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ABSTRACT
Land use and land cover (LULC) play pivotal roles in achieving

several sustainable development goals established by United Na-

tions member states for the social, economic, and environmental

advancement of our planet and its inhabitants. Understanding LULC

and its dynamics is crucial for gaining insights into the changing

composition and spatial distribution of land surface features across

diverse landscapes. While researchers have explored various AI/ML

approaches using remote sensing images spanning several decades,

existing LULC mapping techniques encounter challenges related

to accuracy, the need for substantial labeled data for training, and

adaptability to different geographical regions, among others. Recent

advances in foundational models have gained significant traction

due to their ability to alleviate labeled data scarcity issues. There-

fore, in this study, we propose a fine-tuning strategy utilizing a

cutting-edge geospatial foundation model jointly developed by IBM

and NASA, known as Prithvi [17], to address existing challenges

such as lesser requirements of labeled data and accuracy. This pa-

per presents the results achieved using Prithvi for LULC mapping

with relatively small training dataset (565 total 224 × 224 pixel
2
im-

ages). We conduct a performance comparison of the Prithvi model

with traditional deep learning-based U-Net model and a large foun-

dational model known as Vision Transformer (ViT). The results

demonstrate that Prithvi surpasses U-Net and ViT in terms of mean

Intersection over Union (IoU) across several LULC classes.
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1 INTRODUCTION
The 17 sustainable development goals (SDGs)

1
form the core of the

agenda for sustainable development adopted by all the United Na-

tionsMember States in 2015 [12]. The SDGs are an all-encompassing

guide aimed at achieving social, economic and environmental con-

servation, preservation and development of the planet and its in-

habitants in a sustainable manner. Eight of the SDGs, namely, (1)

zero hunger, (2) clean water and sanitation, (3) affordable and clean

energy, (4) industry, innovation and infrastructure, (5) sustainable

cities and communities, (6) responsible consumption and produc-

tion, (7) climate action, (8) life on land are closely linked to how

land is used, and what covers the land. LULC information which

enables identification and quantification of land covered by vegeta-

tion, natural features and man-made structures is required to devise

strategies to implement the above eight SDGs and also measure

the efficacy of the devised strategies. Key stakeholders, including

governments, policy makers, private enterprises, and individuals,

therefore rely on LULC and its spatio-temporal evolution to bal-

ance the needs of society and the environment. Hence it is critical

to generate accurate global LULC information at spatio-temporal

scales required to achieve the above SDGs.

Currently, LULC maps are generated through a combination

of ground truth data, remote sensing, and AI techniques. These

maps vary in spatial resolution, ranging from 5 meters [29] to 500

meters [10], and are typically updated on an annual basis. However,

state-of-the-art LULC generation methods face several limitations:

(1) They require a large amount of labeled data, whereas in real-

ity, data scarcity is a significant issue [8]. (2) They struggle with

generalizability across different land cover classes. (3) Scaling these

methods is challenging and often incurs significant costs.

1
https://sdgs.un.org/goals
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In this paper, we aim to investigate the adaptability of foundation

models in addressing some of above challenges while generating

LULC maps. Specifically, we aim to demonstrate their capability to

achieve comparable or superior results (with respect to state of art

techniques) with fewer ground truth data points and generalization

across land classes, thereby addressing the challenges of limited

ground truth data and diverse land classes.

The rest of the paper is organised as follows. Section 2 briefly

describes the related work. The Prithvi model and its adaptation

for LULC mapping is described in section 3. Details of data used for

pre-training and fine-tuning are given in section 4. The pre-trained

Prithvi model and approach for fine-tuning it is described in 5. The

experiments carried out are laid out in section 6. The results are

discussed in section 7. The ablation studies are presented in section

8. The paper is concluded in section 9.

2 RELATEDWORK
In the literature, various methods have been suggested for LULC

mapping [25], [28]. This problem is often approached as pixel-by-

pixel segmentation in computer vision [19, 20]. Over the years,

many segmentation architectures have been proposed, with U-Net

[27] being a popular choice. For instance, Karra et al. [18] trained

a large U-Net model using 24,000 (5km x 5km) hand-labeled im-

age chips with ten classes, achieving an 85% accuracy. Though

the accuracy is good, some caveats here are the large number of

labeled samples required for supervised learning and the coarse

resolution of the resulting LULC maps. Bengana and Heikkila [2]

tackled the issue of limited labeled samples using a domain adapta-

tion technique called bidirectional learning [21], achieving a mean

Intersection over Union (mIoU) of 44.03% with 100m x 100m reso-

lution maps, which is still limited by a coarse resolution. Another

study by Hu et al. [15] conducted generalization experiments using

continent-wise and season-wise k-fold cross-validation, revealing

lower accuracy for out-of-continent or out-of-season data compared

to in-continent or in-season data. The above supervised methods

for LULC mapping are limited by at least one of the following fac-

tors: amount of labeled data, coarser resolution of LULC maps, and

lack of scalability and generalizability on different geo-locations.

In recent times, generative AI and foundation models (FM) that

leverage their pre-training on diverse multi-modal data to tackle

a spectrum of applications have emerged as solutions to address

some of the above challenges. Vision Transformer (ViT) [9] has

been pre-trained on natural images and has been adapted to several

downstream tasks on ImageNet. Note that we adapt this for LULC

mapping and is one of the baselines in this paper. SatMAE [5], a

ViT based on Masked Auto-Encoder (MAE) [13] has been trained

on Sentinel-2 (S2) data at 10m resolution. In contrast to SatMAE

which has been pre-trained only on one satellite, S2, in this paper,

we focus on Prithvi [16] which is a geospatial FM pre-trained on

a combination of Landsat and S2. Prithvi has been pre-trained on

Harmonized Landsat Sentinel (HLS) data for the US region and we

demonstrate its adaptability for LULC mapping.

In the next section, we will provide an overview of the Prithvi

model.

3 OVERVIEW OF PRITHVI AND ITS
ADAPTATION FOR LULC

Prithvi employs a self-supervised encoder, designed with a ViT [9]

architecture and driven by a MAE [14] learning strategy facilitated

by a Mean Squared Error (MSE) loss function. This approach in-

corporates spatial attention spanning multiple patches, along with

temporal attention tailored to individual patches. The model pro-

cesses NASA’s HLS data [4] in a video format denoted as (B, C, T,

H, W), where B represents the batch size, C signifies the number of

channels, T is dedicated to the pivotal temporal dimension crucial

for capturing land cover class dynamics, while H and W corre-

spond to height and width dimensions, enabling detailed spatial

analysis. By virtue of its design, Prithvi requires substantially lower

amount of data for fine-tuning to generate LULC maps, employs

dual satellite data (HLS) and generalizes for the entire US region.

We perform various experiments to answer the following hy-

potheses for Prithvi. The hypotheses are that

• Pre-trained weights encapsulate the learning of features of

remote sensed data and are the weights for the base model

for downstream tasks.

• Fine-tuning of the pre-trained weights improves the perfor-

mance of the base model for a given downstream task.

Additionally, we showcase the graceful performance degradation

of the fine-tuned model as the fine-tuning dataset size decreases.

These experiments were conducted for Prithvi to achieve LULC

mapping for the entire US region. The performance is benchmarked

against U-Net model and ViT models.

4 DATA
Remote sensing through satellite imagery is an effective way of

monitoring land cover maps due to its scalability across different

regions and easy accessibility. The only major disadvantage is the

cloud cover as most sensors are unable to obtain data when there

are clouds. We have used HLS [3] with a spatial resolution of 30m as

input and S2 LULC [18] as the labels for all the experiments in this

paper. This dataset is curated by selecting random tiles from the US

region for the year 2018 followed by a heuristic for undersampling

the majority classes. The HLS-2 (inputs), S2 LULC (labels), and the

sampling strategy is described in detail below.

4.1 HLS-2 Data
The images from a harmonized surface reflectance product called

HLS-2 (version 2.0) data are downloaded from the NASA’s land

processes distributed active archive center cumulus cloud as cloud

optimized GeoTIFFs. The HLS-2 data has been pre-processed to

generate and select 224 × 224 pixel
2
cloud-free patches. We used

the blue, green, red, narrow near-infrared (NIR), short wave infrared

(SWIR) 1, and SWIR 2 channels. Each HLS tile has an associated

cloud mask file, which contains information regarding clouds, cloud

shadows, and adjacent to clouds/cloud shadows per pixel [4]. This

information is used to find out the regions from the tiles that are

cloud-free. These processed cloud-free patches were utilized as an

input data for both pre-training and fine-tuning processes.

2024-05-29 06:26. Page 2 of 1–7.
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Water Trees Flooded Veg. Crops Built area Bare ground Snow Clouds Rangeland Mean IoU

Baselines

U-Net 87.5 68.56 25.36 16.51 28.49 56.40 0 0 44.45 36.36

ViT-base 77.49 64.02 35.70 47.48 38.93 56.07 28.97 21.86 50.48 46.8

Prithvi

Pre-trained 87.61 66.76 22.81 36.5 32.44 55.92 3.79 0.0 43.48 38.81

Fine-tuned 92.73 79.65 53.75 61.08 54.73 70.49 35.77 46.46 66.69 62.37

Table 1: Per class IoU and mean IoU performance of Prithvi model compared to state-of-the-art models, U-Net and ViT-base.
Results are evaluated on test data from US region. In "Prithvi Pretrained" we initialize the model with pre-trained weigths,
and only learn the decoder weights, keeping the encoder weights frozen. In "Prithvi Finetuned" we initialize the model with
pre-trained weights and fine-tune both encoder and decoder.

4.2 S2 LULC Data
S2 LULC label data [18] is used as ground truth to fine-tune the

Prithvi model. This data has a native spatial resolution of 10m ×
10m. S2 LULC label data classifies every 10m × 10m patch to one

of the following 10 different classes: No data, Water, Trees, Flooded

Vegetations, Crops, Built Area, Bare ground, Snow/Ice, Clouds, and

Rangeland.

Label data is downloaded from the S2 10m Land Use/Land Cover

dataset provided by Esri (Sources: Esri, Microsoft, Impact Observa-

tory). This data is in Universal Transverse Mercator (UTM) projec-

tion and each GeoTiff file is a composite of land cover predictions

for each year. The large UTM-sized label tiles are clipped to match

the HLS-sized input tiles. Re-gridding and change of resolution

are carried out to align the label and input data. Finally, S2 LULC

label data is upscaled to 30mx30m spatial resolution to match the

resolution of HLS-2 input image patches.

5 MODEL
We approached the LULC mapping task as a pixel-by-pixel seg-

mentation task. We utilized the weights from Prithvi’s pre-trained

encoder model and trained a decoder head on top of it for segmen-

tation. The following sections provide details on the pre-trained

model and fine-tuning.

5.1 Prithvi Pre-trained Model
We used the pre-trained Prithvi model based on the MAE approach,

a successful self-supervised learning method widely used and ex-

tended for different data types, including videos [26] and multi-

spectral images [6]. The MAE reconstructs masked images using

an asymmetric encoder-decoder architecture. The input image is

divided into non-overlapping patches of the same size, and a sub-

set of the patches is randomly masked. The encoder receives only

the unmasked patches generating their latent representation. The

decoder then receives the latent and masked tokens to perform the

image reconstruction task [14].

5.2 Fine-tuning
We fine-tune the pre-trained encoder and learn decoder weights

for LULC segmentation task. The semantic segmentation decoder

used for our downstream task is a Fully Convolutional Network

(FCN) as described in [22]. We used two consecutive FCNs with one

convolutional layer in each FCN. The decoder network upscales

the embedding that is output by the encoder to the image size

and finally maps the output of the projection component to the

predicted classes. We have used the same decoder head in ViT-base

and Prithvi for a fair comparison.

6 EXPERIMENTATION
In this section we talk about the experimental details for demon-

strating the performance of Prithvi fine-tuned model.

6.1 Training and Test Data
We used 9 HLS tiles[1] from the US region for all our experiments.

HLS tiles are 3660 × 3660 pixel
2
in dimension. We processed the

HLS-2 and S2 LULC label data as mentioned in sections 4.1 and

4.2. From these 9 tiles, we generated 224 × 224 pixel
2
cloud-free

patches. We then use a class balancing heuristic described below.

Handling Class Imbalance: As S2 LULC label data is naturally

imbalanced, steps were then taken to obtain a balanced training

dataset. Creating a balanced dataset for pixel-wise segmentation

poses more challenges compared to a classification task. The heuris-

tic that we used to create a balanced dataset is explained here- We

scan through a large amount of randomly selected 224 × 224 pixel
2

patches and count the number of pixels in the patches that are

assigned to each of the classes. If the number of pixels of a par-

ticular class in a particular image is X% or more, then the image

is called a sample of that particular class. Like this, we try to get

an equal number of samples for every class. For some classes like

flooded vegetation, bare ground, clouds, and snow, we did not find

images that have X% or more pixels for these images, so we further

decreased the value of X to get more data points for these classes.

After class-balancing, we split the data into 396 training, 13

validation, and 156 test patches, each with a good representation of

each of the nine classes (except the No data class).

6.2 Model Setting and Hyperparameters
In the base setting, we fine-tune the Prithvi pre-trained model for

100 epochs, with a batch size of 6, a learning rate of 6𝑒−4, and cross-
entropy loss. We utilize an AdamW [23] optimizer with a weight
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Figure 1: LULC labels and predictions from Prithvi’s fine-tuned model for six sample test patches, representing several classes,
are shown here. The predictions demonstrate good agreement with the labels.

decay of 0.05. The optimal values of the above hyper-parameters

were selected after trying several combinations of them.

Our fine-tuning module is currently based on Pytorch via an

enhanced version of the MMSegmenation [7] library to deal espe-

cially with spatio-temporal data. It supports semantic segmentation

tasks (i.e., pixel-level classification).

6.3 Baselines
We compared the performance of Prithvi fine-tuned model with a

traditional deep-learning model U-Net as well as with ViT-a state-

of-the-art foundation model proposed for natural images.

• U-Net: U-Net [24] is a fully convolutional symmetric encoder-

decoder architecture. We have used the implementation of

U-Net which is available in the MMSegmentation package.

• ViT: ViT is a transformer-based asymmetric encoder-decoder

architecture. ViT [9] splits an image into fixed-size patches,

linearly embeds each of them, adds position embeddings,

and feeds the resulting sequence of vectors to a standard

Transformer encoder, followed by a decoder head.

7 RESULTS AND DISCUSSION
7.1 Performance Metric
We use the fine-tuned Prithvi model and baseline models described

in Section 6.3 for inferencing upon the 156 test patches. The out-

put are patches with LULC classes for each of the pixels in the

test patches. In order to evaluate and compare the performance

of the models, we use Intersection over Union (IoU) as the perfor-

mance metrics. IoU is a widely used evaluation metric for image

segmentation models. It measures the overlap between the pre-

dicted segmentation and the ground truth masks and is calculated

as the ratio of intersection area and union area of these 2 masks.

We compute IoU for each class using equation 1.

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(1)

where TP, FP and FN represent number of True Positive, False

Positive and False Negative pixels respectively for the class. The

IoU metric provides a simple and intuitive way to assess the overlap

between the predicted and actual regions with values ranging from

0 (no overlap) to 1 (perfect alignment). We use IoU for measuring

the accuracy of the predicted regions against the ground-truth

regions for each of the 9 classes and also evaluate the mean IoU

(mIoU) by taking the mean of the IoU values for the 9 classes.

7.2 Comparison of Prithvi with Baseline
Table 1 shows IoU result for each of the classes in the dataset

along with the mIoU for different models. We observe that Prithvi

achieved a mIoU of 62.37% and outperforms the baseline models U-

Net and ViT, which achievedmIoUs of 36.36% and 46.8% respectively.

Prithvi is also able to perform better than the baseline for each of

the classes, which is evident from higher IoU per class for Prithvi.

We found that the model could easily detect water, trees, bare

ground, and rangeland. However, it struggled with categorizing

crops, flooded vegetation, built areas, snow, and clouds and has

low IoU for these classes. It is difficult to predict crops and flooded

vegetation because of insufficient temporal resolution of the labeled

data, as the cropping pattern changes frequently, but the S2 LULC

labeled data only has one map per year for a particular region.

In Figure 1, we present six examples of labeled and predicted

maps generated using the best-performing fine-tuned model for test

images, illustrating a variety of landscapes. A detailed examination

reveals that our model excels at predicting the overall structure

of these landscapes. However, a closer inspection also highlights

its limitations in accurately capturing smaller segments and minor

details. Specifically, in the top part of Figure 1(e), the model faces

challenges in recognizing some smaller water bodies situated on top

of built areas. Similarly, in the top-right and bottom-right sections

of Figure 1(d), our model struggles to make precise predictions,

notably failing to correctly identify the small blue curves associated

with the water class. Examining Figures 1(a), (b), (c), (d), (e), and
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Figure 2: Data efficiency of UNet, ViT, and Prithvi fine-tuned in terms of reduction of labeled images for fine-tuning the model.
Confidence bands represent the standard deviation across 5 different seeds. Each seed corresponds to a different combination
of initial random weights. The labels shown in the plot for Prithvi are consistent for UNet and ViT (legends across subplots are
identical, as shown in the inset of Prithvi subplot.)

(f) collectively emphasizes a consistent pattern: the model tends to

either underestimate these smaller segments or completely overlook

them. This observation implies a potential area for refinement,

where enhancing the model’s capacity to predict and account for

finer details becomes crucial. Understanding these nuances in the

model’s performance is essential for further developments and

improvements. By addressing the model’s limitations in capturing

smaller-scale features, we can work towards a more accurate and

comprehensive representation of varied landscapes in our geo-

spatial predictions.

8 ABLATION STUDIES
Ablation studies provide valuable insights into the data require-

ments and inner workings of fine-tuning models in the LULC map-

ping, guiding efforts to enhance their performance and robustness.

In this paper, we conducted ablation studies by varying (a) the

configuration of the pre-trained model and (b) reducing label data.

8.1 Configurations of Prithvi
We use the following two configurations of Prithvi model.

(1) Prithvi (Pre-trained)- During segmentation learning, we only

update the decoder weights and leave the encoder weights

unchanged, which were initialized from a pre-trained model.

(2) Prithvi (Pre-trained finetuned) - Here, we initialize theweights

of the encoder from the pre-trained model and also fine-tune

them while learning to segment LULC maps.

The mIoU increases from 46.8% to 62.37% as we go from Prithvi

(Pre-trained) to Prithvi (Fine-tuned). This clearly demonstrates the

effectiveness of fine-tuning the pre-trained weights in improving

performance.

8.2 Label Reduction Experiments
We have run experiments to understand the impact of input data

size on the performance of the fine-tuned geospatial FM. We use

the same hyper-parameters as used for the full fine-tuning dataset.

2024-05-29 06:26. Page 5 of 1–7.
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Figure 2 summarizes the experiments carried out. The darker lines

show the mean from 5 different random seeds and the lighter bands

show the region from −𝜎 to +𝜎 . In these experiments, we have

reduced the size of training data by keeping the validation and test

set constant.We saw that aswe decrease the size of training data, the

mIoU also decreases. The performance of the Prithvi model trained

on a reduced amount of data is relatively lower but satisfactory.

Even with an 87.5% reduction in data, we can still attain a mIoU of

37%.

We have repeated the above data reduction experiments with

ViT and UNet baselines. We noticed that for all the data reduction

experiments, Prithvi consistently performed better. In Figure 2 we

have plotted the IoUs for all these data-reduction experiments with

respect to the epochs. We also noticed that the Prithvi model is

able to pick up the learning very well in the starting few epochs as

compared to UNet and ViT. The UNet’s performance drops dras-

tically as we reduce to data set size from 100% to 50%. This set of

experiments shows that with limited labeled samples, pre-trained

models have an advantage.

9 CONCLUSIONS AND FUTUREWORK
Accurate quantification of land cover and its spatio-temporal evo-

lution is essential to achieve several sustainable development goals

adopted by the United Nation member states for the social, eco-

nomic and environmental development of our planet and its inhabi-

tants. In this paper, we have addressed some of the challenges in the

current state-of-the-art LULC mapping methods, particularly the

scarcity of labeled samples for training and the difficulty in gener-

alizing across different land classes. We evaluated the performance

of the Prithvi model and compared it to other available state-of-

the-art models. The results look very promising both in terms of

the IoU metric and the prediction maps. The pre-trained weights

learned from a large corpus of Geospatial data have proved to be

very useful, especially with limited labeled samples available. Ex-

periments with global data for fine-tuning have also been initiated

on our end. Here are some preliminary results: we have achieved an

aggregate mIoU of 62.37%. While this result is encouraging, there is

still room for further refinement. We are considering the following

as future work. We are working on a rigorous sampling strategy

to achieve class balance in the global dataset for fine-tuning. We

are also planning to use a global pre-trained model instead of a

US-based pre-trained model. Additionally, we are exploring any

known technical aspects that could enhance model performance on

a global scale. We are also expanding the fine-tuning procedure to

incorporate data from surveys (such as GLanCE [11], NASA) that

are sparsely distributed across different geographies.
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