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ABSTRACT

Consistency distillation is a prevalent way for accelerating diffusion models
adopted in consistency (trajectory) models, in which a student model is trained
to traverse backward on the probability flow (PF) ordinary differential equation
(ODE) trajectory determined by the teacher model. Preconditioning is a vital tech-
nique for stabilizing consistency distillation, by linear combining the input data
and the network output with pre-defined coefficients as the consistency function.
It imposes the boundary condition of consistency functions without restricting the
form and expressiveness of the neural network. However, previous precondition-
ings are hand-crafted and may be suboptimal choices. In this work, we offer the
first theoretical insights into the preconditioning in consistency distillation, by elu-
cidating its design criteria and the connection to the teacher ODE trajectory. Based
on these analyses, we further propose a principled way dubbed Analytic-Precond
to analytically optimize the preconditioning according to the consistency gap (de-
fined as the gap between the teacher denoiser and the optimal student denoiser) on
a generalized teacher ODE. We demonstrate that Analytic-Precond can facilitate
the learning of trajectory jumpers, enhance the alignment of the student trajec-
tory with the teacher’s, and achieve 2x to 3 training acceleration of consistency
trajectory models in multi-step generation across various datasets.

1 INTRODUCTION

Diffusion models are a class of powerful deep generative models, showcasing cutting-edge per-
formance in diverse domains including image synthesis (Dhariwal & Nicholl, 2021} [Karras et al.,
2022)), speech and video generation (Chen et al., [2021} |Ho et al., [2022)), controllable image ma-
nipulation (Nichol et al.| 2022; Ramesh et al., 2022; Rombach et al., 2022} Meng et al., 2022b),
density estimation (Song et al., | 2021b} Kingma et al.l 2021} [Lu et al., 2022a} |Zheng et al., 2023b)
and inverse problem solving (Chung et al., [2022} [Kawar et al.,[2022). Compared to their generative
counterparts like variational auto-encoders (VAEs) (Kingma & Welling, 2014) and generative adver-
sarial networks (GANs) (Goodfellow et al.|[2014), diffusion models excel in high-quality generation
while circumventing issues of mode collapse and training instability. Consequently, they serve as
the cornerstone of next-generation generative systems like text-to-image (Rombach et al.,2022) and
text-to-video (Gupta et al., 2023} [Bao et al.,|2024) synthesis.

The primary bottleneck for integrating diffusion models into downstream tasks lies in their slow
inference processes, which gradually remove noise from data with hundreds of network evaluations.
The sampling process typically involves simulating the probability flow (PF) ordinary ODE back-
ward in time, starting from noise (Song et al., 2021c)). To accelerate diffusion sampling, various
training-free samplers have been proposed as specialized solvers of the PF-ODE (Song et al.|[2021aj
Zhang & Chenl 2022} [Lu et al. |2022b)), yet they still require over 10 steps to generate satisfactory
samples due to the inherent discretization errors present in all numerical ODE solvers.
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Figure 1: Consistency distillation with preconditioning coefficients «, 3.

Recent advancements in few-step or even single-step generation of diffusion models are concen-
trated on distillation methods (Luhman & Luhman, 2021} Salimans & Ho} 2022;[Meng et al.,2022a;
Song et al.,|2023; |Kim et al.| 2023 Sauer et al.,|2023)). Particularly, consistency models (CMs) (Song
et al.,|2023)) have emerged as a prominent method for diffusion distillation and successfully been ap-
plied to various data domains including latent space (Luo et al.,|2023), audio (Ye et al., 2023) and
video (Wang et all 2023). CMs consider training a student network to map arbitrary points on
the PF-ODE trajectory to its starting point, thereby enabling one-step generation that directly maps
noise to data. A follow-up work named consistency trajectory models (CTMs) (Kim et al.| [2023)
extends CMs by changing the mapping destination to encompass not only the starting point but
also intermediate ones, facilitating unconstrained backward jumps on the PF-ODE trajectory. This
design enhances training flexibility and permits the incorporation of auxiliary losses.

In both CMs and CTMs, the mapping function (referred to as the consistency function) must adhere
to certain constraints. For instance, in CMs, there exists a boundary condition dictating that the
starting point maps to itself. Consequently, the consistency functions are parameterized as a linear
combination of the input data and the network output with pre-defined coefficients. This approach
ensures that boundary conditions are naturally satisfied without constraining the form or expressive-
ness of the neural network. We term this parameterization technique preconditioning in consistency
distillation (Figure[I)), aligning with the terminology in EDM (Karras et al., [2022). The precondi-
tionings in CMs and CTMs are intuitively crafted but may be suboptimal. Besides, despite efforts,
CTMs have struggled to identify any distinct preconditionings that outperform the original one.

In this work, we take the first step towards designing and enhancing preconditioning in consistency
distillation to learn better “trajectory jumpers”’. We elucidate the design criteria of precondition-
ing by linking it to the discretization of the teacher ODE trajectory. We further convert the teacher
PF-ODE into a generalized form involving free parameters, which induces a novel family of precon-
ditionings. Through theoretical analyses, we unveil the significance of the consistency gap (referring
to the gap between the teacher denoiser and the optimal student denoiser) in achieving good initial-
ization and facilitating learning. By minimizing a derived bound of the consistency gap, we can
optimize the preconditioning within our proposed family. We name the optimal preconditioning
under our principle as Analytic-Precond, as it can be analytically computed according to the teacher
model without manual design or hyperparameter tuning. Moreover, the computation is efficient with
less than 1% time cost of the training process.

We demonstrate the effectiveness of Analytic-Precond by applying it to CMs and CTMs on standard
benchmark datasets, including CIFAR-10, FFHQ 64 x64 and ImageNet 64 x64. While the vanilla
preconditioning closely approximates Analytic-Precond and yields similar results in CMs, Analytic-
Precond exhibits notable distinctions from its original counterpart in CTMs, particularly concerning
intermediate jumps on the trajectory. Remarkably, Analytic-Precond achieves 2x to 3x training
acceleration in CTMs in multi-step generation.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (Song et al.,2021c}; [Sohl-Dickstein et al.,[2015; Ho et al., [2020) transform a d-
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dimensional data distribution go (o) into Gaussian noise distribution through a forward stochastic
differential equation (SDE) starting from @y ~ qo:

de, = f(t)zdt + g(t)dw, )]

where ¢ € [0,T] for some finite horizon T, f,g : [0,7] — R is the scalar-valued drift and dif-
fusion term, and w; € R? is a standard Wiener process. The forward SDE is accompanied by
a series of marginal distributions {q;}~_, of {x;}7_,, and f, g are properly designed so that the
terminal distribution is approximately a pure Gaussian, i.e., gr(x1) ~ N(0,0%I). An intriguing
characteristic of this SDE lies in the presence of the probability flow (PF) ODE (Song et al.|[2021c)
dw, = [f(t)z — 59°(t)Va, log q¢(x¢)]dt whose solution trajectories at time ¢, when solved back-
ward from time T to time 0, are distributed exactly as g;. The only unknown term V5, log ¢+ (+) is
the score function and can be learned by denoising score matching (DSM) (Vincent, [2011).

A prevalent noise schedule f = 0,9 = /2t is proposed by EDM (Karras et al., 2022) and fol-
lowed in recent text-to-image generation (Esser et al., |2024)), video generation (Blattmann et al.,
2023)), as well as consistency distillation. In this case, the forward transition kernel of the for-
ward SDE (Eqn. (T)) owns a simple form g(z¢|xo) = N (xo,t?I), and the terminal distribution
qr ~ N(0,T7I). Besides, the PF-ODE can be represented by the denoiser function D s(x¢,t):

diEt Ly — D¢(a:t, t)

i A Al ANi 20T 2

dt t @
where the denoiser function is trained to predict &, given noisy data x; = xo + te, e ~ N (0, I) at
any time ¢, i.e., minimizing B;E,,, . (z0)q(a: [z0) (W ()| Dy (¢, t) — o ||3] for some weighting w(t).
This denoising loss is equivalent to the DSM loss (Song et al2021c). In EDM, another key insight
is to employ preconditioning by parameterizing Dy as Dy(x,t) = cuip(t)x + cou(t)Fy(zx, t)[ﬂ,
where

2
O Odatal
cskip(t) = ﬁ, Coul(t) = ﬁ, 3)
ata ata

F is a free-form neural network and agata is the variance of the data distribution.

2.2 CONSISTENCY DISTILLATION

Denote ¢ as the parameters of the teacher diffusion model, and 6 as the parameters of the student net-
work. Given a trajectory {x;}7__ with a fixed initial timestep € of a teacher PF-ODEE], consistency
models (CMs) (Song et al.,[2023) aim to learn a consistency function fy : (x¢,t) — @, which maps
the point ; at any time ¢ on the trajectory to the initial point .. The consistency function is forced
to satisfy the boundary condition fy(x,e) = x. To ensure unrestricted form and expressiveness of
the neural network, fy is parameterized as

2
ata (T —
fg ( z, t) =— O data Jddld( 6)

T+
O data + (t - 6)2 V O'gata + t?

which naturally satisfies the boundary condition for any free-form network Fy(x;,t). We refer to
this technique as preconditioning in consistency distillation, aligning with the terminology in EDM.
The student 6 can be distilled from the teacher by the training objective:

EtG[e,T],SG[E,t)EQO(:BU)q(mt|mo) [w(t)d (f@(wh t)7 .fsg(@) (SOlver¢(wt> ta S)a S))] 5 (5)

where w(-) is a positive weighting function, d(-, -) is a distance metric, sg is the (exponential moving
average) stop-gradient and Solverg is any numerical solver for the teacher PF-ODE.

Fy(x,t) “4)

Consistency trajectory models (CTMs) (Kim et al.| 2023) extend CMs by changing the map-
ping destination to not only the initial point but also any intermediate ones, enabling uncon-
strained backward jumps on the PF-ODE. Specifically, the consistency function is instead defined
as fo : (w4,t,8) — x5, which maps the point x; at time ¢ on the trajectory to the point ' at any

"More precisely, Dg(x,t) = csip(t) 2 4 cout(t) Fig(Cin(£)E, Caoise (t)). Since cin(t) and cooise (t) take effects
inside the network, we absorb them into the definition of F for simplicity.
’In EDM, the range of timesteps is typically chosen as € = 0.002, T = 80.
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previous time s < ¢. The boundary condition is fy(x,t,t) = «, which is forced by the following
preconditioning:

fol@,t,5) = 2o+ (1= 2) Do(a,t,s) ©)

where Dy (x4, 1, 5) = coip(t)® + cou(t)Fo(x, t, 5) is the student denoiser function, and Fy(x,t, s)
is a free-form network with an extra timestep input s. The student network is trained by minimizing

Eicle,1),s¢le,tjucls,t) Bao(@o)a(w: |zo)

[w(t)d (.fsg(@) (.f@(mh t, S)a S, 6)7 .fsg(@) (fsg(g)(soj-ver(i)(wta t, U), U, S), S, 6))]
(7
An important property of CTM’s precondtioning is that when s — ¢, the optimal denoiser satisfies
Dy-(x,t,s) — Dgy(x,t), i.e. the diffusion denoiser. Consequently, the DSM loss in diffusion
models can be incorporated to regularize the training of #, which enhances the sample quality as the
number of sampling steps increases, enabling speed-quality trade-off.

3 METHOD

Beyond the hand-crafted preconditionings outlined in Eqn. @) and Eqn. (6), we seek a general
paradigm of preconditioning design in consistency distillation. We first analyze their key ingredients
and relate them to the discretization of the teacher ODE. Then we derive a generalized ODE form,
which can induce a novel family of preconditionings. Finally, we propose a principled way to
analytically obtain optimized preconditioning by minimizing the consistency gap.

3.1 ANALYZING THE PRECONDITIONING IN CONSISTENCY DISTILLATION

We examine the form of consistency function fy(x,t, s) in CTMs, wherein it subsumes CMs as a
special case by setting the jumping destination s as the initial timestep €. Assume fj is parameterized
as the following form of skip connection:

So(x,t,s) = f(t,s)x + g(t,s)Dg(x,t,s) (8)

where Dy (x,t,s) = cuip(t) + cour(t) Fo (2, t, s) represents the student denoiser function in align-
ment with EDM, and f(¢, s), g(¢, s) are coefficients that linearly combine & and Dy. We identify
two essential constraints on the coefficients f and g.

Boundary Condition For any free-form network Fj or Dy, the consistency function fy must
adhere to fy(x,t,t) = @ (in-place jumping retains the original data point). Therefore, f and g
should meet the conditions f(¢,t) = 1 and ¢(t,t) = O for any time ¢.

Alignment with the Denoiser Denote the optimal consistency function that precisely follows
the teacher PF-ODE trajectory as fy«(x,t,s), and the optimal denoiser as Dy« (x,t,s) =

W according to Eqn. (8). In CTMs, f and g are properly designed so that the limit

Dy« (x,t,t) = limg_yy W = Dy(z,t). Thus, the student denoiser at s = ¢, i.e.
Dy(z,t,t), ideally aligns with the teacher denoiser D,,. This alignment offers two advantages: (1)
Dy(x,t,t) acts as a valid diffusion denoiser and is amenable to regularization with the DSM loss.
(2) The teacher model D, serves as an effective initializer of the student Dy at s = ¢, implying that

Dy solely at s < t is suboptimal and requires further optimization.

Precondionings satisfying these constraints can be derived by discretizing the teacher PF-ODE. Sup-
pose the discretization from time ¢ to time s is expressed as s = f (¢, s)x, + g(t, s) Dy (x4, t), then
f, g naturally satisfy the conditions: the discretization from ¢ to ¢ must be x; = x;; as s — t, the
discretization error tends to 0, and the optimal student for conducting infinitesimally small jumps is
just Dy (, t). For instance, applying Euler method to the PF-ODE in Eqn. (2) yields:

xt_D¢(a:tat) =
t

which exactly matches the preconditioning used in CTMs by replacing D (x;,t) with Do (¢, t, s).
Elucidating preconditioning as ODE discretization also closely approximates CMs’ choice in

Ty — @ = (5—1) €, = ;:ct n (1 _ %) Dy(ze,1) )



Published as a conference paper at ICLR 2025

Eqn. @). For t > ¢, we have t — € ~ t, therefore f, in Eqn. (@) approximately equals the denoiser
Dy. On the other hand, as % ~ 0, CTMs’ choice in Eqn. () also indicates fy ~ Dy. Therefore,
CMs’ preconditioning is only distinct from ODE discretization when ¢ is close to €, which is not the
case in one-step or few-step generation.

3.2 INDUCED PRECONDITIONING BY GENERALIZED ODE

Based on the analyses above, the preconditioning can be induced from ODE discretization. Drawing
inspirations from the dedicated ODE solvers in diffusion models (Lu et al., [2022b} Zheng et al.,
2023al), we consider a generalized representation of the teacher ODE in Eqn. (2), which can give
rise to alternative preconditionings that satisfy the restrictions.

Firstly, we modulate the ODE with a continuous function L; to transform it into an ODE with
respect to L,x,; rather than x;. Leveraging the chain rule of derivatives, we obtain % =
Lt% + %wt, where % can be substituted by the original teacher ODE, resulting in

d(Ltwt) Lt d].og Lt
—=—1(1 t - D t 10
at p It f) @ Dol t) (19)
By changing the time variable from ¢ to A\; = — log ¢, the ODE can be further simplified to
d(L;x
(d—;tt) = Ligo(®@i, 1), go(@i,t) = Dy (e, t) = (1= L)y (11)
where we denote [; = dloj;/\L ‘2 and ty, = e * is the inverse function of \;. Moreover, L; can

A
be represented by I; as L; = elar tendA Secondly, instead of using ¢ or \; as the time variable in
the ODE (i.e., formulate the ODE as % or %\'2), we can employ a generalized time representation

Ny = f /\; Ly, S, dA, where S; is any positive continuous function. This transformation ensures that
7 monotonically increases with respect to A, enabling one-to-one inverse mappings ¢, A,,. To align

. Mog, dA dlog S . .
with L;, we express S; as ef*T *x9% where we denote s; = i\ 2 Using 7; as the new time

variable, we have dn = Ly, S, d ), and the ODE in Eqn. (T)) is further generalized to
d(Lywy)  go(@e,t)
dm St

The final generalized ODE in Eqn. (12) is theoretically equivalent to the original teacher PF-ODE
in Eqn. @), albeit with a set of introduced free parameters {l;, s;}:_.. Applying the Euler method
leads to different discretizations from Eqn. (9):

12)

g(z)(wta t)

sts - tht = (778 - 77t) S
t

13)

which can be rearranged as

LS+ (I — 1) (s — me) Ns — Tt
s = D ,t 14
x 1.5, T + .5, ¢($t ) (14)

Hence, the induced preconditioning can be expressed by Eqn. () with a novel set of coefficients

ft,s) = LtStJr(lZZéi("rm),g(t, s) = “=g*. Originating from the Euler discretization of an
equivalent teacher ODE, these coefficients adhere to the constraints outlined in Section[3.Tjunder any
parameters {l;, s; } _., thus opening avenues for further optimization. The induced preconditioning
can also degenerate to CTM’s case f(t,s) = 7, g(t,s) = 1— 7 under specific selections [; = 0, s; =

—1fort € [¢,T).

3.3 PRINCIPLES FOR OPTIMIZING THE PRECONDITIONING

Derived from the generalized teacher ODE presented in Eqn. (T2)), a range of preconditionings is now
at our disposal with coefficients f, g from Eqn. (T4), governed by the free parameters {l;,s;}7_..
Our aim is to establish guiding principles for discerning the optimal sets of {l;,s;}7_., thereby
attaining superior preconditioning compared to the original one in Eqn. (6)).
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Table 1: Comparison between different preconditionings used in consistency distillation.

Method CM (Song et al.|[2023) BCM (Li & He![2024) CTM (Kim et al.|{[2023)  Analytic-Precond (Ours)
Free-f
e ne | v
Denoiser Dy(x,t) = cuip(t)x Dy(x,t,s) = cuip(t)@ + cou(t) Fy(x, 1, 5)
Function + cou(t) Fo(x,t)
Consistency  fo(x,t) = f(t,e)z fo(z,t,9) a)w So(x,t,s) = f(t,s)x
Function + g(t,€)Fy(x,t) + g(t, Q)Fg( t,s) + g(t,s)Dg(x, t, 5)
f(t,s) g‘na (Tdala +ts s LS,
' Ugala + (t - S)Z o-gala + tz t LsSs + (1 - ls)("/s - 7/t)
o(t,s) Odata(t — 5) Odata(t — ) L Mo — T
' Vo 12 N t LeSs + (1= 1) (ns — ne)

Firstly, drawing from the insights of Rosenbrock-type exponential integrators and their relevance in
diffusion models (Hochbruck & Ostermann, 2010j; Hochbruck et al.l[2009;|Zheng et al.L|2023a), it is
suggested that the parameter [; be chosen to restrict the gradient of Eqn. (12))’s right-hand side term
with respect to x;. This choice ensures the robustness of the resulting ODE against errors in ;. An
analytical solution for [, is derived as follows:

E(I(mt) [tr(vmt D¢(wtv t))]
d

where d is the data dimensionality, || - || p denotes the Frobenius norm and tr(-) represents the trace
of a matrix. Secondly, to determine the optimal value of s;, we dive deeper into the relationship
between the teacher denoiser Dy (x;,t) and the student denoiser Dy(xy,t,s). As elucidated in
Section the preconditioning is properly crafted to ensure that the optimal student denoiser sat-
isfies D+ (x4,t,t) = Dg(x¢,t). We further explore the scenario where s < ¢ by examining the
gap || Do~ (x¢, t, s) — Dy (x4, t)||2, which we refer to as the consistency gap. Minimizing this gap
extends the alignment of D and Dy- to cases where s < t, ensuring that the teacher denoiser also
serves as a good trajectory jumper. In the subsequent proposition, we derive a bound depicting the
asymptotic behavior of the consistency gap:

Iy = argmmE @) IV, go(xe, )| F] = 1 =1 — (15)

Proposition 3.1 (Bound for the Consistency Gap, proof in Appendix [A.1). Suppose there ex-

ists some constant C > 0 so that the parameters {l;,s;}1_. are bounded by |l;|,|s;| <
C, then the optimal student denoiser function Dy« under the preconditioning f(t,s) =
LtStJr(ltL:éz(ns*m)ag(t,s) = WLS_ST satisfies
t/s)3¢ — 1 dgg(z,, T
| Do~ (¢, t, 5) — Dy(x4,t)|]2 < % Ipax % — 579 (@7, T) ) (16)

The proposition conforms to the constraint D« (x4, t,t) = Dy (x;,t) when s = t. Moreover, con-

. . . . . (t/5)3—1 _ ¢3CUogt—logs) 1
sidering s in a local neighborhood of ¢, by Taylor expansion we have “~—; = =

c 3G
1+ O(logt — log s). Therefore, the consistency gap for s € (¢ — §,t), when ¢ is small, is roughly

maxs<r<t | M $:g¢(x-, T)||2. Minimizing this yields an analytic solution for s;:
T dg¢(mt,t)}
S; = argmlnEq(mt) |:HC19¢%) _ Stgqﬁ(wt,t) :| o5 = Eq(mt) g¢(mt7t) d;t (17)
dA ) Eq,) [llge(x:, 1)|3]

We term the resulting preconditioning as Analytic-Precond, as l;, s; are analytically determined by
the teacher ¢ using Eqn. and Eqn. (T7). Though I;, s; are defined over continuous timesteps, we
can compute them on hundreds of discretized ones, while obtaining reasonable estimations of their
related terms L;, S¢, ;. The computation is highly efficient utilizing automatic differentiation in
modern deep learning frameworks, requiring less than 1% of the total training time (Appendix [B.T)).

Backward Euler Method for Training Stability Despite the approximation /)1 1 hold-

; 50
(t/5)°° -1
3C

ing true in local neighborhoods of ¢, the coefficient in the bound exhibits exponential
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Figure 2: Training curves for single-step generation, and visualization of preconditionings for single-
step jump on CIFAR-10 (conditional).

behavior when % > 1. In practice, directly applying the preconditioning derived from Eqn.
may cause training instability, especially on long jumps with large step sizes. Drawing inspiration
from the stability of the backward Euler method, known for its efficacy in handling stiff equa-
tions without step size restrictions, we propose a backward rewriting of Eqn. (T4) from s to ¢
as ©; = f(s,t)a:s + §(s,t)Dy, where f,q are the original coefficients from Eqn. (T4). Rear-
1, 9(s,t)

ranging this equation yields x5 = 0% T e

_ 1 — _9(sit)
f(t?S) - f(s7t)?g(t’3) f(s,t)'

We summarize different preconditionings in Table [I| where we also included a concurrent work
called bidirectional consistency models (BCMs) (L1 & Hel [2024) which proposed an alternative
preconditioning to CTMs.

Dy, giving rise to the backward coefficients

4 RELATED WORK

Fast Diffusion Sampling Fast sampling of diffusion models can be categorized into training-free
and training-based methods. The former typically seek implicit sampling processes (Song et al.,
2021a; Zheng et al., [2024a3b)) or dedicated numerical solvers to the differential equations corre-
sponding to diffusion generation, including Heun’s methods (Karras et al., |2022), splitting numerical
methods (Wizadwongsa & Suwajanakorn, 2022), pseudo numerical methods (Liu et al., [2021)) and
exponential integrators (Zhang & Chenl [2022; Lu et al.| 2022b; Zheng et al.l|2023a;|Gonzalez et al.,
2023). They typically require around 10 steps for high-quality generation. In contrast, training-based
methods, particularly adversarial distillation (Sauer et al., 2023)) and consistency distillation (Song
et al.| 2023; Kim et al., [2023)), have gained prominence for their ability to achieve high-quality gen-
eration with just one or two steps. While adversarial distillation proves its effectiveness in one-step
generation of text-to-image diffusion models (Sauer et al.,|2024), it is theoretically less transparent
than consistency distillation due to its reliance on adversarial training. Diffusion models can also be
accelerated using quantized or sparse attention (Zhang et al., 2025a;|2024; 2025b).

Parameterization in Diffusion Models Parameterization is vital in efficient training and sampling
of diffusion models. Initially, the practice involved parameterizing a noise prediction network (Ho
et al., |2020; [Song et al. [2021c), which outperformed direct data prediction. A notable subsequent
enhancement is the introduction of ’v” prediction (Salimans & Ho, 2022)), which predicts the veloc-
ity along the diffusion trajectory, and is proven effective in applications like text-to-image generation
(Esser et al.| 2024)) and density estimation (Zheng et al.,[2023b). EDM (Karras et al., 2022)) further
advances the field by proposing a preconditioning technique that expresses the denoiser function as
a linear combination of data and network, yielding state-of-the-art sample quality alongside other
techniques. However, the parameterization in consistency distillation remains unexplored.

5 EXPERIMENTS

In this section, we demonstrate the impact of Analytic-Precond when applied to consistency distilla-
tion. Our experiments encompass various image datasets, including CIFAR-10 (Krizhevsky, |2009),
FFHQ (Karras et al.| [2019) 64 x64, and ImageNet (Deng et al., 2009) 64 x64, under both uncon-
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Figure 3: Training curves for two-step generation.

ditional and class-conditional settings. We deploy Analytic-Precond across two paradigms: con-
sistency models (CMs) (Song et al., [2023)) and consistency trajectory models (CTMs) (Kim et al.,
2023)), wherein we solely substitute the preconditioning while retaining other training procedures.
For further experiment details, please refer to Appendix

Our investigation aims to address two primary questions:

* Can Analytic-Precond yield improvements over the original preconditioning of CMs and
CTMs, across both single-step and multi-step generation?

* How does Analytic-Precond differ from prior preconditioning across datasets, concerning
the coefficients f (¢, s) and g(¢, s)?

5.1 TRAINING ACCELERATION

Effects on CMs and Single-Step CTMs We first apply Analytic-Precond to CMs, where the
consistency function fy(x;,t) is defined to map x; on the teacher ODE trajectory to the starting
point x. at fixed time e. The models are trained with the consistency loss defined in Eqn. (3) and
on the CIFAR-10 dataset, with class labels as conditions. As depicted in Figure [2| (a), we observe
that Analytic-Precond yields training curves similar to original CM, measured by FID. Since multi-
step consistency sampling in CMs only involves evaluating fy(x;,t) multiple times, the results
remain comparable even with an increase in sampling steps. Similar phenomena emerge in CTMs
with single-step generation, as illustrated in Figure [2] (b). The commonality between these two
scenarios lies in the utilization of only the jumping destination at e. To investigate further, we plot the
preconditioning coefficients f(t,¢) and g(¢,€) in CMs, CTMs and Analytic-Precond as a function
of log t, as illustrated in Figure |2| (c). It is evident that across varying ¢, different preconditioning
coefficients f and g exhibit negligible discrepancies when s is fixed to €. This elucidates the rationale
behind the comparable performance, suggesting that the original preconditionings for ¢ — € are
already quite optimal with minimal room for further optimization.

Effects on Two-Step CTMs We further track sample quality during the training process on CTMs,
particularly focusing on two-step generation where an intermediate jump is involved (T" — ty — €).
The models are training with both the consistency trajectory loss in Eqn. and the denoising
score matching (DSM) loss ¢, (zo)q(ae o) [0 () [ Do (s, t,t) — xol|3], following CTMﬂ As
shown in Figure [3] across diverse datasets, Analytic-Precond enjoys superior initialization and up
to 3x training acceleration compared to CTM’s preconditioning. This observation indicates the
suboptimality of the original intermediate trajectory jumps ¢ — s > ¢. We provided the generated
samples in Appendix [C|

5.2 GENERATION WITH MORE STEPS

Apart from the superiority of CTMs over CMs in single-step generation (Figure [2), another notable
advantage of CTMs is the regularization effects of the DSM loss. This ensures that Dy(x;,t,t)
functions as a valid denoiser in diffusion models, facilitating sample quality enhancement with ad-
ditional sampling steps. To evaluate the effectiveness of Analytic-Precond with more steps, we

3CTM:s also propose to combine the GAN loss for further enhancing quality, which we will discuss later.
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Figure 4: Visualizations of the preconditioning coefficient g(t,s) for CTM, and for Analytic-
Precond under different datasets.

Table 2: FID results in multi-step generation with different number of function evaluations (NFEs).

| NFE
FID ‘ 2 3 5 8 10 ‘ 2 3 5 8 10
| CIFAR-10 (Unconditional) | CIFAR-10 (Conditional)
CTM 3.83 358 343 333 322|300 282 259 267 256
CTM +Ouwurs | 3.77 354 338 330 325|292 275 262 260 265
\ FFHQ 64 x 64 (Unconditional) \ ImageNet 256 x 256 (Conditional)
CT™M 596 580 553 539 523|595 6.16 543 544 598
CTM +Ours | 571 556 547 531 512|573 567 534 543 570

employ the deterministic procedure in CTMs, which employs the consistency function to jump on
consecutively decreasing timesteps from 7" to e. As shown in Table 2] Analytic-Precond brings
consistent improvement over CTMs as the number of steps increases, indicating better alignment
between the consistency function and the denoiser function.

—:= CTM (NFE=1)
—— CTM (NFE=2)

o
o

5.3 ANALYSES AND DISCUSSIONS

o
°

w

Visualizations To intuitively understand the distinctions between
Analytic-Precond and the original preconditioning in CTMs, we

\\ ~—-= CTM + BCM (NFE=1)
1 \ CTM + BCM (NFE=2)
el
investigate the variations in coefficients f(t,s), g(t,s). We find

that Analytic-Precond yields f (¢, s) close to that of CTMs, denoted ] \—\\’\

as fC™(t, s), with |fS™(¢,5) — f(t,s)| < 0.03 across various t e
and s. However, g(t, s) produced by Analytic-Precond tends to be Training iterations (10000

smaller, with disparities of up to 0.25 compared to g™ (¢, s). This
distinction is visually demonstrated in Figure [d] where we depict
g(t, s) as a binary function of log ¢t and log s. Notably, the distinc-
tion is more pronounced for short jumps ¢ — s where |t — s|/t is small.

FID-50k
)

e o
o o

[y
°

Figure 5: Effects of BCM’s pre-
conditioning on CTMs.

Comparison to BCMSs In a concurrent work called bidirectional consistency models (BCMs)
2024), a novel preconditioning is derived from EDM’s first principle (specified in Table [I)).
BCM'’s preconditioning also accommodates flexible transitions from ¢ to s along the trajectory.
However, as shown in Figure [3] replacing CTM’s preconditioning with BCM’s fails to bring im-
provements in both one-step and two-step generation.

Compatibility with GAN loss CTMs introduce GAN loss to fur-

3.2 —:= CTM + GAN (NFE=1)

ther enhance the one-step generation quality, employing a discrim- —— CTM + GAN (NFE-2)
. . . . . . . 3.0 ~+= CTM + GAN + Ours (NFE=1)
inator and adopting an alternative optimization approach akin to —— CTM + GAN + Ours (NFE=2)

GANs. As shown in Figure [6] when GAN loss is incorporated
on CIFAR-10, Analytic-Precond demonstrates comparable perfor-
mance. However, in this scenario, the consistency function no
longer faithfully adheres to the teacher ODE trajectory, and one-
step generation is even better than two-step, deviating from our

theoretical foundations. Nevertheless, the utilization of Analytic- * " trning terations 10000
Precond does not lead to performance degradation.

FID-50k
»
o

Figure 6: Effects of Analytic-
Precond with GAN loss.
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Figure 7: Visualizations of the trajectory alignment, comparing teacher and 3-step student.

Enhancement of the Trajectory Alignment We observe that our method also leads to lower mean
square error (MSE) in the multi-step generation of CTM, when compared to the teacher diffusion
model under the same initial noise, indicating enhanced fidelity to the teacher’s trajectory. To better
illustrate the effect of Analytic-Precond in improving trajectory alignment, we adopt a toy example
where the data distribution is a simple 1-D Gaussian mixture %J\/’ (=2, 1)+ %J\/’ (1,0.25). In this case,
we can analytically derive the optimal denoiser and visualize the ground-truth teacher trajectory. We
initialize the consistency function with the optimal denoiser and apply different preconditionings.
As shown in Figure [/| our preconditioning produces few-step trajectories that better align with the
teacher’s and yields a more accurate final distribution.

6 CONCLUSION

In this work, we elucidate the design criteria of the preconditioning in consistency distillation for
the first time and propose a novel and principled preconditioning that accelerates the training of
CTMs in multi-step generation by 2x to 3x. The crux of our approach lies in our theoretical in-
sights, connecting preconditioning to ODE discretization, and emphasizing the alignment between
the consistency function and the denoiser function. Minimizing the consistency gap fosters coor-
dination between the consistency loss and the denoising score-matching loss, thereby facilitating
speed-quality trade-offs. Our method provides the first guidelines for designing improved trajectory
jumpers on the diffusion ODE, with potential applications in other types of ODE trajectories such
as the dynamics of control systems or robotic path planning.

Limitations and Broader Impact Despite notable training acceleration in multi-step generation,
the final FID improvement is relatively insignificant. Besides, Analytic-Precond fails to differ from
previous preconditionings on long jumps, resulting in comparable performance in single-step gen-
eration. Achieving accelerated distillation in generative modeling may also raise concerns about
the potential misuse for generating fake and malicious media content. Furthermore, it may amplify
undesirable social bias that could already exist in the training dataset.
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A PROOFS

A.1 PROOF OF PROPOSITION[3.1]

Proof. Denote {z,}!__ as data points on the same teacher ODE trajectory. The generalized ODE
in Eqn. (TI2) can be reformulated as an integral:

ns
Lz, — Lix; = / h¢(:ctkn,t,\n)d77 (18)

Mt

where hy (¢, t) = %:’t), and g, is defined by the teacher denoiser D, in Eqn. (TT)). On the other

hand, by replacing the teacher denoiser D with the student denoiser Dy in the Euler discretization
(Eqn. (13)), the optimal student 6* should satisfy

Lixs — Lixy = (ns — 1¢)ho- (T4, 1, 5) (19)
where hg, gg are defined similarly to hy, g4 as

Ty, 1,8
he(wtatvs) = Msti)? g@(xt»t7s) = D0(wt7tvs) - (1 - lt)wt (20)
t

Combining the above equations, we have

DG* (mtat7 S) - D¢(xt7t) = St(h’g* (mhta 5) - h¢(wt7t))

L — L
:&<:wsﬁw_hdmiﬁ

s — Q1)
S, ns
= hg (wh" ) t/\n) — hy(x, t)dn
s =Mt S,
According to the mean value theorem, there exists some 7 € [, ty, ] satisfying
dhy(z,,7)
Io(ets, tn,) = hola )l < (- ) | 2442 )
o 2
Besides, the derivative % can be calculated as
dhy(xr,7)  dhy(x,,7) 1
dn, N dA,  dn./d)\;
(1 dge(x-,7) dlogS: gy(x-,T) 1
—\S T a, S, .S, (23)
d T, T
99D g gy, 7)
L.S?
where we have used % = s, and SZ* = L, S,. Therefore,
S dgs(z, 7) T —m
Dy - D < —_
D5 s t,9) = Dol < = mas | 40T oot )| [
dgy(z-,7) As Ly, S, S
< IO\ T 2N 2 N
Smex Ty, el )| | T
(24
Since we assumed |/, |s;| < ¢, according to 7 € [t, t,], we have
L XA S, S,
L—t: — P A < A7), Si: < efA=A) S{ < AT (25)
Therefore,
As As 3c(As—A¢) _ 3¢ _
Ly, 5t, 5t / Be(A-A e 1 (t/s)* -1
2 etda < cAAIdN = = 26
/At .52 =), ¢ 3c 3¢ (20)
Substituting Eqn. in Eqn. completes the proof. O
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Table 3: Experimental configurations.

Configuration CIFAR-10 FFHQ 64x64 ImageNet 64 x64
Uncond Cond Uncond Cond
Learning rate 0.0004  0.0004 0.0004 0.0004
Student’s stop-grad EMA parameter  0.999 0.999 0.999 0.999
N 18 18 18 40
ODE solver Heun Heun Heun Heun
Max. ODE steps 17 17 17 20
EMA decay rate 0.999 0.999 0.999 0.999
Training iterations 200K 150K 150K 60K
Mixed-Precision (FP16) True True True True
Batch size 256 512 256 2048
Number of GPUs 4 8 8 32
Training Time (A800 Hours) 490 735 900 6400

B EXPERIMENT DETAILS

B.1 COEFFICIENTS COMPUTING

At every time ¢, the parameters /; and s; can be directly computed according to Eqn. (I3) and
Eqn. (I7), relying solely on the teacher denoiser model D. The computation of /; involves evaluat-
ing tr(Vg, Dg(x¢, t)), which is the trace of a Jacobian matrix. Utilizing Hutchinson’s trace estima-

tor, it can be unbiasedly estimated as % Zﬁrzl v Vg, Dy(x¢, t)v, where v obeys a d-dimensional
distribution with zero mean and unit covariance. Thus, only the Jacobian-vector product (JVP)
D, (x,t)v is required, achievable in O(d) computational cost via automatic differentiation. Once
l; is obtained, the function gy (x:,t) = Dg(x¢,t) — (1 — l;)x; is determined. The computation of

s¢ involves evaluating %ﬁ“t), which expands as follows:
dge(xs,t dDg(x¢,t dl dz
gg (@ ): o (@ )+—twt—(1—lt)—t
dX: dA: dA dX

27
dD¢ (act, t) dlt
=———74+ —x:— (1 -1;)(D t) —
d)\t + d)\twt ( t)( d’(mt’ ) xt)
dD¢(mt,t)
dx,
For the CIFAR-10 and FFHQ 64 x 64 datasets, we compute [; and s, across 120 discrete timesteps
uniformly distributed in log space, with 4096 samples used to estimate the expectation E(,,). For
ImageNet 64 x64, computations are performed across 160 discretized timesteps following EDM’s

scheduling (£ %(tlln/ifl — t5/£.))P, using 1024 samples to estimate the expectation Eq(x,)- The
total computation times for CIFAR-10, FFHQ 64 x64, and ImageNet 64 x64 on 8 NVIDIA A800

GPU cards are approximately 38 minutes, 54 minutes, and 38 minutes, respectively.

where can also be calculated in O(d) time by by automatic differentiation.

B.2 TRAINING DETAILS

Throughout the experiments, we follow the training procedures of CTMs. The teacher mod-
els are the pretrained diffusion models on the corresponding dataset, provided by EDM. The
network architecture of the student models mirrors that of their respective teachers, with the
addition of a time-conditioning variable s as input. Training of the student models involves
minimizing the consistency loss outlined in Eqn. [/| and the denoising score matching loss
BB e (o) (e o) [0 () | Do (4, t,t) — @ol|3]. For the consistency loss, we use LPIPS (Zhang
et al., 2018)) as the distance metric d(-,-), which is also the choice of CMs. ¢ and s in the con-
sistency loss are chosen from N discretized timesteps determined by EDM’s scheduling (tﬁ]/zfx

%(tlln/ifl — t%n/éjx))f’ . The Heun sampler in EDM is employed as the solver in Eqn. [7| The number
of sampling steps, determined by the gap between ¢ and s, is restricted to avoid excessive training
time. For CIFAR-10 and FFHQ 64 x64, we select N = 18 and the maximum number of sampling
steps as 17, i.e., not restricting the range of jumping from ¢ to s. For ImageNet 64x64, we set
N = 40 and the maximum number of sampling steps to 20, so that the jumping range is at most half
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of the trajectory length. sg(6) in Eqn.[7|is an exponential moving average stop-gradient version of
0, updated by

sg(f) = stop—gradient(usg(f) + (1 — p)d) (28)
We follow the hyperparameters used in EDM, setting o, = € = 0.002, oppax = T = 80.0, 0gata =
0.5 and p = 7. The training configurations are summarized in Table[3]

We run the experiments on a cluster of NVIDIA A800 GPU cards. For CIFAR-10 (unconditional),
we train the model with a batch size of 256 for 200K iterations, which takes 5 days on 4 GPU
cards. For CIFAR-10 (conditional), we train the model with a batch size of 512 for 150K iterations,
which takes 4 days on 8 GPU cards. For FFHQ 64 x 64 (unconditional), we train the model with a
batch size of 256 for 150K iterations, which takes 5 days on 8 GPU cards. For ImageNet 64 x 64
(conditional), we train the model with a batch size of 2048 for 60K iterations, which takes 8 days on
32 GPU cards.

B.3 EVALUATION DETAILS

For single-step as well as multi-step sampling of CTMs, we utilize their deterministic sampling
procedure by jumping along a set of discrete timesteps T = tg — t1 — ...tny—1 — tn = €

with the consistency function, formulated as the updating rule @;, = fo(x:,_,,tn—1,tn). The
timesteps {ti}f\io are distributed according to EDM’s scheduling (trln/a{)x ﬁ(ti{lﬁ — t%n/zfx))p , where

tmin = € tmax = 1. We generate S0K random samples with the same seed and report the FID on
them.

B.4 LICENSE

Table 4: The used datasets, codes and their licenses.

Name URL Citation License

CIFAR-10 https://www.cs.toronto.edu/~kriz/cifar.html (Krizhevsky et al.|[2009) \

FFHQ https://github.com/NVlabs/ffhg-dataset (Karras et al.[[2019) CCBY-NC-SA 4.0
ImageNet https://www.image-net.org (Deng et al.|2009)

EDM https://github.com/NVlabs/edm (Karras et al.[[2022) CC BY-NC-SA 4.0
CM https://github.com/openai/consistency_models_cifarl0| (Song et al.|2023) Apache-2.0

CTM https://github.com/sony/ctm (Kim et al.|[2023) MIT

We list the used datasets, codes and their licenses in Table

C ADDITIONAL SAMPLES
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(g) CTM (ImageNet 64 x 64, Cond) (h) CTM + Ours (ImageNet 64 x 64, Cond)

Figure 8: Random samples produced by CTM and CTM + Analytic-Precond (Ours) with NFE=2.
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