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Abstract

Meta-learned optimizers increasingly outperform analytical hand-crafted optimiz-
ers such as SGD and Adam. However, on some tasks, they fail to generalize
strongly, underperforming hand-crafted methods. Then one can fall back on hand-
crafted methods through a guard, to combine the efficiency benefits of learned
optimizers and the guarantees of analytical methods. At some point in the iterative
optimization process, however, such guards may make the learned optimizer incom-
patible with the remaining optimization, and thus useless for further progress. Our
novel method Meta Guard continues to adapt the learned optimizer to the target
optimization problem. It experimentally outperforms other baselines, adapting to
new tasks during training.

1 Introduction

Neural networks can be used as function approximators to solve a wide range of machine learning
problems, including regression, classification, and sequence modelling [24]]. Instead of optimizing
the parameters of the neural network using hand-crafted algorithms such as stochastic gradient
descent (SGD) [l]], these neural networks can be trained to implement the learning algorithms in
their activation updates to learn how to learn [21} 8], potentially outperforming hand-crafted learning
algorithms [[12]. Recently, such meta-learning approaches have been successful in Large Language
Models (LLMs) and related Transformer-based models under the name of in-context learning [3} [11]].
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Given a sufficiently universal architecture, such as LSTMs [7], standard Transformers [26] that scale
quadratically with sequence length, or Linear Transformers / Fast Weight Programmers [22 [10} 20],
these neural networks can, in principle, not only implement new learning algorithms but also meta-
learn, meta-meta-learn and so on [23}|9,|13]]. Unfortunately, we have no guarantees that such networks
are sufficiently robust to generalize to unseen problems that were not part of meta-training. A method
that ensures that these universal models continue to improve without divergence is desired.

In this paper, we focus on the setting of learned optimization (L20) [2} 16, 15]. A learned optimizer
implemented by a neural network gy with parameters € incrementally updates (optimizes) the
optimizee with parameters 7. The optimizee is a neural network to solve any given task, for example,
an MNIST [4] classifier. L20 usually occurs in two phases: First, during meta-training, the optimizer
gp is trained to optimize well on a distribution of tasks, i.e., for each task, producing nr after T’
steps of optimization with low loss values. Second, during meta-testing, the optimizer parameters
0 are frozen, and the optimizer is applied to a new test-task. Doing well on any given test task
requires that either the test task is very similar to previously trained-on tasks or that the optimizer
generalizes well at the meta-test time. In practice, strong generalization is difficult to achieve [17,[12].
An approach to address this issue is to undo underperforming self-modifications using the success
story algorithm [25]] or to allocate more computational resources to better-performing solutions [13].
Instead, we propose to continue adjusting the meta-learner during meta-testing when its performance
falls below a known hand-crafted optimizer such as SGD. We refer to this as the ‘Meta Guard’. This
leverages the efficiency gains of a learned optimizer while ensuring that it is continuously adapted to
the meta-test task when it fails to generalize.

Inspired by Loss-Guarded L20 [18] (LGL20), we propose two guard mechanisms (Alg. [I] and
Alg.|2) that select between analytical updates and learned updates to both the optimizer and optimizee
parameters with respect to a meta objective that evaluates how well the learned optimizer performs in
optimizing the current optimizee. We theoretically justify their convergence and empirically show
their adaptation to novel tasks.

This paper is organized as follows. We discuss learned optimizers and loss guards in the background
section 2] Section [3] introduces our Meta Guard, a learned optimizer that continually adapts at
meta-test time. Then, in section[d] we empirically demonstrate that our proposed method outperforms
other baselines, including non-adaptive guards, in various problem settings. Finally, we conclude the
paper in Section ] with a summary.

2 Background

Learning to Optimize Let gy be a learned optimizer parameterized by § € © C R™. Let n € R™
represent the optimizee parameters, for example, the parameters of a convolutional neural network
(CNN) [, [14]] that classifies handwritten digit images. Given a loss function [ : R™ — R that
measures the performance of the optimizee on specific data, our objective is to meta-learn optimizers
go that minimize the loss I(7);) of the optimizee parameters 7; at each iteration ¢ of the optimization
process. The learned optimizer is expressed as a function

Ny he <= go(Ne—1, hi—1,0(1ni-1)), (D

and is applied at every iteration ¢ for ¢ € 0, ..., T. The function o (;_1) includes auxiliary variables
regarding the previous optimizee parameters, such as the loss and gradient, denoted as o (7;—1) =
({(n¢=1), Vyl(m)|y=n,_, ). Here, h; represents a memory component, e.g., the hidden state of a
long short-term memory (LSTM) neural network [[7, 6]. In principle, this allows the network to
adjust its optimization behavior to the problem, performing meta-meta-learning [[13]]. For notational
simplicity, the initial memory state h is included in the parameter vector 6, with 6, containing
the updated h; instead of h( after ¢ iterations of gy. We then further simplify the notation to
Ne, 0t < g(ne—1,0¢—1), with the implicit input o (n:—1 ). Unrolling the learned optimizer for T steps
leads to iz, O < g* (0o, 0), where g7 denotes T recurrent applications of the learned optimizer g.

We parameterize the learned optimizer gy using an LSTM, which processes each element of the
optimizee parameter vector 7) coordinate-wise (separately for each parameter scalar 7;), as shown in
Andrychowicz et al.[2]. Starting with a unique 6o, this results in multiple variants §%., where i ranges
from 1 to m, producing a variant for each coordinate of 7. To reduce them back into a single 07, we
calculate the average as 0 = % Z:’;l 0. This averaging is done after T steps as part of g7



Meta-Training and Meta-Testing In the context of learned optimizers, meta-training typically
involves minimizing a meta-objective L with respect to 9:

1 T
> l(m)] : @)
t=1

where the expectation is taken over a particular distribution of tasks p(!) and initial optimizee
parameters p(7o). During meta-testing, the optimizer parameters # remain frozen, and the optimizer
is applied to a new test-task.

L(0) = Ele(l)anoNp(WO)

Loss-Guarded L20 A method related to ours is the Loss-Guarded Learned Optimizer (LGL20)
[18]. LGL20 employs a learned optimizer during meta-testing. However, if the performance of the
learned optimizer falls short when compared to a hand-crafted optimizer such as SGD, it switches
to using SGD. Unlike our approach, LGL20 does not continue adapting the learned optimizer; its
parameters remain fixed during meta-testing. Our paper illustrates that continuing to adapt the learned
optimizer during its meta-test time allows for exploiting regularities of the target problem that further
accelerates learning on the problem. This is related to online meta-gradient approaches, which always
adapt hyper-parameters [29] or learned loss functions [28]] continually throughout meta-testing but
do not employ a guard.

3 Learned Optimizers That Continually Adapt

In the following, we propose learned optimizers that continually adapt. We first meta-train a learned
optimizer with a regular meta-training phase as in on a task distribution. Next, we
select an optimization task different from this training distribution, and run our learned optimizer in
meta-test mode. Unlike previous work, we continue to adapt the learned optimizer by introducing a
Meta Guard. This guard operates the learned optimizer as usual, but switches to adapting both the
optimizer and the optimizee if the performance drops below the gradient descent baseline. To adapt
the optimizer and optimizee, we introduce a meta-objective which is optimized during meta-testing:

LAdapt(n, 9) = Z(T]T)a (3)
with np, 07 = gT(n,H). ()

Note that unlike in here we are only optimizing on for the current meta-test task / starting
from the current optimizee parameter 7 instead of using a meta-training distribution. Given the
current 7 and 6, the fallback adaptation step then becomes

n fallbao:k7 0 fallback « (7,], 9) _ )\V(U’O)LAdapt (,'7’ 9)7 (5)

for a specified learning rate .

Simple Meta Guard (SMG) We begin by introducing a simple implementation of this Meta
Guard mechanism in The learned optimizer gg and the fallback from
are applied to the current optimizer 6 and optimizee 7. This results in the learned optimizer
solution 7 learned glearned and the adapted fallback solution 7 falPack g fallback = The pew opti-
mizers and optimizees are then evaluated through two other unrolls using the meta-objectives
LAdapt (77 learned7 elearned) and LAdapt (7] fallback7 efallback). Based on the solution with the low-
est meta-objective, we select as optimizer and optimizee either the learned optimizer solution
n lcarncd7 0 learned or the adapted fallback n fallback’ 0 fallback.

Accelerated Meta Guard (AMG) The meta-objective in SMG uses the performance of the learned
optimizer after 7" steps to assign credit to the current optimizer gy and the optimizee 7). Unfortunately,
using information about the future can be computationally expensive, as it requires unrolling the
learned optimizer when evaluating either the fallback update or the learned optimizer itself. However,
such an evaluation is necessary to ensure that the chosen update is not worse than the fallback update
in order to preserve the convergence property of the fallback algorithm. Indeed, if we use the current
performance of the optimizee, setting L A9%P (1), ) = I(n), the parameters of the learned optimizer
are only updated through self-modifications, e.g., by updates in the memory of the LSTM, and
only when the performance of the learned optimizer is better than that of the hand-crafted learning



algorithm. This case reverts to the standard LGL20O, where the learned optimizer cannot be optimized
at test time. On the other hand, LGL20O benefits from immediate evaluation of the optimizee, which
can save computational resources.

In order to get the best of both methods, we introduce Accelerated Meta Guard (AMG), a hybrid
method that combines the meta-objectives of LGL20 and SMG. The new meta-objective for AMG
(replacing L A92Pt) is defined as:

LAME (1, 0) = min(l(n), L(nr)), ©)
where 07,07 = g% (n,0). @)

Taking the minimum of the two objectives guarantees that the resulting update should have a
lower optimizee loss than that of LGL20 and SMG. This results in Algorithm 2} Like in SMG,
the learned optimizer gy and the fallback from are applied to the current optimizer 6
and optimizee 7. The learned optimizer solution 7 ©®™¢d and g 'eaed jg computed as in SMG.
Unlike SMG, the fallback for the new objective L “M& assumes two expressions, depending on the
minimum inside the meta-objective. When I(n) < I(nr), then the fallback is the one of LGL20
with pfallback -« AV, I(n) and 0 flPack « ¢ remaining constant. When I(n) > I(nr), the
fallback is the same as in SMG. We compute another unroll of the learned optimizer to evaluate
the new optimizers and optimizees using the meta-objective of AMG. However, for the fallback,
we must evaluate [ AMG (,’7 fallback7 g fallbacky) min(l(n fallback)’ l(nT fallback))' Formally, we
compute np #lback g, fallback T () fallback g fallbacl) “Similarly, for the learned optimizer solutions
L AMG (77 learned7 0 learned)’ we would need to Compute nr learned7 GT learned — gT(,,7 learned’ 0 learned)’

To trade off computational cost versus accurate evaluation, we evaluate this quantity using an upper
bound of L, AMG (,'7 learned’ 0 learned). Since I, AMG (77 learned7 0 learned) < l(n learned)’ we use 1(77 learned)
as a proxy to evaluate the meta-objective after applying the learned optimizer. Note that since we
compute [ AMG (y fallback g fallback) o evaluate the fallback, we now have access to [(np f2HPack)
which is an upper bound for L AMG (5, fallback g, fallback) = Eollowing the same argument as
above, we can implement a guard check consisting of four elements: L AM& () fallback ¢ fallbacky
L AMG (777 0)’ L AMG (77 learned’ 0 learned)’ and L AMG (77T fallback, 0T fallback)’ with the last two ap-
proximated using their corresponding upper bounds. Therefore, we determine the minimum of
mln(L AI\IG(,',I fallback’ 0 fallback , L AMG (773 0)’ L AMG (,'7 learned’ 0 learned)7 L AMG (77T fallback’ 0T fallback))

< min(l(n BIPack) ' (qp follback) 7y 1(nlearned)) 1o decide which update to take.

Convergence Results Our algorithm AMG inherits the convergence properties of LGL20O [18].
Under the assumptions that the loss function I(-) is continuous, p-strongly convex, and L-smooth,
given a constant learning rate 0 < A < min(£,2pu), we can guarantee that the sequence of opti-
mizees 7; generated by AMG will converge to the global optimum: lim,_,, I(7;) = min, I(n) =
min,, g L AMG () 0). The proof is straightforward and closely follows Theorem 1 in LGL20 [18]].
In particular, in their Proposition 2, when 7,1 is not chosen by the gradient descent update with
respect to [(7;), we still have that I(n;11) < I(n; — AV (,){(n;)). In SMG, we assume that the loss
LA42pt () 0) is continuous, ji-strongly convex, and L-smooth, with respect to the vector [1, #]. Given
a constant learning rate 0 < A < min(%7 2u), one can apply Theorem 1 from LGL2O [18]]. This

implies that lim; oo L A92P%(1;, ;) = ming,, o) L A44Pt (), 6).

4 Experiments

Tasks. We compare our proposed SMG and AMG on various different meta-train and meta-test
settings. For each of the experiments, the optimizee is either a multilayer perceptron (MLP) [[19]
with one hidden layer and 20 hidden neurons or a 3-layer CNN [55]. The target problem is either
the MNIST [4] or the FashionMNIST [27]. To test the generalization capabilities of our learned
optimizers, we test four different settings in (1) Seen data and optimizee, (2) seen data and
unseen optimizee, (3) unseen data seen optimizee, and (4) unseen data and unseen optimizee. We use
mini-batches for learned optimizer and fallback gradient descent updates.

Baselines. For the baselines, we use (1) only SGD, (2) only the learned optimizer (L20), and (3)
the LGL20O loss guard. Two versions of LGL20O are tested (LGL20 (w/ Update) and LGL20 (w/o
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Figure 1: Our adapting learned optimizers (SMG & AMG) generalize to various problem
settings. We observe that the baselines L20 and two versions of LGL2O either worsen or improve
very slowly after 1000 optimization steps. SGD keeps improving, however, initially significantly
slower than the learned optimizer. SMG does not prematurely converge, but is usually slower than
SGD. AMG outperforms the baselines in most cases. Each loss is averaged over 25 seeds with 95%
confidence intervals.

Update)). The former carries over the hidden state between iterations, and the latter reverts back to
the initial hidden state.

Observations. From we observe that standard L20 initially outperforms SGD, particularly
in the first 200 steps, but then diverges or stops optimizing as training progresses, which is a typical
issue for L20. The LGL20 baselines are initially efficient, but the simple loss guard seems to be
ineffective after 1000 optimization steps. In contrast, our SMG continuously improves the loss but is
usually slower than SGD. Our AMG further improves on these results, outperforming all baselines in
most cases.

Conclusion Learned optimizers do not always generalize to meta-test tasks significantly different
from those in the meta-training distribution. To address this problem, our continually adapting learned
optimizer Meta Guard tests whether the self-updating learned optimizer falls below the performance
of a hand-crafted learning algorithm. If so, it explicitly adapts both the learned optimizer as well as
the inner optimizer via gradient descent. We demonstrate that this combines the efficiency benefits of
learned optimizers with the robustness of a hand-crafted ones. Our Accelerated Meta Guard performs
favourably compared to SGD, standard learned optimizers, and non-adaptive loss guards.
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A Algorithms

Algorithm 1 Simple Meta Guard
Require: Initial optimizee parameters 7, learned optimizer parameters
while termination condition not satisfied do
plearned ‘glearned o oT(}, () { Apply learned optimizer}
p fallback g fallback () ) — AV, 5 LAY (), ) {Fallback adaptation}
if LAdapt (77 learned 0 learned) > LAdapt (77 fallback 0 fallback) then
n, 0 «— n fallback7 0 fallback

else
n 0 «— 77learned ¢ learned
end if
end while

Algorithm 2 Accelerated Meta Guard

Require: Initial optimizee parameters 7, learned optimizer parameters 0
while termination condition not satisfied do

plearned ‘glearned o oT'(y () { Apply learned optimizer}

pfaliback g fallback ) — XG0y min{l(n), LA9*P*(,0)} {Fallback adaptation}
nr fallback’ eT fallback — gT (,'7 fallback’ 0 fallback)

{ Apply the fallback updated learned optimizer}

if l(n learned) — mm{l(n), l(n learned)7 l(77 fallback)7 Z(TIT fallback)} then
0 «— learned 0 learned

)

m,
else if l(n fallback) — min{l(n), l(n learned)7 5(77 fallback), l(nT fallback)} then
n 0 «— fallback 0 fallback

)

else if Z(UT fallback) — mln{l(n), 1(77 learned)’ l(n fallback)7 l(nT fallback)} then
n, 0 «— nr fallback’ 9T fallback
else
1,0 < 1,0
end if
end while

B Experimental details

B.1 Hyper-parameters

Our fallback SGD uses two different learning rates when applied to learned optimizers and optimizees.
The learning rate on the optimizee is set to A, = 3, (following [18])). The learned optimizer adaptation
learning rate is set to Ay = 0.1. The learned optimizers are meta-trained using Adam with its default
parameters in PyTorch 2.0.0, e.g., learning rate equal to 0.001. The CNN architecture is adopted
from [[18]] so that the “number of channels = (8, 16, 32), kernel sizes = (5, 3, 3) and strides = (2, 2, 2),

with a fully connected final layer". We use mini-batches of size 128. T' is set to be 10 for
and
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