
Graph-enhanced Optimizers for Structure-aware
Recommendation Embedding Evolution

Cong Xu† Jun Wang† Jianyong Wang § Wei Zhang†∗
†East China Normal University §Tsinghua University

†{congxueric, wongjun, zhangwei.thu2011}@gmail.com §jianyong@tsinghua.edu.cn

Abstract

Embedding plays a key role in modern recommender systems because they are
virtual representations of real-world entities and the foundation for subsequent
decision-making models. In this paper, we propose a novel embedding update
mechanism, Structure-aware Embedding Evolution (SEvo for short), to encour-
age related nodes to evolve similarly at each step. Unlike GNN (Graph Neural
Network) that typically serves as an intermediate module, SEvo is able to di-
rectly inject graph structural information into embedding with minimal compu-
tational overhead during training. The convergence properties of SEvo along with
its potential variants are theoretically analyzed to justify the validity of the de-
signs. Moreover, SEvo can be seamlessly integrated into existing optimizers for
state-of-the-art performance. Particularly SEvo-enhanced AdamW with moment
estimate correction demonstrates consistent improvements across a spectrum of
models and datasets, suggesting a novel technical route to effectively utilize graph
structural information beyond explicit GNN modules. Our code is available at
https://github.com/MTandHJ/SEvo.

1 Introduction

Surfing Internet leaves footprints such as clicks [15], browsing [5], and shopping histories [58].
For a modern recommender system [6, 12], the entities involved (e.g., goods, movies) are typi-
cally embedded into a latent space based on these interaction data. As the embedding takes the
most to construct and is the foundation to subsequent decision-making models, its modeling qual-
ity directly determines the final performance of the entire system. According to the homophily
assumption [31, 59], it is natural to expect that related entities have closer representations in the
latent space. Note that the similarity between two entities refers specifically to those extracted from
interaction data [47] or prior knowledge [37]. For example, goods selected consecutively by the
same user or movies of the same genre are often perceived as more relevant. Graph neural networks
(GNNs) [2, 10, 14] are a widely adopted technique to exploit such structural information, in concert
with a weighted adjacency matrix wherein each entry characterizes how closely two nodes are re-
lated. Rather than directly injecting structural information into embedding, GNN typically serves as
an intermediate module in the recommender system. However, designing a versatile GNN module
suitable for various recommendation scenarios is challenging. This is especially true for sequential
recommendation [8, 51], which needs to take into account both structural and sequential informa-
tion at the same time. Moreover, the post-processing fashion inevitably increases the overhead of
training and inference, limiting the scalability for real-time recommendation.

In this work, we aim to directly inject graph structural information into embedding through a novel
embedding update mechanism. Figure 1 (a) illustrates a normal embedding evolution process, in

∗Corresponding author. This work was supported in part by National Natural Science Foundation of China
(No. 92270119 and No. 62072182) and Shanghai Institute of Artificial Intelligence for Education.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/MTandHJ/SEvo

(a)

≈

Normal Embedding Evolution

Structure-aware Embedding Evolution

(b)

Structure-aware Embedding Evolution

(b)

(d)

(c)

Figure 1: Overview of SEvo. (a) Normal embedding evolution. (b) (Section 2) Structure-aware em-
bedding evolution. (c) (Section 2.2) Geometric visualization of the variation from ∆E to ψ∗(∆E).
The gray ellipse represents the region with proper smoothness. (d) (Section 2.3) The L-layer ap-
proximation with a faster convergence guarantee.

which the embedding E is updated at step t as follows:

Et ← Et−1 +∆Et−1. (1)

Note that the variation ∆E is primarily determined by the (anti-)gradient. It points to a region
able to decrease a loss function concerning recommendation performance [35], but lacks an explicit
mechanism to ensure that the variations between related nodes are similar. The embeddings thus
cannot be expected to capture model pairwise relations while minimizing the recommendation loss.

Conversely, structural information can be effectively learned if related nodes evolve similarly at each
update. The structure-aware embedding evolution (SEvo), depicted in Figure 1 (b), is developed for
this goal. A special transformation is applied so as to meet both smoothness and convergence [57].
Given that these two criteria inherently conflict to some extent, we resort to a graph regularization
framework [57, 7] to balance them. While analogous frameworks have been used to understand
feature smoothing and modify message passing mechanisms for GNNs [28, 60], applying this to
variations is not as straightforward as to features [24] or labels [19]. Previous efforts are capable
of smoothing, but cannot account for strict convergence. The specific transformation form must be
chosen carefully; subtle differences may slow down or even kill training. Through comprehensive
theoretical analysis, we develop an applicable solution with a provable convergence guarantee.

Apart from the anti-gradient, the variation ∆E can also be derived from the moment estimates.
Therefore, existing optimizers, such as SGD [41] and Adam [23], can benefit from SEvo readily. In
contrast to Adam, AdamW [27] decouples the weight decay from the optimization step, making it
more compatible with SEvo as it is unnecessary to smooth the weight decay as well. Furthermore,
we recorrect the moment estimates of SEvo-enhanced AdamW when encountering sparse gradients.
This modification enhances its robustness across a variety of recommendation models and scenar-
ios. Extensive experiments over six public datasets have demonstrated that it can effectively inject
structural information to boost recommendation performance. It is important to note that SEvo does
not alter the inference logic of the model, so the inference time is exactly the same and very little
computational overhead is required during training.

The main contributions of this paper can be summarized as follows. 1) The graph regularization
framework [57, 7] has been widely used for feature/label smoothing. To the best of our knowledge,
we are the first to apply it to variations as an alternative to explicit GNN modules for recommenda-
tion. 2) The final formulation of SEvo is non-trivial (previous iterative [57] or Neumann series [39]
approximation methods proved to be incompatible in this case) and comes from comprehensive theo-
retical analyses. 3) We further present SEvo-enhanced AdamW by integrating SEvo and recorrecting
the original moment estimates. These modifications demonstrate consistent performance, yielding
average 9%∼23% improvements across a spectrum of models. For larger-scale datasets contain-
ing millions of nodes, the performance gains can be as high as 40%∼139%. 4) Beyond interaction

2

data, we preliminarily explore the pairwise similarity estimation based on other prior knowledge:
node categories to promote intra-class representation proximity, and knowledge distillation [18] to
encourage a light-weight student to mimic the embedding behaviors of a teacher model.

2 Structure-aware Embedding Evolution

In this section, we first introduce some necessary terminology and concepts, in particular smooth-
ness. SEvo and its theoretical analyses will be detailed in Section 2.2 and 2.3. The proofs hereafter
are deferred to Appendix A.

2.1 Preliminaries

Notations and terminology. Let V = {v1, . . . , vn} denote a set of nodes and A = [wij] ∈ Rn×n

a symmetric adjacency matrix, where each entry wij = wji characterizes how closely vi and vj are
related. They jointly constitute the graph G = (V,A). For example, V could be a set of movies, and
wij is the frequency of vi and vj being liked by the same user. Denoted by D ∈ Rn×n the diagonal
degree matrix of A, the normalized adjacency matrix and the corresponding Laplacian matrix are
defined as Ã = D−1/2AD−1/2 and L̃ = I− Ã, respectively. For ease of notation, we use ⟨·, ·⟩ to
denote the inner product, ⟨x,y⟩ = xTy for vectors and ⟨X,Y⟩ = Tr(XTY) for matrices. Here,
Tr(·) denotes the trace of a given matrix.

Smoothness. Before delving into the details of SEvo, it is necessary to present a metric to measure
the smoothness [57, 7] of node features X as a whole. Denoted by xi,xj the row vectors of X and
di =

∑
j wij , we have

Jsmoothness(X;G) := Tr(XT L̃X) =
∑

i,j∈V wij

∥∥∥∥ xi√
di
− xj√

dj

∥∥∥∥2
2

. (2)

This term is often used as graph regularization for feature/label smoothing [24, 19]. A lower
Jsmoothness indicates smaller difference between closely related pairs of nodes, and in this case X
is considered smoother. However, smoothness alone is not sufficient from a performance perspec-
tive. Over-emphasizing this indicator instead leads to the well-known over-smoothing issue [26].
How to balance variation smoothness and convergence is the main challenge to be addressed below.

2.2 Methodology

The entities involved in a recommender system are typically embedded into a latent space [6, 12],
and the embeddings in E ∈ Rn×d are expected to be smooth so that related nodes are close to each
other. As discussed above, E is learnable and updated at step t by Eq. (1), where the variation ∆E is
mainly determined by the (anti-)gradient. For example, ∆E = −η∇EL when gradient descent with
a learning rate of η is used to minimize a loss function L. However, the final embeddings based on
this evolution process may be far from sufficient smoothness because: 1) The variation ∆E points
to the region able to decrease the loss function concerning recommendation performance, but lacks
an explicit smoothness guarantee. 2) As numerous item embeddings (millions of nodes in practice)
to be trained together for a recommender system, the variations of two related nodes may be quite
different due to the randomness from initialization and mini-batch sampling.

We are to design a special transformation ψ(·) to smooth the variation so that the evolution deduced
from the following update formula is structure-aware,

Et ← Et−1 + ψ(∆Et−1). (3)

Recall that, in this paper, the similarity is confined to quantifiable values in the adjacency matrix A,
in which more related pairs are weighted higher. Therefore, this transformation should encourage
pairs of nodes connected with higher weights to evolve more similarly than those connected with
lower weights. This can be boiled down to structure-aware transformation as defined below.

Definition 1 (Structure-aware transformation). The transformation ψ(·) is structure-aware if

Jsmoothness(ψ(∆E)) ≤ Jsmoothness(∆E). (4)

3

On the other hand, the transformation must ensure convergence throughout the evolution process,
which means that the transformed variation should not differ too much from the original. For the
sake of theoretical analysis, the ability to maintain the update direction will be used to qualitatively
depict this desirable property below, though a quantitative squared error will be employed later.

Definition 2 (Direction-aware transformation). The transformation ψ(·) is direction-aware if〈
ψ(∆E),∆E

〉
> 0, ∀∆E ̸= 0. (5)

These two criteria inherently conflict to some extent. We resort to a hyperparameter β ∈ [0, 1) to
make a trade-off and the desired transformation is the corresponding minimum; that is,

ψ∗(∆E;β) = argmin
∆

(1− β) ∥∆−∆E∥2F + β Tr(∆T L̃∆). (6)

A larger β indicates a stronger smoothness constraint and ψ∗(∆E) reduces to ∆E when β → 0.
Geometrically, as shown in Figure 1 (c), ψ∗(∆E) can be interpreted as a projection of ∆E onto
the region with proper smoothness. Taking the gradient to zero could give a closed-form solution,
but it requires prohibitive arithmetic operations and memory overhead, which is particularly time-
consuming in recommendation due to the large number of nodes. Zhou et al. [57] suggested a
L-layer iterative approximation to circumvent this problem (with ψ̂0(∆E) = ∆E):

ψ̂iter(∆E) := ψ̂L(∆E), ψ̂l(∆E) = βÃψ̂l−1(∆E) + (1− β)∆E.

The resulting transformation is essentially a momentum update that aggregates higher-order infor-
mation layer by layer. Analogous message-passing mechanisms have been used in previous GNNs
such as APPNP [24] and C&S [19]. However, this commonly used approximate solution is incom-
patible with SEvo; sometimes, variations after the transformation may be opposite to the original
direction, resulting in a failure to converge.

Theorem 1. The iterative approximation is direction-aware for all possible normalized adjacency
matrices and L ≥ 0, if and only if β < 1/2. In contrast, the Neumann series approximation
ψ̂nsa(∆E) = (1− β)∑L

l=0 β
lÃl∆E is structure-aware and direction-aware for any β ∈ [0, 1).

As suggested in Theorem 1, a feasible compromise for ψ̂iter is to restrict β to [0, 1/2), but this
may cause a lack of smoothness. The Neumann series approximation [39] appears to be a viable
alternative as it qualitatively satisfies both desirable properties. Nonetheless, this transformation can
be further improved for a faster convergence rate based on the analysis presented next.

2.3 Convergence Analysis for Further Modification

In general, the recommender system has some additional parameters θ ∈ Rm except for embedding
to be trained. Therefore, we analyze the convergence rate of the following gradient descent strategy:

Et+1 ← Et − ηψ̂nsa

(
∇EL(Et,θt)

)
, θt+1 ← θt − η′∇θL(Et,θt),

wherein SEvo is performed on the embedding and a normal gradient descent is applied to θ.
To make the analysis feasible, some mild assumptions on the loss function should be given:
L : Rn×d × Rm → R is a twice continuously differentiable function whose first derivative is
Lipschitz continuous for some constant C. Then, we obtain the following properties.

Theorem 2 (Informal). If η = η′ = 1/C, the convergence rate after T updates is O(C/((1 −
β)2T)). If we adopt a modified learning rate of η = 1

(1−βL+1)C
for embedding, the convergence

rate could be improved to O(C/((1− β)T)).
Remark 1. Our main interest is to justify the designs of SEvo rather than to pursue a particular
convergence rate, so some mild assumptions suggested in [32] are adopted here. By introducing
the steepest descent for quadratic norms [1], better convergence can be obtained with stronger
assumptions.

Two conclusions can be drawn from Theorem 2. 1) The theoretical upper bound becomes worse
when β → 1. This makes sense since ψ̂nsa(∇EL) is getting smoother and further away from the

4

original descent direction. 2) A modified learning rate for embedding can significantly improve the
convergence rate. This phenomenon can be understood readily if we notice the fact that

∥ψ̂nsa(∆E)∥F ≤ (1− βL+1)∥∆E∥F .
Thus, the modified learning rate is indeed to offset the scaling effect induced by SEvo. In view of
this, we directly incorporate this factor into SEvo to avoid getting stuck in the learning rate search,
yielding the final desired transformation:

ψ̂(∆E;β) =
1− β

1− βL+1

L∑
l=0

βlÃl∆E. (7)

It can be shown that ψ̂ is structure-aware and direction-aware, and converges to ψ as L increases.

2.4 Integrating SEvo into Existing Optimizers

Algorithm 1: SEvo-enhanced AdamW. Differences from the original AdamW are colored in
blue. The matrix operation below are element-wise.
Input: embedding matrix E, learning rate η, momentum factors β1, β2, β ∈ [0, 1), weight

decay λ.
foreach step t do

Gt ← ∇EL ; // Get gradients w.r.t E
Update first/second moment estimates for each node i:

Mt[i]←
{

β1Mt−1[i] + (1− β1)Gt[i] if Gt[i] ̸= 0

β1Mt−1[i] +
(1−β1)

1−βt−1
1

Mt−1[i] otherwise ,

Vt[i]←
{

β2Vt−1[i] + (1− β2)G2
t [i] if Gt[i] ̸= 0

β2Vt−1[i] +
(1−β2)

1−βt−1
2

Vt−1[i] otherwise ;

Compute bias-corrected first/second moment estimates:

M̂t ←Mt/(1− βt
1), V̂t ← Vt/(1− βt

2);

Update via SEvo:

Et ← Et−1 − η ψ̂
(
M̂t/

√
V̂t + ϵ;β

)
− ηλEt−1.

Output: optimized embeddings E.

SEvo can be seamlessly integrated into existing optimizers since the variation involved in Eq. (3)
can be extended beyond the (anti-)gradient. For SGD with momentum, the variation becomes the
first moment estimate, and for Adam this is jointly determined by the first/second moment estimates.
AdamW is also widely adopted for training recommenders. Unlike Adam whose moment estimate
is a mixture of gradient and weight decay, AdamW decouples the weight decay from the optimiza-
tion step, which is preferable since it makes no sense to require the weight decay to be smooth as
well. However, in very rare cases, SEvo-enhanced AdamW fails to work very well. We next try to
ascertain the causes and then improve the robustness of SEvo-enhanced AdamW.

Denoted by g := ∇eL ∈ Rd the gradient for a node embedding e and g2 := g⊙g the element-wise
square, AdamW estimates the first and second moments at step t using the following formulas

mt = β1mt−1 + (1− β1)gt−1, vt = β2vt−1 + (1− β2)g2
t−1,

where β1, β2 are two momentum factors. Then the original AdamW updates embeddings by

et = et−1 − η ·∆et−1, ∆et−1 := m̂t/
√
v̂t.

Note that the bias-corrected estimates m̂t = mt/(1 − βt
1) and v̂t = vt/(1 − βt

2) are employed
for numerical stability [23]. In practice, only a fraction of nodes are sampled for training in a mini-
batch, so the remaining embeddings have zero gradients. In this case, the sparse gradient problem
may introduce some unexpected ‘biases’ as depicted below.

5

Proposition 1. If a node is no longer sampled in subsequent p batches after step t, we have
∆et+p−1 = κ · βp

1√
βp
2

∆et−1, and the coefficient of κ is mainly determined by t.

Considering a common case β2 ≈ β1, the right-hand side approaches O(βp/2
1). The step size for

inactive nodes then gets slower and slower during idle periods. This seems reasonable as their
moment estimates are becoming outdated; however, this effect sometimes prevents the variation
from being smoothed by SEvo. We hypothesize that this is because SEvo itself tends to assign
more energy to active nodes and less energy to inactive nodes. So this auto-attenuation effect of
the original AdamW is somewhat redundant. Fortunately, there is a feasible modification to make
SEvo-enhanced AdamW more robust:
Theorem 3. Under the same assumptions as in Proposition 1, ∆et+p−1 = ∆et−1 if the moment
estimates are updated in the following manner when gt = 0,

mt = β1mt−1 + (1− β1)
1

1− βt−1
1

mt−1, vt = β2vt−1 + (1− β2)
1

1− βt−1
2

vt−1. (8)

As can be seen, when sparse gradients are encountered, the approach in Theorem 3 is actually to
estimate the current gradient from previous moments. The coefficients 1/(1 − βt−1

1) and 1/(1 −
βt−1
1) are used here for unbiasedness (refer to Appendix A.3 for detailed discussion and proofs). We

summarize the SEvo-enhanced AdamW in Algorithm 1 and the modifications for Adam and SGD
in Appendix B.1, with an empirical comparison presented in Section 3.3.

The previous discussion lays the technical basis for injecting graph structural information, but the
final recommendation performance is determined by how ‘accurate’ the similarity estimation is. Fol-
lowing other GNN-based sequence models [48, 49], the number of consecutive occurrences across
all sequences will be used as the pairwise similarity wij . In other words, items vi and vj that appear
consecutively more frequently are assumed more related. Notably, we would like to emphasize that
SEvo can readily inject other types of knowledge beyond interaction data. We have made some
preliminary efforts in Appendix C and observed some promising results.

3 Experiments

In this section, we comprehensively verify the superiority of SEvo. We focus on sequential rec-
ommendation for two reasons: 1) This is the most common scenario in practice; 2) Utilizing both
sequential and structural information is beneficial yet challenging. We showcase that SEvo is a
promising way to achieve this goal. It is worth noting that although technically SEvo can be ap-
plied to general graph embedding learning [4], we contend SEvo-AdamW is especially useful for
mitigating the inconsistent embedding evolution caused by data sparsity, while effectively injecting
structural information in conjunction with other types of information.

Due to space constraints, this section presents only the primary results concerning accuracy, effi-
ciency, and some empirical evidence that supports the aforementioned claims. We begin by intro-
ducing the datasets, evaluation metrics, baselines, and implementation details.

Table 1: Dataset statistics

Dataset #Users #Items #Interactions Avg. Len.

Beauty 22,363 12,101 198,502 8.9
Toys 19,412 11,924 167,597 8.6
Tools 16,638 10,217 134,476 8.1

MovieLens-1M 6,040 3,416 999,611 165.5

Electronics 728,489 159,729 6,737,580 9.24
Clothing 1,219,337 376,378 11,282,445 9.25

Datasets. Six benchmark datasets are considered in
this paper. The first four datasets including Beauty,
Toys, Tools, and MovieLens-1M are commonly
employed in previous studies for empirical com-
parisons. Additionally, two larger-scale datasets,
Clothing and Electronics, are used to assess SEvo’s
scalability in scenarios involving millions of nodes.
Following [22, 13], we filter out users and items
with less than 5 interactions, and the validation set
and test set are split in a leave-one-out fashion,
namely the last interaction for testing and the penultimate one for validation. This splitting allows
for fair comparisons, either for sequential recommendation or collaborative filtering. The dataset
statistics are presented in Table 1.

Evaluation metrics. For each user, the predicted scores over all items will be sorted in descending
order to generate top-N candidate lists. We consider two widely-used evaluation metrics, HR@N

6

Table 2: Overall performance comparison. The best baselines and ours are marked in underline and
bold, respectively. Symbol ▲% stands for the relative gap between them. Paired t-test is performed
over 5 independent runs for evaluating p-value (≤ 0.05 indicates statistical significance). ‘Avg.
Improv.’ for each backbone depicts average relative improvements against the baseline.

GNN-based MF or RNN/Transformer-based ▲% p-valueLightGCN SR-GNN LESSR MAERec MF-BPR GRU4Rec SASRec BERT4Rec STOSA
+SEvo +SEvo +SEvo +SEvo +SEvo

B
ea

ut
y

HR@1 0.0074 0.0059 0.0088 0.0113 0.0071 0.0076 0.0061 0.0094 0.0120 0.0154 0.0157 0.0172 0.0166 0.0216 30.2% 6.90E-05
HR@5 0.0289 0.0247 0.0322 0.0424 0.0272 0.0293 0.0233 0.0326 0.0404 0.0499 0.0479 0.0522 0.0479 0.0544 13.5% 7.69E-04
HR@10 0.0472 0.0406 0.0506 0.0662 0.0454 0.0480 0.0395 0.0524 0.0634 0.0759 0.0716 0.0772 0.0680 0.0774 8.2% 2.66E-03
NDCG@5 0.0181 0.0152 0.0205 0.0269 0.0170 0.0184 0.0146 0.0209 0.0262 0.0328 0.0319 0.0350 0.0327 0.0383 17.2% 9.70E-05
NDCG@10 0.0240 0.0203 0.0264 0.0346 0.0228 0.0244 0.0198 0.0273 0.0336 0.0411 0.0395 0.0430 0.0391 0.0457 15.5% 8.02E-05

To
ys

HR@1 0.0087 0.0100 0.0126 0.0171 0.0079 0.0099 0.0059 0.0080 0.0172 0.0192 0.0160 0.0175 0.0232 0.0267 15.3% 1.46E-03
HR@5 0.0279 0.0294 0.0352 0.0532 0.0267 0.0306 0.0209 0.0276 0.0506 0.0584 0.0430 0.0492 0.0571 0.0625 9.6% 5.70E-03
HR@10 0.0456 0.0439 0.0513 0.0796 0.0427 0.0477 0.0345 0.0446 0.0727 0.0844 0.0645 0.0723 0.0776 0.0872 9.5% 3.07E-04
NDCG@5 0.0183 0.0198 0.0240 0.0355 0.0174 0.0203 0.0134 0.0179 0.0342 0.0392 0.0297 0.0336 0.0406 0.0453 11.6% 2.48E-03
NDCG@10 0.0240 0.0245 0.0292 0.0440 0.0225 0.0258 0.0177 0.0234 0.0413 0.0475 0.0366 0.0410 0.0472 0.0532 12.7% 3.12E-05

To
ol

s

HR@1 0.0067 0.0046 0.0045 0.0083 0.0058 0.0071 0.0053 0.0058 0.0099 0.0108 0.0074 0.0087 0.0095 0.0133 33.8% 1.23E-02
HR@5 0.0212 0.0162 0.0157 0.0271 0.0187 0.0225 0.0174 0.0208 0.0317 0.0337 0.0244 0.0279 0.0276 0.0350 10.5% 8.94E-03
HR@10 0.0326 0.0260 0.0263 0.0423 0.0293 0.0348 0.0272 0.0336 0.0466 0.0497 0.0405 0.0441 0.0417 0.0502 7.7% 8.25E-03
NDCG@5 0.0140 0.0103 0.0101 0.0177 0.0123 0.0147 0.0114 0.0133 0.0210 0.0223 0.0159 0.0183 0.0186 0.0244 15.9% 5.57E-03
NDCG@10 0.0176 0.0135 0.0135 0.0226 0.0157 0.0187 0.0145 0.0174 0.0258 0.0274 0.0211 0.0235 0.0231 0.0293 13.4% 3.79E-03

M
ov

ie
L

en
s HR@1 0.0124 0.0383 0.0513 0.0439 0.0117 0.0133 0.0487 0.0487 0.0490 0.0517 0.0681 0.0733 0.0457 0.0510 7.6% 3.81E-02

HR@5 0.0495 0.1297 0.1665 0.1563 0.0470 0.0509 0.1625 0.1663 0.1599 0.1670 0.2069 0.2127 0.1409 0.1569 2.8% 4.17E-03
HR@10 0.0866 0.2009 0.2539 0.2462 0.0836 0.0876 0.2522 0.2568 0.2492 0.2567 0.3018 0.3075 0.2185 0.2356 1.9% 9.32E-02
NDCG@5 0.0307 0.0842 0.1092 0.1003 0.0291 0.0319 0.1061 0.1075 0.1046 0.1096 0.1387 0.1437 0.0932 0.1041 3.6% 4.19E-04
NDCG@10 0.0427 0.1071 0.1373 0.1292 0.0408 0.0436 0.1350 0.1366 0.1333 0.1385 0.1693 0.1743 0.1181 0.1295 2.9% 1.30E-02

Avg. Improv. +13.1% +23.4% +12.3% +9.6% +17.5%
Avg. Train. Time 2,820s 43,783s 62,457s 31,674 2,863s +173s 3,582s +124s 532s +37s 1,256s +288s 2,087s +127s

Avg. Inf. Time 1.19s 11.18s 9.34s 2.73s 1.13s +0s 1.80s +0s 1.88s +0s 1.61s +0s 6.72 +0s

(Hit Rate) and NDCG@N (Normalized Discounted Cumulative Gain). The former measures the
rate of successful hits among the top-N recommended candidates, while the latter takes into account
the ranking positions and assigns higher scores in order of priority.

Baselines. We select four GNN-based models (LightGCN [16], SR-GNN [48], LESSR [8], and
MAERec [51]) as performance and efficiency benchmarks. Since this study is not to develop a
new model, four classic sequence models (GRU4Rec [17], SASRec [22], BERT4Rec [40], and
STOSA [13]) are utilized as backbones to validate the effectiveness of SEvo. Besides, MF-BPR [35]
is also considered here as a backbone without sequence modeling. We carefully tune the hyperpa-
rameters according to their open-source code and experimental settings.

Implementation details. Since the purpose is to study the effectiveness of SEvo, only hyperparam-
eters concerning optimization are retuned, including learning rate ([1e-4, 5e-3]), weight decay ([0,
0.1]) and dropout rate ([0, 0.7]). Other hyperparameters in terms of the architecture are consistent
with the corresponding baseline. For a fair comparison, the number of layers L is fixed to 3 as in
other GNN-based recommenders. As for the hyperparameter in terms of the degree of smoothness,
we found β = 0.99 performs quite well in practice. The loss functions follow the suggestions in the
respective papers, given that SEvo can be applied to any of them.

3.1 Overall Comparison

In this section, we are to verify the effectiveness of SEvo in boosting recommendation performance.
Table 2 compares the overall performance and efficiency over four widely used datasets, and Table 3
further provides the results on two large-scale datasets with millions of nodes.

Firstly, GNN-based models seem to over-emphasize structural information but lack full exploitation
of sequential information. Their performance is only on par with GRU4Rec. On the Tools dataset,
SR-GNN and LESSR are even inferior to LightGCN, a collaborative filtering model with no access
to sequential information. MAERec makes a slightly better attempt to combine the two by learning
structural information through graph-based reconstruction tasks. It employs a SASRec backbone
for recommendation to allow for a better utilization of sequential information. Despite the identi-
cal recommendation backbone, SASRec trained with SEvo-enhanced AdamW enjoys significantly
better performance. Not to mention the consistent gains on other state-of-the-art methods such as
BERT4Rec and STOSA, from 2% to 30% according to the last two columns of Table 2. Overall,
the promising improvements from the SEvo enhancement suggest a different route to exploit graph
structural information, especially in conjunction with sequence modeling.

7

0 2000 4000 6000 8000

0.5

1.0
L

o
ss

Beauty

Original SEvo SEvo w/o rescaling

0 2000 4000 6000 8000

t

0.5

1.0

L
o
ss

MovieLens-1M

(a) Loss curves

3.0

3.5

4.0

4.5

5.0

J s
m
o
o
th
n
e
s
s

×104 ∆E

1

2

3

4

5
×104 ψ̂(∆E)

0.4

0.6

0.8

1.0

×104

sm
oother

E

t

1.0

1.2

1.4

1.6

1.8

2.0

J s
m
o
o
th
n
e
s
s

×104

(I)

t

0.5

1.0

1.5

2.0
×104

(II)

β

1.0

1.5

2.0

2.5

×103
sm

oother

(III)

0.0

0.2

0.4

0.6

0.8

1.0

β

(b) Smoothness

Figure 2: Empirical illustrations of convergence and smoothness. The top and bottom panels re-
spectively depict the results for Beauty and MovieLens-1M. (a) SASRec enhanced by SEvo with or
without rescaling. (b) Smoothness of (I) the original variation; (II) the smoothed variation; (III) the
optimized embedding. A lower Jsmoothness indicates stronger smoothness.

Table 3: SEvo on large-scale datasets.

SASRec ▲%+SEvo

E
le

ct
ro

ni
cs HR@1 0.0033 0.0063 +92.5%

HR@10 0.0208 0.0293 +40.6%
NDCG@10 0.0103 0.0159 +53.9%
Time/Epoch 19.94s +2.22s
Epochs 100 150

C
lo

th
in

g HR@1 0.0071 0.0171 +139.1%
HR@10 0.0360 0.0626 +73.9%
NDCG@10 0.0199 0.0377 +89.1%
Time/Epoch 25.20s +8.27s
Epochs 400 300

Secondly, either dynamic graph construction in SR-GNN
and LESSR, or path sampling in MAERec, requires heavy
computational overhead, which directly causes the train-
ing failures on large-scale datasets like Electronics and
Clothing. Even worse, these high costs associated with
SR-GNN and LESSR are inevitable during inference. In
contrast, SEvo does not alter the model inference logic
at all, thereby maintaining consistent inference time. The
computational overhead required in training is also negli-
gible compared to previous graph-enhanced models that
employ GNNs as intermediate modules. For example,
SASRec with SEvo consumes only 10 minutes compared
to the hours of training time required for MAERec. When
millions of nodes are encountered in Table 3, each epoch
demands just a few more seconds. SEvo is arguably superior to these cumbersome GNN modules in
real-world applications. Combining Table 2 and Table 3, it can be inferred that the performance gain
increases as the number of items increases. This can be explained by the fact that the randomness of
sampling leads to a much more inconsistent evolution when more and more nodes are encountered
[56]. SEvo thus plays an increasingly important role as it is capable of imposing direct consistency
constraints on embeddings.

Since SASRec is a pioneer in the field of sequential recommendation, it will serve as the default
backbone for subsequent studies.

3.2 Empirical Analysis

Convergence comparison. In Section 2.3, we theoretically verified the necessity of rescaling the
original Neumann series approximation for faster convergence. Figure 2a shows the loss curves
of SASRec trained with AdamW under identical settings other than the form of SEvo. Without
rescaling, SASRec exhibits significantly slower convergence, consistent with the conclusion in The-
orem 2. While the theoretical worst-case convergence rate of the corrected SEvo is only 1% of the
normal gradient descent when β = 0.99, its practical performance is much better. SASRec trained
with SEvo-enhanced AdamW initially converges marginally slower and catches up in the final stage.

8

SGD Adam AdamW

Optimizer

0.020

0.025

0.030

0.035

0.040

N
D

C
G

@
10

Beauty

Original

+SEvo

(a) Optimizers

0.0 0.5 1.0

β

0.02

0.03

0.04

N
D

C
G

@
10

Beauty

Baseline

Neumann

Iterative

(b) Neumann versus Iterative

5 10 15 20 25
Avg. Improv. (%)

MF-BPR

GRU4Rec

SASRec

BERT4Rec

STOSA

+11.3%

+13.7%

+9.3%

+10.3%

+12.4%

+13.1%

+23.4%

+12.3%

+9.6%

+17.5%

Uncorrected Corrected

(c) Moment estimate correction

Figure 3: SEvo ablation experiments.

Smoothness evaluation. Figure 2b demonstrates the variation’s smoothness throughout the evolu-
tion process and the eventual embedding differences from β = 0 to β = 0.999. (I) → (II): The
original variations exhibit a similar degree of smoothness, but after transformation, they are quite
different—–smoother as β increases. (II) → (III): Consequently, the embedding trained with a
stronger smoothness constraint becomes smoother as well. The structure-aware embedding evolu-
tion successfully makes related nodes closer in the latent space. Although smoothness is not the
sole quality measure of embedding, combined with the analyses above, we can conclude that SEvo
injects appropriate structural information under the default setting of β = 0.99.

3.3 Ablation Study

SEvo for various optimizers. It is of interest to study whether SEvo can be extended to other com-
monly used optimizers such as SGD and Adam. Figure 3a compares NDCG@10 performance on
Beauty and MovieLens-1M. For a fair comparison, the hyperparameters are tuned independently. It
is evident that the performance of SGD, Adam, and AdamW improves significantly after integrating
SEvo, with AdamW achieving the best as it does not need to smooth the weight decay.

Neumann series approximation versus iterative approximation. Theorem 1 suggests that the
Neumann series approximation is preferable to the commonly used iterative approximation because
the latter is not always direction-aware and thus a conservative hyperparameter of β is needed to en-
sure convergence. This conclusion can also be drawn from Figure 3b. When only a little smoothness
is required, their performance is comparable as both approximations differ only at the last term. The
iterative approximation however fails to ensure convergence once β > 0.7 on the Beauty dataset,
potentially resulting in a lack of smoothness.

Moment estimate correction for AdamW. We compare SEvo-enhanced AdamW with or with-
out moment estimate correction in Figure 3c, in which average relative improvements against the
baseline are presented for each recommender. Overall, the two variants of SEvo-enhanced AdamW
perform comparably, significantly surpassing the baseline. However, in some cases (e.g., GRU4Rec
and STOSA), the moment estimate correction as suggested in Theorem 3 is particularly useful to
improve performance. Recall that BERT4Rec is trained using the output softmax from a separate
fully-connected layer that is fully updated at each step. This may explain why the correction has
little effect on BERTRec. In conclusion, the results underscore the importance of the proposed
modification in alleviating bias in moment estimates.

3.4 Applications of SEvo Beyond Interaction Data

We further explore the potential of applying SEvo to other types of prior knowledge. On the one
hand, the category smoothness constraint can also be fulfilled through SEvo (see Appendix C.2),
leading to progressively stronger clustering effects as β increases. This provides compelling visual
evidence of why SEvo is inherently structure-aware. On the other hand, SEvo is arguably an effi-
cient tool for transferring embedding knowledge (see Appendix C.3). Notice that the learning of
other modules cannot be guided in the same way, so SEvo alone is still inferior to state-of-the-art
knowledge distillation methods [21, 55]. Fortunately, SEvo and other methods can work together to
further boost the recommendation performance.

9

4 Related Work

Recommender systems are developed to enable users to quickly and accurately find relevant items
in diverse applications, such as e-commerce [58], online news [15] and social media [5]. Typically,
the entities involved are embedded into a latent space [6, 12, 54], and then decision models are built
on top of the embedding for tasks like collaborative filtering [16] and context/knowledge-aware rec-
ommendation [46, 44]. Sequential recommendation [36, 25] focuses on capturing users’ dynamic
interests from their historical interaction sequences. Early approaches adapted recurrent neural net-
works (RNNs) [17] and convolutional filters [42] for sequence modeling. Recently, Transformer
[45, 11] has become a popular architecture for sequence modeling due to its parallel efficiency and
superior performance. SASRec [22] and BERT4Rec [40] use unidirectional and bidirectional self-
attention, respectively. Fan et al. [13] proposed a novel stochastic self-attention (STOSA) to model
the uncertainty of sequential behaviors.

Graph neural networks [2, 10] are a type of neural network designed to operate on graph-structured
data, in concert with a weighted adjacency matrix to characterize the pairwise relations between
nodes. GNN equipped with this adjacency matrix can be used for message passing between nodes.
The most relevant work is the optimization framework proposed in [57] for solving semi-supervised
learning problems via a smoothness constraint. This graph regularization approach has recently
inspired a series of work [7, 28, 60]. As opposed to applying it to smooth node representations [24]
or labels [19], it is employed here primarily to balance smoothness and convergence on the variation.

Structural information in recommendation is typically learned through GNN as well, with spe-
cific modifications made to cope with like data sparsity [52, 29]. LightGCN [16] is a pioneering
collaborative filtering work on modeling user-item relations, which removes nonlinearities for eas-
ier training. To further utilize sequential information, previous efforts focus on equipping sequence
models with complex GNN modules, but this inevitably increases the computational cost of training
and inference, making it unappealing for practical recommendation. For example, SR-GNN [48] and
LESSR [8] need dynamically construct adjacency matrices for each batch of sequences. Differently,
MAERec [51] proposes an adaptive data augmentation to boost a novel graph masked autoencoder,
which learns to sample less noisy paths from semantic similarity graph for subsequent reconstruction
tasks. The resulting strong self-supervision signals help the model capture more useful information.

5 Broader Impact and Limitations

Utilizing both sequential and structural information is beneficial yet challenging, and SEvo pro-
posed in this paper suggests a novel and effective technical route for this purpose. Compared to
other explicit GNN modules, SEvo is light-weight and easy-to-use in practice. These insights may
inspire future research efforts regarding structure-aware optimization. However, there are still some
limitations. Firstly, the training-free nature of SEvo makes it versatile, but also limits the expres-
sive power. For a specific task, a sophisticated GNN module may be more desirable for achieving
higher recommendation accuracy. Secondly, it might not be so straightforward to apply SEvo to the
scenario involving multiple types of prior knowledge. Some efforts [43, 33] in the field of multiple
graph learning have proposed some technically feasible solutions. However, these approaches still
encounter challenges in terms of efficiency, particularly in the context of recommendation systems.

6 Conclusion and Future Work

In this work, we have proposed a novel update mechanism for injecting graph structural information
into embedding. Theoretical analyses of the convergence properties motivate some necessary mod-
ifications to the proposed method. SEvo can be seamlessly integrated into existing optimizers. For
AdamW, we recorrect the moment estimates to make it more robust. Besides, an interesting direc-
tion for future work is extending SEvo to multiplex heterogeneous graphs [3], as real-world entities
often participate in various relation networks. Furthermore, we believe that SEvo holds potential
for application to dynamic graph structures and incremental updates [53]. Two challenges may be
encountered in practice: the computational overhead associated with the ongoing adjacency matrix
normalization, and how to adaptively weaken the outdated historical information.

10

References

[1] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and lo-
cally connected networks on graphs. In International Conference on Learning Representations
(ICLR), 2014.

[3] Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang. Representa-
tion learning for attributed multiplex heterogeneous network. In ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD), pages 1358–1368, 2019.

[4] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-
dimensional hyperbolic knowledge graph embeddings. In Annual Meeting of the Association
for Computational Linguistics (ACL), pages 6901–6914. ACL, 2020.

[5] Jiajia Chen, Xin Xin, Xianfeng Liang, Xiangnan He, and Jun Liu. Gdsrec: Graph-based de-
centralizedcollaborative filtering for socialrecommendation. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 2022.

[6] Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. Behavior sequence transformer
for e-commerce recommendation in alibaba. In Proceedings of the 1st International Workshop
on Deep Learning Practice for High-dimensional Sparse Data, pages 1–4, 2019.

[7] Siheng Chen, Aliaksei Sandryhaila, José MF Moura, and Jelena Kovacevic. Signal denoising
on graphs via graph filtering. In IEEE Global Conference on Signal and Information Process-
ing (GlobalSIP), pages 872–876. IEEE, 2014.

[8] Tianwen Chen and Raymond Chi-Wing Wong. Handling information loss of graph neural
networks for session-based recommendation. In ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), pages 1172–1180, 2020.

[9] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder-decoder approaches. In Proceedings of
SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation, pages 103–111. ACL, 2014.

[10] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems (NeurIPS), volume 29, 2016.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), pages 4171–4186. ACL, 2019.

[12] Ahmed El-Kishky, Thomas Markovich, Serim Park, Chetan Verma, Baekjin Kim, Ramy Es-
kander, Yury Malkov, Frank Portman, Sofía Samaniego, Ying Xiao, et al. Twhin: Embedding
the twitter heterogeneous information network for personalized recommendation. In ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pages
2842–2850, 2022.

[13] Ziwei Fan, Zhiwei Liu, Yu Wang, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng, and
Philip S Yu. Sequential recommendation via stochastic self-attention. In ACM Web Conference
(WWW), pages 2036–2047, 2022.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neu-
ral message passing for quantum chemistry. In International Conference on Machine Learning
(ICML), pages 1263–1272. PMLR, 2017.

[15] Shansan Gong and Kenny Q Zhu. Positive, negative and neutral: Modeling implicit feedback
in session-based news recommendation. In International ACM Conference on Research and
Development in Information Retrieval (SIGIR), 2022.

[16] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In International
ACM Conference on Research and Development in Information Retrieval (SIGIR), pages 639–
648, 2020.

11

[17] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. In International Conference on Learning
Representations (ICLR), 2016.

[18] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. CoRR, abs/1503.02531, 2015.

[19] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. Combining
label propagation and simple models out-performs graph neural networks. In International
Conference on Learning Representations (ICLR), 2021.

[20] Tony Jebara, Jun Wang, and Shih-Fu Chang. Graph construction and b-matching for semi-
supervised learning. In International Conference on Machine Learning (ICML), pages 441–
448, 2009.

[21] SeongKu Kang, Junyoung Hwang, Wonbin Kweon, and Hwanjo Yu. Topology distillation
for recommender system. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 829–839. ACM, 2021.

[22] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In IEEE
International Conference on Data Mining (ICDM), pages 197–206. IEEE, 2018.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), 2015.

[24] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations (ICLR), 2019.

[25] Jiacheng Li, Yujie Wang, and Julian McAuley. Time interval aware self-attention for sequential
recommendation. In International Conference on Web Search and Data Mining (WSDM),
pages 322–330, 2020.

[26] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional net-
works for semi-supervised learning. In Conference on Artificial Intelligence (AAAI), 2018.

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations (ICLR), 2018.

[28] Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A unified view
on graph neural networks as graph signal denoising. In ACM International Conference on
Information and Knowledge Management (CIKM), pages 1202–1211, 2021.

[29] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He. UltraGCN:
Ultra simplification of graph convolutional networks for recommendation. In International
Conference on Information and Knowledge Management (CIKM), 2021.

[30] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[31] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in
social networks. Annual Review of Sociology, pages 415–444, 2001.

[32] Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course. Lecture
notes, 3(4):5, 1998.

[33] Feiping Nie, Jing Li, and Xuelong Li. Self-weighted multiview clustering with multiple graphs.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 2564–2570, 2017.

[34] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3967–3976.
IEEE, 2019.

[35] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Schmidt-Thieme Lars. Bpr:
Bayesian personalized ranking from implicit feedback. In Conference on Uncertainty in Arti-
ficial Intelligence (UAI), 2009.

[36] Guy Shani, David Heckerman, Ronen I Brafman, and Craig Boutilier. An mdp-based recom-
mender system. Journal of Machine Learning Research (JMLR), 6(9), 2005.

[37] Kartik Sharma, Yeon-Chang Lee, Sivagami Nambi, Aditya Salian, Shlok Shah, Sang-Wook
Kim, and Srijan Kumar. A survey of graph neural networks for social recommender systems.
arXiv preprint arXiv:2212.04481, 2022.

12

[38] Daniel A Spielman. Spectral graph theory and its applications. In Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), pages 29–38. IEEE, 2007.

[39] Gilbert W Stewart. Matrix algorithms: volume 1: basic decompositions. SIAM, 1998.

[40] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:
Sequential recommendation with bidirectional encoder representations from transformer. In
ACM International Conference on Information and Knowledge Management (CIKM), pages
1441–1450, 2019.

[41] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of ini-
tialization and momentum in deep learning. In International Conference on Machine Learning
(ICML), pages 1139–1147. PMLR, 2013.

[42] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional
sequence embedding. In ACM International Conference on Web Search and Data Mining
(WSDM), pages 565–573. ACM, 2018.

[43] Wei Tang, Zhengdong Lu, and Inderjit S Dhillon. Clustering with multiple graphs. In IEEE
International Conference on Data Mining (ICDM), pages 1016–1021. IEEE, 2009.

[44] Zhen Tian, Ting Bai, Wayne Xin Zhao, Ji-Rong Wen, and Zhao Cao. Eulernet: Adaptive fea-
ture interaction learning via euler’s formula for CTR prediction. In International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR), pages 1376–1385.
ACM, 2023.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 30, 2017.

[46] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. Kgat: Knowledge
graph attention network for recommendation. In ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), pages 950–958, 2019.

[47] Yu Wang, Yuying Zhao, Yi Zhang, and Tyler Derr. Collaboration-aware graph convolutional
network for recommender systems. In ACM Web Conference (WWW), pages 91–101, 2023.

[48] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based
recommendation with graph neural networks. In Conference on Artificial Intelligence (AAAI),
volume 33, pages 346–353, 2019.

[49] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, and Xiangliang Zhang. Self-
supervised hypergraph convolutional networks for session-based recommendation. In Confer-
ence on Artificial Intelligence (AAAI), volume 35, pages 4503–4511, 2021.

[50] Cong Xu, Jun Wang, and Wei Zhang. Stablegcn: Decoupling and reconciling information
propagation for collaborative filtering. IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE), 2023.

[51] Yaowen Ye, Lianghao Xia, and Chao Huang. Graph masked autoencoder for sequential recom-
mendation. In International ACM Conference on Research and Development in Information
Retrieval (SIGIR), pages 321–330. ACM, 2023.

[52] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pages
974–983, 2018.

[53] Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic
graphs. In ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD), pages 2358–2366, 2022.

[54] Shengyu Zhang, Fuli Feng, Kun Kuang, Wenqiao Zhang, Zhou Zhao, Hongxia Yang, Tat-
Seng Chua, and Fei Wu. Personalized latent structure learning for recommendation. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023.

[55] Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge dis-
tillation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
11943–11952. IEEE, 2022.

13

[56] Wayne Xin Zhao, Zihan Lin, Zhichao Feng, Pengfei Wang, and Ji-Rong Wen. A revisiting
study of appropriate offline evaluation for top-n recommendation algorithms. ACM Transac-
tions on Information Systems (TOIS), 41(2):1–41, 2022.

[57] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf.
Learning with local and global consistency. Advances in Neural Information Processing Sys-
tems (NeurIPS), 16, 2003.

[58] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi
Jin, Han Li, and Kun Gai. Deep interest network for click-through rate prediction. In ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pages
1059–1068, 2018.

[59] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. 33:7793–
7804, 2020.

[60] Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and unifying graph
neural networks with an optimization framework. In ACM Web Conference (WWW), pages
1215–1226, 2021.

14

Contents

1 Introduction 1

2 Structure-aware Embedding Evolution 3

2.1 Preliminaries . 3

2.2 Methodology . 3

2.3 Convergence Analysis for Further Modification 4

2.4 Integrating SEvo into Existing Optimizers . 5

3 Experiments 6

3.1 Overall Comparison . 7

3.2 Empirical Analysis . 8

3.3 Ablation Study . 9

3.4 Applications of SEvo Beyond Interaction Data . 9

4 Related Work 10

5 Broader Impact and Limitations 10

6 Conclusion and Future Work 10

A Proofs 16

A.1 Proof of Theorem 1 . 16

A.2 Proof of Theorem 2 . 19

A.3 Proofs of Proposition 1 and Theorem 3 . 21

A.4 Connection between LightGCN and SEvo-enhanced MF-BPR 23

B Detailed Settings 23

B.1 Algorithms . 23

B.2 Datasets . 23

B.3 Baselines . 24

C Applications of SEvo beyond Interaction Data 25

C.1 Pairwise Similarity Estimation Factors . 25

C.2 SEvo for Intra-class Representation Proximity . 26

C.3 SEvo for Knowledge Distillation . 27

D Additional Experimental Results 28

D.1 SEvo for GNN-based models . 28

D.2 Jsmoothness as a Regularization Term . 29

D.3 L-layer Approximation . 29

D.4 Training and Inference Times . 29

15

A Proofs

A.1 Proof of Theorem 1

In this part, we are to prove the structure-aware/direction-aware properties of the L-layer iterative
approximation [57]:

ψ̂iter(∆E) := ψ̂L(∆E) =
{
(1− β)

L−1∑
l=0

βlÃl + βLÃL
}

︸ ︷︷ ︸
=:P′

∆E,
(9)

and the L-layer Neumann series approximation [39]:

ψ̂nsa(∆E) = (1− β)
L∑

l=0

βlÃl

︸ ︷︷ ︸
=:P

∆E. (10)

Fact 1. If L is odd, the geometric series S(x) =
∑L

k=0 x
l is monotonically increasing when x ≤ 0.

Proof. It is easy to show that

S(x) =
1− xL+1

1− x ,

and the derivative w.r.t x ̸= 1 is

S′(x) =
LxL+1 − (L+ 1)xL + 1

(1− x)2 .

If L is odd, S′(x) is positive when x ≤ 0 and in this case S(x) is monotonically increasing.

Lemma 1. Given a normalized adjacency matrix Ã ∈ Rn×n, let the symmetric matrix deduced
from the Neumann series approximation be

P = (1− β)
L∑

l=0

βlÃl. (11)

Denoted by λmin(P), λmax(P) the smallest and largest eigenvalues of P, respectively, then we have
∀β ∈ [0, 1)

1− β
1 + β

(1− βL) ≤ λmin(P) ≤ λmax(P) = 1− βL+1. (12)

Proof. It is easy to shown that the eigenvalues of P are in the form of

λ̃i = (1− β)
L∑

l=0

βlλli, i = 1, 2, . . . , n, (13)

where λ1 ≤ λ2 · · · ≤ λn denote the eigenvalues of Ã. Recall that these eigenvalues all fall into
[−1, 1] and λn = 1 can be achieved exactly [38]. Hence,

λ̃n = (1− β)
L∑

l=0

βl = 1− βL+1 (14)

is the largest eigenvalue of P.

16

In addition, notice that the last term (1−β)βLλL is non-negative when L is even. Then, we can get
a lower bound no matter L is odd or even:

λ̃ = (1− β)
L∑

l=0

βlλl ≥ (1− β)
2⌊(L−1)/2⌋+1∑

l=0

βlλl︸ ︷︷ ︸
=:S(λ)

. (15)

The minimum of S(λ) must be achieved in [−1, 0] because S(−λ) ≤ S(λ) for any λ > 0. In fact,
in view of Fact 1, we know that S(λ) ≥ S(−1). Hence, we have

λ̃ ≥ (1− β)S(−1) = (1− β)
2⌊(L−1)/2⌋+1∑

l=0

βl(−1)l

= (1− β)
⌊(L−1)/2⌋∑

l=0

(
β2l − β2l+1

)

= (1− β)2
⌊(L−1)/2⌋∑

l=0

β2l = (1− β)2 (1− β
2⌊(L−1)/2⌋+2)

1− β2

=
1− β
1 + β

(1− β2⌊(L−1)/2⌋+2) ≥ 1− β
1 + β

(1− βL). (16)

The last inequality holds because 2⌊(L − 1)/2⌋ + 2 ≥ L. Therefore, the smallest eigenvalue of P
must be greater than

1− β
1 + β

(1− βL).

Proposition 2. The Neumann series approximation is structure-aware and direction-aware for any
β ∈ [0, 1).

Proof. In view of Lemma 1, we know

λmin(P) ≥ 1− β
1 + β

(1− βL) > 0, ∀β ∈ [0, 1),

so P is positive definite and thus ψ̂nsa(·) is direction-aware. Also, notice that P has the same
eigenvectors as Ã, and so does L̃. Hence, it is also structure-aware:

⟨ψ̂nsa(x), L̃ψ̂nsa(x)⟩ = ⟨ψ̂nsa(x), L̃ψ̂nsa(x)⟩ = ⟨Px, L̃Px⟩
= ⟨x,PT L̃Px⟩ ≤ ⟨x, L̃x⟩.

The last inequality follows from the fact λmax(P) ≤ 1.

Lemma 2. Given a normalized adjacency matrix Ã ∈ Rn×n, let the symmetric matrix deduced
from the iterative approximation be

P′ = (1− β)
L−1∑
l=0

βlÃl + βLÃL. (17)

We have λmin(P
′) > 0, ∀β < 1/2.

Proof. This conclusion is trivial for the case of L ≤ 1. Let us assume that L ≥ 2. Firstly, rewrite
Eq. (17) as

P′ = P+ βLÃL, (18)

17

where P := (1− β)∑L−1
l=0 βlÃl. P is positive definite in view of Lemma 1 and βLÃL is positive

semidefinite when L is even. Therefore, only the case of L ≥ 3 needs to be proved. For a vector x,
we have

xTP′x = xTPx+ βLxT ÃLx ≥ λmin(P)∥x∥22 + βLλmin(Ã)L∥x∥22
≥

(1− β
1 + β

(1− βL−1) + βLλmin(Ã)L
)
∥x∥22 (19)

≥
(1− β
1 + β

(1− βL−1)− βL
)
∥x∥22 =

1− β − βL−1 − βL+1

1 + β
∥x∥22

≥ 1− β − β2 − β4

1 + β
∥x∥22. (20)

The first two inequalities follow from Lemma 1. The last inequality holds by noting the fact that,
for L ≥ 3 and β < 1/2,

β + βL−1 + βL+1 ≤ β + β2 + β4 < 13/16.

Therefore,

λmin(P
′) = min

x

xTP′x
∥x∥2 ≥

1− β − β2 − β4

1 + β
> 0. (21)

Proposition 3. The iterative approximation is direction-aware for all possible normalized adjacency
matrices and L ≥ 0, if and only if β < 1/2.

Proof. If β < 1/2, we have λmin(P
′) > 0 according to Lemma 2, and thus ψ̂ is direction-aware.

Conversely, if β ≥ 1/2, we can construct an adjacency matrix Ã such that λmin(P
′) ≤ 0 for some

L. Let us assume that L = 1 and

Ã :=

[
0 1
1 0

]
. (22)

In this case, we have

P′ = (1− β)I+ βÃ =

[
1− β β
β 1− β

]
, (23)

whose eigenvalues are 1 and 1− 2β. The latter is non-positive for any β ≥ 1/2.

Remark 2. The construction of Ã in Eq. (22) is not unique. In fact, any bipartite graph can be
used as a counterexample.
Corollary 1 (The proof of Theorem 1). The iterative approximation is direction-aware for all pos-
sible normalized adjacency matrices and L ≥ 0, if and only if β < 1/2. In contrast, the Neumann
series approximation

ψ̂nsa(∆E) = (1− β)
L∑

l=0

βlÃl∆E, (24)

is structure-aware and direction-aware for any β ∈ [0, 1).

Proof. This is a corollary of Proposition 2 and Proposition 3.

Proposition 4. The rescaled Neumann series approximation ψ̂ is structure-aware and direction-
aware, and converges to the optimal solution as L increases.

Proof. The convergence to the optimal solution is obvious by noting that

limL→+∞ ψ̂(∆E) = limL→+∞ 1
1−βL+1 · limL→+∞ ψ̂nsa(∆E)

= 1 · ψ∗(∆E) = ψ∗(∆E).
(25)

Similar to Proposition 2, it can be proved that 1
1−βL+1P is positive definite with a largest eigenvalue

≤ 1. Therefore, the rescaled transformation is also structure-aware and direction-aware.

18

A.2 Proof of Theorem 2

Before delving into the proof of the convergence, we would like to claim that the lemmas below are
well known and can be found in most textbooks [32, 1] on convex optimization. For the sake of
completeness, we provide here these proofs. Hereinafter, we use ∥X∥2 to denote the spectral norm
which returns the largest singular value of the matrix X.
Lemma 3. For a twice continuously differentiable function f : Rn → R with ∥∇2f(x)∥2 ≤
C, ∀x ∈ dom(f), we have

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ C

2
∥y − x∥22. (26)

Proof. For a Taylor expansion of f(x), there exists a z = τx + (1 − τ)y for some τ ∈ [0, 1] such
that

f(y) = f(x) + ⟨∇f(x), (y − x)⟩+ (y − x)T∇2f(z)(y − x)

2

≤ f(x) + ⟨∇f(x)T (y − x)⟩+ C

2
∥y − x∥22.

Lemma 4. For a positive definite matrix P, let ∥x∥P := (xTPx)1/2 be the quadratic norm induced
from P. If the eigenvalues of P fall into [a, b], then

∥Px∥22 ≤ b∥x∥2P, a∥x∥22 ≤ ∥x∥2P. (27)

Proof. Firstly,

∥Px∥2 = ∥P1/2P1/2x∥2 ≤ ∥P1/2∥2∥x∥P ≤
√
b∥x∥P.

Secondly,

∥x∥2 = ∥P−1/2P1/2x∥2 ≤ ∥P−1/2∥2∥x∥P ≤
1√
a
∥x∥P.

Theorem 4. Let f : Rn ×Rm → R be a twice continuously differentiable function bounded below,
and its Hessian matrix satisfies

∥∇2f(x,y)∥2 ≤ C, ∀(x,y) ∈ dom(f) (28)

for some constant C. The following gradient descent scheme is used to train x,y:

xt+1 ← xt − ηP∇xf(xt,yt), yt+1 ← yt − η′∇yf(xt,yt), (29)

where P is deduced from the L-layer Neumann series approximation. Then, after T updates, we
have,

min
t≤T
∥∇f(x,y)∥22 ≤

2C

γ(T + 1)
ϵ, (30)

where ϵ = f(x,y)− f(x∗,y∗) and

γ =

{
1−β
1+β (1− βL)(1 + βL+1), if η = η′ = 1

C
1−β
1+β

1−βL

1−βL+1 , otherwise
.

Proof. The update formula (29) can be unified into

zt+1 :=

[
xt+1

yt+1

]
=

[
xt

yt

]
−
[
ηP 0
0 η′I

]
︸ ︷︷ ︸

=:P̃

∇f(xt,yt).

19

It is easy to show that

a := min(1−β
1+β (1− βL)η, η′) ≤ λmin(P̃)

≤ λmax(P̃) = max((1− βL+1)η, η′) =: b.

Specifically,

a =

{
1−β
1+β (1− βL) 1

C , if η = η′ = 1
C

1−β
1+β

1−βL

1−βL+1
1
C , otherwise

,

b =

{
(1− βL+1) 1

C , if η = η′ = 1
C

1
C , otherwise .

In view of Lemma 3 and Lemma 4, we have

f(zt+1) ≤ f(zt)− ⟨∇f(zt), P̃∇f(zt)⟩+
C

2
∥P̃∇f(zt)∥22

= f(zt)− ∥∇f(zt)∥2P̃ +
C

2
∥P̃∇f(zt)∥22

≤ f(zt)− ∥∇f(zt)∥2P̃ +
bC

2
∥∇f(zt)∥2P̃ (31)

= f(zt)− (1− bC

2
)∥∇f(zt)∥2P̃

≤ f(zt)− a(1−
bC

2
)∥∇f(zt)∥22. (32)

Denoted by

γ := aC(2− bC)

=

{
1−β
1+β (1− βL)(1 + βL+1), if η = η′ = 1

C
1−β
1+β

1−βL

1−βL+1 , otherwise
,

(33)

we have

min
0≤t≤T

∥∇f(xt,yt)∥22 ≤
1

T + 1

T∑
t=0

∥∇f(xt,yt)∥22

≤ 1

T + 1

T∑
t=0

2C

γ
(f(xt,yt)− f(xt+1,yt+1))

=
2C

γ(T + 1)
(f(x0,y0)− f(xT+1,yT+1))

≤ 2C

γ(T + 1)
ϵ.

Theorem 5 (The proof of Theorem 2). If η = η′ = 1/C, after T updates, we have

min
t≤T
∥∇L(Et,θt)∥22 = O

(
C/((1− β)2T)

)
. (34)

If we adopt a modified learning rate for embedding:

η =
1

(1− βL+1)C
, (35)

the convergence rate could be improved to O
(
C/((1− β)T)

)
.

Proof. This is true for L = 0, since in this case the update mechanism becomes a normal gradient
descent regardless of η = 1/C or η = 1

(1−β)C . Let us prove a general case for L ≥ 1 next.

20

According to Theorem 4, we have

min
t≤T
∥∇L(Et,θt)∥22 ≤

2C

γ(T + 1)
ϵ,

where ϵ = L(E,θ)− L(E∗,θ∗) and

γ =

{
1−β
1+β (1− βL)(1 + βL+1), if η = η′ = 1

C
1−β
1+β

1−βL

1−βL+1 , otherwise
.

Notice that, for η = η′ = 1/C,

limβ→1
1/γ

1/(1−β)2 = limβ→1

1
1−β
1+β

(1−βL)(1+βL+1)

1
(1−β)2

= limβ→1
1−β
1−βL = 1

L ,

(36)

and for η = 1
(1−βL+1)C

, η′ = 1
C ,

limβ→1
1/γ

1/(1−β) = limβ→1

1

1−β
1+β

(1−βL)

(1−βL+1)
1

1−β

= 2 · limβ→1
1−βL+1

1−βL = 2(L+1)
L .

(37)

Therefore,

1

γ
=

{ O(1/(1− β)2), if η = η′ = 1
C

O(1/(1− β)), if η = 1
(1−βK+1)C

, η′ = 1
C

.

The remainder of the proof is straightforward.

A.3 Proofs of Proposition 1 and Theorem 3

Adam(W) [23] uses the bias-corrected moment estimates for updating because they are unbiased
when the actual moments are stationary throughout the training. Below, Lemma 5 formally elabo-
rates on this, and Theorem 6 extends Theorem 3 with a proof of unbiasedness.

Lemma 5 ([23]). Denoted by m̂t = mt/(1−βt
1) and v̂t = vt/(1−βt

2) the bias-corrected estimates,
if the first and second moments are stationary, i.e.,

E[gt] = E[g], E[g2
t] = E[g2], ∀t = 1, 2, . . . ,

then these bias-corrected estimates are unbiased:

E[m̂t] = E[g], E[v̂t] = E[g2], ∀t = 1, 2,

Proposition 5. If a node is no longer sampled in subsequent p batches after step t, we have

∆et+p−1 = κ · βp
1√
βp
2

∆et−1, (38)

where the coefficient of κ is mainly determined by t.

Proof. In this case, the iterative formula becomes

mt+j = βj
1mt + 0, vt+j = βj

2vt + 0, ∀j = 0, 1, . . . , p.

21

Therefore,

∆et+p−1 =
m̂t+p√
v̂t+p

=

√
1− βt+p

2

1− βt+p
1

mt+p√
vt+p

=

√
1− βt+p

2

1− βt+p
1

βp
1√
βp
2

mt√
vt

=
βp
1

√
1− βt+p

2√
βp
2(1− βt+p

1)

mt√
vt

=
βp
1(1− βt

1)
√
1− βt+p

2√
βp
2(1− βt+p

1)
√

1− βt
2

m̂t√
v̂t

=
βp
1√
βp
2

·
(1− βt

1)
√
1− βt+p

2

(1− βt+p
1)

√
1− βt

2︸ ︷︷ ︸
=:κ

∆et−1.

It is easy to show that

lim
t→+∞

κ(t, p) = 1, ∀β1, β2 ∈ [0, 1). (39)

Theorem 6 (The proof of Theorem 3). Under the same assumptions as in Lemma 5 and Propo-
sition 1, the bias-corrected estimates are unbiased and ∆et+p−1 = ∆et−1 if the estimates are
updated in the following manner when gt = 0,

mt = β1mt−1 + (1− β1)
1

1− βt−1
1

mt−1, vt = β2vt−1 + (1− β2)
1

1− βt−1
2

vt−1. (40)

Proof. We first show the unbiasedness of mt and the proof for vt is completely analogous. It
remains only to show that

E[mt] = (1− βt
1)E[g].

This is trivial for t = 0. Assuming that this also holds in the case of t − 1, it can be proved by
induction.

If gt ̸= 0,

E[mt] = β1E[mt−1] + (1− β1)E[gt]

= β1(1− βt−1
1)E[g] + (1− β1)E[g]

= (1− βt
1)E[g].

If gt = 0,

E[mt] = β1E[mt−1] + (1− β1)
1

1− βt−1
1

E[mt−1]

=
1− βt

1

1− βt−1
1

E[mt−1] = (1− βt
1)E[g].

If the node is no longer sampled in subsequent p batches after step t, we have

mt+j = β1mt+j−1 + (1− β1)
1

1− βt+j−1
1

mt+j−1

=
1− βt+j

1

1− βt+j−1
1

mt+j−1 =
1− βt+j

1

1− βt+j−1
1

1− βt+j−1
1

1− βt+j−2
1

mt+j−2

= · · · = 1− βt+j
1

1− βt
1

mt, ∀j = 1, 2, . . . , p.

22

Analogously, we have,

vt+j =
1− βt+j

2

1− βt
2

vt, ∀j = 1, 2, . . . , p.

Therefore, the conclusion can be deduced from

m̂t+p =
1

1− βt+j
1

mt+p =
1

1− βt
1

mt = m̂t,

v̂t+p =
1

1− βt+j
2

vt+p =
1

1− βt
2

vt = v̂t.

A.4 Connection between LightGCN and SEvo-enhanced MF-BPR

For a L-layer LightGCN, it can be formulated as follows

F = ψ(E) :=

L∑
l=0

αlÃ
lE,

where αl, l = 0, . . . , L represent the layer weights. According to the linear nature of the gradient
operator, it can be obtained that

∇EL = ψ(∇FL).
Hence, denoted by ζ(·) the gradient processing procedure of an optimizer, we can establish that
LightGCN is identical to the following system:

F(t) = ψ(E(t))

= ψ(E(t− 1)− η∆E(t− 1))

= ψ(E(t− 1))− ηψ(∆E(t− 1))

= F(t− 1)− ηψ ◦ ζ ◦ ψ(∇FL).

When ζ(·) is an identity mapping (i.e., standard gradient descent), LightGCN is equivalent to MF-
BPR with SEvo being applied twice at each update. However, when ζ(·) is not an identity mapping
(e.g., an optimizer with momentum or weight decay is integrated), they cannot be unified into a
single system. Compared to explicit GNNs, SEvo is easy-to-use and has minimal impact on the for-
ward pass, making it more suitable for assisting recommenders in simultaneously utilizing multiple
types of information. These connections in part justify why SEvo can inject structural information
directly.

B Detailed Settings

B.1 Algorithms

We present the algorithms of SEvo-enhanced Adam and SGD in 2 and Algorithm 3, respectively.

B.2 Datasets

In this study, we perform experiments on six public datasets. Specifically, the Beauty, Toys, and
Tools datasets are extracted from Amazon reviews published in 20142, while Electronics and Cloth-
ing are sourced from Amazon reviews published in 20183. Additionally, the MovieLens-1M dataset
is made available by GroupLens4.

2https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
3https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2
4https://grouplens.org/datasets/movielens/1m

23

https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2
https://grouplens.org/datasets/movielens/1m

Algorithm 2: Adam enhanced by SEvo. Differences from the original Adam are colored in
blue. The matrix operation below are element-wise.
Input: embedding matrix E, learning rate η, momentum factors β1, β2, β ∈ [0, 1), weight

decay λ.
foreach step t do

Gt ← ∇EL+ λEt−1 ; // Get gradients
Update first/second moment estimates:

Mt ← β1Mt−1 + (1− β1)Gt,

Vt ← β1Vt−1 + (1− β2)G2
t ;

Compute bias-corrected first/second moment estimates:

M̂t ←Mt/(1− βt
1),

V̂t ← Vt/(1− βt
2);

Update via SEvo:

Et ← Et−1 − η ψ̂
(
M̂t/

√
V̂t + ϵ;β

)
.

Output: optimized embeddings E.

Algorithm 3: SGD with momentum enhanced by SEvo. Differences from the original SGD are
colored in blue. The matrix operation below are element-wise.
Input: embedding matrix E, learning rate η, momentum factors µ, β ∈ [0, 1), weight decay λ.
foreach step t do

Gt ← ∇EL+ λEt−1 ; // Get gradients
Mt ← µMt−1 +Gt ; // Moment update
Update via SEvo:

Et ← Et−1 − η ψ̂
(
Mt;β

)
.

Output: optimized embeddings E.

B.3 Baselines

Four GNN-based baselines for performance and efficiency benchmarks:

• LightGCN [16] is a pioneering collaborative filtering model that simplifies graph convolutional
networks (GCNs) by removing nonlinearities for easier training. It uses only graph structural
information and has no access to sequential information.

• SR-GNN [48] and LESSR [8] are two baselines dynamically constructing session graph. The for-
mer employs a gated graph neural network to obtain the final node vectors, while the latter utilizes
edge-order preserving multigraph and a shortcut graph to address the lossy session encoding and
ineffective long-range dependency capturing problems, respectively.

• MAERec [51] learns to sample less noisy paths from a semantic similarity graph for subsequent
reconstruction tasks. However, we found that the official implementation treats the recommenda-
tion loss and reconstruction loss equally, leading to poor performance here. Therefore, an addi-
tional weight is attached to the reconstruction loss and a grid search is performed in the range of
[0, 1]. Almost all hyperparameters are tuned for competitive performance.

Four sequence backbones to validate the effectiveness of SEvo:

24

• GRU4Rec [17] applies RNN [9] to recommendation with specific modifications made to cope
with data sparsity. In addition to the learning rate in {1e-4, 5e-4, 1e-3, 5e-3} and weight decay in
[0, 0.1], we also tune the dropout rate for node features in the range of [0, 0.7].

• SASRec [22] and BERT4Rec [40] are two pioneering works on sequential recommendation
equipped with unidirectional and bidirectional self-attention, respectively. For BERT4Rec which
employs a separate fully-connected layer for scoring, the weight matrix therein will also be
smoothed by SEvo. In addition to some basic hyperparameters, the mask ratio is also researched
for BERT4Rec.

• STOSA [13] is one of the state-of-the-art models. It aims to capture the uncertainty of sequential
behaviors by modeling each item as a Gaussian distribution. The hyperparameters involved are
tuned similarly to SASRec.

Four knowledge distillation methods used in Appendix C.3:

• KD [18] and DKD [55] are two logits-based approaches to transfer knowledge. DKD decomposes
the classical KD loss into target class knowledge distillation loss and non-target class knowledge
distillation loss.

• RKD [34] and HTD [21] are two ranking-based approaches. The former focuses the distillation
of relational knowledge through distance-wise and angle-wise alignments, while the latter empha-
sizes the distillation of hierarchical topology by dividing nodes into multiple groups and requiring
intra-group and inter-group alignments.

C Applications of SEvo beyond Interaction Data

Here, we preliminarily explore the exploitation of more types of knowledge besides consecutive
occurrences. We first investigate some elementary factors for interaction data, and then introduce
the applications of SEvo to node categories and knowledge distillation.

C.1 Pairwise Similarity Estimation Factors

(a) Default (b) Last → First (c) Walk length H=1 → H=2 (d) Frequency → Distance

v1 v3v2 v1 v3v2

0 0 00 0 0

0 0 20 0 2

0 2 00 2 0

0 0 0

0 0 2

0 2 0

0 1 10 1 1

1 0 01 0 0

1 0 01 0 0

0 1 1

1 0 0

1 0 0

+

…

+

…

= A

Last K=3, H=1, Frequency

v1 v2 v3 v2v2 v3 v2v1 v2 v3 v2

v1 v3v2

0 0 0

0 0 2

0 2 0

0 1 1

1 0 0

1 0 0

+

…

+

…

= A

Last K=3, H=1, Frequency

v1 v2 v3 v2

v1 v3v2

0 0 0

0 0 2

0 2 0

0 1 1

1 0 0

1 0 0

+

…

+

…

= A

Last K=3, H=1, Frequency

v1 v2 v3 v2

0 1 00 1 0

1 0 11 0 1

0 1 00 1 0

0 1 0

1 0 1

0 1 0

0 1 10 1 1

1 0 01 0 0

1 0 01 0 0

0 1 1

1 0 0

1 0 0

+

…

+

…

= A

v2

First K=3, H=1, Frequency

v1 v2 v3v1 v2 v3

v1 v3v2 v1 v3v2 v1 v3v2

0 1 0

1 0 1

0 1 0

0 1 1

1 0 0

1 0 0

+

…

+

…

= A

v2

First K=3, H=1, Frequency

v1 v2 v3

v1 v3v2

0 1 0

1 0 1

0 1 0

0 1 1

1 0 0

1 0 0

+

…

+

…

= A

v2

First K=3, H=1, Frequency

v1 v2 v3

v1 v3v2 v1 v3v2 v1 v3v2

0 0 00 0 0

0 1 20 1 2

0 2 00 2 0

0 0 0

0 1 2

0 2 0

0 1 10 1 1

1 0 11 0 1

1 1 01 1 0

0 1 1

1 0 1

1 1 0

+

…

+

…

= A

Last K=3, H=2, Frequency

v1 v2 v3 v2v2 v3 v2v1 v2 v3 v2

v1 v3v2

0 0 0

0 1 2

0 2 0

0 1 1

1 0 1

1 1 0

+

…

+

…

= A

Last K=3, H=2, Frequency

v1 v2 v3 v2

v1 v3v2

0 0 0

0 1 2

0 2 0

0 1 1

1 0 1

1 1 0

+

…

+

…

= A

Last K=3, H=2, Frequency

v1 v2 v3 v2

v1 v3v2 v1 v3v2

0 0 00 0 0

0 .5 20 .5 2

0 2 00 2 0

0 0 0

0 .5 2

0 2 0

0 1 10 1 1

1 0 .51 0 .5

1 .5 01 .5 0

0 1 1

1 0 .5

1 .5 0

+

…

+

…

= A

Last K=3, H=2, Distance

v1 v2 v3 v2v2 v3 v2v1 v2 v3 v2

v1 v3v2

0 0 0

0 .5 2

0 2 0

0 1 1

1 0 .5

1 .5 0

+

…

+

…

= A

Last K=3, H=2, Distance

v1 v2 v3 v2

v1 v3v2

0 0 0

0 .5 2

0 2 0

0 1 1

1 0 .5

1 .5 0

+

…

+

…

= A

Last K=3, H=2, Distance

v1 v2 v3 v2

Figure 4: Illustrations of different pairwise similarity estimation methods based on interaction data.
(a) The default is to adopt the co-occurrence frequency within the last K items. (b) Using only the
first K items. (c) Allowing a maximum walk length of H beyond 1. (d) Frequency-based similarity
versus distance-based similarity.

Recent GNN-based sequence models [48, 49], as well as the SEvo-enhanced models reported in Sec-
tion 3, estimate the pairwise similaritywij between items vi and vj based on their co-occurrence fre-
quency in sequences. In other words, items that appear consecutively more frequently are assumed
more related. Yet there are some factors that deserve a closer look: (1) The maximum sequence
length K for construction to investigate the number of interactions required for accurate estimation;
(2) Using only the first K versus last K interactions in each sequence to compare the utility of early
and recent preferences; (3) Allowing related items to be connected by a walk of length ≤ H rather
than strict consecutive occurrences; (4) Frequency-based similarity versus distance-based similar-
ity. The former weights all related pairs equally, while the latter weights inversely to their walk
length. For example, given a sequence v2 → v1 → v3 with a maximum walk length of H = 2,

25

Algorithm 4: Python-style algorithm for similarity estimation based on interaction data.

for seq in seqs:
if first:

seq = seq[:K] # First K items
else:

seq = seq[-K:] # Last K items
for i in range(len(seq) - 1):

Maximum walk length H
for h, j in enumerate(

range(i + 1, min(i + H + 1, len(seq))),
start=1

):
if frequency: # Frequency

A[seq[i], seq[j]] += 1
A[seq[j], seq[i]] += 1

else: # Distance
A[seq[i], seq[j]] += 1 / h
A[seq[j], seq[i]] += 1 / h

5 50 100 150 300

K

0.0325

0.0350

0.0375

0.0400

N
D

C
G

@
10

Beauty

Baseline

First K

Last K

5 100 200 300 500

K

0.132

0.134

0.136

0.138

MovieLens-1M

Baseline

First K

Last K

(a) Sequence length

1 2 3 4 5

H

0.0325

0.0350

0.0375

0.0400

N
D

C
G

@
10

Beauty

Baseline

Frequency

Distance

1 2 3 4 5

H

0.132

0.134

0.136

0.138

MovieLens-1M

Baseline

Frequency

Distance

(b) Frequency-based versus Distance-based

Figure 5: Comparison of similarity estimation across four potential factors. ‘⋆’ indicates the default
way applied to SEvo-enhanced sequence models in Section 3.1. (a) Using only the first/last K items
for pairwise similarity estimation. (b) Frequency- and distance-based similarity with a maximum
walk length of H .

the frequency-based similarity of (v2, v3) gives 1, while the distance-based similarity is 1/2 (as the
walk length from v2 to v3 is 2).

Figure 4 illustrates these four variants and Algorithm 4 details a step-by-step process. We further
compare these four potential factors in Figure 5:

• Figure 5a shows the effect of confining the maximum sequence length to the first/last K items, so
only the early/recent preferences will be considered. In constrast to early interactions, recent ones
imply more precise pairwise relations for future prediction, even for small K. With the increase
of the maximum sequence length, the recommendation performance on Beauty improves steadily,
but not the case for MovieLens-1M. This suggests that shopping relations may be more consistent
than movie preferences.

• Figure 5b explores the relations beyond strict consecutive occurrences; that is, two items are
considered related once they co-occur within a path of length ≤ H . For the shopping and movie
datasets, estimating similarity beyond co-occurrence frequency appears less reliable overall. We
also compare frequency-based similarity with distance-based similarity that decreases weights
for more distant pairs. It is clear that the distance-based approach performs more stably as the
maximum walk length H increases.

C.2 SEvo for Intra-class Representation Proximity

Sometimes embeddings are expected to be smooth w.r.t. a prior knowledge. For example, in addition
to the interaction data, each movie in the MovieLens-1M dataset is associated with at least one genre.

26

Figure 6: UMAP [30] visualization of movies based on their embeddings. For ease of
differentiation, we group the 18 genres into 6 categories and colored them individually:
Thriller/Crime/Action/Adventure; Horror/Mystery/Film-Noir; War/Drama/Romance; Comedy/Mu-
sical/Children’s/Animation; Fantasy/Sci-Fi; Western/Documentary.

Table 4: Pairwise similarity estimation based on interaction data versus node categories (movie
genres).

MovieLens-1M
β HR@1 HR@10 NDCG@10

Baseline (SASRec) 0 0.0457 0.2482 0.1315

Interaction data 0.5 0.0494 0.2538 0.1362
0.99 0.0517 0.2567 0.1385

Movie genres 0.5 0.0492 0.2527 0.1352
0.99 0.0508 0.2549 0.1371

It is natural to assume that movies of the same genre are related to each other. Heuristically, we can
define the similarity wij to be 1 if vi and vj belong to the same genre and 0 otherwise.

As can be seen in Figure 6, such smoothness constraint can also be fulfilled through SEvo, leading to
progressively stronger clustering effects as β increases. However, the resulting performance gains
are slightly less than those based on interaction data (see Table 4). One possible reason is that
the movie genres are too coarse to provide particularly useful information. In conclusion, while
smoothness is an appealing inductive bias, its utility depends on how well the imposed structural
information agrees with the performance metrics of interest.

C.3 SEvo for Knowledge Distillation

In addition to the affinity matrix extracted from interaction data or relation data, the pairwise simi-
larity can also be estimated from a heavy-weight teacher model. Recall that Knowledge Distillation
(KD) [18] encourages a light-weight student model to mimic the behaviors (e.g., output distribution)
of the teacher model, so the learned student model achieves both accuracy and efficiency. In general,
higher-dimensional embeddings are capable of better fitting the underlying distribution between en-
tities. The pairwise similarities extracted from a teacher model, needless to say, can be used to guide
the embedding evolution of a student model. Unlike interaction or relation data, the deduced graph
is dense if only the distance function is applied. Therefore, some graph construction steps including
sparsification and reweighting should be involved as well. We attempt to use the widely used KNN
graph here, and leave a more comprehensive study of graph construction [20] as a future work.

27

Table 5: Knowedge distillation from Teacher (SASRec with a embedding size of 200) to Student
(SASRec with a embedding size of 20). The results are averaged over 5 independent runs on the
Beauty dataset. 10-nearest neighbors (i.e., K = 10) are selected for each node.

HR@1 HR@5 HR@10 NDCG@5 NDCG@10

Teacher 0.0198 0.0544 0.0786 0.0374 0.0452

Student 0.0094 0.0327 0.0526 0.0210 0.0275
+KD [18] 0.0105 0.0352 0.0552 0.0229 0.0294
+RKD [34] 0.0082 0.0311 0.0515 0.0196 0.0262
+HTD [21] 0.0085 0.0344 0.0549 0.0215 0.0281
+DKD [55] 0.0138 0.0389 0.0577 0.0265 0.0325

Student 0.0094 0.0327 0.0526 0.0210 0.0275
+SEvo 0.0107 0.0364 0.0576 0.0236 0.0304

+DKD 0.0166 0.0407 0.0568 0.0289 0.0341

Specifically, the distance between each pair vi, vj is estimated using a cosine similarity distance
function:

dij = 2− 2
eTi ej

∥ei∥2∥ej∥2
. (41)

Then, K-nearest neighbors are selected for each node; that is

(i, j) ∈ E , i ̸= j iff |{k ̸= i : dik ≤ dij}| ≤ K. (42)

This sparsification is neccessary for several reasons: 1) SEvo with a dense adjacency matrix is
computationally prohibitive to conduct; 2) Generally, only the top-ranked neighbors are reliable for
next distillation. Finally, the adjacency matrix is obtained through reweighting and symmetrizing:

wij = ŵij + ŵji, ŵij := exp(−dij/τ),
where τ > 0 is the kernel bandwidth parameter.

Table 5 reports the results of the SASRec backbone with different embedding sizes (200 versus 20).
Although a student equipped with SEvo can only derive guidance from the teacher in terms of em-
bedding modeling, it has surpassed RKD and HTD that focus on feature/output alignments. Recall
that SEvo only needs to access the teacher model once for adjacency matrix construction, whereas
other knowledge distillation approaches require accessing the teacher model for each update. SEvo
is arguably an efficient tool for transferring embedding knowledge. Nevertheless, SEvo alone can-
not be expected to facilitate the learning of the other modules, which consequently is still inferior
to state-of-the-art methods such as DKD. Fortunately, SEvo and DKD can work together to further
boost the recommendation performance.

D Additional Experimental Results

D.1 SEvo for GNN-based models

Table 6: Beauty recommendation performance comparison. SEvo-enhanced AdamW is applied to
LESSR and MAERec.

HR@1 HR@5 HR@10 NDCG@5 NDCG@10

LESSR 0.0088 0.0322 0.0506 0.0205 0.0264
+SEvo 0.0126 0.0405 0.0625 0.0267 0.0338

Improv. 43.2% 26.0% 23.5% 30.4% 27.9%

MAERec 0.0113 0.0424 0.0662 0.0269 0.0346
+SEvo 0.0120 0.0441 0.0677 0.0283 0.0358

Improv. 6.7% 4.0% 2.3% 4.9% 3.6%

In Section 3 we have comprehensively validated the effectiveness of SEvo for classic sequence
models. It is also of interest to explore the impact on GNN-based models that have learned certain

28

structural information. Table 6 reports the results on LESSR and MAERec: SEvo not only facilitates
the learning of LESSR, but also helps MAERec that already utilizes global graph information. This
implies that previous efforts fail to fully exploit structural information, while SEvo demonstrates
superior performance in this regard.

D.2 Jsmoothness as a Regularization Term

10−6 10−5 10−4 10−3 10−2

λ

0.020

0.025

0.030

0.035

0.040
N

D
C

G
@

10

Beauty

10−6 10−5 10−4 10−3 10−2

λ

0.10

0.11

0.12

0.13

0.14
MovieLens-1M

SASRec

+SEvo

Figure 7: Smoothness constraints through a regularization term.

Structural information may be injected by imposing Jsmoothness as a regularization term; that is,

min
E,θ

L(E,θ) + λJsmoothness(E;G), (43)

where λ ≥ 0 is a hyperparameter governing the degree of smoothness. We conduct this ablation
study in Figure 7 with a λ from 10−6 to 0.01. As can be seen, incorporating a smoothness regular-
ization term could slightly improve the recommendation performance, but it is not optimal. SEvo
performs better because the gradient of the regularization term may be in conflict with the primary
loss function.

D.3 L-layer Approximation

Table 7: SEvo using different approximation layers L.
Beauty MovieLens-1M

HR@1 HR@10 NDCG@10 HR@1 HR@10 NDCG@10

L=0 0.0124 0.0664 0.0353 0.0465 0.2487 0.1321
L=1 0.0140 0.0717 0.0388 0.0498 0.2562 0.1372
L=2 0.0152 0.0740 0.0403 0.0511 0.2589 0.1389
L=3 0.0154 0.0759 0.0411 0.0517 0.2567 0.1385
L=4 0.0153 0.0755 0.0408 0.0510 0.2576 0.1383
L=5 0.0150 0.0750 0.0403 0.0492 0.2581 0.1382

As L increases, SEvo gets closer to the exact solution while accessing higher-order neighborhood
information. Table 7 lists the performance of different layers, which reaches its peak around L = 3
and starts to decrease then. A possible reason is that the higher-order information is over-smoothed
and thus not as reliable and easy to use as the lower order information. Similar phenomena have
been found in previous works [50, 8] on applying GNNs to recommendation.

D.4 Training and Inference Times

The time complexity of SEvo is mainly determined by the arithmetic operations of Ãl∆E, l =
1, 2, . . . , L. Assuming that the number of non-zero entries of Ã is S, the complexity required is
about O(LSd). Because the recommendation datasets are known for high sparsity (i.e., S is very
small), the actual computational overhead can be reduced to a very low level, almost negligible.
Table 8 provides the actual training and inference times.

29

Table 8: Training and inference times. The wall time (seconds) here is evaluated on an Intel Xeon
E5-2620 v4 platform and a single GTX 1080Ti GPU, while the results in Table 3 are tested on an
Intel Xeon CPU E5-2680 v4 platform and a single RTX 3090 GPU.

Beauty Toys Tools MovieLens-1M
Training Inference Epochs Training Inference Epochs Training Inference Epochs Training Inference Epochs

G
N

N

LightGCN 2000.50 1.07 1000 1461.14 0.97 900 922.60 0.78 600 6898.42 1.95 600
SR-GNN 25837.60 14.52 300 13711.61 11.82 200 9455.18 12.23 150 126129.93 6.16 150
LESSR 19686.60 14.35 300 15923.59 9.67 300 10994.38 8.30 300 203226.08 5.02 300
MAERec 23956.43 3.60 100 43233.90 2.60 200 16920.16 2.31 100 42586.58 2.41 200

M
F

or
R

N
N

/T
ra

ns
fo

rm
er MF-BPR 1781.65 0.96 1000 1508.73 0.91 1000 1326.93 0.71 1000 6837.01 1.95 600

+SEvo 1937.32 0.96 1000 1572.91 0.91 1000 1510.23 0.71 1000 7128.00 1.95 600

GRU4Rec 927.98 1.98 300 646.51 1.77 300 638.57 1.65 300 12116.04 1.78 300
+SEvo 987.47 1.98 300 791.19 1.77 300 661.83 1.65 300 12387.25 1.78 300

SASRec 445.68 2.16 200 413.35 2.30 200 353.10 1.81 200 919.27 1.24 200
+SEvo 469.27 2.16 200 480.37 2.30 200 378.25 1.81 200 954.77 1.24 200

BERT4Rec 1470.76 2.03 500 1330.58 1.71 500 1092.10 1.51 500 1131.62 1.18 500
+SEvo 1965.97 2.03 500 1595.66 1.71 500 1374.72 1.51 500 1243.08 1.18 500

STOSA 2253.98 9.84 500 2049.00 8.42 500 1827.60 6.65 500 2220.18 1.98 500
+SEvo 2491.54 9.84 500 2231.11 8.42 500 1879.62 6.65 500 2259.66 1.98 500

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contributions are summarized in the introduction point by point.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might

30

not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions and proofs are detailed in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to the settings introduced in Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

31

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All experiments are conducted on public datasets and the code can be found
in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The implementation details of baselines and ours can be found in Ap-
pendix B.3 and Section 3, respectively.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: 1) Paired t-test is performed over 5 independent runs (see Table 2). 2) 1-sigma
error bars are marked in most figures and tables.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Appendix D.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

33

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impact has been discussed in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

34

Justification: The source of datasets are credited in Appendix B.2, and all baselines have
been introduced in Appendix B.3.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

35

paperswithcode.com/datasets

Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

36

	Introduction
	Structure-aware Embedding Evolution
	Preliminaries
	Methodology
	Convergence Analysis for Further Modification
	Integrating SEvo into Existing Optimizers

	Experiments
	Overall Comparison
	Empirical Analysis
	Ablation Study
	Applications of SEvo Beyond Interaction Data

	Related Work
	Broader Impact and Limitations
	Conclusion and Future Work
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proofs of Proposition 1 and Theorem 3
	Connection between LightGCN and SEvo-enhanced MF-BPR

	Detailed Settings
	Algorithms
	Datasets
	Baselines

	Applications of SEvo beyond Interaction Data
	Pairwise Similarity Estimation Factors
	SEvo for Intra-class Representation Proximity
	SEvo for Knowledge Distillation

	Additional Experimental Results
	SEvo for GNN-based models
	Jsmoothness as a Regularization Term
	L-layer Approximation
	Training and Inference Times

