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ABSTRACT

Unsupervised domain translation (UDT) aims to find functions that convert sam-
ples from one domain (e.g., sketches) to another domain (e.g., photos) without
changing the high-level semantic meaning (also referred to as “content”). The
translation functions are often sought by probability distribution matching of the
transformed source domain and target domain. CycleGAN stands as arguably the
most representative approach among this line of work. However, it was noticed in
the literature that CycleGAN and variants could fail to identify the desired transla-
tion functions and produce content-misaligned translations. This limitation arises
due to the presence of multiple translation functions—referred to as “measure-
preserving automorphism” (MPA)—in the solution space of the learning crite-
ria. Despite awareness of such identifiability issues, solutions have remained elu-
sive. This study delves into the core identifiability inquiry and introduces an MPA
elimination theory. Our analysis shows that MPA is unlikely to exist, if multiple
pairs of diverse cross-domain conditional distributions are matched by the learn-
ing function. Our theory leads to a UDT learner using distribution matching over
auxiliary variable-induced subsets of the domains—other than over the entire data
domains as in the classical approaches. The proposed framework is the first to
rigorously establish translation identifiability under reasonable UDT settings, to
our best knowledge. Experiments corroborate with our theoretical claims.

1 INTRODUCTION

Domain translation (DT) aims to convert data samples from one feature domain to another, while
keeping the key content information. DT naturally arises in many applications, e.g., transfer learning
(Zhuang et al., 2020), domain adaptation (Ganin et al., 2016; Courty et al., 2017), and cross-domain
retrieval (Huang et al., 2015). Among them, a premier application is image-to-image (I2I) translation
(e.g., profile photo to cartonized emoji and satellite images to street map plots (Isola et al., 2017)).
Supervised domain translation (SDT) relies on paired data from the source and target domains.
There, the translation functions are learned via matching the sample pairs.

Nonetheless, paired data are not always available. In unsupervised domain translation (UDT), the
arguably most widely adopted idea is to find neural transformation functions that perform probability
distribution matching of the domains. The idea emerged in the literature in early works, e.g., (Liu
& Tuzel, 2016; Taigman et al., 2017; Kim et al., 2017). High-resolution image translation using
distribution matching was later realized by the seminal work, namely, CycleGAN (Zhu et al., 2017).
CycleGAN learns a pair of transformations that are inverse of each other. One of transformations
maps the source domain to match the distribution of the target domain, and the other transformation
does the opposite. The distribution matching part is realized by the generative adversarial network
(GAN) (Goodfellow et al., 2014). Using GAN-based distribution matching for UDT has attracted
much attention—many follow-up works emerged; see the survey (Pang et al., 2021).

∗Source code is available at https://github.com/XiaoFuLab/Identifiable-UDT.git
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Challenge - Lack of Translation Identifiability. While UDT approaches have demonstrated signif-
icant empirical success, the theoretical question of translation identifiability has received relatively
limited attention. Recent works (Galanti et al., 2018b;a; Moriakov et al., 2020; Galanti et al., 2021)
pointed out failure cases of CycleGAN (e.g., content-misaligned translations like those in Fig. 1)
largely attribute to the lack of translation identifiability. That is, translation functions in the solu-
tion space of CycleGAN (or any distribution matching-based learners) is non-unique, due to the
existence of measure-preserving automorphism (MPA) (Moriakov et al., 2020) (the same concept
was called density-preserving mappings in (Galanti et al., 2018b;a)). MPA can “swap” the cross-
domain sample correspondences without changing the data distribution—which is likely the main
source of producing content misaligned samples after translation as seen in Fig. 1. Many efforts
were made to empirically enhance the performance of UDT, via implicitly or explicitly promoting
solution uniqueness of their loss functions (Liu et al., 2017; Courty et al., 2017; Xu et al., 2022;
Yang et al., 2023). A number of notable works approached the identifiability/uniqueness challenge
by assuming that the desired translation functions have simple (e.g., linear (Gulrajani & Hashimoto,
2022)) or specific structures (de Bézenac et al., 2021). However, translation identifiability without
using such restrictive structural assumptions have remained elusive.

Contributions. In this work, we revisit distribution matching-based UDT. Our contribution lies in
both identifiability theory and implementation:

Source Target CycleGAN UNIT MUNIT

Figure 1: Lack of translation identifi-
ability often leads to content misalign-
ment in distribution matching based
UDT methods, e.g., CycleGAN (Zhu
et al., 2017), MUNIT(Huang et al.,
2018), and UNIT (Liu et al., 2017).
Source domain: MNIST Digits. Target
Domain: Rotated Display of MNIST.

• Theory Development: Establishing Translation
Identifiability. We delve into the core theoretical chal-
lenge regarding identifiability of the translation functions.
As mentioned, the solution space of existing distribution
matching criteria could be easily affected by MPA. How-
ever, our analysis shows that the chance of having MPA
decreases quickly when the translation function aligns
more than one pair of diverse distributions. This insight
allows us to come up a sufficient condition, namely, the
sufficiently diverse condition (SDC), to establish transla-
tion identifiability of UDT. To our best knowledge, our
result stands as the first UDT identifiability theory with-
out using simplified structural assumptions.

• Simple Implementation via Auxiliary Variables. Our theoretical revelation naturally gives rise
to a novel UDT learning criterion. This criterion aligns multiple pairs of conditional distributions
across the source and target domains. We define these conditional distributions over (overlapping)
sub-domaions of the source/target domains using auxiliary variables. We demonstrate that in prac-
tical applications such as unpaired I2I translation, obtaining these sub-domains can be a straight-
forward task, e.g., through available side information or querying the foundation models like CLIP
(Radford et al., 2021). Consequently, our identification theory can be readily put into practice.

Notation. The full list of notations is in the supplementary material. Notably, we use Px and
Px|u to denote the probability measures of x and x conditioned on u, respectively. We denote
the corresponding probability density function (PDF) of x by p(x). For a measurable function
f : X → Y and a distribution Px defined over space X , the notation f#Px denotes the push-forward
measure; that is, for any measurable set A ⊆ Y , f#Px [A] = Px[f

preimg(A)], where fpreimg(A) =
{x ∈ X | f(x) ∈ A}. Simply speaking, f#Px denotes the distribution of f(x) where x ∼ Px. The
notation f#Px = Py means that the PDFs of f(x) and y are identical almost everywhere (a.e.).

2 PRELIMINARIES

Considers two data domains (e.g., photos and sketches). The samples from the two domains are
represented by x ∈ X ⊆ RDx and y ∈ Y ⊆ RDy . We make the following assumption:

Assumption 1. For every x ∈ X , it has a corresponding y ∈ Y , and vice versa. In addition, there
exist deterministic continuous functions f⋆ : Y → X and g⋆ : X → Y that link the corresponding
pairs; i.e.,

f⋆(y) = x, g⋆(x) = y, ∀ corresponding pair (x,y). (1)
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In the context of domain translation, a linked (x,y) pair can be regarded as cross-domain data
samples that represent the same “content”, and the translation functions (f⋆, g⋆) are responsible
for changing their “appearances/styles”. The term “content” refers to the semantic information to
be kept across domains after translation. In Fig. 1, the content is the identity of the digit ( other
than writing style or the rotation); in Fig. 4 of Sec. 3, the content can be understood as the shared
characteristics of the person in both the cartoon and the photo domains, which can collectively
identify the person.

Note that in the above setting, the goal is to find two ground-truth translation functions where one
function’s source is the other’s target. Hence, both X and Y can serve as the source/target domains.
In addition, the above also implies f⋆ = (g⋆)−1, i.e., the ground-truth translation functions are
invertible. Under this setting, if one can identify g⋆ and f⋆, then the samples in one domain can be
translated to the other domain—while not changing the content. Note that Assumption 1 means that
there is one-to-one correspondence between samples in the two domains, which can be a somewhat
stringent condition in some cases. However, as we will explain in detail later, many UDT works,
e.g., CycleGAN (Zhu et al., 2017) and variants (Liu et al., 2017; Kim et al., 2017; Choi et al., 2018;
Park et al., 2020), essentially used the model in Assumption 1 to attain quite interesting empirical
results. This makes it a useful model and intrigues us to understand its underlying properties.

Supervised Domain Translation (SDT). In SDT, the corresponding pairs (x,y) are assumed to be
aligned a priori. Then, learning a translation function is essentially a regression problem—e.g., via
finding g (or f ) such that D(g(x)||y) (or D(f(y)||x)) is minimized over all given pairs, where
D(·||·) is a certain “distance” measure; see, e.g., (Isola et al., 2017; Wang et al., 2018).

Unsupervised Domain Translation (UDT). In UDT, samples from the two domains are acquired
separately without alignment. Hence, sample-level matching as often done in SDT is not viable.
Instead, UDT is often formulated as a probability distribution matching problem (see, e.g., (Zhu
et al., 2017; Taigman et al., 2017; Kim et al., 2020; Park et al., 2020))—as distribution matching
can be attained without using sample-level correspondences. Assume that x and y are the random
vectors that represent the data from the X -domain and the Y-domain, respectively. Then, the desired
f⋆ and g⋆ are sought via finding f and g such that

Py = g#Px and Px = f#Py . (2)

The hope is that distribution matching can work as a surrogate of sample-level matching as in SDT.
The arguably most representative work in UDT is CycleGAN (Zhu et al., 2017). The CycleGAN
loss function is as follows:

min
f ,g

max
dx,dy

LGAN(g,dy,x,y) + LGAN(f ,dx,x,y) + λLcyc(g,f), (3)

where dx and dy represent two discriminators in domains X and Y , respectively,

LGAN(g,dy,x,y) = Ey∼Py [logdy(y)] + Ex∼Px [log(1− dy(g(x)))], (4)

LGAN(f ,dx,x,y) is defined in the same way, and the cycle-consistency term is defined as

Lcyc(g,f) = Ex∼Px [∥f(g(x))− x∥1] + Ey∼Py [∥g(f(y))− y∥1] . (5)

The minimax optimization of the LGAN terms enforces g#Px = Py and f#Py = Px. The Lcyc

term encourages f = g−1. CycleGAN showed the power of distribution matching in UDT and has
triggered a lot of interests in I2I translation. Many variants of CycleGAN were also proposed to
improve the performance; see the survey (Pang et al., 2021).

Lack of Translation Identifiability, MPA and Content Misalignment. Many works have noticed
that distribution matching-type learning criterion may suffer from the lack of translation identifia-
bility (Liu et al., 2017; Moriakov et al., 2020; Galanti et al., 2018b; 2021; Xu et al., 2022); i.e., the
solution space of these criteria could have multiple solutions, and thus lack the ability to recover
the ground-truth g⋆ and f⋆. The lack of identifiability often leads to issues such as content mis-
alignment as we saw in Fig. 1. To understand the identifiability challenge, let us formally define
identifiability of any bi-directional UDT learning criterion:

Definition 1. (Identifiability) Under the setting of Assumption 1, assume that (f̂ , ĝ) is any optimal
solution of a UDT learning criterion. Then, identifiability of (f⋆, g⋆) holds under the UDT learning
criterion if and only if f̂ = f⋆ and ĝ = g⋆ a.e.
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Notice that we used the optimal solution in the definition. This is because identifiability is a char-
acterization of the “kernel space” (which contains all the zero-loss solutions) of a learning criterion
(Moriakov et al., 2020; Fu et al., 2019). In other words, when a UDT criterion admits translation
identifiability, it indicates that the criterion provides a valid objective for the learning task—but
identifiability is not related to the optimization procedure. We will also use the following:
Definition 2. (MPA) A measure-preserving automorphism (MPA) of Px is a continuous function
h : X → X such that Px = h#Px .

Simply speaking, MPA defined in this work is the continuous transformation h(x) whose output
has the same PDF as p(x). Take the one-dimensional Gaussian distribution x ∼ N (µ, σ2) as an
example. The MPA of N (µ, σ2) is h(x) = −x + 2µ. A recent work (Moriakov et al., 2020)
suggested that non-identifiability of the desired translation functions by CycleGAN is caused by the
existence of MPA. Their finding can be summarized in the following Fact:
Fact 1. If MPA of Px or Py exists, then CycleGAN and any criterion using distribution matching in
(2) do not have identifiability of f⋆ and g⋆.

Proof: It is straightforward to see that Py = g⋆
#Px

and Px = f⋆
#Py

. In addition, f⋆ and g⋆

are invertible. Hence, the ground truth (f⋆, g⋆) is an optimal solution of CycleGAN that makes
the loss in (3) equal to zero. However, due to the existence MPA, one can see that f̂ = h ◦
f⋆ can also attain Px = f̂#Py . This is because we have f̂#Py = h ◦ f⋆

#Py
= h#Px = Px.

desired

MPA 
transformed

Figure 2: Illustration of of the lack of iden-
tifiability and MPA-induced content misalign-

ment; “
(d)
===” means distribution matching.

No unified MPA

Figure 3: A unified MPA is harder to exist for
a group of distributions.

Plus, as h ◦ f⋆ is still invertible, f̂ still makes the
cycle-consistency loss zero. Hence, the solution of
CycleGAN is not unique and this loses identifiabil-
ity of the ground truth translation functions. □

The existence of MPA in the solution space of the
UDT learning losses may be detrimental in terms
of avoiding content misalignment. To see this, con-
sider the example in Fig. 2. There, Px = N (µ, σ2)
and h(x) = −x + 2µ is an MPA of Px, as men-
tioned. Note that f̂ = h ◦ f⋆ can be an opti-
mal solution found by CycleGAN. However, such
an f̂ can cause misalignment. To explain, assume
x = a and y = b are associated with the same
entity, which means that a = f⋆(b) represents
the ground-truth alignment and translation. How-
ever, as p(−a+ 2µ) = p(h(a)) = p(h ◦ f⋆(b)) =

p(f̂(b)), the learned function f̂ wrongly translates
y = b to x = −a+ 2µ.

Our Gaussian example seems to be special as it has
symmetry about its mean. However, the existence
of MPA is not unusual. To see this, we show the
following result:
Proposition 1. Suppose that Px admits a contin-
uous PDF, p(x) and p(x) > 0,∀x ∈ X . Assume
that X is simply connected. Then, there exists a
continuous non-trivial (non-identity) h(·) such that
h#Px = Px.

Note that there are similar results in (Moriakov et al., 2020) regarding the existence of MPA, but
more assumptions were made in their proof. The universal existence of MPA attests to the challeng-
ing nature of establishing translation identfiability in UDT.

3 IDENTIFIABLE UDT VIA DIVERSIFIED DISTRIBUTION MATCHING

Intuition - Exploiting Diversity of Distributions. Our idea starts with the following observation:
If two distributions have different PDFs, a shared MPA is unlikely to exist. Fig. 3 illustrates the
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intuition. Consider two Gaussian distributions x1 ∼ N (µ1, 1) and x2 ∼ N (µ2, 1) with µ1 ̸= µ2.
For each of them, h(x) = −x + 2µi for i = 1, 2 is an MPA. However, there is not a function that
can serve as a unified MPA to attain h#Px1

= Px1
& h#Px2

= Px2
simultaneously. Intuitively, the

diversity of the PDFs of x1 and x2 has made finding a unified MPA h(·) difficult. This suggests that
instead of matching the distributions of x and f(y) and those of y and g(x), it may be beneficial to
match the distributions of more variable pairs whose probability measures are diverse.

Auxiliary Variable-Assisted Distribution Diversification. In applications, the corresponding sam-
ples x,y often share some aspects/traits. For example, in Fig. 4, the corresponding x and y both
have dark hair or the same gender. If we model a collection of such traits as different realizations of
discrete random variable u, the alphabet of u, denoted as {u1, . . . , uI} represents these traits. We
should emphasize that the traits is a result of the desired content invariance across domains, but need
not to represent the whole content.

To proceed, we observe that the conditional distributions Px|u=ui
and Py|u=ui

satisfy
Px|u=ui

= f⋆
#Py|u=ui

, Py|u=ui
= g⋆

#Px|u=ui
, ∀i. The above holds since x and y have a de-

terministic relation and because the trait ui is shared by the content-aligned pairs (x,y).

In practice, u can take various forms. In I2I translation, one may use image categories or labels,
if available, to serve as u. Note that knowing the image categories does not mean the samples
from the two domains are aligned, as each category could contain a large amount of samples. In
addition, one can use sample attributes (such as hair color, gender as in Fig. 4) to serve as u, if
these attributes are not meant to be changed in the considered translation tasks. If not immediately
available, these attributes can be annotated by open-sourced AI models, e.g., CLIP (Radford et al.,
2021); see detailed implementation in the supplementary material. A similar idea of using CLIP to
acquire auxiliary information was explored in (Gabbay et al., 2021).

Figure 4: Examples of ui.

By Proposition 1, it is almost certain that Px|u=ui
has an

MPA hi for all i ∈ [I]. However, it is likely that hi ̸=
hj if Px|u=ui

and Px|u=uj
are sufficiently different. As

a consequence, similar to what we saw in Fig. 3, if one
looks for f that does simultaneous matching of

Px|u=ui
= f#Py|u=ui

, ∀i ∈ [I], (6)

it is more possible that f = f⋆ instead of having other
solutions—this leads to identfiiability of f⋆.

Proposed Loss Function. We propose to match multiple
distribution pairs (Px|ui

,f#Py|ui
) (as well as (Py|ui

, g#Px|ui
)) for i = 1, . . . , I . For each pair, we

use discriminator d(i)
x : X → [0, 1] (and d

(i)
y : Y → [0, 1] in reverse direction). Then, our loss

function is as follows:

min
f ,g

max
{d(i)

x ,d
(i)
y }

I∑

i=1

(
LGAN(g,d

(i)
y ,x,y) + LGAN(f ,d

(i)
x ,x,y)

)
+ λLcyc(g,f), (7)

where we have

LGAN

(
g,d(i)

y ,x,y
)
= Pr(u = ui)

(
Ey∼Py|u=ui

[
logd(i)

y (y)
]
+ Ex∼Px|u=ui

[
log

(
1− d(i)

y (g(x))
)])

.

Note that x ∼ Px|ui
represents samples that share the same characteristic defined by ui (e.g., hair

color, eye color, gender). This means that the loss function matches a suite of distributions defined
over (potentially overlapping) subdomains over the entire domain X and Y . We should emphasize
that the auxiliary variable is only needed in the training stage, but not the testing stage.

We call the proposed method diversified distribution matching for unsupervised domain translation
(DIMENSION) 1. The following lemma shows that DIMENSION exactly realizes our idea in (6):

Lemma 1. Assume that an optimal solution of (7) is (f̂ , ĝ, {d̂(i)
x , d̂

(i)
y }). Then, under Assumption 1,

we have Px|u=ui
= f̂#Py|u=ui

, Py|u=ui
= ĝ#Px|u=ui

, ∀i ∈ [I], and f̂ = ĝ−1, a.e.

1Note that we still use the term “unsupervised” despite the need of auxiliary information—as no paired
samples are required. We avoided using “semi-supervised” or “weakly supervised” as these are often reserved
for methods using some paired samples; see, e.g., (Wang et al., 2020; Mustafa & Mantiuk, 2020).
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Identfiiability Characterization. Lemma 1 means that solving the DIMENSION loss leads to con-
ditional distribution matching as we hoped for in (6). Hower, it does not guarantee that (f̂ , ĝ)
found by DIMENSION satisfies f̂ = f⋆ and ĝ = g⋆. Towards establishing identifiability of the
ground-truth translation functions via DIMENSION, we will use the following definition:

Definition 3 (Admissible MPA). Given auxiliary variable u, the function h(·) is said to be an
admissible MPA of {Px|u=ui

}Ii=1 if and only if Px|u=ui
= h#Px|u=ui

,∀i ∈ [I].

Now, due to the deterministic relationship between the pair x and y, we have the following fact:

Fact 2. Suppose that Assumption 1 holds. Then, there exists an admissible MPA of {Px|u=ui
}Ii=1 if

and only if there exists an admissible MPA of {Py|u=ui
}Ii=1.

The above means that if we establish that there is no admissible MPA of the {Px|u=ui
}Ii=1, it suffices

to conclude that there is no admissible MPA of {Py|u=ui
}Ii=1}.

Figure 5: Conditional PDFs
p(x|u = u1) and p(x|u = u2) that
satisfy the SDC.

Figure 6: Illustration of relaxed
SDC (r-SDC).

As described before, to ensure identifiability of the transla-
tion functions via solving the DIMENSION loss, we hope
the conditional distributions Px|u=ui

and Py|u=ui
to be suf-

ficiently different. We formalize this requirement in the fol-
lowing definition:

Definition 4 (Sufficiently Diverse Condition (SDC)). For
any two disjoint sets A,B ⊂ X , where A and B are
connected, open, and non-empty, there exists a u(A,B) ∈
{u1, . . . , uI} such that Px|u=u(A,B)

[A] ̸= Px|u=u(A,B)
[B].

Then, the set of conditional distributions {Px|u=ui
}Ii=1 is

called sufficiently diverse.

Definition 4 puts the desired “diversity” into context. It is
important to note that the SDC only requires the existence of
a certain u(A,B) ∈ {u1, . . . , uI} for a given disjoint set pair
(A,B). It does not require a unified u for all pairs; i.e., u(A,B)

needs not to be the same as u(A′,B′) for (A,B) ̸= (A′,B′).
Fig. 5 shows a simple example where the two conditional
distributions satisfy the SDC. In more general cases, this im-
plies that if the PDFs of the conditional distributions exhibit
different “shapes” over their supports, SDC is likely to hold. Using SDC, we show the following
translation identifiability result:

Theorem 1 (Identifiability). Suppose that Assumption 1 holds. Let Ei,j denote the event that the
pair (Px|u=ui

,Px|u=uj
) does not satisfy the SDC. Assume that Pr[Ei,j ] ≤ ρ for any i ̸= j, where

i, j ∈ [I]. Let (f̂ , ĝ) be from an optimal solution of the DIMENSION loss (7). Then, there is
no admissible MPA of {Px|u=ui

}Ii=1 of the solution, i.e., f̂ = f⋆, a.e. and ĝ = g⋆, a.e. with a

probability of at least 1− ρ(
I
2).

Theorem 1 shows that if the conditional distributions are sufficiently diverse, solving (7) can cor-
rectly identify the ground-truth translation functions. Theorem 1 also spells out the importance
of having more ui’s (which means more auxiliary information). The increase of I improves the
probability of success quickly.

Towards More Robust Identifiability. Theorem 1 uses the fact that the SDC holds with high
probability for every pair of (Px|ui

,Px|uj
) (cf. Pr[Ei,j ] ≤ ρ). It is also of interest to see if the

method is robust to violation of the SDC. To this end, consider the following condition:

Definition 5 (Relaxed Condition: r-SDC). Let dia(A) = supw,z∈A∥w − z∥2 and Vi,j ={
(A,B) | Px|ui

[A] = Px|ui
[B] & Px|uj

[A] = Px|uj
[B],A ∩ B = ϕ

}
, where A,B are non-empty,

open and connected. Denote Mi,j = max(A,B)∈Vi,j
max{dia(A),dia(B)}. Then, (Px|ui

,Px|uj
)

satisfies the r-SDC if Mi,j ≤ r for r ≥ 0.
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Note that the r-SDC becomes the SDC when r = 0. Unlike SDC in Definition 4, the relaxed SDC
condition allows the violation of SDC over regions Vi,j . Our next theorem shows that the translation
identifiability still approximately holds, as long as the largest region in Vi,j is not substantial:
Theorem 2 (Robust Identifiability). Suppose that Assumption 1 holds with g⋆ being L-Lipschitz
continuous, and that any pair of (Px|ui

,Px|uj
) satisfies the r-SDC (cf. Definition 5) with probability

at least 1 − γ, i.e., Pr[Mi,j ≥ r] ≤ γ for any i ̸= j, where (i, j) ∈ [I] × [J ]. Let ĝ be from any
optimal solution of the DIMENSION loss in (7). Then, we have ∥ĝ(x)−g⋆(x)∥2 ≤ 2rL, ∀x ∈ X ,

with a probability of at least 1− γ(
I
2). The same holds for f̂ .

Theorem 2 asserts that the estimation error of ĝ scales linearly with the “degree” of violation of
the SDC (measured by r). The result is encouraging: It shows that even if the SDC is violated,
the performance of DIMENSION will not decline drastically. The Lipschitz continuity assumption
in Theorem 2 is mild. Note that translation functions are often represented by neural networks
in practice, and neural networks with bounded weights are Lipschitz continuous functions (Bartlett
et al., 2017). Hence, the numerical successes of many neural UDT models (e.g., CycleGAN) suggest
that assuming that Lipschitz continuous ground-truth translation functions exist is reasonable.

4 RELATED WORKS

Prior to CycleGAN (Zhu et al., 2017), the early works (Liu & Tuzel, 2016; Taigman et al., 2017;
Kim et al., 2017) started using GAN-based neural structures for distribution matching in the context
of I2I translation. Similar ideas appeared in UDT problems in NLP (e.g., machine translation)
(Conneau et al., 2017; Lample et al., 2017). In the literature, it was noticed that distribution matching
modules lack solution uniqueness, and many works proposed remedies (see, e.g, (Liu et al., 2017; Xu
et al., 2022; Xie et al., 2022; Park et al., 2020)). These approaches have worked to various extents
empirically, but the translation identifiability question was unanswered. The term “content” was
used in the vision literature (in the context of I2I translation) to refer to domain-invariant attributes
(e.g., pose and orientation (Kim et al., 2020; Amodio & Krishnaswamy, 2019; Wu et al., 2019;
Yang et al., 2023)). This is a narrower interpretation of content relative to ours—as content in our
case can be high-level or latent semantic meaning that is not represented by specific attributes. Our
definition of content is closer to that in multimodal and self-supervised learning (Von Kügelgen
et al., 2021; Lyu et al., 2022; Daunhawer et al., 2023). Before our work, auxiliary information
was also considered in UDT. For example, semi-supervised UDT (see, e.g., (Wang et al., 2020;
Mustafa & Mantiuk, 2020)) uses a small set of paired data samples, but our method does not use any
sample-level pairing information. Attribute-guided I2I translation (see, e.g., (Li et al., 2019; Choi
et al., 2018; 2020)) specifies the desired attributes in the target domain to “guide” the translation.
These are different from our auxiliary variables that can be both sample attributes or high-level
concepts (which is closer to the “auxiliary variables” in nonlinear independent component analysis
works, e.g., (Hyvarinen et al., 2019)). Again, translation identifiability was not considered for semi-
supervised or attribute-guided UDT. There has been efforts towards understanding the translation
identifiability of CycleGAN. The works of Galanti et al. (2018b;a) recognized that the success of
UDT may attribute to the existence of a small number of MPAs. Moriakov et al. (2020) showed
that MPA exists in the solution space of CycleGAN, and used it to explain the ill-posedness of
CycleGAN. Chakrabarty & Das (2022) studied the finite sample complexity of CycleGAN in terms
of distribution matching and cycle consistency. Gulrajani & Hashimoto (2022) and de Bézenac et al.
(2021) argued that if the target translation functions have known structures (e.g., linear or optimal
transport structures), then translation identifiability can be established. However, these conditions
can be restrictive. Translation identifiability without using such structural assumptions had remained
unclear before our work.

5 NUMERICAL VALIDATION

Constructing Challenging Translation Tasks. We construct challenging translation tasks to val-
idate our theorems and to illustrate the importance of translation identifiability. To this end, we
make three datasets. The first two are “MNIST v.s. Rotated MNIST” (MrM) and “Edges v.s. Ro-
tated Shoes” (ErS). In both datasets, the rotated domains consist of samples from the “MNIST” and
“Shoes” with a 90 degree rotation, respectively. We intentionally make this rotation, as rotation is
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Figure 8: Qualitative results on (a) Edges to Rotated Shoes, (b) Bitmoji Faces to CelebA-HQ, and
(c) CelebA-HQ to Bitmoji Faces tasks. More comprehensive illustrations are in the appendix.

a large geometric change across domains. This type of large geometric change poses a challenging
translation task (Kim et al., 2020; Wu et al., 2019; Amodio & Krishnaswamy, 2019; Yang et al.,
2023). In addition, we construct a task “CelebA-HQ (Karras et al., 2017) v.s. Bitmoji (Mozafari,
2020)” (CB). In this task, profile photos of celebrities are translated to cartoonized bitmoji figures,
and vice versa. We intentionally choose these two domains to make the translation challenging: The
profile photos have rich details and are diverse in terms of face orientation, expression, hair style,
etc., but the Bitmoji pictures have a relatively small set of choices of these attributes (e.g., they are
always front-facing). More details of the datasets are in Sec. F.4 in the supplementary material.

Baselines. The baselines include some representative UDT methods and some recent developments,
i.e., GP-UNIT (Yang et al., 2023), Hneg-SRC (Jung et al., 2022), OverLORD (Gabbay & Hoshen,
2021), ZeroDIM (Gabbay et al., 2021), StarGAN-v2 (Choi et al., 2020), U-GAT-IT (Kim et al.,
2020), MUNIT (Huang et al., 2018), UNIT (Liu et al., 2017), and CycleGAN (Zhu et al., 2017).
In particular, two versions of CycleGAN are used. “CycleGAN Loss” refers to the plan-vanilla
CycleGAN objective in (3) and CycleGAN+Id refers to the “identity-regularized” version in (Zhu
et al., 2017). ZeroDIM uses the same auxiliary information as that used by the proposed method.

Source Target Proposed
CycleGAN

Loss
CycleGAN

+Id UNIT MUNIT U-GAT-ITStargan-v2

Figure 7: Translation from MNIST to rotated MNIST.

MNIST to Rotated MNIST. Fig. 7
shows the results. In this case, we use
u ∈ {1, . . . , 10}, i.e., the labels of the
identity of digits, as the alphabet of the
auxiliary variable. Note that knowing
such labels does not mean that the cross-
domain pairs (x,y) are known. Alter-
natively, one can also use digit shapes as
the alphabets (see Sec. F.6). One can see that DIMENSION learns to translate the digits to their
corresponding rotated versions. But the baselines sometimes misalign the samples. The results are
consistent with our analysis (see Sec. F.6 for more results).

Edges to Rotated Shoes. From Fig. 8 (a), one can see that the baselines all misalign the edges with
wrong shoes. Instead, the proposed DIMENSION, using the shoe types (shoes, boots, sandals, and
slippers) as the alphabet of u, does not encounter this issue. More experiments including the reverse
translation (i.e., shoes to edges) are in Sec. F.6 in the supplementary material.

CelebA-HQ and Bitmoji. Figs. 8 (b)-(c) show the results. The proposed method uses u ∈
{‘male’,‘female’,‘black hair’,‘non-black hair’}. To obtain the auxilliary information
for each sample, we use CLIP to automatically annotate the images. A remark is that translating
from the Bitmoji domain to the CelebA-HQ domain [see. Fig. 8 (b)] is particularly hard. This is be-
cause the learned translation function needs to “fill in” a lot of details to make the generated profiles

8



Published as a conference paper at ICLR 2024

Table 1: LPIPS scores for the ErS and MrM tasks and FID scores for all tasks. E: Edges, rS: rotated
Shoes, M: MNIST, rM: rotated MNIST, C: CelebA-HQ, B: Bitmoji faces.

Method
LPIPS (↓) FID (↓)

E → rS rS → E M → rM rM → M E rS M rM C B

Proposed 0.29 ± 0.06 0.35 ± 0.10 0.11 ± 0.08 0.09 ± 0.04 21.47 40.14 13.95 16.07 32.03 20.50

CycleGAN-Loss 0.43± 0.06 0.50± 0.07 0.34± 0.07 0.33± 0.09 35.83 55.42 16.09 16.11 36.71 28.02

CycleGAN 0.65± 0.03 0.54± 0.07 0.27± 0.09 0.28± 0.09 259.31 130.84 46.05 34.01 196.52 85.05

U-GAT-IT 0.56± 0.05 0.48± 0.07 0.25± 0.09 0.25± 0.09 288.03 58.20 11.78 11.67 50.28 39.09

UNIT 0.49± 0.03 0.58± 0.03 0.25± 0.06 0.25± 0.08 33.95 96.28 20.44 19.15 53.63 33.56

MUNIT 0.50± 0.03 0.58± 0.04. 0.28± 0.09 0.28± 0.09 43.83 86.68 14.89 15.96 62.49 27.59

StarGAN-v2 0.39± 0.05 0.52± 0.11 0.28± 0.09 0.29± 0.10 75.46 138.34 30.07 32.20 35.44 282.98

Hneg-SRC 0.45± 0.06 0.50± 0.07 – – 210.27 198.77 – – 129.34 66.36

GP-UNIT 0.49± 0.08 0.44± 0.05 – – 231.31 96.32 – – 32.40 30.30

OverLORD 0.43± 0.06 0.42± 0.05 – – 101.14 124.02 – – 76.10 31.08

ZeroDIM 0.38± 0.06 0.41± 0.07 – – 85.56 187.45 – – 88.36 36.21

“–” means that method is not applicable to the dataset due to small resolution.

photorealistic. Our method clearly outperforms the baselines in both directions of translation; see
more in Sec. F.6 in the supplemenary material.

Metrics and Quantative Evaluation. We employ two widely adopted metrics in UDT. The first
is the learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018), which leverages the
known ground-truth correspondence between (x,y). LPIPS measures the “perceptual distance”
between the translated images and the ground-truth target images. In addition, we also use the
Fréchet inception distance (FID) score (Heusel et al., 2017) in all tasks. FID measures the visual
quality of the learned translation using a distribution divergence between the translated images and
the target domain. In short, LPIPS and FID correspond to the content alignment performance and
the target domain-attaining ability, respectively; see details of the metrics Sec. F.4.

Table 1 shows the LPIPS scores over the first two datasets where the ground-truth pairs are known.
One can see that DIMENSION significantly outperforms the baselines—which is a result of good
content alignment. The FID scores in the same table show that our method produces translated
images that have similar characteristics of the target domains. The FID scores output by our method
are either the lowest or the second lowest.

Detailed Settings and More Experiments. See Sec. E-H for settings and more results.

6 CONCLUSION

In this work, we revisited the UDT and took a deep look at a core theoretical challenge, namely,
the translation identifiability issue. Existing UDT approaches (such as CycleGAN) often lack trans-
lation identifiability and may produce content-misaligned translations. This issue largely attributes
to the presence of MPA in the solution space of their distribution matching modules. Our approach
leverages the existence of domain-invariant auxiliary variables to establish translation identifiability,
using a novel diversified distribution matching criterion. To our best knowledge, the identifiability
result stands as the first of its kind, without using restrictive conditions on the structure of the desired
translation functions. We also analyzed the robustness of proposed method when the key sufficient
condition for identifiability is violated. Our identifiability theory leads to an easy-to-implement
UDT system. Synthetic and real-data experiments corroborated with our theoretical findings.

Limitations. Our work considers a model where the ground-truth translation functions are deter-
ministic and bijective. This setting has been (implicitly or explicitly) adopted by a large number
of existing works, with the most notable representative being CycleGAN. However, there can be
multiple “correct” translation functions in UDT, as the same “content” can be combined with vari-
ous “styles”. Such cases may be modeled using probabilistic translation mechanisms (Huang et al.,
2018; Choi et al., 2020; Yang et al., 2023), yet the current analytical framework needs a significant
revision to accommodate the probabilistic setting. In addition, our method makes use of auxiliary
variables that may be nontrivial to acquire in certain cases. We have shown that open-sourced foun-
dation models such as CLIP can help acquire such auxiliary variables and that the method is robust to
noisy/wrong auxiliary variables (see Sec. H). However, it is still of great interest to develop provable
UDT translation schemes without using auxiliary variables.
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Supplementary Material of “Towards Identifiable Unsupervised Domain
Translation: A Diversified Distribution Matching Approach”

A PRELIMINARIES

A.1 NOTATION

• x, x, X denote a scalar, vector, and a set, respectively.
• p(x) and p(x|u) denote the marginal probability density function (PDF) of x and condi-

tional PDF of x conditioned on u, respectively.
• ∥x∥2 denotes the ℓ2-norm of x.
• dia(A) = supa,b∈A ∥a− b∥2.

• I : X → X denotes the identity function such that I(x) = x,∀x ∈ X .
• Ac, cl(A), bd(A) and int(A) denote the complement, closure, boundary, and the interior

of set A.
• A set A is said to have strictly positive measure under p(x) if and only if Px[A] > 0.
• For a (random) vector x, x(i) and [x]i denote the ith element of x, and x(i : j) denotes
[x(i), x(i+ 1), . . . , x(j)].

• Distance between two sets is defined as

dist(A,B) = inf
a∈A,b∈B

∥a− b∥2.

• Distance between a set and a point is defined as

dist(a,B) = inf
b∈B

∥a− b∥2.

• Nϵ(z) denotes the ϵ-neighborhood of z ∈ RN defined as

Nϵ(z) = {ẑ ∈ RN |∥z − ẑ∥2 < ϵ}.

• conn(A) denotes the set of connected components of A (see definition of connected com-
ponents in Appendix A.2).

• For any function m : W → Z , and set A ⊆ W , m(A) = {m(w) ∈ Z | w ∈ A}

A.2 DEFINITIONS

We will employ standard notions from real analysis. We refer the readers to (Carothers, 2000; Rudin,
1976) for precise definitions and more details. Here we provide working definition with illustration.

Connected set. A set C is connected (in X ), if and only if there does not exist any disjoint non-empty
open sets A,B ⊂ X such that A ∩ C ≠ ϕ, B ∩ C ≠ ϕ, and C ⊂ A ∪ B (see Fig. 9).

Not Simply Connected Not Simply Connected Simply Connected 

Connected Connected Not Connected
 

Figure 9: Illustration of connected and simply connected sets
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Simply connected set. A simply connected set is a connected set such that any simple closed curve
can be shrunk to a point continuously in the set (see Fig. 9).

Connected components. Given a set A, the maximal connected subsets of A, such that the subsets
are not themselves contained in any other connected subsets of A, are called connected components
of A. Specifically, a connected set C ⊆ A is a connected component of A if there does not exist
any other connected set D ⊆ A, such that C ⊂ D. In Fig. 10, A denotes the entire shaded regions,
and has three connected components C1, C2, and C3. Note that any set can be uniquely written as
a disjoint union of its connected components. In Fig. 10, C1 ∪ C2 ∪ C3 is a unique disjoint union
representing A.

Figure 10: A set A = C1 ∪ C2 ∪ C3 with 3 connected components: C1, C2, and C3.

Continuous function. A function m : W → Z , with W ⊆ RW ,Z ⊆ RZ is said to be continuous
if for any w ∈ W and ϵ > 0, there exists a δ > 0 such that

m ((Nδ(w) ∩W)) ⊂ Nϵ(m(w)) ∩ Z.

Continuous and invertible Functions. If a function m : W → Z is continuous and invertible, then
its inverse m−1 : Z → W is also continuous. Some useful properties of continuous and invertible
function m are as follows:

• If A ⊆ W is closed, then m(A) is also closed.
• If A ⊆ W is open, then m(A) is also open.
• If A ⊆ W is connected, then m(A) is also connected.

B PROOF OF LEMMAS AND FACTS

Note that for the ease of reading, the lemmas, facts, and theorems from the main paper are re-stated
and highlighted using shaded boxes.

Proposition 1. Suppose that Px admits a continuous PDF, p(x) and p(x) > 0,∀x ∈ X .
Assume that X is simply connected. Then, there exists a continuous non-trivial (non-identity)
h(·) such that h#Px = Px.

Proof. We want to show that there exists a continuous h : X → X such that

h#Px = Px.

To this end, we will construct such MPA by reducing the problem of finding an MPA of p(x)
to finding an MPA of the uniform distribution. Note that one can always construct a continuous
invertible function d : X → (0, 1)Dx , such that the function maps any continuous distribution
with a simply connected support to the uniform distribution. This mapping can be found via the
so-called Darmois construction (Darmois, 1951; Hyvärinen & Pajunen, 1999). Specifically, under
the Darmois construction, the ith output of d(x),∀x ∈ X is given by

[d(x)]i := F
(
x(i)

∣∣ x(1 : i− 1) = x(1 : i− 1)
)
, i = 1, . . . , N,

where F
(
x(i)

∣∣ ·
)

denotes the conditional CDF of x(i), i.e,

F
(
x(i)

∣∣ x(1 : i− 1) = x(1 : i− 1)
)
= Px(i)|x(1:i−1)=x(1:i−1) [{x(i) : x(i) ≤ x(i)}] ;
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see more detailed introduction to the Darmois construction in (Hyvärinen & Pajunen, 1999).

With the constructed d, one can form a continuous mapping h : X → X as follows

h = d−1 ◦ hU ◦ d,
where hU : (0, 1)Dx → (0, 1)Dx is a continuous MPA on the uniform distribution over (0, 1)Dx .
Since d is continuous for a continuous distribution, h is continuous because it is the composition of
continuous functions.

Now, it remains to show that hU exists. A simple example of hU is reflection around the mean of
d(x), i.e.,

hU (z) = −z + 2µ,

where µ = [1/2, . . . , 1/2]⊤∈ RDx . This concludes the proof.

Lemma 1. Assume that an optimal solution of (7) is (f̂ , ĝ, {d̂(i)
x , d̂

(i)
y }). Then, under Assump-

tion 1, we have Px|u=ui
= f̂#Py|u=ui

, Py|u=ui
= ĝ#Px|u=ui

, ∀i ∈ [I], and f̂ = ĝ−1, a.e.

Proof. Fact 1 is a direct consequence of (Goodfellow et al., 2014, Theorem 1).

First of all, recall the objective in (7):

min
f ,g

max
{d(i)

x ,d
(i)
y }

I∑

i=1

(
LDSGAN(g,d

(i)
y ,x,y) + LDSGAN(f ,d

(i)
x ,x,y)

)
+ λLcyc(g,f). (8)

The global minimum of LDSGAN(g,d
(i)
y ,x,y) is achieved when (Goodfellow et al., 2014, Theorem

1)

g#Px|u=ui
= Py|u=ui

.

Similarly, the global minimum of LDSGAN(f ,d
(i)
x ,x,y) is achieved when

f#Py|u=ui
= Px|u=ui

.

Finally, the global minimum of Lcyc(g,f), which is zero, is achieved when

g = f−1, a.e.

We know that g⋆ and f⋆ can achieve global minimums of all loss terms simultaneously. Hence the
solution of (7), f̂ and ĝ, should satisfy

Px|u=ui
= f̂#Py|u=ui

,Py|u=ui
= ĝ#Px|u=ui

, ∀i ∈ [I], and f̂ = ĝ−1, a.e.

Fact 2. Suppose that Assumption 1 holds. Then, there exists an admissible MPA of
{Px|u=ui

}Ii=1 if and only if there exists an admissible MPA of {Py|u=ui
}Ii=1.

Proof. Let h be an admissible MPA of {Px|u=ui
}Ii=1. Then

h#Px|u=ui
= Px|u=ui

,∀i ∈ [I].

⇐⇒ g⋆ ◦ h#Px|u=ui
= g⋆

#Px|u=ui
,∀i ∈ [I].

⇐⇒ g⋆ ◦ h ◦ f⋆
#Py|u=ui

= Py|u=ui
,∀i ∈ [I].

This implies that g⋆ ◦h◦f⋆ is an admissible MPA of {Py|u=ui
}Ii=1 if and only if h is an admissible

MPA of {Px|u=ui
}Ii=1.

Hence, there exists an admissible MPA of {Px|u=ui
}Ii=1 if and only if there exists an admissible

MPA of {Py|u=ui
}Ii=1.
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C PROOF OF THEOREMS

C.1 PROOF OF THEOREM 1
Theorem 1. Suppose that Assumption 1 holds. Let Ei,j denote the event that the set
{Px|u=ui

,Px|u=uj
} does not satisfy the SDC. Assume that Pr[Ei,j ] ≤ ρ for any i ̸= j, where

i, j ∈ [I]. Let (f̂ , ĝ) be from an optimal solution of the DIMENSION loss (7). Then, there is
no admissible MPA of {Px|u=ui

}Ii=1 of the solution, i.e., f̂ = f⋆, a.e., ĝ = g⋆, a.e., with a

probability of at least 1− ρ(
I
2).

Theorem 1 is a direct consequence of following lemma:
Lemma A.1. Suppose that Assumption 1 holds. Assume that {Px|u=ui

}Ii=1 are sufficiently diverse.
Then, ĝ = g⋆ and f̂ = f⋆, a.e.

Proof of Lemma A.1. First, we show that no non-trivial continuous admissible MPA exists for
{Px|u=ui

}Ii=1, i.e., if a continuous h satisfies

h#Px|u=ui
= Px|u=ui

∀i ∈ [I], (9)

then h = I, a.e.

Eq. (9), by the definition of push-forward measure, implies that

=⇒ Px|ui
[h(A)] = Px|ui

[A],∀i ∈ [I]. (10)

For the sake of contradiction assume that h satisfies (9), however, h ̸= I on a set of strictly positive
measure. This means that there exists a x ∈ X such that

h(x) ̸= x.

Now, let us define an open set around x denoted by D such that

D = Nd(x) ∩ X .

Because of the continuity and invertibility of h, h(D) ⊆ X is also an open set and

h(x) ∈ h(D).

Now, one can select d to be small enough (because of the continuity of h) such that D ∩ h(D) = ϕ
and D is a connected set. D being a connected set implies that h(D) is also connected.

The above is a contradiction to Assumption 4 since D and h(D) are two disjoint, open and connected
sets which satisfy

Px|ui
[h(D)] = Px|ui

[D],∀i ∈ [I].

Hence, any h that satisfy h#Px|u=ui
= Px|u=ui

is such that h = I, a.e.

Finally, We want to show that ĝ = g⋆, a.e. Lemma 1 implies that

ĝ#Px|u=ui
= Py|u=ui

,∀i ∈ [I]

=⇒ ĝ#Px|u=ui
= g⋆

#Px|u=ui
,∀i ∈ [I]

(a)
=⇒ g⋆−1 ◦ ĝ#Px|u=ui

= Px|u=ui
,∀i ∈ [I] (11)

where (a) is obtained by applying g⋆−1 on both sides, which is allowed because applying the same
function preserves the equivalence of the distributions.

Eq. (11) implies that g⋆ ◦ ĝ is a continuous admissible MPA of {Px|u=ui
}Ii=1, which means that the

following has to hold:
g⋆−1 ◦ ĝ = I, a.e.

Therefore, we always have ĝ = g⋆, a.e. By role symmetry of f⋆ and g⋆ (also see Fact 2), we also
have f̂ = f⋆, a.e.
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Proof of Theorem 1. Using the assumption that Pr[Ei,j ] ≤ ρ, the probability that {Px|u=ui
}Ii=1 are

not sufficiently diverse can be bounded as follows:

Pr[{Px|u=ui
}Ii=1 are not sufficiently diverse]

(a)

≤ Pr


 ⋂

i,j∈[I],i<j

Ei,j




(b)
=

⋂

i,j∈[I],i<j

Pr[Ei,j ]

≤ ρ(
I
2),

where the (a) holds since {Px|u=ui
}Ii=1 not being sufficiently diverse implies the existence of open

connected sets A and B such that

Px|ui
[A] = Px|ui

[B],∀i ∈ [I]

=⇒ Px|ui
[A] = Px|ui

[B],∀i ∈ {i, j} ⊂ [I].

Finally, (b) is due to the independence of the events Ei,j and Ei,j′ for j ̸= j′.

Hence, {Px|u=ui
}Ii=1 are sufficiently diverse with probability at least 1 − ρ(

I
2), which implies that

f̂ = f⋆ and ĝ = g⋆ with probability at least 1− ρ(
I
2).

C.2 PROOF OF THEOREM 2
Theorem 2 (Robust Identifiability). Suppose that Assumption 1 holds with g⋆ being L-
Lipschitz continuous, and that any pair of (Px|ui

,Px|uj
) satisfies the r-SDC (cf. Defini-

tion 5) with probability at least 1 − γ, i.e., Pr[Mi,j ≥ r] ≤ γ for any i ̸= j, where
(i, j) ∈ [I]× [J ]. Let ĝ be from any optimal solution of the DIMENSION loss in (7). Then, we
have ∥ĝ(x) − g⋆(x)∥2 ≤ 2rL, ∀x ∈ X , with a probability of at least 1 − γ(

I
2). The same

holds for f̂ .

First, consider the following lemma.
Lemma A.2. Given any continuous admissible MPA h of {Px|u=ui

}Ii=1, let Eh be a set defined as

Eh = {x | h(x) ̸= x, ∀x ∈ X}.
Then, any connected component C ⊆ cl(Eh) satisfies

x ∈ C =⇒ h(x) ∈ C.

Lemma A.2 states an interesting property of a subset of X (namely, Eh) that is “modified” by the
continuous MPA h. Here, “modification” means that any point in the subset will land on a dif-
ferent point after the h-transformation. The lemma shows that the source point from Eh and its
h-transformation both reside in the same connected component, namely, C. This will be useful in
proving Theorem 2.

Proof Idea: The main idea behind the proof of Lemma A.2 is to first note that any point outside of
cl(Eh) is stationary under the transformation h (i.e., h(x) = x). Next, if there was a point x from a
connected component C1 ∈ conn(cl(Eh)) was such that h(x) was not in C1, then it should be either
in X\cl(Eh) or in cl(Eh)\C1. However, since h is invertible, h cannot map a point from C1 to a
X\cl(Eh). Therefore h(x) should lie in Eh\C1. But this will make the function h discontinuous.
Hence, h(x) should be in C1.

Proof of Lemma A.2. Let conn(cl(Eh)) denote the set of connected components of cl(Eh). Suppose
that there exists x ∈ C1 and C1 ∈ conn(cl(Eh)) such that h(x) ̸∈ C1. First,

h(x̃) = x̃, ∀x̃ ∈ X\cl(Eh)
(a)
=⇒ h(x) ̸= x̃, ∀x̃ ∈ X\cl(Eh)
=⇒ h(x) ∈ C2, for some C2 ∈ conn(cl(Eh))\C1,
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Figure 11: Illustration of Lemma A.2. C1, C2 are the two connected components of cl(Eh). In this
case, cl(Eh) = C1∪C2. Points x1 and x2 inside C1 and C2 stay inside the same connected component
after transformation by h.

where (a) is due to the invertibility of h.

Because of the continuity of h, the set h(C1) is a closed connected set containing h(x). However,
h(C1) ∩ (X\cl(Eh)) = ϕ. This means that

h(C1) ⊆ C2, (12)

otherwise h(C1) would be disconnected.

Note that C1 and C2 are closed, connected and disjoint sets (by the property of connected compo-
nents). Therefore, one can define ϵ as follows:

ϵ := dist(C1, C2) > 0. (13)

Now, take any point xb ∈ bd(C1), where bd(C1) denotes the boundary of C1. Due to the continuity
of h, there exists a δ > 0 such that

h(Nδ(xb)) ⊆ Nϵ/4(h(xb)). (14)

However, take any point z ∈ Nδ(xb)\cl(Eh) with ∥z − xb∥2 < ϵ/4. Such a point exists because
any neighborhood of a point on the boundary of a closed set has a non-empty intersection with the
complement of the closed set. Therefore, we have

h(z) = z because z ̸∈ Eh. (15)

Since (12) implies that h(xb) ∈ C2,

∥h(xb)− xb∥2 ≥ ϵ and dist(xb,Nϵ/4(h(xb))) ≥
3ϵ

4
.

Therefore

dist(xb,Nϵ/4(h(xb))) ≤ ∥xb − z∥2 + dist(z,Nϵ/4(h(xb)))

=⇒ 3ϵ

4
≤ ϵ

4
+ dist(z,Nϵ/4(h(xb)))

=⇒ dist(z,Nϵ/4(h(xb))) ≥
ϵ

2

=⇒ dist(h(z),Nϵ/4(h(xb))) ≥
ϵ

2
, (16)

where (16) is by (15). Note that (16) is a contradiction to (14). Hence, we have

x ∈ C for any C ∈ conn(cl(Eh)) =⇒ h(x) ∈ C.
This concludes the proof.

Lemma A.3. Let g⋆ be L-Lipschitz continuous. Suppose that any pair of (Px|ui
,Px|uj

) satisfies
the r-SDC (cf. Definition 5). Then

∥ĝ(x)− g⋆(x)∥2 ≤ 2rL. (17)

19



Published as a conference paper at ICLR 2024

Proof Idea: The proof is by contradiction. Suppose that under the conditions of Lemma A.3,
Eq. (17) does not hold for some x ∈ X . Then, there would exist a continuous non-trivial admissible
MPA h of {Px|u=ui

}Ii=1 such that ∥h(x) − x∥2 > 2r. However, this would imply, using Lemma
A.2, that one can construct an open, connected, disjoint set pair (A,B) whose diameters are large,
which is a contradiction to r-SDC that M ≤ r.

Proof of Lemma A.3. Suppose that there exists x ∈ X such that

∥ĝ(x)− g⋆(x)∥2 > 2rL. (18)

Eq. (18) means that ĝ ̸= g⋆. By Lemma 1, we have that

ĝ#Px|u=ui
= Py|u=ui

⇐⇒ ĝ#Px|u=ui
= g⋆

#Px|u=ui

⇐⇒ g⋆−1 ◦ ĝ#Px|u=ui
= g⋆−1 ◦ g⋆

#Px|u=ui

⇐⇒ g⋆−1 ◦ ĝ#Px|u=ui
= Px|u=ui

As ĝ ̸= g⋆, the function h := g⋆−1 ◦ ĝ ̸= I is a continuous admissible MPA of {Px|u=ui
}Ii=1. This

implies that

ĝ = g⋆ ◦ h. (19)

Using (19), Eq. (18) implies that

∥g⋆ ◦ h(x)− g⋆(x)∥2 > 2rL

=⇒ L∥h(x)− x∥2 > 2rL

=⇒ ∥h(x)− x∥2 > 2r. (20)

Note that one can re-express (20) as

∥h(x)− x∥2 = 2r + ϵ, (21)

using a certain ϵ > 0. By Lemma A.2, we know that

x ∈ C, h(x) ∈ C,
where C is a connected component of cl(Eh).
Now, let d > 0 and

Td = Nd(x) ∩ C.
Let Rd denote the connected component of Td that contains x. Note that we need to consider the
connected component as Td can be a disconnected set. An illustration of these sets can be seen in
Fig. 12.

From (21), it is easy to see that dia(C) ≥ 2r + ϵ. Then, when d ≤ 2r + ϵ, since C is connected,
bd(Nd(x)) ∩ C ≠ ϕ. Note that the connected property C is necessary for bd(Nd(x)) ∩ C ≠ ϕ to
hold for any d ≤ 2r + ϵ. One can further select w ∈ bd(Nd(x)) ∩ C such that w ∈ cl(Rd), i.e., w
lies in the same connected component of Td as x.

Note that such a w has to exist. Suppose that such a w does not exist. Then, cl(Rd)∩ bd(Nd) = ϕ,
which means that Rd would be disconnected from C\Nd. By the definition of Rd, Rd is then
disconnected from Td\Rd, which implies that C—that is a union of Rd, Td\Rd, and C\Nd—is
disconnected. This is a contradiction. Hence cl(Rd) ∩ bd(Nd) ̸= ϕ holds.

One can see that

∥w − x∥2 = d, and w,x ∈ cl(Rd) =⇒ dia(Rd) ≥ d, for d ≤ 2r + ϵ.

Hence, there exists a large enough d ≤ 2r + ϵ such that

0 < dist(Rd,h(Rd)) < ϵ/3.
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Figure 12: Illustration of the idea in the proof of Lemma A.3. The green shaded region denote Rd.
Note that Td = Nd(x) ∩ C is disconnected in this case.

This implies that
max{dia(Rd),dia(h(Rd))} ≥ r + ϵ/3. (22)

Indeed, suppose that max(dia(Rd),dia(h(Rd))) < r + ϵ/3. Then, since x ∈ Rd and h(x) ∈
h(Rd),

∥x− h(x)∥2 ≤ 2max{dia(Rd),dia(h(Rd))}+ dist(Rd,h(Rd))

2r + ϵ < 2r + 2ϵ/3 + ϵ/3

2r + ϵ < 2r + ϵ,

which is a contradiction. Hence,
max{dia(Rd),dia(h(Rd))} ≥ r + ϵ/3. (23)

Fig. 12 provides a simple illustration of the sets. It follow from the continuity and invertibility of h
that dia(Rd) = dia(int(Rd)) and dia(h(Rd)) = dia(int(h(Rd))).

By the same argument of reaching (10), {int(Rd),h(int(Rd))} forms a pair of open, connected,
disjoint sets such that

Px|ui
[int(Rd)] = Px|ui

[h(int(Rd))]. (24)
Note that (24) and (23) constitute a contradiction to the assumption that

M = max
(A,B)∈V

max{dia(A),dia(B)} ≤ r

for any open, connected, and disjoint sets A and B2

Hence, we must have
∥ĝ(x)− g⋆(x)∥2 ≤ 2rL,∀x ∈ X .

This concludes the proof.

Proof of Theorem 2. We can bound the probability with which (17) does not hold as follows:
Pr[(17) does not hold]
= Pr[M > r]

(a)

≤ Pr


 ⋂

i,j∈[I],i<j

Mi,j




(b)
=

⋂

i,j∈[I],i<j

Pr[Mi,j ]

≤ γ(
I
2),

2Note that such requirements are used to ensure that the sets have nonzero measure. The statements can be
simplified by replacing the “open and non-empty” sets in Definition 4 and Assumption 5 with “measurable sets
with positive measures”.
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where (a) follows because M > r implies that Mi,j > r, ∀i ̸= j, and i, j ∈ [I] holds, and (b)
follows from the independence of the events Mi,j > r.

Hence, with probability at least 1− γ(
I
2),

∥ĝ(x)− g⋆(x)∥2 ≤ 2rL,∀x ∈ X .

The same result follows for f̂ if f⋆ is L-Lipschitz continuous, following the same procedure as
above.

D ADDITIONAL REMARK: RELATION TO SUPERVISED DOMAIN
TRANSLATION

A remark on objective (7) is that supervised domain translation can be seen as a special case of
(7). When paired samples {xi,yi}Ni=1 are available, one can view the auxiliary information u as the
sample identity. Specifically, Px|u=ui

and Py|u=ui
are Dirac delta distributions peaked at xi and yi,

respectively. Matching distributions between Px|u=ui
and f#Py|u=ui

will be equivalent to enforcing
xi = f(yi). Therefore, the sample loss will be equivalent to minimizing the following objective:

minimize
f ,g

N∑

i=1

∥xi − f(yi)∥22 + ∥yi − g(xi)∥22,

which is exactly the supervised learning loss. This makes the distribution matching problem boil
down to a sample matching problem.

E SYNTHETIC DATA EXPERIMENTS

In this section, we use controlled generation to validate our identifiability theorems.

Data Generation. We generate x from a Gaussian mixture with Q components. Let {P(q)
x }Qq=1

denote the Q component distributions of the Gaussian mixture, i.e.,

P(q)
x ∼ N (µq,Σ), q = 1, . . . , Q.

Here, each µq is sampled randomly from the uniform distribution in R2, i.e., Unif
(
[−1, 1]2

)
. We set

the covariance to be Σ = 0.32Q. To represent g⋆, we use a three-layer multi-layer perceptron (MLP)
with smoothed leaky ReLU, which is defined as s(x) = αx + (1 − α) log(1 + exp(x)), where we
set α to 0.2. To make g⋆ invertible, we generate the neural network weights using the same process
as in (Hyvärinen & Pajunen, 1999; Zimmermann et al., 2021). Specifically, we use two-hidden units
in each layer. We first generate 10, 000 2× 2 matrices, whose elements are sampled randomly from
uniform distribution Unif([−1, 1]). The matrices’ columns are normalized by their respective ℓ2
norms. In addition, only the top 25% well-conditioned matrices in terms of the condition number
are used. This way, all the layers of the g⋆ are relatively well-conditioned invertible matrices.
Combining with the fact that the activation functions are invertible, such constructed g⋆ in each trial
is also invertible.

We use N = 20, 000 samples in both domains, denoted as {xn}Nn=1, {yn}Nn=1, to be the training
samples. In addition, we have 1,000 testing samples. The data generation process is as follows:

µq ∼ Unif([−1, 1]2), ∀q ∈ [Q],

x(q−1)Nq+n ∼ P(q)
x , ∀n ∈ [Nq] ∀q ∈ [Q],

y(q−1)Nq+n = g⋆(x(q−1)Nq+n),

where Nq = ⌊20000/Q⌋, indicating that the mixture components have equal probability. In our
experiments we use (xn,yn)’s association with one of the Q mixture components as our auxiliary
variable. Therefore, we have I = Q. In addition, u is uniformly distributed, i.e., Pr(u = uq) =
1/Q,∀q ∈ [Q], and

Px|u=uq
= P(q)

x .
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Figure 13: Scatter plots of the source and translated samples. The proposed method uses I = Q = 3.

Evaluation Metric. In the synthetic data, we have access to the ground-truth pairs (xn,yn). Hence,
we measure the translation error (TE) using

TE =

N∑

n=1

1/2N (∥ĝ (xn)− yn∥22 + ∥f̂ (yn)− xn∥22).

Implementation Details. To represent g : R2 → R2 and f : R2 → R2, we use three-layer MLPs,
where 256 hidden units are used in each of the 2 hidden layers. We also use leaky ReLU activations
with a slope of 0.2. The discriminator is a five-layer MLP with 128 hidden units in each of the hidden
layers. Each layer, except for the last, is followed by layer normalization (Ba et al., 2016) and leaky
ReLU activations (Maas et al., 2013) with a slope of 0.2. We use the same architecture for all I
discriminators in DIMENSION. In the synthetic-data experiments, we implement the distribution
matching module using the least-square GAN loss (Mao et al., 2017).

Baseline. In the sythetic experiments, our purpose is to show the lack of translation identifiability
of naive distribution matching. Hence, we use the CycleGAN loss in (3) as a benchmark.

Hyperparameter Settings. We use the Adam optimizer with an initial learning rate of 0.0001
with hyperparameters β1 = 0.5 and β2 = 0.999 (Kingma & Ba, 2015). Note that β1 and β2 are
hyperparameters of Adam that control the exponential decay rates of first and second order moments,
respectively. We use a batch size of 1000 and train the models for 2000 iterations, where one iteration
refers to one step of gradient descent of the translation and discriminator neural networks. We use
λ = 10 for (7).

Results. Fig. 13 shows the scatter plots of the original and translated samples for the 1000 testing
samples. Here, we set I = Q = 3. The original data {xn}Nn=1 and {yn}Nn=1 are plotted on the left-
most column. The result of translation using DIMENSION and CycleGAN Loss are presented
in the middle and right columns, respectively. In order to qualitatively evaluate the translation
performance, we use the same color to plot the paired data points (xn,yn) and their translations
(f̂(yn), ĝ(xn)). The color is determined by the angle of xn in polar coordinates.

As one can see, the supports of x and f̂(y) (as well as those of y and ĝ(x)) are well matched
by both methods. This implies that both methods can match the distributions fairly well. How-
ever, CycleGAN Loss misaligns the samples (by observing the color). The results given by
DIMENSION does not have this misalignment issue.

Fig. 14 shows the average TE (over 10 random trials) and the standard deviation attained by
DIMENSION and the baseline under different Q’s. Here, we also set I = Q as before. One can
see that the average TE decreases with the increase in I . Notably, the variance of TE also becomes
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Figure 14: TE under various I’s.

much smaller when I grows from 2 to 5—this shows more stable translation performance when I
increases. The result is consistent with our theorems, which shows that having a larger I has a better
chance to avoid MPA.

F REAL-DATA EXPERIMENT SETTING AND ADDITIONAL RESULTS

In this section we provide details of the real-data experiment settings.

F.1 OBTAINING {u1, . . . , uI}

MrM and ErS Datasets. For these two datasets, we use the available category labels as the alphabet
of u. Specifically, for MrM dataset, we use u ∈ {1, . . . , 10}, i.e., the labels of the identity of digits.
For ErS datasets, we use u ∈ {shoes, sandals, slippers,boots}, which indicates the types of the
shoes/edges.

CB Dataset. In this dataset, we designate the alphabet of u to be u1 =′′ black hair′′, u2 =′′

non-black hair′′, u3 =′′ male′′, u4 =′′ female′′. This information is not fully available in
the original CB dataset (to be specific, Bitmoji (Mozafari, 2020) has the gender attributes available
but the hair color is not available). We use the foundation model, namely, CLIP (Radford et al.,
2021), to acquire the hair color information of each Bitmoji face. Specifically, we use the text
prompts “a cartoon of a person whose hair color is mostly black” and “a cartoon of a person whose
hair color is not black”. The presence of black hair for each image is decided based on cosine
distance of the image embedding with the text embeddings of the two prompts.

F.2 NEURAL NETWORK DETAILS

We use the nomenclature in Table 2 to describe the neural network architecture. For example,

Conv-(C-Nin - Nout, K-Nk, S-Ns, ZP-Np), LN, LeakyReLU

refers to a convolutional layer with Nin input channels and Nout output channels; K-Nk means
that the size of kernel is Nk; S-Ns means that the stride is Ns; and ZP-Np means that the zero
padding has a size of Np. The convolutional layer is followed by layer normalization (LN) and then
LeakyReLU activations.

The translation neural networks, g and f , for images of size 256 × 256 follow the architecture
outlined in Table 3. For images of size 128 × 128, a modified architecture is used, where one
down-sampling layer (see Layer #6) and one up-sampling layer (Layer #11) in Table 3 are not
included. For images of size 32 × 32, three down-sampling layers (indices from #4 to #6) and
three up-sampling layers (indices from #11 to #13) are not included.

ResBlock refers to block of convolutional layers with shortcut connection and optional downsam-
pling. Specifically, ResBlock-(C-M -N , Operation) is composed of two smaller blocks, namely,
Process-(C-M -N , Operation) and Shortcut-(C-M -N , Operation). The Process-(C-M -N , Opera-
tion) block has the following layers:
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Table 2: Nomenclature for neural network components

Abbreviation Definition

Conv Convolutional Layer
IN Instance normalization

ReLU ReLU activation
LeakyReLU Leaky-ReLU activation with 0.2 slope

Tanh tanh activation function
UpSample Upsample using nearest neighbor with scale factor of 2

DownSample Downsample using average pooling with a scale factor of 2
K-N Kernel (filter) of size N

S-N Stride of size N

ZP-N Zero Padding of size N

C-M -N M input and N output channels

Table 3: Translation neural network architecture for f and g.

Layer Number Layer Details

1 Conv-(C-3-64, K-1, S-1, ZP-0)
2 ResBlock-(C-64-128 , DownSample)
3 ResBlock-(C-128-256, DownSample)
4 ResBlock-(C-256-512, DownSample)
5 ResBlock-(C-512-512, DownSample)
6 ResBlock-(C-512-512, DownSample)

7 ResBlock-(C-512-512, –)
8 ResBlock-(C-512-512, –)
9 ResBlock-(C-512-512, –)

10 ResBlock-(C-512-512, –)

11 ResBlock-(C-512-512, UpSample)
12 ResBlock-(C-512-512, UpSample)
13 ResBlock-(C-512-256, UpSample)
14 ResBlock-(C-256-128, UpSample)
15 ResBlock-(C-128-64 , UpSample)
16 Conv-(C-64-3, K-1, S-1, ZP-0)

1. IN, LeakyReLU, Conv-(C-M -M , K-3, S-1, ZP-1)
2. Operation
3. IN, LeakyReLU, Conv-(C-M -N , K-3, S-1, ZP-1)

The Shortcut-(C-M -N , Operation) block consists of the following layers:

1. Conv-(C-M -N , K-1,S-1,ZP-0)
2. Operation

Let z denote the input to the ResBlock and w the output of the ResBlock. Then the forward pass of
ResBlock is expressed as follows:

w = ResBlock(z) = Process(z) + Shortcut(z).

We use multi-task discriminators (Liu et al., 2019) with output dimension of I to represent
d
(i)
x ,d

(i)
y ,∀i ∈ [I]. Specifically, each of the multi-task discriminators dx and dy has I output

dimensions. The ith outputs of dx and dy correspond to d
(i)
x and d

(i)
y , respectively.
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Table 4: Discriminator architecture for dx : R256×256×3 → RI , dy : R256×256×3 → RI .

Layer Number Layer Details

1 Conv-(C-3-64, K-1, S-1, ZP-0)
2 ResBlock-(C-64-128, DownSample),
3 ResBlock-(C-128-256, DownSample),
4 ResBlock-(C-256-512, DownSample),
5 ResBlock-(C-512-512, DownSample),
6 ResBlock-(C-512-512, DownSample),
7 ResBlock-(C-512-512, DownSample), LeakyReLU
8 Conv-(C-512,512, K-4, S=1, ZP=0), LeakyReLU
9 Reshape-512

10 Linear-(512,I)

F.3 HYPERPARAMETER SETTING

We use the Adam optimizer with an initial learning rate of 0.0001 with hyperparameters β1 = 0.0
and β2 = 0.999 (Kingma & Ba, 2015). Note that β1 and β2 are hyperparameters of Adam that con-
trol the exponential decay rates of first and second order moments, respectively. We set our regular-
ization parameter λ = 10. We use a batch size of 16. We train the networks for 100,000 iterations.
Following standard practice, we add squared ℓ2-norm regularization on the network parameters and
use a weight decay of 0.00001. For the translation tasks with 256 × 256 images (CelebA-HQ to
Bitmoji Faces), the runtime using a single Tesla V100 GPU is approximately 55 hours. For the
translation tasks with 128× 128 images (Edges to Rotated Shoes), the runtime using a single Tesla
V100 GPU is approximately 35 hours. In order to stabilize the GAN training dynamics, we add a
gradient penalty term. This term penalizes discriminators’ large gradients , which is known to help
the convergence of the GAN objective (Mescheder et al., 2018). We modified the rgeularizer to
accommodate our diversified DT loss function. The modified regularization term is as follows:

R =
γ

2
Pr(u = ui)

(
Ex∼Px|u=ui

∥∇d(i)
x ∥22 + Ey∼Py|u=ui

∥∇d(i)
y ∥22

)
,

where ∇d
(i)
x denotes the gradient of d(i)

x . We set the value of γ to be 1.0. We take exponential
moving average (EMA) of the parameters during training as the final estimate of the parameters of
the trained neural networks. We use a weighting factor of 0.999. This has been observed to improve
the performance of GANs (Karras et al., 2017; Yaz et al., 2018).

F.4 DATASET DETAILS

MNIST to Rotated MNIST (MrM). We use 60, 000 training samples of the MNIST digits (LeCun
et al., 2010) that have a dimension 28× 28 as the X -domain. For the †-domain, each of the 60, 000
digits is rotated by 90 degrees. The orders of samples are shuffled in both domains to “break” the
content correspondence. Under this setting, each x has a ground-truth correspondence y.

Edges to Rotated Shoes (ErS). Edges2Shoes dataset (Isola et al., 2017) consists of 49, 825 training
samples. We resize the all images to have 128 × 128 pixels. The X -domain corresponds to the
edges of the shoes, and the Y-domain corresponds to the shoes that are rotated by 90 degrees. Like
in the MrM dataset, the ground-truth correspondence is known to us, which can assist evaluation.

CelebA-HQ to Bitmoji Faces (CB) We use 29, 900 training samples from CelebA-HQ (Karras
et al., 2017) as the x-domain, and 3, 984 training samples from Bitmoji faces (Mozafari, 2020) as
the y-domain. Note that Bitmoji Faces consists of only 4, 084 samples in total, of which 100 samples
are held out as the test samples. We resize all images in both domains to have 256 × 256 pixels.
Unlike the previous two datasets, the ground-truth correspondence is not known to us in this dataset.

Evaluation Details. The LPIPS score is computed using 100 test samples. Pre-trained
AlexNet(Krizhevsky et al., 2012; Zhang et al., 2018) is used in order to compute the LPIPS scores.
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The FID score is computed using 1000 translated and real samples for each domain. Pre-trained
Inception-v3 (Szegedy et al., 2016) is used in order to compute the FID scores.

F.5 BASELINES

We use CycleGAN+Id (Zhu et al., 2017)3, UNIT (Liu et al., 2017) 4, MUNIT (Huang et al., 2018)
4, U-GAT-IT (Kim et al., 2020) 5, StarGAN-v2 (Choi et al., 2020) 6, ZeroDIM (Gabbay et al.,
2021) 7, OverLORD (Gabbay & Hoshen, 2021) 8, Hneg-SRC (Jung et al., 2022) 9, GP-UNIT
(Yang et al., 2023) 10, and the plain-vanilla CycleGAN Loss in (3) as the baselines.

For StarGAN-v2 and GP-UNIT, training is done with their default settings (specifically, the con-
figurations for the ‘AFHQ’ dataset in their papers are used). For CycleGAN+Id, UNIT, MUNIT,
U-GAT-IT, and Hneg-SRC, we train the models for 200,000 iterations. We use a batch size of 8
for these methods except for U-GAT-IT, which uses 4 in order to control the computational load
and runtime. These parameters are carefully set for the baselines to our best extent. For OverLORD
(Gabbay & Hoshen, 2021), we use the setting used for male to female translation task on CelebA-HQ
dataset in their paper. For ZeroDIM (Gabbay et al., 2021) , we use the setting used for experiments
on FFHQ dataset, which has a similar size as the datasets used in our paper. Note that ZeroDIM
also uses the same auxiliary variables as those used in the proposed method.

F.6 ADDITIONAL RESULTS

In this subsection, we present additional qualitative and quantitative results.

Fig. 16 shows the result of translating Bitmoji faces (B) to celebrity proflie photos (C). As men-
tioned in the main text, translating from the B domain to the C domain is a hard task as the learned
translation function needs to “fill in” a lot of details to make the generated profiles photorealistic.
Visually, one can see that the proposed method (with I = 4) exhibits much more intuitive content
alignment relative to the baselines. In addition, the proposed method using I = 2 (only using ‘male’
and ‘female’ as the auxiliary variable alphabet) also provides more satisfactory results relative to
the baselines. This echos our theoretical claim that the chance of attaining translation identifiability
grows quickly when I increases. It also shows that diversifying the distributions to be matched, even
if just one more distribution pair is included, helps improve the final performance.

Fig. 15 shows the result of translating edges (E) to rotated shoes (rS). Visually, our method sig-
nificantly outperforms the baselines in terms of content alignment. It is interesting to notice that,
although “edges to shoes” (no rotation) is a well studied dataset, our experiments show that a simple
rotation makes most of the existing methods struggle to produce reasonable results. However, our
method is insensitive to this kind of geometric changes. In the literature, the baselines U-GAT-IT
(Kim et al., 2020) and GP-UNIT (Yang et al., 2023) were shown to be good at handling certain ge-
ometric variations. However, one can see that their performance over the ErS dataset is still far from
ideal. The result shows the importance of taking transaltion identifiability into account, especially
when drastic geometric changes happen across domains.

Fig. 18 and Fig. 17 show similar results for the translation of CelebA-HQ (C) to Bitmoji Faces (B)
and Rotated Shoes (rS) to Edges (E), respectively. Fig. 19 shows the translations between MNIST
(M) and rotated MNIST digits (rM).

3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.git
4https://github.com/NVlabs/MUNIT.git
5https://github.com/znxlwm/UGATIT-pytorch.git
6https://github.com/clovaai/stargan-v2.git
7https://github.com/avivga/zerodim
8https://github.com/avivga/overlord
9https://github.com/jcy132/Hneg SRC.git

10https://github.com/williamyang1991/GP-UNIT.git
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Source Target Proposed CycleGAN-Loss CycleGAN UNIT MUNIT U-GAT-IT Stargan-v2 Hneg-SRC GP-UNIT OverLORD ZeroDIM

Figure 15: Translation of edges to rotated shoes. All images rotated by anit-clockwise 90 degrees
for visualization.
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Figure 16: Translation of Bitmoji to CelebA-HQ.
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Source Target Proposed CycleGAN-Loss CycleGAN UNIT MUNIT U-GAT-IT Stargan-v2 Hneg-SRC GP-UNIT OverLORD ZeroDIM

Figure 17: Translation of rotated Shoes to Edges.

Source Proposed Proposed (I=2) CycleGAN-Loss CycleGAN+Id UNIT MUNIT U-GAT-IT Stargan-v2 Hneg-SRC GP-UNIT OverLORD ZeroDIM

Figure 18: Translation of CelebA-HQ to Bitmoji.
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Source Target Proposed
CycleGAN

Loss
CycleGAN

+Id UNIT MUNIT U-GAT-ITStargan-v2 Source Target Proposed
CycleGAN

Loss
CycleGAN

+Id UNIT MUNIT U-GAT-ITStargan-v2

Figure 19: Translation between MNIST digits and rotated MNIST digits.

There are multiple ways to define auxiliary variables for a given UDT task. However, different
choices of auxiliary information can result in different level of translation performance. For exam-
ple, in the MNIST example, one can alternatively use digit shape as the alphabets of the auxiliary
variable. Figure 20 shows the result of using different shapes of digits. Here we use the follow-
ing attributes (with corresponding digits that has those attributes): “line” : [1,2,4,5,7], “circle” :
[0,6,8,9], “curve” : [0,2,3,5,6,8,9], “vertical line” : [1, 4, 5], “horizontal line” : [2,5,4,7], “curve
without loops” : [2,3,5,6,9], “only vertical line” : [1], “only horizontal line” : [2]). One can see that
using digit identity as auxiliary information results in a slightly enhanced performance compared to
using the digit shape as auxiliary information.

G IMPROVING EXISTING METHODS USING DIVERSIFIED DISTRIBUTION
MATCHING

We hope to emphasize that the diversified distribution matching (DDM) principle can be combined
with many other existing UDT approaches to avoid failure cases. In this section, we use our di-
versified distribution matching module to replace the their original ones in existing paradigms and
observe the performance. For the datasets “Edges vs. Rotated Shoes” (ErS) and “CelebA-HQ vs.
Bitmoji” (CB), we select the baselines that are able to generate faithful samples in the target domain
based on their FID scores (see Table 1. To be specific, for the ErS dataset, we integrate DDM with
UNIT (Liu et al., 2017). For the CB dataset, we combine DDM with GP-UNIT (Yang et al., 2023).
In both cases, we keep their method-defined regularization terms and other settings unchanged. We
refer to the modified methods as UNIT-DDM and GP-UNIT-DDM, respectively.

Our way of combining DDM with these existing approaches is to replace their discriminators. To
obtain UNIT-DDM and GP-UNIT-DDM, we modify the discriminator neural networks of UNIT and
GP-UNIT into multi-task discriminators. Specifically, for UNIT-DDM, the multi-scale discriminator
of UNIT which has one output channel for each scale, is modified to produce I output channels for
each scale. Similarly, to obtain GP-UNIT-DDM, the discriminator of GP-UNIT is modified to
have I output channels instead of one output channel at the output layer. The ith output channel is
interpreted as the ith discriminator associated with ui.

Fig. 21 shows the qualitative results attained by the original versions of UNIT and GP-UNIT as well
as their DDM-modified versions. One can see that there is significant improvement in terms of content
alignment, without compromising the visual quality—see the FID and LPIPS scores in Table 5.
This attests to the hypothesis that distribution-matching based domain translation frameworks can
benefit from the proposed MPA eliminating idea.
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Source Target
Proposed

(Digit Ident.)
Proposed
(shapes)

CycleGAN
Loss

CycleGAN
+Id MUNIT U-GAT-ITStargan-v2

Figure 20: Result of using different auxiliary variable for MNIST digits to rotated MNIST digits
task. Using shape attributes incur LPIPS=0.19 ± 0.08, compared to LPIPS=0.11 ± 0.08 for the
digit identity as auxiliary variable.

Table 5: The FID and LPIPS scores attained by UNIT and GP-UNIT as well as their DDM-modified
versions.

Method FID (↓) LPIPS (↓)

Edges Shoes Edges → Rot. Shoes Rot. Shoes → Edges

UNIT 33.95 96.28 0.49± 0.035 0.58± 0.038

UNIT-DDM 43.95 88.58 0.30± 0.075 0.35± 0.092

Method CelebA-HQ Bitmoji

GP-UNIT 32.40 30.30
GP-UNIT-DDM 37.79 30.33
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Source Target UNIT-DDM UNIT

Figure 21: [Left] Result of auxiliary variable-based diverse distribution matching on GP-UNIT on
Bitmoji → CelebaA-HQ translation task. [Right] Result of Conditional distribution matching on
UNIT on Edges → Rotated Shoes translation task.
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Table 6: LPIPS score attained by DIMENSION using random ui assignments.

random ui proportion MNIST → Rot. MNIST Rot. MNIST → MNIST

0% 0.11± 0.082 0.09± 0.047

20% 0.09± 0.050 0.08± 0.040

40% 0.10± 0.049 0.13± 0.064

50% 0.19± 0.080 0.19± 0.083

60% 0.25± 0.124 0.21± 0.086

Source Target 0% 20% 40% 50% 60% Source Target 0% 20% 40% 50% 60%

Figure 22: Result of DIMENSION under random ui assignments to various fractions of training
data.

H ROBUSTNESS TO NOISY AUXILIARY VARIABLES.

It is of interest to know whether using noisy or wrong auxiliary variables would heavily affect
the performance of DIMENSION. To this end, we assign random ui’s to a fraction of the training
samples in the “MNIST vs. Rotated MNIST” dataset.

Table 6 and Fig. 22 show the LPIPS scores and qualitative results attained by DIMENSION, respec-
tively, under different fractions of random (and highly possibly wrong) auxiliary variables. Notably,
there is almost no performance degradation of DIMENSION even when 40% of the assigned ui’s
are random. This shows the method’s robustness to wrong/noisy auxiliary variables.
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