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Abstract
Cross-lingual continual learning aims to con-001
tinuously fine-tune a downstream model on002
emerging data from new languages. One major003
challenge in cross-lingual continual learning004
is catastrophic forgetting: a stability-plasticity005
dilemma, where performance on previously006
seen languages decreases as the model learns007
to transfer to new languages. Experience re-008
play, which revisits data from a fixed-size mem-009
ory of old languages while training on new010
ones, is among the most successful approaches011
for solving this dilemma. Faced by the chal-012
lenge of dynamically storing the memory with013
high-quality examples while complying with its014
fixed size limitations, we consider Leitner queu-015
ing, a human-inspired spaced-repetition tech-016
nique, to determine what should be replayed017
at each phase of learning. Via a controlled set018
of quantitative and qualitative analyses across019
different memory strategies, we show that, just020
like humans, carefully picking informative ex-021
amples to be prioritized in cross-lingual mem-022
ory replay helps tame the plasticity-stability023
dilemma. Compared to vanilla and strong mem-024
ory replay baselines, our Leitner-guided ap-025
proach significantly and consistently decreases026
forgetting while maintaining accuracy across027
natural language understanding tasks, language028
orders, and languages.029

1 Introduction030

Cross-lingual continual learning is a machine learn-031

ing paradigm aimed at continually adapting a down-032

stream model to datastreams drawn from differ-033

ent languages (M’hamdi et al., 2023). Naive ap-034

proaches to cross-lingual continual learning involve035

training a new model from scratch each time a new036

language is available or training jointly over all037

languages which can be inefficient and even inac-038

cessible. Faced with an overwhelming stream of039

languages, modelers turn to continual learning tech-040

niques to adapt models such that maximal learn-041

ing from data is achieved when available data is042

temporally limited. The consequence of a finite 043

data buffer limitation on a potentially infinite data 044

source is catastrophic forgetting (McCloskey and 045

Cohen, 1989). Catastrophic forgetting exempli- 046

fies the stability-plasticity dilemma (Carpenter and 047

Grossberg, 1988; Hadsell et al., 2020; Wolczyk 048

et al., 2021): It is inherently hard to preserve the 049

previously acquired knowledge (stability) while 050

learning novel information (plasticity). 051

Various continual learning approaches have pro- 052

posed to mitigate catastrophic forgetting by either 053

restricting entire sets of parameters from chang- 054

ing (Kirkpatrick et al., 2017; Zenke et al., 2017; 055

Ritter et al., 2018), designing language-specific 056

model components (Pfeiffer et al., 2020; M’hamdi 057

et al., 2023), or replaying a fixed buffer memory 058

from previously seen languages (Shin et al., 2017; 059

Chaudhry et al., 2019a,b). M’hamdi et al. (2023) 060

show that memory-based approaches are more ro- 061

bust than other approaches in taming the plasticity 062

stability dilemma. Moreover, they are more scal- 063

able than other approaches such as model expan- 064

sion, which grows in complexity as a function of 065

the underlying downstream architecture. 066

Experience replay (ER) (Chaudhry et al., 2019b) 067

is a cognitively inspired memory-based approach 068

that reinforces previously seen experiences similar 069

to the process of memory consolidation in biolog- 070

ical systems (Isele and Cosgun, 2018). As more 071

languages are incorporated into the datastream, fit- 072

ting examples from new languages into a fixed-size 073

memory buffer becomes more challenging. This in- 074

vites a critical question: how to dynamically come 075

up with informative memory examples to keep for 076

each language? 077

In this paper, we propose a human-inspired ap- 078

proach for learning what to replay at each phase of 079

cross-lingual continual learning. We hypothesize 080

that in such a setup at the beginning, most data is 081

difficult but as training progresses some data be- 082

comes well-learned and informative. We surmise 083
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Figure 1: An overview of Leitner-guided memory replay for multi-phase cross-lingual continual learning: On top of
a cross-lingual datastream, we build a skill rating system to continually guide the memory population and update.
Skill ratings are scores from 1 to 5 obtained from Leitner queues; a higher score reflects greater learnability. At the
end of each phase, the skill ratings on the main data items from the phase language are used to choose what goes
in the memory, and the skill ratings of data items already in the memory are re-evaluated to determine if they can
remain.

that reducing the forgetting of previously learned084

examples requires using a strategy of alternately085

learning new difficult examples along with rein-086

forcement of well-learned examples. To design087

cross-lingual memory, we leverage Leitner queues,088

a cognitive technique that has been used for strate-089

gically planning what to review in humans (Leit-090

ner, 1974; Reddy et al., 2016) and for determining091

informative and spurious data in self-training non-092

continual learning applications (Amiri et al., 2018;093

Amiri, 2019). Our Leitner-guided memory sam-094

pling policy is a dynamic language-agnostic skill095

rating system which selects candidates for inclu-096

sion into memory according to how well they are097

learned (Figure 1). We analyze memory design098

attributes that contribute to reducing cross-lingual099

continual learning forgetting and evaluate on typo-100

logically diverse benchmarks ranging in difficulty.1101

We summarize our contributions as follows:102

(1) We are the first to formalize a human-inspired103

solution based on Leitner queues to guide104

cross-lingual memory replay (§2.3).105

(2) We show that our Leitner-inspired approach106

for selecting memory replay items reduces107

forgetting without sacrificing transfer learning108

gains (§4.1).109

(3) We provide a fine-grained analysis over differ-110

ent language orders and languages showing111

1We will release our code in the camera-ready version.

that our approach is consistently and robustly 112

beneficial (§4.2). 113

(4) We provide a qualitative analysis that investi- 114

gates the usefulness of data as a function of 115

its learnability (§4.3). 116

2 Methodology 117

In this section, we start by describing our ER ap- 118

proach adapted to cross-lingual continual learning 119

(§2.1). Then, we explain the mechanism for deter- 120

mining skill ratings based on Leitner queues (§2.2). 121

After that, we explain how we use this Leitner- 122

based skill rating system to guide memory storage 123

and update in cross-lingual ER (§2.3). 124

2.1 Cross-lingual Experience Replay 125

We follow the same setup for cross-lingual con- 126

tinual learning and ER defined by M’hamdi et al. 127

(2023). The learning process consists of sequen- 128

tially fine-tuning a model on a cross-lingual datas- 129

tream in multiple phases. A cross-lingual datas- 130

tream D1···N is a set of N distinct labeled datasets 131

sampled from different languages one at a time. 132

Each dataset Di is drawn from a single distinct lan- 133

guage ℓi ∈ L = {ℓ1, ℓ2 · · · ℓN}. Each phase 134

Pi ∈ P1···N is a stage in cross-lingual contin- 135

ual learning where the model gets fine-tuned on 136

a dataset Di for a number of epochs. The ER ap- 137

proach is implemented as follows: At the end of 138

each phase (except the last one) Pi ∈ P1···N−1, 139

we choose some data from Di to add to a memory 140
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buffer M of fixed size |M|. In later phases Pj af-141

ter Pi, we replay from M, which contains memory142

data drawn from D<j interleaved with the main143

loss on data drawn from Pj .144

2.2 Leitner-based Skill Rating System145

We draw inspiration from Leitner queues (Leitner,
1974), a method of prioritization originally con-
ceived of as a strategy for human memorization and
later used in machine learning applications (Amiri
et al., 2018). The key prioritization insight we lever-
age is that of demonstrated mastery. That is, items
in a (training) data set may be rated by the degree
to which they have been mastered by the learner.
We instantiate this by associating a rating r to each
training data item d, and changing r(d) based on
a model m’s ability to correctly classify d during
training. Let [s, e] be the acceptable rating range,
let rm′(d) be the rating for d according to some pre-
vious model m′, and let ϕm(d) ∈ {−1, 1} indicate
that model m classified d {incorrectly, correctly},
respectively. Then

rm(d) = max(min(rm′(d) + ϕm(d), e), s)

Thus, r is raised when d is correctly classified and146

lowered when it is misclassified, subject to the147

acceptable range. In this work, we set [s, e] =148

[1, 5], following established practice (Reddy et al.,149

2016; Amiri et al., 2018).150

2.3 Leitner-Guided Cross-lingual Experience151

Replay (LER)152

We explore the use of r(d) to determine whether153

or not to include d in M. At the start of phase Pi,154

by convention, for all d ∈ Di ∪M, we set r∅(d),155

the initial rating, to s. At the end of each epoch156

within the phase, we update r for each data item in157

Di and M according to the model m at that point158

in training. At the end of Pi, we use r values to159

form the new M, selecting |M|
i items from Di and160

|M|− |M|
i items from the current M according to161

one of two strategies:162

• LER (Easy): Highest-rated items are prioritized.163

• LER (Hard): Lowest-rated items are prioritized.164

Our approach for selecting data from Di in-165

versely proportional to i enables the fixed and lim-166

ited M to contain an even distribution of samples167

from all D<i thus seen, militated by the relative168

learning difficulty of different phase datasets.169

3 Experimental Setup 170

We start by presenting the different baselines 171

and model variants used to compare between dif- 172

ferent experimental scenarios (§3.1). We then 173

describe the benchmark datasets and their base 174

models (§3.2) along with the multilingual datas- 175

treams (§3.3) that we focus on in this evaluation. 176

More implementation details such as the hyper- 177

parameters, number of parameters used, and run- 178

time for different models can be found in Ap- 179

pendix A. 180

3.1 Baselines & Model Variants 181

Baselines Before delving into different variants 182

of Leitner-guided memory replay, we consider the 183

following baselines: 184

• No ER. This is our lower-bound naive sequential 185

fine-tuning baseline. This sequentially fine-tunes 186

on datasets sampled from one language at a time 187

Di ∈ D1···N without using any experience replay. 188

• Balanced. This is an experience replay approach 189

adapted from Lopez-Paz and Ranzato (2017) 190

which allocates equally sized buffers balanced 191

across language. At the end of each phase Pi, 192

|M|/(N − 1) examples are randomly picked 193

from Di and added to M. 194

• Random. This is a more realistic experience re- 195

play approach, adapted from Riemer et al. (2019), 196

which randomly samples and updates |M| from 197

D<i at the end of each phase Pi. 198

Other techniques have been proposed to pro- 199

duce memory exemplars such as K-Means clus- 200

tering (Chaudhry et al., 2019b), mean of fea- 201

tures (Rebuffi et al., 2017), and prototypical net- 202

works (Ho et al., 2023). However, we don’t ex- 203

plore those approaches since they don’t lead to 204

clear improvements against Random (reservoir sam- 205

pling) (Chaudhry et al., 2019b). 206

Model Variants We design the following model 207

variants on top of LER. The research question we 208

analyze here is: does dynamically prioritizing easy 209

elements help in mitigating forgetting more than 210

hard elements or vice versa? Our analysis evaluates 211

the aggregated effectiveness of different strategies 212

used for memory construction. This consists of 213

LER (Easy) and LER (Hard) which use easy and 214

hard examples to fill and update the memory, re- 215

spectively. 216
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3.2 Benchmarks & Base Models217

We conduct experiments on two datasets commonly218

used in natural language understanding literature,219

covering different typologically diverse languages220

and requiring different levels of reasoning: multilin-221

gual task-oriented dialog (MTOD) and multilingual222

question answering (MQA).223

MTOD This is a multilingual goal-oriented sys-224

tem focusing on the natural language understand-225

ing module. This module consists of two subtasks226

namely intent detection and slot filling. For MTOD227

evaluation, we use two multilingual task-oriented228

dialog datasets: MTOP (Li et al., 2021) and Multi-229

ATIS++ (Xu et al., 2020). While MultiATIS++ cov-230

ers 18 intents and 84 slots on average per language231

from one domain, MTOP covers 117 intents and232

78 slots from 11 domains. We choose MTOP and233

MultiATIS++ since they are among the large-scale234

datasets available for task-oriented dialog cover-235

ing typologically diverse languages. We use the236

same architecture as in Castellucci et al. (2019)237

to jointly learn intent classification and slot-filling238

subtasks. M-BERT (Devlin et al., 2019) is used to239

encode each input sentence. On top of the [CLS]240

representation of the sentence, we use a linear layer241

plus Softmax to predict its intent class. We use242

a sequence labeling layer in the form of a linear243

layer plus CRF (Lafferty et al., 2001) to predict slot244

labels in BIO annotation. We optimize jointly over245

the sum of intent and slot losses. For evaluation,246

we use accuracy and F1 scores to evaluate intent247

classification and slot filling, respectively.248

MQA This is a multilingual span-based question-249

answering task that extracts the answer token span250

to a question given a defined context. To ensure a251

challenging and trustworthy evaluation for MQA,252

we choose TyDiQA (Clark et al., 2020), which253

is a translation-free realistic information-seeking254

benchmark. We follow the same pre-processing255

and architecture as in Hu et al. (2020). Specifi-256

cally, we concatenate the input question (after pre-257

pending it with a [CLS] token) and the context as258

a single packed sequence separated by a [SEP ]259

token and feed that to M-BERT. Then, the embed-260

dings of the context are fed to a linear layer plus261

Softmax to compute the probability that each to-262

ken in the context is the start or end token of the263

answer span. We optimize for the joint loss over264

the start and end tokens predictions. Complying265

with Hu et al. (2020) evaluation, we use F1-score266

macro-averaged over examples. 267

Table 1 shows the statistics per language 268

and split for MTOP, MultiATIS++, and TyDiQA 269

datasets. 270

Dataset Language Train Dev Test

MTOP

English 15,667 2235 4386
German 13,424 1815 3549
Hindi 11,330 2012 2789
Thai 10,759 1671 2765

MultiATIS++

English 4488 490 893
French 4488 490 893
Chinese 4488 490 893
Turkish 578 60 715

TyDiQA

Indonesian 5131 571 565
Russian 5841 649 812
Swahili 2479 276 499
Telugu 5006 557 669

Table 1: Statistics of MTOP, MultiATIS++, and TyDiQA
per language and split.

3.3 Datastreams 271

We design a balanced set of distinct language 272

permutations, following the cross-lingual con- 273

tinual learning evaluation paradigm established 274

by M’hamdi et al. (2023). Formally, for a given 275

set of N = 4 languages, we sample a subset of 276

N language permutations P ⊂ S(L ) where each 277

language appears exactly once in each permuta- 278

tion. Table 2 shows the language permutations we 279

consider for different downstream benchmarks. 280

Dataset # Order

MTOP

1 English→German→Hindi→Thai
2 German →English→Thai→Hindi
3 Hindi→Thai→English→German
4 Thai→Hindi→German→English

MultiATIS++

1 English→French→Turkish→Chinese
2 French→English→Chinese→Turkish
3 Turkish→Chinese→English→French
4 Chinese→Turkish→French→English

TyDiQA

1 Russian→Indonesian→Telugu→Swahili
2 Indonesian→Russian→Swahili→Telugu
3 Telugu→Swahili→Russian→Indonesian
4 Swahili→Telugu→Indonesian→Russian

Table 2: Language permutations for MTOP, Multi-
ATIS++, and TyDiQA.

4 Results & Analysis 281

In this section, we provide an extensive analysis 282

to demonstrate the effectiveness of our Leitner- 283

guided cross-lingual experience replay approach. 284

Our primary analytical tool is forgetting, which 285

measures the degree to which a learned skill is lost 286

when a model is trained on out-of-language data. 287
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Lower forgetting is better while negative forget-288

ting indicates the model has improved as a result289

of out-of-language training. We also show final290

performance, which is simply a metric’s value af-291

ter all phases of continual learning.2 We present292

both a summary of the test performance based on293

the best epoch given Dev data split performance294

and over each epoch throughout different training295

stages (§4.1). Then, we present a more fine-grained296

analysis, shedding light on which language orders297

and languages our Leitner-based skill rating sys-298

tem is particularly helpful (§4.2). Last but not least,299

we present a qualitative analysis of different cate-300

gories of skill ratings and what makes ruling out301

hard examples useful (§4.3).302

4.1 Average Performance303

In Table 3, we compare between different Leitner-304

guided memory selection strategies and baselines305

for MTOP, MultiATIS++, and TyDiQA benchmarks306

in terms of their forgetting. We start by showing307

their forgetting on the test data averaged over differ-308

ent language orders based on the best-performing309

model on the Dev data split. Compared to No ER310

baseline, all ER approaches: Balanced, Random,311

and LER variants are beneficial in reducing forget-312

ting, irrespective of the strategy followed in mem-313

ory storage and update. It is clear that the forgetting314

gap between No ER and ER approaches is more pro-315

nounced for MTOP and MultiATIS++ tasks than it316

is for TyDiQA. We conjecture that this is due to the317

formulation of TyDiQA as a span-based question-318

answering task. The latter employs a simple token319

classification model which is less challenging than320

joint optimization over classification and sequence321

modeling objectives in MTOD. The gains are even322

more pronounced for MTOP, whose ontology cov-323

ers more domains, intents, and slots than that of324

single-domain MultiATIS++. Among MTOP sub-325

tasks, slot filling has a higher overall forgetting than326

intent detection. The implication of all of these327

findings is that forgetting is more pronounced, and328

our technique more crucial, when tasks are more329

difficult.330

By keeping a balanced memory across lan-331

guages, Balanced could have the benefit of mak-332

ing sure to revisit all languages assuming knowl-333

edge of the total number of languages involved in334

the continual learning. However, using a balanced335

2For forgetting and final performance, we use the same
formulation of evaluation protocols as M’hamdi et al. (2023).
A refresher is provided in Appendix B.

Approach MTOP MultiATIS++ TyDiQA
Intent Accuracy ↓ Slot F1 ↓ Slot F1 ↓ F1 ↓

No ER 5.84 7.56 2.62 1.52
Balanced† 0.92 1.15 −0.63 0.92
Random‡ 0.68 0.97 −0.56 0.73
LER (Easy) 0.49 0.51 −0.73 0.83
LER (Hard) 0.82 2.27 1.10 1.14

Table 3: Average Test forgetting scores based on the Dev
data split performance of different models and baselines.
We compare two Leitner-guided memory replay variants
LER (Easy) and LER (Hard) to the baselines. Since no
previous work on experience replay in the cross-lingual
setup reports any forgetting results, we implement in
addition to No ER our internal baselines: Balanced and
Random adapted from †(Lopez-Paz and Ranzato, 2017)
and ‡(Riemer et al., 2019), respectively. Best (lowest ↓)
forgetting scores are highlighted in bold for each task
and subtask.

memory across languages Balanced doesn’t lead 336

to lower forgetting than picking a random memory 337

across languages Random. This could be because 338

Balanced picks a balanced amount of examples 339

per language, exposing the model to less diversity 340

compared to Random. This could also show the 341

need to continuously update the diversity of mem- 342

ory to make room for higher-quality examples in 343

continual learning. LER (Easy) stands out as one 344

of the most successful strategies in reducing for- 345

getting beating both experience replay baselines. 346

LER (Easy) reaches the lowest forgetting with re- 347

ductions of 1.76, 0.64, and 0.46 in forgetting of 348

F1 score for slot filling compared to LER (Hard), 349

Balanced, and Random respectively. We perform 350

a two-tail paired two-sample for means t-Test on 351

forgetting scores across different language orders 352

and training epochs. We find that the gains from 353

using LER (Easy) are statistically significant com- 354

pared to Random with a p-value of 2.6× 10−6 on 355

slot filling. Results on MultiATIS++ and to some 356

degree TyDiQA confirm the consistent superiority 357

of LER (Easy) and the inferiority of LER (Hard) 358

approach. 359

For the remaining analysis, we focus on MTOP, 360

shedding more light on the added value of LER ap- 361

proaches compared to the best-performing ER base- 362

line Random. Figures 2a and 2b show the learning 363

curves of different models on slot filling in terms 364

of forgetting and final performance, respectively. 365

Throughout training, LER (Easy) is consistently 366

more effective than Random and LER (Hard) in 367

minimizing forgetting while improving final perfor- 368

mance, thus taming the stability plasticity dilemma. 369

LER (Easy) can converge and stabilize at a low 370
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Figure 2: Average forgetting and final performance of slot filling for different model variants compared to the
Random baseline averaged over different language orders. The lower the forgetting and the higher the final
performance the better.

forgetting score earlier in training. On the other371

hand, the LER (Hard) strategy exacerbates the for-372

getting problem as training proceeds. This shows373

that replaying easy examples is consistently more374

effective than revisiting hard ones that the model375

is struggling with. Our Leitner-based skill rating376

system provides a dynamic measure that keeps se-377

lecting pertinent instances as language exemplars378

in constructing the memory replay.379

4.2 Fine-grained Language Analysis380

Figures 3 and 4 show a fine-grained analysis of381

forgetting between different models across differ-382

ent language orders and languages, respectively.3383

For each language order and language, we re-384

port Test results for the best-performing model385

based on Dev data split. Overall, we observe386

that LER (Easy) consistently outperforms LER387

(Hard) and Random across different language or-388

ders and languages. Certain language orders389

such as Thai→Hindi→German→English (4) and390

Hindi→Thai→English→German (3) have more391

forgetting than others. The languages that bene-392

fit the most compared to Random are Hindi and393

German whereas the gains for Thai and English are394

more minimal. LER (Easy) manages to bridge that395

gap in forgetting, keeping it within a low range.396

4.3 Discussion397

In this part, we conduct a qualitative analysis to398

complement our conclusion from our quantitative399

analysis that choosing training data for the mem-400

ory that is easy to learn is more beneficial than401

choosing data that is not easily learned. To dig402

3More results for other subtasks can be found in the Ap-
pendix C.
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Figure 3: Fine-grained analysis of forgetting of slot
filling over different language orders as defined in Ta-
ble 2. Best (lowest) results for each language order are
highlighted in bold.
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Figure 4: Fine-grained analysis of forgetting of slot
filling over different languages. Best (lowest) results for
each language are highlighted in bold.

deeper into why ruling out harder examples from 403

the memory is beneficial, we look more closely 404

at the characteristics of those hard cases among 405

training data. We define an intractable example as 406

an example whose skill rating never gets promoted 407

and stays 1 throughout training. At the other end 408

of the spectrum, is a confident example whose skill 409

rating converges to 5 and never gets demoted after 410
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that.411

In Figure 5, we report percentages of intractable412

and confident training data in MTOP for each413

language, averaged over all phases and language414

orders. We notice that for each language, 70%415

or more examples are confident. Thus, the Ran-416

domapproach to memory selection is unlikely to dif-417

fer all that much from the LER (Easy) approach, at418

least in intent detection for MTOP. For other tasks419

with lower rates of easy examples, it might not be420

straightforward to pick easy examples with a ran-421

dom approach. We also observe a trend where the422

more high-resource the language is the less likely423

its examples are intractable and the more likely its424

examples are confident. Thai, which has the high-425

est percentage of intractable examples, is the most426

low-resource in MTOP. This explains why LER427

(Easy) is much more beneficial than Random for428

Thai and Hindi compared to English and German429

for intent classification in Figure 9 (Appendix C).430
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Figure 5: Percentages of examples that never get pro-
moted past skill rating 1 (Skill never promoted) and
those that converge to the maximum skill rating 5 (Con-
verged to max skill) per language averaged over differ-
ent language orders.

As an exemplar, we focus now on English data,431

specifically concentrating on training data analysis432

from the end of the first phase in language order433

English→German→Hindi→Thai. To understand434

what makes an example particularly intractable, we435

design the following categories:436

• Low-resource (LR): A training instance is con-437

sidered low-resource if the number of training438

instances per its intent label is below 10. For En-439

glish, there are 137 training instances per intent440

on average. This makes low-resource labels fall441

within the 25% percentile.442

• Difficult to disambiguate (DD): This is the case443

if the true class is among the most similar to the444

predicted class. We determine that by computing445

the [CLS] token representations of all training 446

sentences. We then compute the centroid of the 447

sentence representations per class label. For each 448

label, we determine its most similar predicted 449

classes based on the 5 nearest neighbors. 450

• Poorly-defined (PD): Unlike low-resourced and 451

difficult to disambiguate examples which are au- 452

tomatically determined by their labels, we inspect 453

here case by case for poorly-defined sentences. 454

We define a poorly-defined example as any sen- 455

tence that doesn’t make sense to be attributed to 456

a certain label. This could be due to a mismatch 457

or lack of commonsense in the way the ontology 458

was defined for certain labels. 459

We show in Figure 6 some statistics of differ- 460

ent categories of intractable examples. Most in- 461

tractable examples are either DD, LR, or both. In- 462

specting confident examples reveals that no LR 463

or DD examples are encountered among them. 464

This demonstrates that our Leitner-guided approach 465

LER (Easy) can detect such hard categories and rule 466

them out. By imposing a more fine-grained skill 467

rating system, our Leitner-guided memory replay 468

approach provides a more confident approach to de- 469

termine which labels the model is struggling with 470

more than relying on prediction loss (Amiri et al., 471

2018). The skill rating system adds information 472

that prediction loss alone does not. In fact, only 473

27% of the English examples that have skill ratings 474

between 2 and 4 (neither intractable nor highly con- 475

fident) are wrongly predicted at the end of the first 476

phase. Those unstable examples are part of the 477

selection of LER (Hard) so not prioritizing such 478

examples is beneficial. 479

50%

20%

2%22%

4%

2%

DD
LR
PD
LR & DD
PD & DD
Unclassified

Figure 6: Distribution of different categories of in-
tractable examples in the English data.

In Table 4, we provide some examples of dif- 480

ferent categories of wrongly predicted labels. We 481

observe inconsistencies in those examples. Those 482

that are specifically DD are so close to being picked 483
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Type Utterance True Class Prediction Classes

LR
Put this song on repeat. music:LOOP_MUSIC music:REPLAY_MUSIC
What is Tyler studying in school? people:GET_MAJOR people:GET_UNDERGRAD
Merge another call with this one. calling:MERGE_CALL calling:END_CALL

DD
Did Jack get sentenced today? news:GET_DETAILS_NEWS news:QUESTION_NEWS
How to make Arab tahini sauce? recipes:GET_INFO_RECIPES recipes:GET_RECIPES
What time does the sun come up tomorrow? weather:GET_SUNRISE weather:GET_SUNSET

PD
Where does Kade work? people:GET_LOCATION people:GET_EMPLOYER
Pause the current timer and delete. timer:PAUSE_TIMER timer:DELETE_TIMER
Increase my timer to 30 minutes. timer:CREATE_TIMER timer:RESTART_TIMER

Table 4: Examples of intractable examples and their golden truth and prediction intent labels from each category.

as representative examples of certain classes which484

can only confuse the learner. For example, while485

"Pause the current timer and delete." is supposed486

to be classified as timer:PAUSE_TIMER, this la-487

bel is far from being comprehensively descrip-488

tive of the sentence intent. Its predicted label489

timer:DELETE_TIMER is not wrong either as it490

detects the intent to delete which is the second part491

of the example. We suspect that reinforcing the492

learning using difficult cases can only mislead the493

learner.494

In Figure 7, we show a t-SNE projection of495

the centroids of different intent label represen-496

tations. We highlight in that figure the most497

common DD labels whose representations are498

indistinguishable in the vector space. Some499

of those labels like GET_STORIES_NEWS and500

GET_DETAILS_NEWS are to the human eye also501

DD, which could be an artifact of how the intent502

ontology was defined. Our Leitner-guided strategy503

LER (Easy) rules them out, favoring examples the504

learner is more confident about with class labels505

that correspond to more clearly separable represen-506

tations.507
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Figure 7: t-SNE visualization of centroids of different
intent labels highlighting some ambiguous labels indis-
tinguishable in the embeddings space.

5 Related Work 508

Continual learning work inspired by human-like 509

learning can be divided into the following cat- 510

egories: spaced-repetition (Smolen et al., 2016; 511

Amiri et al., 2017; Amiri, 2019; Feng et al., 2019; 512

Klasson et al., 2023), mechanisms of sleep (Ball 513

et al., 2020; Mallya and Lazebnik, 2018; Schwarz 514

et al., 2018), reactivation of memories (Hayes et al., 515

2020; van de Ven et al., 2020), etc. Leitner queues, 516

one of the most famous spaced repetition tech- 517

niques, started garnering attention for machine 518

learning recently. However, most of the work is 519

focused on scheduling when to review data in non- 520

continual learning setups. Amiri et al. (2017) show 521

the sample efficiency of a human-inspired mem- 522

ory model to determine when to review each item 523

as a function of the difficulty of the item and the 524

strength of the network. Klasson et al. (2023) pro- 525

pose a Monte Carlo tree search approach for mem- 526

ory replay. More work (Amiri et al., 2018; Amiri, 527

2019) demonstrates the effectiveness of Leitner 528

queues at determining spurious data and confident 529

labels for self-training applications. In our work, 530

we are the first to test for the effectiveness of Leit- 531

ner queue-based skill ratings in mitigating forget- 532

ting in cross-lingual continual learning. 533

6 Conclusion 534

In this paper, we formulate a human-inspired ex- 535

perience replay approach specifically for cross- 536

lingual continual learning. We propose a Leitner- 537

based skill rating system to dynamically populate 538

and update the memory with high-quality items. 539

Our approach can deal with the plasticity stability 540

dilemma better than random selection, especially 541

for complex tasks and consistently over languages 542

and language orders. The implications of this anal- 543

ysis include a recipe for how to incorporate aspects 544

of human learning in the design of memory replay 545

in cross-lingual continual learning. 546
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Limitations547

In this paper, we have focused on Leitner queues as548

an approach to guide the process of memory stor-549

age and update. In future work, other variants of550

Leitner queues or other approaches based on human551

learning theories could be explored. For example,552

more fine-grained approaches based on theories of553

how languages get forgotten to model the retention554

curve as a function of the task difficulty, review555

periods, and strength of the model could be inves-556

tigated. This could help us understand how the557

process of forgetting works and when to schedule558

revisions accordingly to circumvent that.559

In this paper, we evaluate on a representative set560

of natural language understanding tasks. We prove561

that our approach benefits challenging tasks more562

consistently. However, we don’t closely investigate563

if there is a correlation between the difficulty of564

a task and the effectiveness of our Leitner-based565

skill rating approach on it. For such an analysis566

to be possible, we need a principled way to define567

what makes a task more difficult naturally or to568

simulate that synthetically. We leave a systematic569

fine-grained analysis over more downstream tasks570

ranging in difficulty for future work.571
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A Implementation Details804

We specify below more implementation details805

such as hyperparameters and datasets in addition to806

the runtime and number of parameters of different807

models.808

A.1 Hyperparameters809

For all experiments, we use M-BERT (bert-base-810

multilingual-cased)4 with 12 layers as our pre-811

trained multilingual Transformer-based encoder812

model. Consistent with M’hamdi et al. (2023) and813

Hu et al. (2020) for MTOP and TyDiQA, respec-814

tively, we use the Adam optimizer (Kingma and Ba,815

2015), fixing the learning rate to 3e−5 for all exper-816

iments for a fair comparison. M’hamdi et al. (2023)817

perform a manual hyperparameter search over the818

4github.com/huggingface/transformers version
3.4.0 pre-trained on 104 languages, including all languages
covered in our evaluation.

range [1× 10−4, 3× 10−4, 1× 10−5, 3× 10−5] to 819

choose the most optimal learning rate based on Dev 820

data split performance. For TyDiQA, those hyperpa- 821

rameters are chosen based on Hu et al. (2020). For 822

MultiATIS++, we perform a manual search over 823

the same learning rates range and find that 3×10−5 824

performs comparably to other learning rates. So, 825

we fix a learning rate of 3 × 10−5, ϵ = 1× 10−8, 826

β1 = 0.9, β2 = 0.99 in the optimizer for a fair 827

comparison for all experiments. For TyDiQA ex- 828

periments, we find it helpful when a scheduler with 829

linear decaying learning rates is used. We use batch 830

sizes of 4, 16, and 4 for MTOP, MultiATIS++, and 831

TyDiQA, respectively. In all baseline models Bal- 832

anced and Random and Leitner-guided ER (LER) 833

model variants, we choose a fixed memory propor- 834

tion to 20% of the training data from each bench- 835

mark. Based on that, we fix |M| memory size to 836

10,105, 500, and 500 for all MTOP, MultiATIS++, 837

and TyDiQA experiments, respectively. We also fix 838

the sampling frequency from the memory to every 839

10 minibatches. For all experiments, we run for 10 840

epochs maximum and pick the best model based 841

on Dev data split. We use the same seed across all 842

experiments to report the mean results. We also fix 843

a seed of 42 for the random initialization of Numpy, 844

Random, and Torch libraries over all experiments. 845

All experiments are run on the same computing in- 846

frastructure using 1 NVIDIA A40 GPU of 46,068 847

MiB of memory CUDA version 11.6 and Pytorch 848

version 1.13.1. 849

A.2 Dataset License 850

MTOP dataset has been released by Facebook un- 851

der Creative Commons Attribution-ShareAlike 4.0 852

International Public License. MultiATIS++ and Ty- 853

DiQA datasets have been released under the Apache 854

License which allows the use, modification, and 855

distribution of the dataset. 856

A.3 Runtime 857

We show in Table 5 the runtime of different ap- 858

proaches and baselines for one single language or- 859

der on MTOP. This runtime includes both the costs 860

of training and evaluation. Our LER only incurs 861

3 hours more than No ER approach, with most of 862

it spent calculating the skill rating at the end of 863

each epoch. Table 6 compares between the number 864

of parameters of models used for different down- 865

stream benchmarks. Task-oriented dialog bench- 866

marks (MTOP and MultiATIS++) require more pa- 867

rameters and thus are more challenging compared 868
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to span-based question answering (TyDiQA).869

Model Total Runtime
No ER 6 hrs 23 min 20 sec
Balanced 6 hrs 45 min 22 sec
Random 6 hrs 25 min 25 sec
LER(easy/hard) 9 hrs 23 min 13 sec

Table 5: Fine-grained runtime analysis per model for
one single language order on MTOP.

Model # Parameters
MTOP 178,081,402
MultiATIS++ 178,036,139
TyDiQA 177,264,386

Table 6: Fine-grained parameter analysis per bench-
mark.

B Evaluation Metrics870

We follow M’hamdi et al. (2023) cross-lingual con-871

tinual learning evaluation protocols. Let R be some872

success metric for evaluating a downstream task873

K and Ri,≤j be the evaluation on the test set for874

language ℓi fine-tuning K on D≤j . For a more875

succinct analysis that sheds light on the stability-876

plasticity dilemma, we focus on the following two877

metrics:878

• Forgetting (F ↓). We compute forgetting av-879

eraged over D2···≤N as follows:880

F =
1

N − 1

N∑
j=2

F≤j ,

F≤j =
1

j − 1

j−1∑
i=1

Fi,≤j ,

(1)881

where F≤j is the average forgetting that re-882

sulted at the point of training on Dj . Fi,≤j =883

maxk∈[1,j−1]Ri,≤k − Ri,≤j . Fi,≤j is the de-884

gree to which performance on Di has de-885

graded by continuing to train on D≤j instead886

of stopping before including Dj .887

• Final performance (FP ↑). This is the final888

performance at the last phase PN averaged889

over all datasets D≤N :890

FP =
1

N

N∑
i=1

Ri,≤N . (2)891

C More Results 892

Figures 8 and 9 show a fine-grained analysis of 893

the forgetting of intent classification over different 894

language orders and languages, respectively.
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Figure 8: Fine-grained analysis of forgetting of intent
classification over different language orders as defined
in Table 2. Best (lowest) results for each language order
are highlighted in bold.
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Figure 9: Fine-grained analysis of forgetting of intent
classification over different languages. Best (lowest)
results for each language are highlighted in bold.
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