., 2025) and Dream 7B (Ye et al., 2025), each with both Base and Instruct
variants. To ensure robustness, we fix the temperature to 0 and always select the token with the
minimum entropy at each decoding step, detailed configuration in Appendix As. All experiments are
conducted on a server equipped with 8 NVIDIA A100 80GB GPUs.

4.2 BENCHMARKS AND METRICS

To comprehensively assess the effectiveness of our approach, we conduct experiments on four
benchmarks spanning mathematical reasoning and code generation. For mathematical reasoning,
we use GSM8K (Cobbe et al., 2021), which consists of grade-school math word problems, and the
more challenging MATH500 (Lightman et al., 2024), a benchmark of competition-level mathematics
problems. For code generation, we evaluate on MBPP (Austin et al., 2021b), which features entry-
level Python programming tasks, and HumanEval (Chen et al., 2021), a set of handwritten coding
problems for program synthesis. Following prior work, all Instruct models are evaluated under
the zero-shot setting. For Base models, we follow standard few-shot settings for each benchmark:
zero-shot for HumanEval, 3-shot for MBPP, 4-shot for MATH500, and 8-shot for GSM8K. For all
benchmarks, we report accuracy for mathematical reasoning and pass@1 for code generation.

4.3 MAIN RESULTS

Performance on Benchmarks. Table 1 reports the performance of different models and decoding
methods across four representative benchmarks. Our Latent Refinement Decoding framework
consistently improves accuracy across all settings. For instance, on HumanEval, LRD boosts pass@1
by up to +6.3 points (Dream-Base-7B, 256 tokens) and +6.2 points (Dream-Ins-7B, 256 tokens)
compared to the baseline. Similar trends are observed for MBPP, GSM8K, and MATH500, where our
method outperforms the baseline by margins of +1.0 to +4.8 points in most cases. These results are
consistent across different sequence lengths (256, 512, 1024), confirming that the benefits of LRD
are robust to context window size and apply uniformly to both Base and Instruct model families.

Efficiency and Decoding Speed. Beyond accuracy, LRD substantially accelerates inference. As
shown in Table 1, our method delivers at least 1.2× speedup in all cases, with the largest gains
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Table 1: Performance of different models and methods across benchmarks. Speed denotes relative
runtime (baseline = 1.0×), where larger values indicate faster and more efficient inference. Baseline
results are shown in grey, and ours LRD improvements in green.

Model Len Method HumanEval MBPP GSM8K Math500
Acc Speed Acc Speed Acc Speed Acc Speed

Dream-Base-7B

256 baseline 50.6 1.0× 55.8 1.0× 75.3 1.0× 36.9 1.0×
Ours 56.9+6.3 1.2× 57.6+1.8 2.3× 78.2+2.9 1.8× 39.8+2.9 1.4×

512 baseline 54.4 1.0× 55.8 1.0× 76.2 1.0× 37.5 1.0×
Ours 58.8+4.4 2.6× 58.4+2.6 4.5× 77.4+1.2 3.4× 40.8+3.3 1.8×

1024 baseline 54.8 1.0× 58.0 1.0× 76.8 1.0× 39.1 1.0×
Ours 59.1+4.3 4.4× 58.8+0.8 7.6× 77.8+1.0 4.2× 42.4+3.3 2.2×

Dream-Ins-7B

256 baseline 55.4 1.0× 57.4 1.0× 80.8 1.0× 37.9 1.0×
Ours 61.6+6.2 1.4× 59.4+2.0 2.4× 83.0+2.2 1.4× 40.6+2.7 1.1×

512 baseline 56.1 1.0× 56.7 1.0× 80.2 1.0× 38.6 1.0×
Ours 60.9+4.8 2.9× 58.8+2.1 4.6× 82.7+2.5 3.6× 41.8+3.2 1.2×

1024 baseline 56.0 1.0× 57.3 1.0× 81.3 1.0× 40.1 1.0×
Ours 61.0+5.0 9.3× 59.0+1.7 10.6× 83.5+2.2 5.5× 43.9+3.8 1.7×

LLaDA-Base-8B

256 baseline 32.9 1.0× 39.7 1.0× 69.1 1.0× 30.2 1.0×
Ours 36.0+3.1 1.3× 41.4+1.7 1.5× 71.2+2.1 1.6× 32.4+2.2 1.4×

512 baseline 32.8 1.0× 39.8 1.0× 70.8 1.0× 30.8 1.0×
Ours 36.0+3.2 1.7× 41.4+1.6 1.9× 72.5+1.7 2.2× 32.4+1.6 1.6×

1024 baseline 31.7 1.0× 39.8 1.0× 71.4 1.0× 30.1 1.0×
Ours 34.8+3.1 2.2× 40.8+1.0 3.6× 72.1+0.7 3.3× 32.2+2.1 2.1×

LLaDA-Ins-8B

256 baseline 38.7 1.0× 36.9 1.0× 77.4 1.0× 33.8 1.0×
Ours 43.3+4.6 1.2× 40.0+3.1 1.3× 78.8+1.4 1.5× 35.8+2.0 1.4×

512 baseline 43.9 1.0× 38.2 1.0× 81.3 1.0× 37.7 1.0×
Ours 48.4+4.5 1.3× 40.6+2.4 1.5× 84.5+3.2 2.0× 39.8+2.1 1.4×

1024 baseline 44.6 1.0× 37.4 1.0× 82.3 1.0× 39.4 1.0×
Ours 49.5+4.9 1.7× 39.6+2.2 3.7× 83.7+1.4 4.3× 42.2+2.8 2.0×

LLaDA-1.5-8B

256 baseline 38.4 1.0× 38.6 1.0× 79.2 1.0× 33.4 1.0×
Ours 44.5+6.1 1.2× 39.8+1.2 1.3× 80.4+1.2 1.5× 36.6+3.2 1.3×

512 baseline 45.1 1.0× 37.6 1.0× 82.9 1.0× 38.6 1.0×
Ours 49.6+4.5 1.2× 40.2+2.6 1.5× 84.5+1.6 1.9× 41.0+2.4 1.4×

1024 baseline 45.7 1.0× 37.4 1.0× 82.5 1.0× 39.6 1.0×
Ours 50.6+4.9 1.7× 39.6+2.2 3.5× 83.9+1.4 4.0× 41.8+2.2 1.9×

observed for longer contexts. For example, Dream-Ins-7B achieves up to 9.3× faster decoding
at length 1024, while LLaDA models reach up to 4.3× speedup under the same condition. The
improvement comes from two factors: (i) the mix operation in the latent refinement phase accelerates
convergence by reducing the number of tokens that need to be generated (see Section 4.5), and (ii)
the entropy-based early stopping criterion prevents unnecessary refinement steps, especially in long
sequences. These results indicate that LRD is particularly advantageous in large-context scenarios,
where traditional parallel decoding incurs significant overhead.

Figure 2: KL divergence between step-wise pre-
dictive distributions and final decoded results for
LLaDA-1.5 and Dream-Ins across benchmarks.
The red vertical line marks where decoding be-
gins after a fixed 20-step hot-start refinement.

Figure 3: Convergence ratios across hot-start
steps for LLaDA-1.5 and Dream-Ins on four
benchmarks. Since computing the difference in
KL divergence requires at least three consecutive
steps, the curves are plotted starting from step 2.

4.4 CONVERGENCE ANALYSIS

KL divergence decreases steadily during refinement and decoding. Figure 2 shows the KL
divergence between step-wise predictive distributions and the final decoded outputs for LLaDA-1.5
and Dream-Ins across four benchmarks. For ease of observation, we fix the hot-start phase to 20 steps.
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The divergence exhibits a clear downward trend: during the hot-start phase, the KL values drop rapidly
and stabilise, indicating that the latent belief state quickly converges before decoding begins. Once
decoding starts, the KL divergence continues to decrease with mild fluctuations, reflecting the model’s
progressive confidence sharpening. For most benchmarks, the divergence approaches zero within
about 300 steps, whereas Dream-Ins converges even faster, reaching near-zero divergence around 140
steps. The MATH500 benchmark proves more challenging, with non-negligible divergence persisting
until the full 512-step horizon. Overall, these patterns are consistent with our expectations: the
refinement phase provides a stable initialisation, and the subsequent decoding stage steadily drives
the system toward convergence.

Most examples converge within the first few hot-start steps. Figure 3 reports the proportion of
cases converging at each hot-start step. Across benchmarks, the majority of runs converge within the
first few refinement steps. For example, on HumanEval with Dream-Ins, 68.9% of samples converge
by step 2, and more than 85% by step 3. Similar trends hold for GSM8K, MBPP, and MATH500,
where over 70% of cases converge within the first three to four steps. These results confirm that the
hot-start refinement is highly efficient in practice: most examples stabilize very early, reducing the
need for excessive refinement iterations and validating the design of our latent refinement mechanism.

4.5 ABLATION STUDY

Table 2: Ablation study on decoding variants at
length 512, where Auto uses adaptive latent refine-
ment, and LF×k enforces k latent refinement steps
prior to each token commitment.

Method Humaneval MBPP GSM8K Math500
Baseline 56.1 56.7 80.2 38.6
Ours 60.9+4.8 58.8+2.1 82.7+2.5 41.8+3.2

Auto 59.6+3.5 57.7+1.0 81.5+1.3 41.4+2.8

LF×1 60.4+4.3 57.8+1.1 81.6+1.4 40.2+1.6

LF×2 58.3+2.2 57.2+0.5 81.2+1.0 40.2+1.6

LF×3 57.9+1.8 57.8+1.1 81.8+1.6 39.0+0.4

LF×4 60.8+4.7 57.2+0.5 80.9+0.7 39.6+1.0

LF×5 58.8+2.7 57.6+0.9 80.7+0.5 39.2+0.6

Excessive latent refinement brings no benefit
but slows decoding. Table 2 compares our two-
stage strategy (one initial latent refinement fol-
lowed by standard decoding) with variants that
enforce latent refinement at every step, either
a fixed number of times (HS×k) or adaptively
(Auto). Results show that while all variants out-
perform the baseline, none surpass our method:
enforcing repeated latent refinements (HS×2–5)
generally degrades accuracy, and even adaptive
scheduling (Auto) underperforms compared to
ours. The reason is that excessive hot-start re-
finement adds redundant computation without
providing additional guidance once the model has stabilised. In contrast, our two-stage design strikes
a better balance by leveraging latent refinement only at the beginning, yielding both higher accuracy
and substantially faster decoding.

Table 3: Ablation study on decoding variants,
where red and green numbers show the change
compared to our full method.

Len Method Humaneval MBPP GSM8K Math500

256

baseline 55.4 57.4 80.8 37.9
Ours 61.6+6.2 59.4+2.0 83.0+2.2 40.6+2.7

w/o latent refinement 60.1−1.5 58.6−0.8 82.3−0.7 39.4−1.2

w/o mix embed 59.5−2.1 58.8−0.6 82.7−0.3 38.9−1.7

w/o early stop 61.8+0.2 59.4+0.0 83.2+0.2 40.6+0.0

512

baseline 56.1 56.7 80.2 38.6
Ours 60.9+4.8 58.8+2.1 82.7+2.5 41.8+3.2

w/o latent refinement 59.9−1.0 57.8−1.0 82.2−0.5 41.0−0.8

w/o mix embed 58.0−2.9 57.8−1.0 80.7−2.0 40.8−1.0

w/o early stop 61.2+0.3 58.8+0.0 82.9+0.2 41.9+0.1

1024

baseline 56.0 57.3 81.3 40.1
Ours 61.0+5.0 59.0+1.7 83.5+2.2 43.9+3.8

w/o latent refinement 60.7−0.3 58.8−0.2 83.2−0.3 42.4−1.5

w/o mix embed 59.1−1.9 58.7−0.3 82.9−0.6 41.4−2.5

w/o early stop 61.4+0.4 59.0+0.0 83.7+0.2 44.2+0.3

Both components contribute, with mixing
more critical. Table 3 reports ablation results
in accuracy. Removing hot-start refinement
or mixed embeddings consistently reduces per-
formance, confirming the importance of both.
The absence of mixed embeddings causes larger
drops (up to −2.9 on HumanEval and −2.5 on
Math500), showing that the predictive feedback
loop is the key driver of improvements. In con-
trast, early stopping incurs almost no accuracy
loss while providing substantial efficiency gains.
Overall, hot-start refinement and mixed embed-
dings are essential for accuracy, whereas early
stopping boosts efficiency at virtually no cost.

Hot-start slows generation, mixed embed-
dings aid convergence, and early stopping is the main accelerator. Table 4 reveals several
key insights. First, removing the hot-start phase (w/o latent refinement) yields faster decoding,
showing that hot-start introduces extra refinement steps and slightly slows down speed, though it
improves stability. Second, removing mixed embeddings (w/o mix embed) makes decoding slower
and increases effective token counts, indicating that mixing embeddings is critical for helping the
model converge earlier. Third, early stopping (w/o early stop) leads to dramatic slowdowns, with
speed dropping from multi-fold acceleration to even below baseline, despite only negligible changes
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Table 4: Ablation study on decoding variants, reporting Speed and effective token number Etoken,
where red and green numbers show the change compared to our full method.

Length Method Speed Etoken

Humaneval MBPP GSM8K Math500 Humaneval MBPP GSM8K Math500

256

baseline 1.0× 1.0× 1.0× 1.0× 117.2 53.5 132.4 228.4
Ours 1.4×+0.4 2.4×+1.4 1.4×+0.4 1.1×+0.1 108.4−8.8 49.2−4.3 128.6−5.8 226.0−2.4

w/o latent refinement 1.5×+0.1 2.5×+0.1 1.5×+0.1 1.1×+0.0 108.7+0.3 50.4+1.2 129.9+1.3 226.8+0.8

w/o mix embed 1.3×−0.1 2.2×−0.2 1.5×+0.1 1.0×−0.1 117.2+8.8 49.5+0.3 129.4+0.8 228.4+2.4

w/o early stop 0.8×−0.6 0.7×−1.7 0.8×−0.6 0.9×−0.2 109.7+1.3 51.4+2.2 129.9+1.3 228.0+2.0

512

baseline 1.0× 1.0× 1.0× 1.0× 116.2 55.7 135.2 378.9
Ours 2.9×+1.9 4.6×+3.6 3.6×+2.6 1.2×+0.2 103.9−12.3 51.8−4.1 125.9−9.3 363.5−15.4

w/o latent refinement 3.1×+0.2 4.9×+0.3 3.8×+0.2 1.2×+0.0 106.3+2.4 52.6+0.8 127.9+2.0 363.0−0.5

w/o mix embed 2.7×−0.2 4.3×−0.3 3.0×−0.6 1.0×−0.2 116.2+12.3 51.8+0.0 126.2+0.3 368.9+5.4

w/o early stop 0.8×−2.1 0.7×−3.9 0.8×−2.8 0.8×−0.4 106.2+2.3 53.6+1.8 127.2+1.3 366.0+2.5

1024

baseline 1.0× 1.0× 1.0× 1.0× 90.4 60.5 135.5 482.3
Ours 9.3×+8.3 10.6×+9.6 5.5×+4.5 1.7×+0.7 84.6−5.8 57.2−3.3 123.7−11.8 437.3−45.0

w/o latent refinement 9.3×+0.0 10.7×+0.1 5.6×+0.1 1.7×+0.0 83.9−0.7 58.2+1.0 125.0+1.3 455.4+18.1

w/o mix embed 9.1×−0.2 10.4×−0.2 5.1×−0.4 1.3×−0.4 90.4+5.8 61.7+4.5 130.5+6.8 483.5+46.2

w/o early stop 0.8×−8.5 0.7×−9.9 0.8×−4.7 0.8×−0.9 86.2+1.6 59.2+2.0 126.1+2.4 438.9+1.6

in Etoken. This confirms that early stopping is the primary driver of speedup. Finally, both hot-start
and mixed embeddings reduce effective token usage under the full model, demonstrating that they
improve convergence efficiency even though their speed impact differs.

Figure 4: Accuracy of Dream-Ins on four bench-
marks under different Max Mix Token Propor-
tion, where rf=0 corresponds to the no mixing.

Figure 5: Effect of top-p mixing on Dream-Ins
across four benchmarks. The purple curve shows
the ratio of tokens(log) included in the mixture.

Full mixing collapses the model, while best at intermediate rf . We further investigate the effect of
the maximum mix ratio rf , which scales the interpolation between predicted token embeddings and
the [MASK] embedding during refinement (Eq. 4). When rf=0, the model falls back to always using
the [MASK] token for unfinalised positions, equivalent to the baseline. At the other extreme, setting
rf=1 allows the mixing weight to fully follow the entropy schedule, meaning that in high-entropy
cases the [MASK] embedding may vanish. As shown in Figure 4, both extremes are suboptimal:
the baseline propagates information slowly, while overly aggressive mixing destabilises refinement
and leads to collapse. Intermediate values of rf achieve the best trade-off, providing sufficient mask
guidance while still leveraging predictive feedback.

Mix matters more than how many tokens are mixed. As shown in Figure 5, when p = 0 no
mixing occurs and the method degenerates to the baseline, giving the lowest accuracy across all
benchmarks. Increasing p quickly improves performance, even though the token ratio curve indicates
that only a very small fraction of tokens are mixed at p ≤ 0.2. This suggests that the key factor is
enabling mixing rather than the absolute number of tokens included. Beyond p ≈ 0.2, accuracy
stabilises and fluctuates slightly, showing that adding more low-probability tokens offers little benefit
while introducing potential noise. These results confirm that top-p mixing provides a good balance:
minimal mixing is already highly effective, and larger p values do not bring further gains.
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5 RELATED WORK

Diffusion LLMs (dLLMs). Diffusion models, as generative models, initially achieved significant
success in continuous data domains such as image (Song et al., 2020; Ho et al., 2020; Nichol et al.,
2021; Rombach et al., 2022) and speech generation (Huang et al., 2023; Yang et al., 2023). Their
application in the language domain has been limited due to the discrete nature of text. One promising
approach is the use of Masked Diffusion Models (MDMs) (Austin et al., 2021a; Ou et al., 2024;
Shi et al., 2024; Lou et al., 2023), which represent a particular type of discrete diffusion that works
with sequences through the iterative prediction of masked tokens using contextual information.
Current research has concentrated on substantially expanding these MDMs. DiffuLLaMA (Gong
et al., 2025), developed through continual pre-training based on LLaMA parameters, has produced
diffusion Large Language Model (dLLMs) and demonstrated that dLLMs can achieve performance
comparable to autoregressive models. Subsequently, higher-performance commercial dLLMs such as
Mercury (Labs et al., 2025) and Gemini Diffusion (Deepmind, 2025) have been announced, along
with the introduction of high-quality open-source models such as LLaDA (Nie et al., 2025; Zhu et al.,
2025) and Dream (Ye et al., 2025). However, the limitations of dLLMs cannot be overlooked. Due
to the lack of components analogous to KV cache and the requirement to compute results for all
positions in each step, the deployment of dLLMs has consistently been constrained by inference
efficiency. While reducing the number of inference steps can improve inference efficiency, this
severely compromises model performance. Whether it is possible to enhance dLLMs’ performance
while accelerating inference remains a critical research topic for dLLMs at the current stage.

Efficient dLLMs. To improve dLLM inference speed while maintaining generation quality, recent
works have proposed efficient dLLMs in two main directions: integrating KV cache and optimising
computational load. For KV cache integration, dLLM-Cache (Liu et al., 2025) proposes a training-
free adaptive caching framework addressing dual computational redundancy, specifically quasi-static
prompt and dynamic response redundancy, while integrating long-interval prompt caching and V-
verify mechanisms. Fast-dLLM (Wu et al., 2025) designs block-wise KV cache reuse mechanisms
exploiting activation similarity in bidirectional attention, combined with confidence-aware dynamic
parallel decoding. Sparse-dLLM (Song et al., 2025) combines dynamic cache eviction with sparse
attention, leveraging temporal consistency of token saliency for plug-and-play inference acceleration.
For computational optimisation, Prophet (Li et al., 2025b) exploits the finding that 99% of samples
converge early, proposing confidence-gap-based early commitment decoding to effectively reduce
decoding steps. DAEDAL (Li et al., 2025a) implements two-stage dynamic length expansion through
EOS confidence prediction and low-confidence region identification, thereby enabling adaptive
generation length allocation. However, all of the current works (Ben-Hamu et al., 2025; Yu et al.,
2025; Ma et al., 2025; Israel et al., 2025) primarily prioritize efficiency over generation quality, largely
ignoring that existing dLLMs cannot significantly outperform AR models in overall generation quality.
Inspired by mixed token improvements in AR models (Zhang et al., 2025; Wang et al., 2024; Hao
et al., 2024), our work emphasizes enhancing dLLMs’ performance while simultaneously leveraging
computed KL divergence for reliable early stopping to improve efficiency.

6 CONCLUSION

We introduced Latent Refinement Decoding, a unified two-stage decoding framework for diffusion
language models that addresses the twin bottlenecks of information loss from hard masking and
suboptimal convergence speed. By first enabling the model to iteratively refine global beliefs in
the continuous embedding space, and then entering a predictive feedback loop that progressively
finalizes confident tokens while adaptively monitoring convergence through KL dynamics, LRD
preserves more information throughout the generation process and supports principled early stopping
for greater stability. Extensive experiments on both code generation and mathematical reasoning
benchmarks demonstrate that LRD achieves consistent and significant gains in output quality and
inference efficiency over standard diffusion decoding baselines, particularly as sequence length
increases and complexity grows. Looking forward, LRD can serve as a flexible drop-in decoding
module for future diffusion-based LMs, and its efficiency can be further enhanced by integrating with
systems-level optimizations such as KV caching, speculative decoding, and potentially other hardware-
aware acceleration techniques. This opens exciting new opportunities to combine architectural and
algorithmic advances for even faster, more robust, and highly scalable parallel generation.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide complete source code as supplementary ma-
terials, including implementations for all five models (LLaDA-base, LLaDA-instruct, LLaDA-1.5,
DREAM-base, and DREAM-instruct) evaluated on four datasets (MBPP, GSM8K, HumanEval, and
MATH500), accompanied by detailed execution instructions. The model architectures are compre-
hensively described in Section 3, while hyperparameters for models are specified in Appendix A.
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THE USE OF LLMS

In the preparation of this manuscript, we used Large Language Models (LLMs) in a limited capacity
for two specific purposes: preliminary literature survey to help identify relevant research directions
and keywords during the early stages of our work, and limited language polishing to improve the
clarity and grammatical correctness of certain sections in the paper. All core research ideas, theoretical
contributions, experimental design, implementation, and analysis were independently conceived and
conducted by the authors without LLM assistance. The LLM-generated suggestions were carefully
reviewed, verified, and substantially modified by the authors before incorporation. We take full
responsibility for all content presented in this paper, including any text that may have been refined
with LLM assistance.

A EXPERIMENT DETAILS

For Base models, we follow standard few-shot settings for each benchmark: zero-shot for HumanEval,
3-shot for MBPP, 4-shot for MATH500, and 8-shot for GSM8K. For all benchmarks, we report
accuracy for mathematical reasoning and pass@1 for code generation. We set the nucleus threshold to
top-p = 0.9. The hyperparameter rf is varied between 0.1 and 0.2. The thresholds for stopping latent
refinement and early decoding are τrefine = 0.1 and τdecode = 0.1, respectively. We cap the latent
refinement stage at a maximum of Trefine = 20 steps. For LLaDA-Instruct and LLaDA-1.5 models,
generation is conducted under the official semi-AR framework (Nie et al., 2025), where the sequence
is divided into blocks and decoded autoregressively at the block level. Within each block, instead
of the standard hard masking used in the original work, we integrate our Latent Refinement and
Predictive Feedback Loop, enabling refinement of token distributions before discrete commitment.
Detailed integration steps are provided in Appendix C.

B DERIVATION OF THE TRUE POSTERIOR IN THE MASKING PROCESS

We derive Eq. 5 for the true posterior distribution in the absorbing masking forward process. For each
position i, the forward process is defined as

Pr(x
(i)
t = x

(i)
0 | x(i)

0 ) = α∗
t , Pr(x

(i)
t = [MASK] | x(i)

0 ) = 1− α∗
t ,

with (α∗
t )

T
t=0 monotonically decreasing. Thus each token can only either remain as its original value

x
(i)
0 or transition to the special token [MASK]. By Bayes’ rule,

q∗(x
(i)
t−1 | x(i)

t = [MASK], x(i)
0 ) =

Pr(x
(i)
t = [MASK] | x(i)

t−1, x
(i)
0 ) Pr(x

(i)
t−1 | x(i)

0 )

Pr(x
(i)
t = [MASK] | x(i)

0 )
. (8)

There are two possible values for x(i)
t−1:

• The probability of x(i)
t−1 = x

(i)
0 is α∗

t−1, and transitioning to mask at step t occurs with
probability 1− α∗

t

α∗
t−1

. Hence the joint probability is α∗
t−1 − α∗

t .

• The probability of x(i)
t−1 = [MASK] is 1 − α∗

t−1, and once masked, the token remains
masked with probability 1. Hence the joint probability is 1− α∗

t−1.

The marginal probability of being masked at step t is Pr(x
(i)
t = [MASK] | x(i)

0 ) = 1− α∗
t . So we

obtain

q∗(x
(i)
t−1 | x(i)

t = [MASK], x(i)
0 ) =

α∗
t−1 − α∗

t

1− α∗
t

δ
x
(i)
0

+
1− α∗

t−1

1− α∗
t

δ[MASK].

C INTEGRATION WITH SEMI-AR FRAMEWORK

In the semi-AR setting in LLaDA (Nie et al., 2025), a sequence of length L is partitioned into B
blocks {b1, b2, ..., bB}. While their original work uses standard hard masking within each block, we
apply soft embeddings as follows:

13
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For each block bi conditioned on previously generated blocks {b1, ..., bi−1}:

1. Soft Refinement: Initialise positions in bi with [MASK] embeddings, then apply soft
embedding refinement (Equation 3) until convergence.

2. Progressive Decoding: Use the converged soft embeddings to guide token selection within
the block.

D STABILITY ANALYSIS OF MIXED EMBEDDING UPDATES

Our method operates in the embedding space rather than the discrete token space. At each timestep t,
we maintain a set of soft embeddings Et = {ẽ(1)t , . . . , ẽ

(L)
t } defined as

ẽ
(i)
t = (1− α

(i)
t ) · e[MASK] + α

(i)
t ·

∑
v∈T (i)

t

p̄
(i)
t+1(v) · ev, (9)

where e[MASK] denotes the [MASK] embedding, ev denotes the embedding of token v, T (i)
t is the

top-p nucleus set at position i, and p̄
(i)
t+1(v) is the renormalised predicted distribution over the nucleus

set at position i.

To analyse stability, an ideal approach would be to examine the Jacobian of the update operator through
its spectral radius. However, in practice this is intractable: transformer structures involve many linear
and nonlinear components (layer normalisation, residual connections, multi-head attention), making it
nearly impossible to provide a formal global analysis. The effective Jacobian inherits the complexity
of the underlying transformer, and its spectral radius (or even its spectral norm) may be large and
not easily bounded. As a result, although the iteration often stabilises empirically, a rigorous global
convergence guarantee cannot be obtained.

Therefore, in this section, we follow the discussion from existing work (Yudin et al., 2025; Hu et al.,
2024; Dasoulas et al., 2021) and focus on local Lipschitz continuity. This analysis considers only a
single self-attention layer without any other operators and provides intuition to support our method
and explain empirical results.

Specifically, the local Lipschitz bound suggests that for all soft embedding et within an ϵ-ball at
original point(i.e. ∥et∥ ≤ ϵ), where ϵ in fact bounds the maximum norm of embeddings, the following
inequality holds after one-layer self-attention mapping:

∥est+1 − est∥2 ≤ K∥et+1 − et∥2, (10)

where est is the output of et after one-layer self-attention mapping, K is the local Lipschitz constant.
Following Hu et al. (2024), we approximate K in the form

K(ϵ) ∝ c ∥WV
h ∥2 ∥W

Q
h (W

K
h )⊤∥2 ϵ2, (11)

depends on the local norm ϵ, with query, key, and value matrices WQ
h ,W

K
h ,WV

h , and a scaling
constant c.

The ideal outcome of such a mapping would be a contraction, i.e. K ≤ 1, which ensures that
differences shrink across layers. However, in transformer blocks the large parameter norms often
make this condition difficult to satisfy. Since WQ

h , WK
h , and WV

h are fixed for a pretrained model,
stability in practice relies on keeping ϵ sufficiently small, which is under our control. This motivates
us to restrict the update within a small ϵ-ball neighbourhood of the [MASK] embedding, which can
be taken as a reference point near the origin. For comparison, in Dream (Ye et al., 2025), while the
[MASK] embedding has a very small ℓ2 norm of 0.3340 in 3,584 dimensions (corresponding to a per-
dimension RMS of about 0.0055), regular token embeddings are much larger. For instance, a typical
token embedding has an ℓ2 norm of about 0.8721, which corresponds to an average per-dimension
RMS magnitude of approximately 0.0142.

To connect this bound back to the embedding updates, we require ẽ
(i)
t and ẽ

(i)
t+1 to lie within an

ϵ-ball at origin, which requires a very small ϵ. Since both are formed as weighted sums of the
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[MASK] embedding and candidate token embeddings (Equation. 9), a straightforward way to reduce
this distance is to bound the mixing coefficient α(i)

t . Intuitively, this means the search for efficient
mixed embeddings remains close to the [MASK] token, with exploration constrained to a small
neighbourhood. In this way, the iterative updates remain within a contraction-like region, which
empirically yields stable predictive distributions.

To simplify, we introduce a base rate rf and set α(i)
t = rf · Ĥ(i)

t+1, where Ĥ
(i)
t+1 ∈ [0, 1] is the

normalised entropy. Since maxi α
(i)
t ≤ rf , ensuring the difference is within ϵ reduces to choosing a

sufficiently small rf . Empirically, we find that the method is stable and effective when rf is small,
but fails to converge for large rf (see Figure 4).

We further evaluate the stability of output embeddings before the logit prediction step across adjacent
timesteps. Since the token space is sparse and high-dimensional, we use the KL divergence as the
metric. This reveals clear convergence during the latent refinement phase when rf is small, even after
deep iteration with multi-layer self-attention in a transformer (see Figure 3).

Another observation that implicitly supports our claim is the case of top-p selection. If p is set very
small, only a few candidate tokens contribute to the weighted sum

∑
v∈T (i)

t
p̄
(i)
t+1(v)ev . Even without

an explicit scaling factor such as α(i)
t , restricting the support of the soft embedding effectively yields

a small ϵ, which can help stabilise the updates. This explains why our method maintains reasonable
performance even under extreme top-p settings (see Figure 5).

In summary, although a rigorous global convergence guarantee for mixed embedding iterations is
intractable due to the nonlinear, high-capacity nature of transformers, our local Lipschitz analysis
provides useful theoretical insight. Together with empirical validation, this suggests that while strict
guarantees remain challenging, the proposed method is practically stable and effective for reasoning
with diffusion LMs.
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