
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LATENT REFINEMENT DECODING: ENHANCING
DIFFUSION-BASED LANGUAGE MODELS BY REFINING
BELIEF STATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive (AR) models remain the standard for natural language genera-
tion but still suffer from high latency due to strictly sequential decoding. Recent
diffusion-inspired approaches, such as LlaDA and Dream, mitigate this by gener-
ating in parallel, yet they suffer from two core limitations: information loss, as
predictive distributions for non-finalized tokens are discarded at each step, and
premature commitment, where local decisions are made without sufficient global
coordination. We introduce Latent Refinement Decoding (LRD), a two-stage
framework with Latent Refinement and a Predictive Feedback Loop. The first stage
maintains masked positions as distributional mixtures of predicted tokens and the
mask embedding, allowing the model to establish more globally consistent beliefs.
The second stage progressively finalizes confident tokens while retaining uncertain
ones for iterative feedback. KL-divergence dynamics provide a principled and
reliable criterion for convergence and early stopping. Experiments across coding
(HumanEval +6.3, MBPP +2.6) and reasoning (GSM8K +2.9, Math500 +3.8) show
that LRD improves accuracy while delivering speedups of up to 10.6×, making it a
strong and versatile alternative for parallel sequence generation.

1 INTRODUCTION

Autoregressive (AR) models have long defined the standard for natural language generation (Brown
et al., 2020; Fei et al., 2025; Achiam et al., 2023; Yang et al., 2025), but their inherently sequential
token-by-token decoding imposes a fundamental bottleneck on inference latency (Touvron et al.,
2023; Sun et al., 2024). This constraint has motivated the development of parallel decoding paradigms.
Among them, diffusion-inspired approaches such as LlaDA (Nie et al., 2025) and Dream (Ye et al.,
2025) offer a particularly promising direction. By formulating text generation as an iterative re-
finement process and updating all token positions in parallel at each step, these methods provide a
compelling alternative to traditional AR decoding, achieving significant speedups while maintaining
competitive quality (Labs et al., 2025; Deepmind, 2025). Despite recent progress, diffusion language
models employ hard assignment strategies (Gong et al., 2025; Nie et al., 2025; Ye et al., 2025):
at each denoising step, they commit high-confidence positions to specific tokens while resetting
remaining positions to uniform [MASK] tokens. The predictive distributions from earlier steps are
discarded, limiting the model’s ability to build upon partial beliefs established in earlier iterations.

This design introduces two limitations: (i) Information loss from hard masking (Li et al., 2024): At
each denoising step, positions below confidence thresholds are reset to uniform [MASK] embeddings,
completely discarding their predictive distributions. This prevents uncertain positions from sharing
probabilistic information through self-attention, forcing each masked position to be predicted in
isolation. When mispredictions occur, the hard assignment yields infinite KL divergence from the
true posterior, as it assigns zero probability mass to the correct token. (ii) Inefficient convergence
dynamics (Luxembourg et al., 2025; Li & Cai, 2025): The binary nature of hard assignment creates
a dilemma: aggressive selection commits early and can lock in incorrect predictions, propagating
errors through later steps; conservative selection keeps many positions masked, which slows progress
and requires many denoising iterations. Moreover, using a fixed number of iterations ignores the
varying complexity across different generation tasks, wasting computation on simple cases while
potentially underserving complex ones.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2. Model predicts the token distributions for all Mask positions.

3. Retain lowest entropy token and remask others.

Repeat 2 and 3 until no Mask tokens left.
……

1. Input Prompt and Mask Tokens

Prompt Token Mask token Prob dist.

.3 .4 .2.1

Phase 1. Latent Refinement

+ (1 − 𝛼𝛼)
Mask token

𝛼𝛼 . .

……

Token dist.

Mixed token
α·Top-p tokens embedding + (1−α)·mask token embedding

Iterative token dist. & mixing until global info is captured

(1) Low entropy Denoising (Baseline)

……

1. Model predicts the token dist. for all Mix Mask positions.

2. Retain lowest entropy token and mix other MASK token.

Repeat 1 and 2 until no MASK tokens left or Early Stop.

Phase 2 Predictive Feedback Loop

Mixed token

(2) Latent Refinement Decoding (ours)

Early Stop

The denoising order

Unmask tokens

Figure 1: Comparison between the existing decoding strategy and the proposed method. Different
colours represent distinct tokens, while gradient colours indicate predicted token representations. Top:
In the existing strategy, all [MASK] tokens share the same embedding and are repeatedly remasked if
not selected. Bottom: In LRD, Phase 1 refines each [MASK] embedding, and Phase 2 progressively
commits confident tokens while keeping uncertain ones soft for context-aware decoding.

To overcome these limitations, we move beyond purely discrete denoising and introduce Latent
Refinement Decoding (LRD), a hybrid framework that operates in both embedding and token spaces.
LRD restructures the denoising process into two coordinated stages. Phase 1: Latent Refinement
performs distribution-preserving updates entirely in the embedding space: for each masked position,
we form a mix embedding by mixing the [MASK] embedding with the entropy-normalised expecta-
tion over top-p predicted token embeddings, allowing the model to “think latently” in continuous
embedding space, establishing globally coherent beliefs before committing to discrete decisions. Once
the predictive distributions stabilise, Phase 2: Predictive Feedback Loop progressively converts
low-entropy positions into discrete tokens while keeping the remaining positions in soft form, feeding
each step’s predictions back into the next soft mixture; KL-based monitors govern the soft-to-hard
transition and enable adaptive early stopping. Specifically, the main contributions of LRD are:

1. Soft diffusion that enables continuous denoising in embedding space by mixing [MASK]
with weighted token representations. This preserves distributional information across steps
and enables cross-position refinement through self-attention.

2. Adaptive two-phase sampling that combines soft refinement for global coherence with hard
decoding for precise convergence. KL-based monitoring enables automatic phase transitions
and early stopping based on actual convergence rather than fixed iteration counts.

3. We validate LRD across diverse model families, generation lengths, and benchmarks span-
ning coding (HumanEval: +6.3, MBPP: +2.6) and reasoning (GSM8K: +2.9, Math500:
+3.8), consistently improving accuracy while achieving speedups of up to 10.6×.

2 PRELIMINARY

For dLLMs (Ou et al., 2024; Zheng et al., 2024; Shi et al., 2024; Gong et al., 2025), the forward
process corrupts data x0 ∈ {1, ..., V }L (a sequence of L tokens from vocabulary size V) into

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

progressively noisier versions x1, ...,xT . At each timestep, the forward process is defined as a
categorical distribution:

q(xt|xt−1) = Cat(xt;Q
⊤
t xt−1) (1)

where xt ∈ {0, 1}V×L is the one-hot representation of tokens at time t, and Qt ∈ [0, 1]V×V is the
transition matrix. Each token either remains unchanged with probability 1− βt or transitions to the
special [MASK] token with probability βt ∈ (0, 1): Qt = (1− βt)I+ βt1m

⊤, where I ∈ RV×V

is the identity matrix, 1 ∈ RV is an all-ones vector, and m ∈ {0, 1}V is the one-hot encoding of
the [MASK] token. Under continuous-time formulation with t ∈ [0, 1], the cumulative transition
matrix from x0 to xt becomes: Qt = α∗

t I+ (1− α∗
t)1m

⊤, where α∗
t =

∏t
s=1(1− βs) represents

the probability of a token remaining unmasked from time 0 to time t.

The reverse process pθ(xt−1|xt) aims to reconstruct the original data by iteratively denoising from
xT (fully masked) to x0 (clean text). At each denoising step t, the model predicts a distribution over
tokens for each position: p̂(i)θ (x0|xt) for position i.

In transformer-based diffusion models, each token is represented by a learnable embedding vector.
Let ev ∈ Rd denote the embedding for token v ∈ V , and e[MASK] ∈ Rd the embedding for the
[MASK] token. During the reverse process, traditional sampling strategies employ hard assignment,
selecting tokens based on prediction confidence:

v
(i)
t =

{
argmaxv∈V p̂

(i)
θ (v|xt), if i ∈ top-1({H(j)

t }Lj=1)

[MASK], otherwise
(2)

where H
(j)
t = −

∑
v p̂

(j)
θ (v|xt) log p̂

(j)
θ (v|xt) is the entropy at position j, and top-1 selects the

position with lowest entropy (highest confidence). This creates a binary embedding assignment: each
position uses either e[MASK] or a specific token embedding e

v
(i)
t

, resulting in complete information
loss for positions not selected. This binary decision mechanism creates a discontinuous mapping
from probability distributions to discrete embeddings: positions below the confidence threshold are
reset to pure [MASK] embeddings, completely discarding their distributional information p̂θ(·|xt),
resulting in abrupt information loss and suboptimal exploration of the posterior distribution.

3 METHODOLOGY

Effective discrete diffusion sampling requires maintaining sufficient uncertainty for exploration
while gradually incorporating token-specific information for convergence. To achieve this balance,
we propose LRD: instead of binary decisions that abruptly switch between pure noise ([MASK])
and deterministic tokens, we create intermediate representations through continuous embedding
interpolation. Specifically, we construct mixed embeddings that blend [MASK] and token embeddings
weighted by prediction uncertainty, where high-entropy positions retain more mask-like characteristics
(preserving exploration) while low-entropy positions incorporate more token information (enabling
commitment). This enables a gradual denoising trajectory where the noise-signal ratio smoothly
decreases, yielding better-calibrated probability distributions for subsequent sampling steps.

3.1 SOFT DIFFUSION

Our method operates in the embedding space rather than discrete token space. At each timestep t, we
maintain a set of soft embeddings Et = {ẽ(1)t , . . . , ẽ

(N)
t } where

ẽ
(i)
t = (1− α

(i)
t) · e[MASK] + α

(i)
t ·

∑
v∈T (i)

t+1

p̄
(i)
t+1(v) · ev (3)

Here, ev ∈ Rd denotes the embedding of the token v ∈ T (i)
t+1, where T (i)

t+1 is the top-p nucleus set.
e[MASK] is the [MASK] embedding, p̄(i)t+1(v) denotes the probability mass of token v at position i,
renormalised to the nucleus set T (i)

t+1. The coefficient α(i)
t ∈ [0, 1] controls the interpolation strength.

The mixing weight αt is controlled by entropy:

α
(i)
t = rf · Ĥ(i)

t+1 = rf · (1 +
∑|V |

k=1 p
(i)
t+1(k) log p

(i)
t+1(k)

log |V |
) (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where p
(i)
t+1(k) refers to the probability distribution over the full vocabulary, rf ∈ (0, 1] sets the

maximum token proportion. Since the entropy of a categorical distribution over a vocabulary of
size V lies in [0, log |V |], we divide by log |V | to normalise it into [0, 1]. This design ensures that
uncertain positions stay mask-like while confident ones commit to tokens. Formal justification and
stability analysis are deferred to Appendix D.

Consider the absorbing discrete diffusion process where the true posterior distribution q∗(xt−1|xt, x0)

represents optimal denoising. For masked positions where x
(i)
t = [MASK], Bayes’ rule yields:

q∗(x
(i)
t−1|x

(i)
t = [MASK], x(i)

0) =
α∗
t−1 − α∗

t

1− α∗
t

δ
x
(i)
0

+
1− α∗

t−1

1− α∗
t

δ[MASK] (5)

where the detailed derivation is provided in Appendix B. Hard assignment approximates this by a
degenerate distribution q̂hard ∈ {δ

x̂
(i)
0
, δ[MASK]}. If x̂(i)

0 ̸= x
(i)
0 , then q̂hard assigns zero probability

where q∗ is positive, leading to KL(q∗∥q̂hard) = ∞. Moreover, positions that remain masked
are represented by a fixed embedding e[MASK], which conveys no distributional information to
neighbouring positions.

Latent Refinement Decoding mitigates both issues. First, q̂soft assigns non-zero probability to all
tokens, ensuring the true token retains a positive mass even under misprediction. Second, the weighted
mixture

∑
v p̄

(i)
t (v)ev can be viewed as the expected embedding under the model’s belief at position i.

Since self-attention is linear in the embeddings, this representation propagates uncertainty information
across positions, enabling different tokens to condition on each other’s belief states.

3.2 ADAPTIVE SAMPLING WITH SOFT-TO-HARD SCHEDULING

The optimal denoising strategy must balance two objectives: preserving sufficient uncertainty for
exploration while progressively reducing entropy for convergence. Latent Refinement Decoding
provides a smooth relaxation in the embedding space, where gradient-based updates are well behaved
and guarantee contraction toward fixed points. This geometry enables rapid early progress, as
the gradients carry informative signals across the entire vocabulary. However, Latent Refinement
Decoding cannot fully collapse distributions to one-hot states, since embeddings always encode
mixtures rather than discrete commitments. As a result, convergence slows in later stages when
sharper updates are required for final token generation.

To overcome this limitation, we adopt a two-phase schedule. Phase 1 exploits the favourable geometry
of soft embeddings to quickly reach a stable neighborhood of the optimum. Once the model’s
predictive distributions stabilise (D(t)

KL < τrefine), Phase 2 transitions to hard assignment, which
enables decisive discrete optimisation within the well-conditioned basin. This design follows the
principle of graduated optimisation: begin with a smooth relaxation to encourage global exploration,
then progressively sharpen the objective to encourage convergence.

Phase 1: Latent Refinement via Soft Embeddings. During the initial refinement phase, the model
iteratively refines predictive distributions through soft embedding propagation without committing to
any discrete tokens. Starting from t = T (fully masked), we compute soft embeddings using Equa-
tion 3, where predictions p(i)t (v) = dLLMθ(Ẽt)(i) are conditioned on the previous soft embeddings
rather than discrete tokens. This allows distributional information to propagate across timesteps.

As refinement progresses, the soft embeddings approach a fixed point where the model’s predictions
become self-consistent, that is, the output distribution given the current soft embeddings closely
matches the distribution encoded in those embeddings. At this convergence point, the model has
extracted all available information from the global distributional structure and further soft refinement
yields diminishing returns. We detect this saturation by monitoring the KL divergence between
consecutive predictions:

D(t)
KL =

1

L

L∑
i=1

DKL(p
(i)
t ∥p(i)t+1) (6)

When D(t)
KL < τrefine, the belief state has stabilised, indicating that the model can no longer benefit

from the soft embedding’s global information and requires discrete commitments to make further

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

progress. This triggers the transition to Phase 2, where discrete token generation can exploit the
well-initialised distributions from Phase 1. Alternatively, if convergence is not achieved within
Trefine steps, we still transition to Phase 2 for computational efficiency, as extended refinement shows
diminishing returns while incurring additional computational cost.

Phase 2: Predictive Feedback Loop. Once convergence is detected at timestep t∗, we switch to
Predictive Feedback decoding for the remaining timesteps t ∈ [t∗, 0]. We modify the standard hard
assignment (Equation 2) by replacing [MASK] embeddings with soft embeddings for unselected
positions:

e
(i)
t =

{
e
argmaxv p

(i)
t (v)

, if i ∈ top-1({H(j)
t }Lj=1)

ẽ
(i)
t , otherwise

(7)

This preserves the distributional information from Phase 1’s refinement in uncommitted positions,
providing richer context for subsequent decoding steps while still allowing confident positions to
make discrete commitments.

During decoding, we continue monitoring D(t)
KL (Equation 6). If D(t)

KL < τdecode, the predictive
distributions over the whole sentence have converged to a stable configuration and further iterations
would be redundant. This early stopping mechanism terminates the generation and outputs the final
sequence, ensuring computational efficiency without sacrificing output quality. In practice, this allows
the model to adaptively adjust its generation length based on the problem complexity rather than
using a fixed number of steps.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We evaluate our method on two representative diffusion-based language models: LLaDA 8B (Nie
et al., 2025; Zhu et al., 2025) and Dream 7B (Ye et al., 2025), each with both Base and Instruct
variants. To ensure robustness, we fix the temperature to 0 and always select the token with the
minimum entropy at each decoding step, detailed configuration in Appendix As. All experiments are
conducted on a server equipped with 8 NVIDIA A100 80GB GPUs.

4.2 BENCHMARKS AND METRICS

To comprehensively assess the effectiveness of our approach, we conduct experiments on four
benchmarks spanning mathematical reasoning and code generation. For mathematical reasoning,
we use GSM8K (Cobbe et al., 2021), which consists of grade-school math word problems, and the
more challenging MATH500 (Lightman et al., 2024), a benchmark of competition-level mathematics
problems. For code generation, we evaluate on MBPP (Austin et al., 2021b), which features entry-
level Python programming tasks, and HumanEval (Chen et al., 2021), a set of handwritten coding
problems for program synthesis. Following prior work, all Instruct models are evaluated under
the zero-shot setting. For Base models, we follow standard few-shot settings for each benchmark:
zero-shot for HumanEval, 3-shot for MBPP, 4-shot for MATH500, and 8-shot for GSM8K. For all
benchmarks, we report accuracy for mathematical reasoning and pass@1 for code generation.

4.3 MAIN RESULTS

Performance on Benchmarks. Table 1 reports the performance of different models and decoding
methods across four representative benchmarks. Our Latent Refinement Decoding framework
consistently improves accuracy across all settings. For instance, on HumanEval, LRD boosts pass@1
by up to +6.3 points (Dream-Base-7B, 256 tokens) and +6.2 points (Dream-Ins-7B, 256 tokens)
compared to the baseline. Similar trends are observed for MBPP, GSM8K, and MATH500, where our
method outperforms the baseline by margins of +1.0 to +4.8 points in most cases. These results are
consistent across different sequence lengths (256, 512, 1024), confirming that the benefits of LRD
are robust to context window size and apply uniformly to both Base and Instruct model families.

Efficiency and Decoding Speed. Beyond accuracy, LRD substantially accelerates inference. As
shown in Table 1, our method delivers at least 1.2× speedup in all cases, with the largest gains

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance of different models and methods across benchmarks. Speed denotes relative
runtime (baseline = 1.0×), where larger values indicate faster and more efficient inference. Baseline
results are shown in grey, and ours LRD improvements in green.

Model Len Method HumanEval MBPP GSM8K Math500
Acc Speed Acc Speed Acc Speed Acc Speed

Dream-Base-7B

256 baseline 50.6 1.0× 55.8 1.0× 75.3 1.0× 36.9 1.0×
Ours 56.9+6.3 1.2× 57.6+1.8 2.3× 78.2+2.9 1.8× 39.8+2.9 1.4×

512 baseline 54.4 1.0× 55.8 1.0× 76.2 1.0× 37.5 1.0×
Ours 58.8+4.4 2.6× 58.4+2.6 4.5× 77.4+1.2 3.4× 40.8+3.3 1.8×

1024 baseline 54.8 1.0× 58.0 1.0× 76.8 1.0× 39.1 1.0×
Ours 59.1+4.3 4.4× 58.8+0.8 7.6× 77.8+1.0 4.2× 42.4+3.3 2.2×

Dream-Ins-7B

256 baseline 55.4 1.0× 57.4 1.0× 80.8 1.0× 37.9 1.0×
Ours 61.6+6.2 1.4× 59.4+2.0 2.4× 83.0+2.2 1.4× 40.6+2.7 1.1×

512 baseline 56.1 1.0× 56.7 1.0× 80.2 1.0× 38.6 1.0×
Ours 60.9+4.8 2.9× 58.8+2.1 4.6× 82.7+2.5 3.6× 41.8+3.2 1.2×

1024 baseline 56.0 1.0× 57.3 1.0× 81.3 1.0× 40.1 1.0×
Ours 61.0+5.0 9.3× 59.0+1.7 10.6× 83.5+2.2 5.5× 43.9+3.8 1.7×

LLaDA-Base-8B

256 baseline 32.9 1.0× 39.7 1.0× 69.1 1.0× 30.2 1.0×
Ours 36.0+3.1 1.3× 41.4+1.7 1.5× 71.2+2.1 1.6× 32.4+2.2 1.4×

512 baseline 32.8 1.0× 39.8 1.0× 70.8 1.0× 30.8 1.0×
Ours 36.0+3.2 1.7× 41.4+1.6 1.9× 72.5+1.7 2.2× 32.4+1.6 1.6×

1024 baseline 31.7 1.0× 39.8 1.0× 71.4 1.0× 30.1 1.0×
Ours 34.8+3.1 2.2× 40.8+1.0 3.6× 72.1+0.7 3.3× 32.2+2.1 2.1×

LLaDA-Ins-8B

256 baseline 38.7 1.0× 36.9 1.0× 77.4 1.0× 33.8 1.0×
Ours 43.3+4.6 1.2× 40.0+3.1 1.3× 78.8+1.4 1.5× 35.8+2.0 1.4×

512 baseline 43.9 1.0× 38.2 1.0× 81.3 1.0× 37.7 1.0×
Ours 48.4+4.5 1.3× 40.6+2.4 1.5× 84.5+3.2 2.0× 39.8+2.1 1.4×

1024 baseline 44.6 1.0× 37.4 1.0× 82.3 1.0× 39.4 1.0×
Ours 49.5+4.9 1.7× 39.6+2.2 3.7× 83.7+1.4 4.3× 42.2+2.8 2.0×

LLaDA-1.5-8B

256 baseline 38.4 1.0× 38.6 1.0× 79.2 1.0× 33.4 1.0×
Ours 44.5+6.1 1.2× 39.8+1.2 1.3× 80.4+1.2 1.5× 36.6+3.2 1.3×

512 baseline 45.1 1.0× 37.6 1.0× 82.9 1.0× 38.6 1.0×
Ours 49.6+4.5 1.2× 40.2+2.6 1.5× 84.5+1.6 1.9× 41.0+2.4 1.4×

1024 baseline 45.7 1.0× 37.4 1.0× 82.5 1.0× 39.6 1.0×
Ours 50.6+4.9 1.7× 39.6+2.2 3.5× 83.9+1.4 4.0× 41.8+2.2 1.9×

observed for longer contexts. For example, Dream-Ins-7B achieves up to 9.3× faster decoding
at length 1024, while LLaDA models reach up to 4.3× speedup under the same condition. The
improvement comes from two factors: (i) the mix operation in the latent refinement phase accelerates
convergence by reducing the number of tokens that need to be generated (see Section 4.5), and (ii)
the entropy-based early stopping criterion prevents unnecessary refinement steps, especially in long
sequences. These results indicate that LRD is particularly advantageous in large-context scenarios,
where traditional parallel decoding incurs significant overhead.

Figure 2: KL divergence between step-wise pre-
dictive distributions and final decoded results for
LLaDA-1.5 and Dream-Ins across benchmarks.
The red vertical line marks where decoding be-
gins after a fixed 20-step hot-start refinement.

Figure 3: Convergence ratios across hot-start
steps for LLaDA-1.5 and Dream-Ins on four
benchmarks. Since computing the difference in
KL divergence requires at least three consecutive
steps, the curves are plotted starting from step 2.

4.4 CONVERGENCE ANALYSIS

KL divergence decreases steadily during refinement and decoding. Figure 2 shows the KL
divergence between step-wise predictive distributions and the final decoded outputs for LLaDA-1.5
and Dream-Ins across four benchmarks. For ease of observation, we fix the hot-start phase to 20 steps.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The divergence exhibits a clear downward trend: during the hot-start phase, the KL values drop rapidly
and stabilise, indicating that the latent belief state quickly converges before decoding begins. Once
decoding starts, the KL divergence continues to decrease with mild fluctuations, reflecting the model’s
progressive confidence sharpening. For most benchmarks, the divergence approaches zero within
about 300 steps, whereas Dream-Ins converges even faster, reaching near-zero divergence around 140
steps. The MATH500 benchmark proves more challenging, with non-negligible divergence persisting
until the full 512-step horizon. Overall, these patterns are consistent with our expectations: the
refinement phase provides a stable initialisation, and the subsequent decoding stage steadily drives
the system toward convergence.

Most examples converge within the first few hot-start steps. Figure 3 reports the proportion of
cases converging at each hot-start step. Across benchmarks, the majority of runs converge within the
first few refinement steps. For example, on HumanEval with Dream-Ins, 68.9% of samples converge
by step 2, and more than 85% by step 3. Similar trends hold for GSM8K, MBPP, and MATH500,
where over 70% of cases converge within the first three to four steps. These results confirm that the
hot-start refinement is highly efficient in practice: most examples stabilize very early, reducing the
need for excessive refinement iterations and validating the design of our latent refinement mechanism.

4.5 ABLATION STUDY

Table 2: Ablation study on decoding variants at
length 512, where Auto uses adaptive latent refine-
ment, and LF×k enforces k latent refinement steps
prior to each token commitment.

Method Humaneval MBPP GSM8K Math500
Baseline 56.1 56.7 80.2 38.6
Ours 60.9+4.8 58.8+2.1 82.7+2.5 41.8+3.2

Auto 59.6+3.5 57.7+1.0 81.5+1.3 41.4+2.8

LF×1 60.4+4.3 57.8+1.1 81.6+1.4 40.2+1.6

LF×2 58.3+2.2 57.2+0.5 81.2+1.0 40.2+1.6

LF×3 57.9+1.8 57.8+1.1 81.8+1.6 39.0+0.4

LF×4 60.8+4.7 57.2+0.5 80.9+0.7 39.6+1.0

LF×5 58.8+2.7 57.6+0.9 80.7+0.5 39.2+0.6

Excessive latent refinement brings no benefit
but slows decoding. Table 2 compares our two-
stage strategy (one initial latent refinement fol-
lowed by standard decoding) with variants that
enforce latent refinement at every step, either
a fixed number of times (HS×k) or adaptively
(Auto). Results show that while all variants out-
perform the baseline, none surpass our method:
enforcing repeated latent refinements (HS×2–5)
generally degrades accuracy, and even adaptive
scheduling (Auto) underperforms compared to
ours. The reason is that excessive hot-start re-
finement adds redundant computation without
providing additional guidance once the model has stabilised. In contrast, our two-stage design strikes
a better balance by leveraging latent refinement only at the beginning, yielding both higher accuracy
and substantially faster decoding.

Table 3: Ablation study on decoding variants,
where red and green numbers show the change
compared to our full method.

Len Method Humaneval MBPP GSM8K Math500

256

baseline 55.4 57.4 80.8 37.9
Ours 61.6+6.2 59.4+2.0 83.0+2.2 40.6+2.7

w/o latent refinement 60.1−1.5 58.6−0.8 82.3−0.7 39.4−1.2

w/o mix embed 59.5−2.1 58.8−0.6 82.7−0.3 38.9−1.7

w/o early stop 61.8+0.2 59.4+0.0 83.2+0.2 40.6+0.0

512

baseline 56.1 56.7 80.2 38.6
Ours 60.9+4.8 58.8+2.1 82.7+2.5 41.8+3.2

w/o latent refinement 59.9−1.0 57.8−1.0 82.2−0.5 41.0−0.8

w/o mix embed 58.0−2.9 57.8−1.0 80.7−2.0 40.8−1.0

w/o early stop 61.2+0.3 58.8+0.0 82.9+0.2 41.9+0.1

1024

baseline 56.0 57.3 81.3 40.1
Ours 61.0+5.0 59.0+1.7 83.5+2.2 43.9+3.8

w/o latent refinement 60.7−0.3 58.8−0.2 83.2−0.3 42.4−1.5

w/o mix embed 59.1−1.9 58.7−0.3 82.9−0.6 41.4−2.5

w/o early stop 61.4+0.4 59.0+0.0 83.7+0.2 44.2+0.3

Both components contribute, with mixing
more critical. Table 3 reports ablation results
in accuracy. Removing hot-start refinement
or mixed embeddings consistently reduces per-
formance, confirming the importance of both.
The absence of mixed embeddings causes larger
drops (up to −2.9 on HumanEval and −2.5 on
Math500), showing that the predictive feedback
loop is the key driver of improvements. In con-
trast, early stopping incurs almost no accuracy
loss while providing substantial efficiency gains.
Overall, hot-start refinement and mixed embed-
dings are essential for accuracy, whereas early
stopping boosts efficiency at virtually no cost.

Hot-start slows generation, mixed embed-
dings aid convergence, and early stopping is the main accelerator. Table 4 reveals several
key insights. First, removing the hot-start phase (w/o latent refinement) yields faster decoding,
showing that hot-start introduces extra refinement steps and slightly slows down speed, though it
improves stability. Second, removing mixed embeddings (w/o mix embed) makes decoding slower
and increases effective token counts, indicating that mixing embeddings is critical for helping the
model converge earlier. Third, early stopping (w/o early stop) leads to dramatic slowdowns, with
speed dropping from multi-fold acceleration to even below baseline, despite only negligible changes

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Ablation study on decoding variants, reporting Speed and effective token number Etoken,
where red and green numbers show the change compared to our full method.

Length Method Speed Etoken

Humaneval MBPP GSM8K Math500 Humaneval MBPP GSM8K Math500

256

baseline 1.0× 1.0× 1.0× 1.0× 117.2 53.5 132.4 228.4
Ours 1.4×+0.4 2.4×+1.4 1.4×+0.4 1.1×+0.1 108.4−8.8 49.2−4.3 128.6−5.8 226.0−2.4

w/o latent refinement 1.5×+0.1 2.5×+0.1 1.5×+0.1 1.1×+0.0 108.7+0.3 50.4+1.2 129.9+1.3 226.8+0.8

w/o mix embed 1.3×−0.1 2.2×−0.2 1.5×+0.1 1.0×−0.1 117.2+8.8 49.5+0.3 129.4+0.8 228.4+2.4

w/o early stop 0.8×−0.6 0.7×−1.7 0.8×−0.6 0.9×−0.2 109.7+1.3 51.4+2.2 129.9+1.3 228.0+2.0

512

baseline 1.0× 1.0× 1.0× 1.0× 116.2 55.7 135.2 378.9
Ours 2.9×+1.9 4.6×+3.6 3.6×+2.6 1.2×+0.2 103.9−12.3 51.8−4.1 125.9−9.3 363.5−15.4

w/o latent refinement 3.1×+0.2 4.9×+0.3 3.8×+0.2 1.2×+0.0 106.3+2.4 52.6+0.8 127.9+2.0 363.0−0.5

w/o mix embed 2.7×−0.2 4.3×−0.3 3.0×−0.6 1.0×−0.2 116.2+12.3 51.8+0.0 126.2+0.3 368.9+5.4

w/o early stop 0.8×−2.1 0.7×−3.9 0.8×−2.8 0.8×−0.4 106.2+2.3 53.6+1.8 127.2+1.3 366.0+2.5

1024

baseline 1.0× 1.0× 1.0× 1.0× 90.4 60.5 135.5 482.3
Ours 9.3×+8.3 10.6×+9.6 5.5×+4.5 1.7×+0.7 84.6−5.8 57.2−3.3 123.7−11.8 437.3−45.0

w/o latent refinement 9.3×+0.0 10.7×+0.1 5.6×+0.1 1.7×+0.0 83.9−0.7 58.2+1.0 125.0+1.3 455.4+18.1

w/o mix embed 9.1×−0.2 10.4×−0.2 5.1×−0.4 1.3×−0.4 90.4+5.8 61.7+4.5 130.5+6.8 483.5+46.2

w/o early stop 0.8×−8.5 0.7×−9.9 0.8×−4.7 0.8×−0.9 86.2+1.6 59.2+2.0 126.1+2.4 438.9+1.6

in Etoken. This confirms that early stopping is the primary driver of speedup. Finally, both hot-start
and mixed embeddings reduce effective token usage under the full model, demonstrating that they
improve convergence efficiency even though their speed impact differs.

Figure 4: Accuracy of Dream-Ins on four bench-
marks under different Max Mix Token Propor-
tion, where rf=0 corresponds to the no mixing.

Figure 5: Effect of top-p mixing on Dream-Ins
across four benchmarks. The purple curve shows
the ratio of tokens(log) included in the mixture.

Full mixing collapses the model, while best at intermediate rf . We further investigate the effect of
the maximum mix ratio rf , which scales the interpolation between predicted token embeddings and
the [MASK] embedding during refinement (Eq. 4). When rf=0, the model falls back to always using
the [MASK] token for unfinalised positions, equivalent to the baseline. At the other extreme, setting
rf=1 allows the mixing weight to fully follow the entropy schedule, meaning that in high-entropy
cases the [MASK] embedding may vanish. As shown in Figure 4, both extremes are suboptimal:
the baseline propagates information slowly, while overly aggressive mixing destabilises refinement
and leads to collapse. Intermediate values of rf achieve the best trade-off, providing sufficient mask
guidance while still leveraging predictive feedback.

Mix matters more than how many tokens are mixed. As shown in Figure 5, when p = 0 no
mixing occurs and the method degenerates to the baseline, giving the lowest accuracy across all
benchmarks. Increasing p quickly improves performance, even though the token ratio curve indicates
that only a very small fraction of tokens are mixed at p ≤ 0.2. This suggests that the key factor is
enabling mixing rather than the absolute number of tokens included. Beyond p ≈ 0.2, accuracy
stabilises and fluctuates slightly, showing that adding more low-probability tokens offers little benefit
while introducing potential noise. These results confirm that top-p mixing provides a good balance:
minimal mixing is already highly effective, and larger p values do not bring further gains.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Diffusion LLMs (dLLMs). Diffusion models, as generative models, initially achieved significant
success in continuous data domains such as image (Song et al., 2020; Ho et al., 2020; Nichol et al.,
2021; Rombach et al., 2022) and speech generation (Huang et al., 2023; Yang et al., 2023). Their
application in the language domain has been limited due to the discrete nature of text. One promising
approach is the use of Masked Diffusion Models (MDMs) (Austin et al., 2021a; Ou et al., 2024;
Shi et al., 2024; Lou et al., 2023), which represent a particular type of discrete diffusion that works
with sequences through the iterative prediction of masked tokens using contextual information.
Current research has concentrated on substantially expanding these MDMs. DiffuLLaMA (Gong
et al., 2025), developed through continual pre-training based on LLaMA parameters, has produced
diffusion Large Language Model (dLLMs) and demonstrated that dLLMs can achieve performance
comparable to autoregressive models. Subsequently, higher-performance commercial dLLMs such as
Mercury (Labs et al., 2025) and Gemini Diffusion (Deepmind, 2025) have been announced, along
with the introduction of high-quality open-source models such as LLaDA (Nie et al., 2025; Zhu et al.,
2025) and Dream (Ye et al., 2025). However, the limitations of dLLMs cannot be overlooked. Due
to the lack of components analogous to KV cache and the requirement to compute results for all
positions in each step, the deployment of dLLMs has consistently been constrained by inference
efficiency. While reducing the number of inference steps can improve inference efficiency, this
severely compromises model performance. Whether it is possible to enhance dLLMs’ performance
while accelerating inference remains a critical research topic for dLLMs at the current stage.

Efficient dLLMs. To improve dLLM inference speed while maintaining generation quality, recent
works have proposed efficient dLLMs in two main directions: integrating KV cache and optimising
computational load. For KV cache integration, dLLM-Cache (Liu et al., 2025) proposes a training-
free adaptive caching framework addressing dual computational redundancy, specifically quasi-static
prompt and dynamic response redundancy, while integrating long-interval prompt caching and V-
verify mechanisms. Fast-dLLM (Wu et al., 2025) designs block-wise KV cache reuse mechanisms
exploiting activation similarity in bidirectional attention, combined with confidence-aware dynamic
parallel decoding. Sparse-dLLM (Song et al., 2025) combines dynamic cache eviction with sparse
attention, leveraging temporal consistency of token saliency for plug-and-play inference acceleration.
For computational optimisation, Prophet (Li et al., 2025b) exploits the finding that 99% of samples
converge early, proposing confidence-gap-based early commitment decoding to effectively reduce
decoding steps. DAEDAL (Li et al., 2025a) implements two-stage dynamic length expansion through
EOS confidence prediction and low-confidence region identification, thereby enabling adaptive
generation length allocation. However, all of the current works (Ben-Hamu et al., 2025; Yu et al.,
2025; Ma et al., 2025; Israel et al., 2025) primarily prioritize efficiency over generation quality, largely
ignoring that existing dLLMs cannot significantly outperform AR models in overall generation quality.
Inspired by mixed token improvements in AR models (Zhang et al., 2025; Wang et al., 2024; Hao
et al., 2024), our work emphasizes enhancing dLLMs’ performance while simultaneously leveraging
computed KL divergence for reliable early stopping to improve efficiency.

6 CONCLUSION

We introduced Latent Refinement Decoding, a unified two-stage decoding framework for diffusion
language models that addresses the twin bottlenecks of information loss from hard masking and
suboptimal convergence speed. By first enabling the model to iteratively refine global beliefs in
the continuous embedding space, and then entering a predictive feedback loop that progressively
finalizes confident tokens while adaptively monitoring convergence through KL dynamics, LRD
preserves more information throughout the generation process and supports principled early stopping
for greater stability. Extensive experiments on both code generation and mathematical reasoning
benchmarks demonstrate that LRD achieves consistent and significant gains in output quality and
inference efficiency over standard diffusion decoding baselines, particularly as sequence length
increases and complexity grows. Looking forward, LRD can serve as a flexible drop-in decoding
module for future diffusion-based LMs, and its efficiency can be further enhanced by integrating with
systems-level optimizations such as KV caching, speculative decoding, and potentially other hardware-
aware acceleration techniques. This opens exciting new opportunities to combine architectural and
algorithmic advances for even faster, more robust, and highly scalable parallel generation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide complete source code as supplementary ma-
terials, including implementations for all five models (LLaDA-base, LLaDA-instruct, LLaDA-1.5,
DREAM-base, and DREAM-instruct) evaluated on four datasets (MBPP, GSM8K, HumanEval, and
MATH500), accompanied by detailed execution instructions. The model architectures are compre-
hensively described in Section 3, while hyperparameters for models are specified in Appendix A.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021a.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021b. URL https://arxiv.org/abs/2108.07732.

Heli Ben-Hamu, Itai Gat, Daniel Severo, Niklas Nolte, and Brian Karrer. Accelerated sampling from
masked diffusion models via entropy bounded unmasking. arXiv preprint arXiv:2505.24857, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, and et al. Evaluating large language models trained on code, 2021. URL
https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

George Dasoulas, Kevin Scaman, and Aladin Virmaux. Lipschitz normalization for self-attention
layers with application to graph neural networks, 2021. URL https://arxiv.org/abs/
2103.04886.

Deepmind. Gemini diffusion, 2025. URL https://deepmind.google/models/
gemini-diffusion/.

Xiang Fei, Jinghui Lu, Qi Sun, Hao Feng, Yanjie Wang, Wei Shi, An-Lan Wang, Jingqun Tang, and
Can Huang. Advancing sequential numerical prediction in autoregressive models. arXiv preprint
arXiv:2505.13077, 2025.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language
models via adaptation from autoregressive models. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=j1tSLYKwg8.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

10

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2103.04886
https://arxiv.org/abs/2103.04886
https://deepmind.google/models/ gemini-diffusion/
https://deepmind.google/models/ gemini-diffusion/
https://openreview.net/forum?id=j1tSLYKwg8

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xixu Hu, Runkai Zheng, Jindong Wang, Cheuk Hang Leung, Qi Wu, and Xing Xie. Specformer:
Guarding vision transformer robustness via maximum singular value penalization, 2024. URL
https://arxiv.org/abs/2402.03317.

Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin
Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with prompt-enhanced
diffusion models. In International Conference on Machine Learning, pp. 13916–13932. PMLR,
2023.

Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
parallel decoding. arXiv preprint arXiv:2506.00413, 2025.

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, Aditya Grover, and
Volodymyr Kuleshov. Mercury: Ultra-fast language models based on diffusion, 2025. URL
https://arxiv.org/abs/2506.17298.

Gen Li and Changxiao Cai. A convergence theory for diffusion language models: An information-
theoretic perspective, 2025. URL https://arxiv.org/abs/2505.21400.

Jinsong Li, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Jiaqi Wang, and Dahua Lin. Beyond fixed:
Variable-length denoising for diffusion large language models. arXiv preprint arXiv:2508.00819,
2025a.

Pengxiang Li, Yefan Zhou, Dilxat Muhtar, Lu Yin, Shilin Yan, Li Shen, Yi Liang, Soroush Vosoughi,
and Shiwei Liu. Diffusion language models know the answer before decoding. arXiv preprint
arXiv:2508.19982, 2025b.

Yuchen Li, Alexandre Kirchmeyer, Aashay Mehta, Yilong Qin, Boris Dadachev, Kishore Papineni,
Sanjiv Kumar, and Andrej Risteski. Promises and pitfalls of generative masked language modeling:
Theoretical framework and practical guidelines, 2024. URL https://arxiv.org/abs/
2407.21046.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang, and
Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching,
2025. URL https://arxiv.org/abs/2506.06295.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. 2023.

Omer Luxembourg, Haim Permuter, and Eliya Nachmani. Plan for speed: Dilated scheduling for
masked diffusion language models, 2025. URL https://arxiv.org/abs/2506.19037.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. URL https://
arxiv.org/abs/2502.09992.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your absorbing discrete diffusion secretly models the conditional distributions of clean data. arXiv
preprint arXiv:2406.03736, 2024.

11

https://arxiv.org/abs/2402.03317
https://arxiv.org/abs/2506.17298
https://arxiv.org/abs/2505.21400
https://arxiv.org/abs/2407.21046
https://arxiv.org/abs/2407.21046
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2506.06295
https://arxiv.org/abs/2506.19037
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
masked diffusion for discrete data. Advances in neural information processing systems, 37:
103131–103167, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and
Xipeng Qiu. Sparse-dllm: Accelerating diffusion llms with dynamic cache eviction. arXiv preprint
arXiv:2508.02558, 2025.

Tianxiang Sun, Xiaotian Zhang, Zhengfu He, Peng Li, Qinyuan Cheng, Xiangyang Liu, Hang Yan,
Yunfan Shao, Qiong Tang, Shiduo Zhang, et al. Moss: An open conversational large language
model. Machine Intelligence Research, 21(5):888–905, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessandro
Sordoni. Guiding language model reasoning with planning tokens, 2024. URL https://arxiv.
org/abs/2310.05707.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding, 2025. URL https://arxiv.org/abs/2505.22618.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu.
Diffsound: Discrete diffusion model for text-to-sound generation. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 31:1720–1733, 2023.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language
model with parallel decoding, 2025. URL https://arxiv.org/abs/2505.16990.

Nikolay Yudin, Alexander Gaponov, Sergei Kudriashov, and Maxim Rakhuba. Pay attention to
attention distribution: A new local lipschitz bound for transformers, 2025. URL https://
arxiv.org/abs/2507.07814.

Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous concept
space, 2025. URL https://arxiv.org/abs/2505.15778.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model for
text generation. In Conference on Language Modeling (COLM), Philadelphia, PA, USA, October
7–9 2024. 2024a.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei Chen,
Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference optimization
for large language diffusion models, 2025. URL https://arxiv.org/abs/2505.19223.

12

https://arxiv.org/abs/2310.05707
https://arxiv.org/abs/2310.05707
https://arxiv.org/abs/2505.22618
https://arxiv.org/abs/2505.16990
https://arxiv.org/abs/2507.07814
https://arxiv.org/abs/2507.07814
https://arxiv.org/abs/2505.15778
https://arxiv.org/abs/2505.19223

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

THE USE OF LLMS

In the preparation of this manuscript, we used Large Language Models (LLMs) in a limited capacity
for two specific purposes: preliminary literature survey to help identify relevant research directions
and keywords during the early stages of our work, and limited language polishing to improve the
clarity and grammatical correctness of certain sections in the paper. All core research ideas, theoretical
contributions, experimental design, implementation, and analysis were independently conceived and
conducted by the authors without LLM assistance. The LLM-generated suggestions were carefully
reviewed, verified, and substantially modified by the authors before incorporation. We take full
responsibility for all content presented in this paper, including any text that may have been refined
with LLM assistance.

A EXPERIMENT DETAILS

For Base models, we follow standard few-shot settings for each benchmark: zero-shot for HumanEval,
3-shot for MBPP, 4-shot for MATH500, and 8-shot for GSM8K. For all benchmarks, we report
accuracy for mathematical reasoning and pass@1 for code generation. We set the nucleus threshold to
top-p = 0.9. The hyperparameter rf is varied between 0.1 and 0.2. The thresholds for stopping latent
refinement and early decoding are τrefine = 0.1 and τdecode = 0.1, respectively. We cap the latent
refinement stage at a maximum of Trefine = 20 steps. For LLaDA-Instruct and LLaDA-1.5 models,
generation is conducted under the official semi-AR framework (Nie et al., 2025), where the sequence
is divided into blocks and decoded autoregressively at the block level. Within each block, instead
of the standard hard masking used in the original work, we integrate our Latent Refinement and
Predictive Feedback Loop, enabling refinement of token distributions before discrete commitment.
Detailed integration steps are provided in Appendix C.

B DERIVATION OF THE TRUE POSTERIOR IN THE MASKING PROCESS

We derive Eq. 5 for the true posterior distribution in the absorbing masking forward process. For each
position i, the forward process is defined as

Pr(x
(i)
t = x

(i)
0 | x(i)

0) = α∗
t , Pr(x

(i)
t = [MASK] | x(i)

0) = 1− α∗
t ,

with (α∗
t)

T
t=0 monotonically decreasing. Thus each token can only either remain as its original value

x
(i)
0 or transition to the special token [MASK]. By Bayes’ rule,

q∗(x
(i)
t−1 | x(i)

t = [MASK], x(i)
0) =

Pr(x
(i)
t = [MASK] | x(i)

t−1, x
(i)
0) Pr(x

(i)
t−1 | x(i)

0)

Pr(x
(i)
t = [MASK] | x(i)

0)
. (8)

There are two possible values for x(i)
t−1:

• The probability of x(i)
t−1 = x

(i)
0 is α∗

t−1, and transitioning to mask at step t occurs with
probability 1− α∗

t

α∗
t−1

. Hence the joint probability is α∗
t−1 − α∗

t .

• The probability of x(i)
t−1 = [MASK] is 1 − α∗

t−1, and once masked, the token remains
masked with probability 1. Hence the joint probability is 1− α∗

t−1.

The marginal probability of being masked at step t is Pr(x
(i)
t = [MASK] | x(i)

0) = 1− α∗
t . So we

obtain

q∗(x
(i)
t−1 | x(i)

t = [MASK], x(i)
0) =

α∗
t−1 − α∗

t

1− α∗
t

δ
x
(i)
0

+
1− α∗

t−1

1− α∗
t

δ[MASK].

C INTEGRATION WITH SEMI-AR FRAMEWORK

In the semi-AR setting in LLaDA (Nie et al., 2025), a sequence of length L is partitioned into B
blocks {b1, b2, ..., bB}. While their original work uses standard hard masking within each block, we
apply soft embeddings as follows:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

For each block bi conditioned on previously generated blocks {b1, ..., bi−1}:

1. Soft Refinement: Initialise positions in bi with [MASK] embeddings, then apply soft
embedding refinement (Equation 3) until convergence.

2. Progressive Decoding: Use the converged soft embeddings to guide token selection within
the block.

D STABILITY ANALYSIS OF MIXED EMBEDDING UPDATES

Our method operates in the embedding space rather than the discrete token space. At each timestep t,
we maintain a set of soft embeddings Et = {ẽ(1)t , . . . , ẽ

(L)
t } defined as

ẽ
(i)
t = (1− α

(i)
t) · e[MASK] + α

(i)
t ·

∑
v∈T (i)

t

p̄
(i)
t+1(v) · ev, (9)

where e[MASK] denotes the [MASK] embedding, ev denotes the embedding of token v, T (i)
t is the

top-p nucleus set at position i, and p̄
(i)
t+1(v) is the renormalised predicted distribution over the nucleus

set at position i.

To analyse stability, an ideal approach would be to examine the Jacobian of the update operator through
its spectral radius. However, in practice this is intractable: transformer structures involve many linear
and nonlinear components (layer normalisation, residual connections, multi-head attention), making it
nearly impossible to provide a formal global analysis. The effective Jacobian inherits the complexity
of the underlying transformer, and its spectral radius (or even its spectral norm) may be large and
not easily bounded. As a result, although the iteration often stabilises empirically, a rigorous global
convergence guarantee cannot be obtained.

Therefore, in this section, we follow the discussion from existing work (Yudin et al., 2025; Hu et al.,
2024; Dasoulas et al., 2021) and focus on local Lipschitz continuity. This analysis considers only a
single self-attention layer without any other operators and provides intuition to support our method
and explain empirical results.

Specifically, the local Lipschitz bound suggests that for all soft embedding et within an ϵ-ball at
original point(i.e. ∥et∥ ≤ ϵ), where ϵ in fact bounds the maximum norm of embeddings, the following
inequality holds after one-layer self-attention mapping:

∥est+1 − est∥2 ≤ K∥et+1 − et∥2, (10)

where est is the output of et after one-layer self-attention mapping, K is the local Lipschitz constant.
Following Hu et al. (2024), we approximate K in the form

K(ϵ) ∝ c ∥WV
h ∥2 ∥W

Q
h (W

K
h)⊤∥2 ϵ2, (11)

depends on the local norm ϵ, with query, key, and value matrices WQ
h ,W

K
h ,WV

h , and a scaling
constant c.

The ideal outcome of such a mapping would be a contraction, i.e. K ≤ 1, which ensures that
differences shrink across layers. However, in transformer blocks the large parameter norms often
make this condition difficult to satisfy. Since WQ

h , WK
h , and WV

h are fixed for a pretrained model,
stability in practice relies on keeping ϵ sufficiently small, which is under our control. This motivates
us to restrict the update within a small ϵ-ball neighbourhood of the [MASK] embedding, which can
be taken as a reference point near the origin. For comparison, in Dream (Ye et al., 2025), while the
[MASK] embedding has a very small ℓ2 norm of 0.3340 in 3,584 dimensions (corresponding to a per-
dimension RMS of about 0.0055), regular token embeddings are much larger. For instance, a typical
token embedding has an ℓ2 norm of about 0.8721, which corresponds to an average per-dimension
RMS magnitude of approximately 0.0142.

To connect this bound back to the embedding updates, we require ẽ
(i)
t and ẽ

(i)
t+1 to lie within an

ϵ-ball at origin, which requires a very small ϵ. Since both are formed as weighted sums of the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

[MASK] embedding and candidate token embeddings (Equation. 9), a straightforward way to reduce
this distance is to bound the mixing coefficient α(i)

t . Intuitively, this means the search for efficient
mixed embeddings remains close to the [MASK] token, with exploration constrained to a small
neighbourhood. In this way, the iterative updates remain within a contraction-like region, which
empirically yields stable predictive distributions.

To simplify, we introduce a base rate rf and set α(i)
t = rf · Ĥ(i)

t+1, where Ĥ
(i)
t+1 ∈ [0, 1] is the

normalised entropy. Since maxi α
(i)
t ≤ rf , ensuring the difference is within ϵ reduces to choosing a

sufficiently small rf . Empirically, we find that the method is stable and effective when rf is small,
but fails to converge for large rf (see Figure 4).

We further evaluate the stability of output embeddings before the logit prediction step across adjacent
timesteps. Since the token space is sparse and high-dimensional, we use the KL divergence as the
metric. This reveals clear convergence during the latent refinement phase when rf is small, even after
deep iteration with multi-layer self-attention in a transformer (see Figure 3).

Another observation that implicitly supports our claim is the case of top-p selection. If p is set very
small, only a few candidate tokens contribute to the weighted sum

∑
v∈T (i)

t
p̄
(i)
t+1(v)ev . Even without

an explicit scaling factor such as α(i)
t , restricting the support of the soft embedding effectively yields

a small ϵ, which can help stabilise the updates. This explains why our method maintains reasonable
performance even under extreme top-p settings (see Figure 5).

In summary, although a rigorous global convergence guarantee for mixed embedding iterations is
intractable due to the nonlinear, high-capacity nature of transformers, our local Lipschitz analysis
provides useful theoretical insight. Together with empirical validation, this suggests that while strict
guarantees remain challenging, the proposed method is practically stable and effective for reasoning
with diffusion LMs.

15

	Introduction
	Preliminary
	Methodology
	Soft Diffusion
	Adaptive Sampling with Soft-to-Hard Scheduling

	Experiments
	Implementation Details
	Benchmarks and Metrics
	Main Results
	Convergence Analysis
	Ablation Study

	Related Work
	Conclusion
	Experiment Details
	Derivation of the True Posterior in the Masking Process
	Integration with Semi-AR Framework
	Stability Analysis of Mixed Embedding Updates

