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Abstract

Despite extensive efforts in safety alignment,001
large language models (LLMs) remain vulner-002
able to jailbreak attacks. Activation steering003
offers a training-free defense method but re-004
lies on fixed steering coefficients, resulting in005
suboptimal protection and increased false rejec-006
tions of benign inputs. To address this, we pro-007
pose AdaSteer, an adaptive activation steering008
method that dynamically adjusts model behav-009
ior based on input characteristics. We identify010
two key properties: Rejection Law (R-Law),011
which shows that stronger steering is needed012
for jailbreak inputs opposing the rejection direc-013
tion, and Harmfulness Law (H-Law), which dif-014
ferentiates adversarial and benign inputs. AdaS-015
teer steers input representations along both the016
Rejection Direction (RD) and Harmfulness Di-017
rection (HD), with adaptive coefficients learned018
via logistic regression, ensuring robust jailbreak019
defense while preserving benign input handling.020
Experiments on LLaMA-3.1, Gemma-2, and021
Qwen2.5 show that AdaSteer outperforms base-022
line methods across multiple jailbreak attacks023
with minimal impact on utility. Our results024
highlight the potential of interpretable model025
internals for real-time, flexible safety enforce-026
ment in LLMs.1 WARNING: This paper may027
contain content that is offensive and harmful.028

1 Introduction029

Despite extensive efforts have been made for030

safety alignment of large language models (LLMs)031

(Ouyang et al., 2022; Bai et al., 2022b; Askell et al.,032

2021), studies show that even well-aligned models033

remain vulnerable to jailbreak attacks, where ad-034

versarial prompts successfully bypass their safety035

mechanisms (Wei et al., 2023a; Jones et al., 2023;036

Zou et al., 2023b; Carlini et al., 2024). The pre-037

vailing defense strategy against such vulnerabili-038

ties is safety post-training, where models undergo039

1Our code and data can be found in supplementary files.

additional fine-tuning on curated safety data to re- 040

inforce their safeguards. However, this approach is 041

computationally expensive (Zaremba et al., 2025) 042

and highly dependent on the quality and diversity 043

of the training dataset (Wang et al., 2024a), leading 044

to significant variability in efficacy. 045

Activation steering offers a promising training- 046

free alternative by directly manipulating a model’s 047

internal representations along the rejection direc- 048

tion within its activation space (Turner et al., 2023; 049

Zou et al., 2023a; Panickssery et al., 2023; Arditi 050

et al., 2024). This technique is grounded in the 051

theoretical premise that LLMs encode features or 052

concepts as linear directions in activation space 053

(Mikolov et al., 2013; Park et al., 2024). As il- 054

lustrated in Figure 1(a), at the model layer l, this 055

method first identifies the model’s intrinsic rejec- 056

tion direction with representations of benign and 057

harmful inputs, and extract a rejection steering vec- 058

tor, represented as vl. During inference, a simple 059

activation addition step is performed with a fixed 060

strength scalar λ, steering the input representation 061

toward the rejection region. 062

However, existing activation steering methods 063

suffer from a key limitation: they lack dynamic 064

adaptation to varying input contexts. The fixed 065

steering coefficient λ is applied indiscriminately 066

across all inputs, leading to two major challenges: 067

(1) for jailbreak inputs, different attack strategies 068

exhibit diverse characteristics, meaning that apply- 069

ing a static steering coefficient λ often results in 070

suboptimal protection (Stickland et al., 2024; Shen 071

et al., 2025; Lee et al., 2025); (2) for benign in- 072

puts, such reinforcement of refusal behavior signifi- 073

cantly increases the risk of false rejections, limiting 074

the model’s overall utility (Qian et al., 2024; Bhat- 075

tacharjee et al., 2024; Arditi et al., 2024). These 076

issues highlight the need for an adaptive activation 077

steering mechanism that can dynamically adjust its 078

strength based on input characteristics. 079

Inspired by recent interpretability studies (Leong 080
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Figure 1: The overall comparison between previous activation steering and our AdaSteer. (a) The two-step paradigm
of activation steering, with the fixed steering coefficient λ. (b) Deriving rejection law and harmfulness law. (c) We
propose AdaSteer to achieve real-time, adaptive and input-dependent jailbreak defense.

et al., 2024; Zheng et al., 2024; Zhang et al., 2025)081

suggesting that LLM rejection behaviors are gov-082

erned by two key factors: (1) assessing input harm-083

fulness and (2) deciding whether to reject, we seek084

to perform a dual-direction steering that adjusts085

model activations along both the Rejection Direc-086

tion (RD) and the Harmfulness Direction (HD).087

To address the first challenge, we conduct an088

empirical analysis of different types of jailbreak089

inputs along the RD within three safety-aligned090

LLMs: LLaMA-3.1 (Dubey et al., 2024), Gemma-091

2 (Team et al., 2024), and Qwen2.5 (Yang et al.,092

2024). As shown in Figure 1(b), we identity RD us-093

ing contrastive pairs of complied (red cluster) and094

rejected (yellow cluster) harmful instructions via095

the difference-in-means technique (Belrose, 2023).096

We surprisingly find that different jailbreak types097

exhibit distinct patterns along RD, which can be098

summarizd as the Rejection Law (R-Law):099

Rejection Law: Along RD, jailbreak types
that are positioned further against the rejection
direction are more difficult for the backbone
model to defend against.

Thus, R-Law can be leveraged as: the farther an in-100

put is along RD against the rejection direction, (i.e.,101

the more adversary it is), the stronger rejection102

steering should be applied to enforce rejection.103

However, solely depending on R-Law can not104

solve the second challenge as benign inputs can105

sometimes also exhibit distributions that oppose the106

rejection direction along RD, making them appear 107

similar to jailbreak inputs. This directly motivates 108

us to identity and leverage HD, reflecting the harm- 109

fulness of different inputs accordingly. Similarly, 110

we obtain HD by contrasting complied harmful 111

instructions with benign ones (blue cluster) and 112

Harmfulness Law (H-Law) is derived: 113

Harmfulness Law: Along HD, jailbreak in-
puts shift further toward harmfulness com-
pared to benign inputs (blue cluster), confirm-
ing their harmful nature and distinguishing
them from benign queries.

Since HD represents the backbone’s compliance 114

behavior—identified by benign and harmful inputs 115

that are both complied by the model—H-Law can 116

be interpreted and leveraged as follows: the far- 117

ther an input is along HD against the harmfulness 118

direction, (i.e., the safer it is), the stronger the com- 119

pliance steering should be applied along HD. 120

Building on these critical insights, we propose a 121

novel dual-direction Adaptive activation Steering 122

method for jailbreak defense (AdaSteer), enabling 123

dynamic and input-dependent control. As illus- 124

trated in Figure 1(c), AdaSteer steers the input 125

representation using two steering vectors, vl
RD and 126

vl
HD, along the Rejection Direction (RD) and Harm- 127

fulness Direction (HD), respectively. The corre- 128

sponding coefficients, λr and λc, are determined 129

via logistic regression based on the Rejection Law 130

(R-Law) and Harmfulness Law (H-Law). For jail- 131
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break inputs, AdaSteer dynamically adjusts λr to132

reinforce rejection while keeping λc minimal to133

prevent interference. For benign inputs, a larger134

λc is applied, steering the representation toward135

compliance behavior and preserving model utility.136

It is important to emphasize that the direction137

identification and logistic regression fitting process138

relies solely on standard harmful prompts, with139

only a small development set of jailbreak data used140

for adjustment. This set has no overlap with the141

final test data, ensuring a fair evaluation. This142

highlights that our AdaSteer enables real-time and143

flexible safety enforcement, dynamically adapting144

to emerging attack strategies. As a result, it repre-145

sents an adaptive defense mechanism that merits146

further exploration (Anthropic, 2025).147

Experiments on LLaMA-3.1-8B-Instruct (Dubey148

et al., 2024), Gemma-2-9B-it (Team et al., 2024),149

and Qwen2.5-7B-Instruct (Yang et al., 2024) val-150

idate that R-Law and A-Law hold broadly. AdaS-151

teer consistently outperforms baseline methods in152

jailbreak defense across 7 attack strategies. Fur-153

thermore, AdaSteer minimally affects the model’s154

performance on benign inputs, ensuring its util-155

ity remains intact. Our work serves as a concrete156

demonstration that insights gained from interpret-157

ing model internals can have practical applications158

and well-aligned LLMs hold significant potential159

to function as adaptive jailbreak defenders.160

2 Preliminaries161

Jailbreak Attacks and Defenses A jailbreak162

attack seeks to craft an adversarial prompt s′ =163

A(s0), where A represents an attack method and164

s0 is a vanilla harmful prompt. The objective is to165

induce the LLM to to generate a harmful response166

that aligns with the malicious intent of s0, bypass-167

ing built-in safety mechanisms. Conversely, a jail-168

break defense aims to protect the model against169

such adversarial manipulations.170

Activation Steering Existing research suggests171

that LLMs encode features or concepts as linear172

directions in activation space (Mikolov et al., 2013;173

Park et al., 2024). Building on this insight, acti-174

vation steering aims to directly control model be-175

havior by adjusting its internal activations along176

specific feature directions during inference. This177

method generally follows two key steps. First, at178

the specific model layer l, a steering vector vl is de-179

rived along the desired feature direction, typically180

by computing the difference in activations between181

examples that exhibit the target behavior and those 182

that do not. Second, during inference, this vector 183

is introduced into the model’s hidden states hli at 184

the i-th token position within the selected layer l, 185

scaled by a coefficient λ: 186

h′l
i = hl

i + λvl 187

where i represents the index of the token’s repre- 188

sentation in the input, while l denotes the index of 189

the manipulated layer. 190

3 Methodology 191

3.1 Overview 192

We propose AdaSteer, which dynamically steers 193

the model’s activations based on the input’s char- 194

acteristics, ensuring strong resistance against ad- 195

versarial prompts while minimizing unnecessary 196

refusals of benign queries. The adaptive steering 197

mechanism is formulated as follows: 198

h′l
i = hl

i + λrv
l
RD + λcv

l
HD (1) 199

where RD (Rejection Direction) and HD (Harm- 200

fulness Direction) represent key axes within the 201

activation space that encode the model’s refusal 202

and harmfulness behaviors, respectively. The cor- 203

responding steering vectors vl
RD and vl

HD adjust 204

the model’s activations, with their strengths λr and 205

λc dynamically determined using logistic regres- 206

sion. The following sections introduce how we 207

identify these directions, extract steering vectors, 208

and determine the adaptive coefficients. 209

3.2 Rejection Direction (RD), vRD and λr 210

LLMs encode rejection behaviors as a linear di- 211

rection within the activation space (Arditi et al., 212

2024). We identify this Rejection Direction (RD) 213

and analyze how different jailbreak strategies ex- 214

hibit distinct behaviors along it, laying the founda- 215

tion for an adaptive rejection mechanism through 216

input-dependent steering strength (λr). 217

Datasets We utilize two types of vanilla harmful 218

data to identify RD—one consisting of inputs re- 219

jected by the model and the other containing those 220

that bypassed rejection. These harmful samples 221

are sourced from multiple datasets, including Ad- 222

vBench (Zou et al., 2023b), TDC2023 (Mazeika 223

et al., 2023, 2024), Malicious Instruct (Huang et al., 224

2024), and Jailbreak Bench (Chao et al., 2024). 225
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Figure 2: The visualization of posRD and posHD for each
input. The value in parentheses next to each jailbreak
method in the legend indicates the average λr needed
to cause the model to reject all inputs.

Identifying RD To identify RD, we compute the226

difference between the model’s mean activations227

when processing rejected and complied harmful228

inputs. This approach, known as the difference-in-229

means method (Belrose, 2023), effectively isolates230

the RD by capturing activation shifts associated231

with rejection behavior. For each layer l ∈ [L],232

we calculate the mean activation µl
r-harmful for re-233

jected harmful inputs from Drejection
harmful and µl

c-harmful234

for complied harmful inputs from Dcompliance
harmful , with235

the representation of the last token position hl(x)236

given the input x:237

µl
r-harmful =

1

|Drejection
harmful |

∑
x∈Drejection

harmful

hl(x) (2)238

µl
c-harmful =

1

|Dcompliance
harmful |

∑
x∈Dcompliance

harmful

hl(x) (3)239

We then identity RD via difference-in-means:240

dl
RD = µl

r-harmful − µl
c-harmful (4)241

Extracting Rejection Steering Vector Unlike242

prior works that conducts extensive search and val-243

idation to identify the most salient direction (Arditi244

et al., 2024; Shen et al., 2025), we directly use dl
RD245

as the steering vector vl
RD at each layer and each to-246

ken position, which still exhibits significant effects247

on steering rejection behavior.248

Deriving the Rejection Law As illustrated in249

Figure 2, jailbreak inputs exhibit distinct distribu-250

tions along RD. We define the Harmful Compliance251

Center (red point) as the origin, where positive val-252

ues correspond to increased rejection and negative253

values indicate compliance tendencies. We observe254

an almost linear relationship between an input’s RD 255

position (posRD) and the required rejection steering 256

strength (λr), which forms the Rejection Law: 257

Rejection Law: Inputs that are positioned fur-
ther in the negative direction against RD re-
quire a greater rejection steering coefficient λr

to induce rejection behavior.

Fitting the Rejection Law Formally, posRD can 258

be obtained by: 259

posRD = (hl − µl
c-harmful) · dl

RD (5) 260

We adopt those harmful inputs that make the back- 261

bone comply, apply steering with varying strengths 262

λr, and record both the original posRD of each 263

harmful input and the corresponding λr used to in- 264

duce rejection behavior, forming (posRD, λr) pairs. 265

Then we fit a logistic regression curve: 266

λr = wr · posRD + br (6) 267

where wr, br are hyperparameters in logistic regres- 268

sion. We conduct a grid search on the validation 269

set to fine-tune the curve with greater precision. 270

3.3 Harmfulness Direction (HD), vHD and λc 271

Relying solely on RD can lead to false rejections 272

of benign inputs, as they may also distribute nega- 273

tively along RD. To address this, we introduce the 274

Harmfulness Direction (HD), capturing harmful- 275

ness characteristics separately. 276

Datasets We contrast complied benign inputs 277

(from OR-Bench (Cui et al., 2024)) with complied 278

harmful inputs, ensuring both datasets exhibit simi- 279

lar compliance behavior but differ in harmfulness. 280

Identifying HD We apply the same difference- 281

in-means to identify HD by calculating the mean 282

activation µc-benign
i,l for benign inputs from Dcompliance

benign 283

µl
c-benign =

1

|Dcompliance
benign |

∑
x∈Dcompliance

benign

hl(x) (7) 284

Then HD is identified by: 285

dl
HD = µl

c-benign − µl
c-harmful (8) 286

Extracting compliance steering vector In 287

fact, HD represents the backbone’s compliance 288

behavior—identified by benign and harmful inputs 289

that are both complied by the model—We can ex- 290

tract the compliance steering vector along HD to 291
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resist the influence of vl
RD, thereby mitigating the292

false rejection on benign inputs.293

More specifically, we take the projection of dl
HD294

along dl
HD as the compliance steering vector, which295

assists in offsetting the rejection vector on benign296

inputs, thereby enhancing utility:297

vHD = dl
RDd

l
RD

⊤dl
HD (9)298

Deriving the Harmfulness Law As shown in299

Figure 2, along the HD direction (x-axis), we also300

define the Harmful Compliance Center (red point)301

as the origin. The leftward direction represents less302

harmful (positive), while the rightward direction303

represents increased harmfulness (negative). Each304

input is projected onto the HD, yielding a coordi-305

nate posHD. On HD, we notice that jailbreak in-306

puts generally have smaller posHD values, whereas307

benign inputs, tend to have larger disHD values,308

which can be summarized as the following Harm-309

fulness Law.310

Harmfulness Law: Inputs that are positioned
further in the positive direction along HD re-
quire a greater compliance steering coefficient
λc to encourage compliance.

Fitting the Harmfulness Law Similar to RD,311

posHD can be obtained by:312

posHD = (hl − µl
c-harmful) · dlHD (10)313

For benign inputs from OR-Bench that are314

falsely rejected, we apply compliance steering vec-315

tors at varying intensities. For each input, we316

record its original posHD and determine the λc317

value required for the model to accept it. We fit a318

logistic regression curve to these (posHD, λc) pairs.319

λc = wc · posHD + bc (11)320

where wc, bc are parameters of logistic regression.321

Additionally, we conduct a small-scale grid search322

around the fitted hyperparameters.323

3.4 Adaptive Activation Steering324

Given any input prompt t′, we first utilize Eq. (6)325

and Eq. (11) to compute the steering coefficients326

λr and λc based on the positions posRD and posHD.327

We then substitute these coefficients into Eq. (1)328

to perform adaptive steering on the model’s hid-329

den states across all layers at each token position,330

ensuring controlled safety behavior.331

4 Experiments 332

4.1 Experimental Setup 333

Backbone We conduct experiments on three 334

aligned LLMs: LLaMA-3.1-8B-Instruct (Dubey 335

et al., 2024), Qwen2.5-7B-Instruct (Yang et al., 336

2024) and Gemma-2-9B-it (Team et al., 2024) to 337

evaluate the effectiveness of our approach. 338

Benchmark We test our approach against sev- 339

eral state-of-the-art jailbreak attack methods, in- 340

cluding role-playing attacks, AIM, gradient- or 341

genetic algorithm-based prompt optimization tech- 342

niques: AutoDAN (Liu et al., 2024a) and GCG 343

(Zou et al., 2023b), and attacks that encrypt mali- 344

cious queries using methods such as code, Base64 345

encoding, ciphering, LaTeX, and low-resource lan- 346

guages: Jailbroken (Wei et al., 2023a), Cipher 347

(Yuan et al., 2024), ReNeLLM (Ding et al., 2023a), 348

and MultiLingual (Deng et al., 2024). To assess 349

utility, we employ over-safety test suites such as 350

XSTest (Röttger et al., 2024) and OKTest (Shi 351

et al., 2024a), along with the general instruction- 352

following benchmark AlpacaEval (Dubois et al., 353

2024). Please refer to Appendix A.2 for details. 354

Metrics For safety evaluation, we use the De- 355

fense Success Rate (DSR), which is computed using 356

GPT-4o. For assessments on XSTest and OKTest, 357

we follow Röttger et al. (2024) and employ GPT-4o 358

to measure the Compliance Rate (CR), represent- 359

ing the proportion of fully compliant responses. 360

Additionally, we evaluate the general utility on Al- 361

pacaEval using the Win Rate, which compares the 362

quality of generated responses against the original 363

model. A higher win rate indicates better preserva- 364

tion of the original model’s capabilities. 365

Baselines and Comparison Methods We eval- 366

uate AdaSteer against the following training-free 367

defense baselines, including Decoding-based Meth- 368

ods: (1) ROSE (Zhong et al., 2024), (2) Self-CD 369

(Shi et al., 2024b) and Steering-based Methods: (3) 370

Jailbreak Antidote (Shen et al., 2025), (4) Surgi- 371

cal (Wang et al., 2025), (5) InferAligner (Wang 372

et al., 2024b), (6) CAST (Lee et al., 2025). Please 373

refer to Appendix B for the detailed description. 374

Implementation Details We conduct experi- 375

ments with PyTorch (Paszke et al., 2019) on a sin- 376

gle NVIDIA Tesla A100 GPU. We set do_sample 377

to False for generation, which means using greedy 378

decoding. Additional implementation details are 379

provided in Appendix C. 380
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Jailbreak Attack Over-Safety Utility
DSR↑ CR↑ Win Rate↑

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM AVG. AVG. AlpacaEval

LLaMA-3.1 57 30 0 60 61 67 37 38.14 94.40 50.00

ROSE 100 83 51 94 85 61 85 79.86 90.45 2.81
Self-CD 94 67 5 66 67 43 43 55.00 93.75 2.27
Jailbreak Antidote 92 100 61 94 79 44 66 76.57 91.45 45.93
Surgical 100 75 10 88 84 82 91 75.71 82.35 47.29
InferAligner 85 90 0 92 77 82 77 71.86 80.45 47.19
CAST 100 100 0 66 76 46 56 63.43 95.00 37.76

AdaSteer (Ours) 100 100 82 90 85 100 86 91.86 97.85 50.01

Qwen2.5 92 47 0 88 46 14 3 41.43 95.00 50.00

ROSE 99 52 8 86 58 12 0 45.00 97.00 1.03
Self-CD 69 50 2 82 54 6 0 37.57 96.00 0.96
Jailbreak Antidote 88 86 72 100 60 78 3 69.57 92.15 42.86
Surgical 94 41 0 82 47 13 3 40.00 95.25 48.85
InferAligner 100 98 0 98 60 94 11 65.86 93.40 48.43
CAST 80 73 0 68 63 9 1 42.00 95.60 47.90

AdaSteer (Ours) 100 98 88 92 78 90 96 91.71 91.10 48.36

Gemma-2 6 31 0 90 57 1 27 30.29 86.25 50.00

ROSE 7 50 25 100 67 20 87 50.86 81.75 1.98
Self-CD 4 25 0 90 56 0 46 31.57 85.25 1.75
Jailbreak Antidote 6 47 0 98 61 1 78 41.57 83.35 47.33
Surgical 99 100 14 98 68 96 78 79.00 90.45 38.98
InferAligner 31 100 24 100 85 93 62 70.71 74.45 48.48
CAST 8 35 0 94 65 4 33 34.14 81.95 50.32

AdaSteer (Ours) 91 95 75 86 86 86 82 85.86 92.80 48.28

Table 1: The overall results of the three backbones (LLaMA-3.1-8B-Instruct, Qwen2.5-7B-Instruct, and Gemma-2-
9B-it) on the benchmarks of jailbreak defense, over-safety, and model utility. The evaluation metric for jailbreak
defense is the Defense Success Rate (DSR) for each attack method, the evaluation criterion for over-safety is the
Compliance Rate (CR), and the utility is measured by the win rate compared to the original model.

Jailbreak Attack Over-Safety Utility

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM XSTest OKTest AlpacaEval

dRD
posRD -71.77 -74.84 -72.16 -26.36 -63.80 -68.85 -65.07 -40.65 -45.62 -50.96
λr -0.21 0.22 0.20 0.08 0.14 0.17 0.13 0.08 0.08 0.09

dHD
posHD -17.51 -17.36 -12.78 -17.01 -15.36 -14.74 -25.55 18.36 15.04 5.98
λc 0.02 0.03 0.10 0.01 0.05 0.07 -0.11 0.32 0.30 0.22

Table 2: Results of the average positions and steering strength for complied inputs from different jailbreak methods
and benign inputs on LLaMA-3.1.

4.2 Overall Results381

Table 1 demonstrates the performance comparison382

of AdaSteer and baselines based on LLaMA-3.1-383

8B-Instruct, Qwen2.5-7B-Instruct and Gemma-2-384

9B-it. For the results of over-safety on each dataset,385

please refer to the Appendix D.2.386

AdaSteer significantly outperforms all baseline387

methods in jailbreak defense across various at-388

tack strategies, achieving near-complete resistance389

(DSR = 100) in most cases. This demonstrates390

the effectiveness of dynamically adjusting steering391

strength based on the characteristics of different392

jailbreak methods. In contrast, existing methods,393

including the most advanced Jailbreak Antidote394

and Surgical, show inconsistent performance across395

attack types, highlighting their vulnerability to cer-396

tain adversarial techniques. Further, we adjust var- 397

ious hyperparameters for these two methods and 398

identify a trade-off between safety, over-safety, and 399

utility. By contrast, AdaSteer remains unaffected, 400

underscoring our approach’s superiority. Please 401

refer to Appendix D.3 for detailed reuslts and anal- 402

ysis. The results validate our claim that a fixed 403

steering struggles to generalize against diverse jail- 404

break attacks, while AdaSteer’s adaptive mecha- 405

nism ensures robust and comprehensive defense. 406

To better evaluate AdaSteer under adaptive attacks 407

like AutoDAN and GCG, we apply them online 408

to the protected model, which still shows strong 409

defense. Please see Appendix D.4 for details. 410

Regarding benign inputs, AdaSteer maintains 411

performance close to the original model, as re- 412

flected in its high utility win rate and strong com- 413
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LLaMA-3.1 Jailbreak↑ Over-Safety↑ Utility↑

AdaSteer 91.86 97.80 50.01

w/o vRD 39.57 98.55 50.70
w/o vHD 91.57 74.35 45.72
w/ reverse vRD 92.14 95.20 47.02

Qwen2.5 Jailbreak↑ Over-Safety↑ Utility↑

AdaSteer 91.71 91.10 48.36

w/o vRD 46.00 96.55 48.82
w/o vHD 92.86 79.60 36.37
w/ reverse vRD 87.43 90.55 48.05

Gemma-2 Jailbreak↑ Over-Safety↑ Utility↑

AdaSteer 85.86 92.75 48.28

w/o vRD 56.57 88.65 49.99
w/o vHD 92.14 90.15 33.08
w/ reverse vRD 91.43 96.60 46.00

Table 3: Ablation study on the effectiveness of steering
vectors in our AdaSteer.

pliance retention. This confirms its ability to dis-414

tinguish between jailbreak and benign inputs, pre-415

serving model utility without over-enforcing re-416

fusals. Notably, while CAST applies conditional417

steering, its approach only differentiates between418

vanilla harmful prompts and benign queries, fail-419

ing to effectively address jailbreak inputs due to420

their adversarial nature mimicking benign behav-421

ior. This limitation underscores the necessity of422

introducing Harmfulness Direction (HD) to sepa-423

rate jailbreak and benign inputs more effectively,424

further justifying our design choice in AdaSteer.425

4.3 Analysis of Adaptive Steering426

To directly demonstrate how AdaSteer operates,427

Table 2 quantifies average posRD and posHD for be-428

nign (AlpacaEval) and different types of jailbreak429

inputs on LLaMA-3.1, alongside the corresponding430

λr and λc computed by AdaSteer. The results in-431

dicate that: On dRD, AdaSteer strongly rejects jail-432

break inputs while minimizing rejection for benign433

queries. On dHD, benign inputs receive a higher434

λc, counteracting the rejection effect, while jail-435

break inputs remain largely unaffected. Results for436

Qwen2.5 and Gemma-2 are in Appendix D.5.437

4.4 Steering Vector Analysis438

Tabel 3 presents the results of the ablation study439

evaluating the impact of different steering vectors440

in AdaSteer across three backbones. We compare441

the full AdaSteer method with three ablated ver-442

sions: (1) w/o vRD, which removes rejection steer-443

ing, (2) w/o vHD, which removes compliance steer-444

Jailbreak
(DSR )

Over-Safety
(CR )

AlpacaEval
(Win Rate )

80.29

91.71 93.71 94.05 91.10
97.15

45.7248.3647.90

23.86

94.75

50.00
41.43

95.00

50.00
59.57

97.50

50.00

Qwen2.5-3B
Qwen2.5-7B
Qwen2.5-14B

Figure 3: The results of AdaSteer across different sizes
of Qwen2.5. The values above the bars represent the
original model’s performance, while the values below
the line indicate that after applying AdaSteer.

ing, and (3) w/ reverse vRD, which replaces vHD 445

with the inverted vRD. 446

The results show that removing vRD lowers jail- 447

break resistance, confirming its role in reinforc- 448

ing rejection behavior. Conversely, removing vHD 449

significantly degrades utility, indicating that com- 450

pliance steering along HD is crucial for reducing 451

false rejections. The reverse vRD setting achieves 452

comparable jailbreak defense but sacrifices utility, 453

demonstrating that simply inverting the rejection 454

vector is suboptimal for distinguishing benign in- 455

puts. These findings validate the necessity of steer- 456

ing along both rejection and harmfulness direction 457

for achieving robust and adaptive jailbreak defense. 458

4.5 The Impact of Model Size 459

To evaluate the scalability of AdaSteer, we assess 460

it across three different sizes of Qwen2.5 mod- 461

els ranging from 3B to 14B, as shown in Figure 462

3. The results demonstrate that AdaSteer signifi- 463

cantly enhances jailbreak defense across all model 464

sizes while maintaining performance on benign in- 465

puts, highlighting its adaptability to different model 466

capacities. This consistency across scales under- 467

scores AdaSteer’s robustness as a generalizable 468

safety enhancement method. Moreover, the results 469

reveal that even smaller models, which are typically 470

more vulnerable to jailbreak attacks, can leverage 471

AdaSteer to achieve significant improvement on 472

adaptive jailbreak defense. This suggests that adap- 473

tive jailbreak defense is not exclusive to large-scale 474

models—smaller models, when equipped with our 475

AdaSteer, can also exhibit strong adversarial robust- 476

ness. Please refer to Appendix D.6 for the detailed 477

results on each jailbreak type. 478
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Figure 4: Trade-off between inference efficiency and
jailbreak defense success rate (DSR).

4.6 Inference Efficiency Analysis479

To evaluate the efficiency of different jailbreak de-480

fense methods, we compare their tokens per second481

(token/s) relative to the original model. We con-482

duct our experiments on a single NVIDIA Tesla483

A100 GPU. For methods that support batch infer-484

ence, we set the batch size to 64. The trade-off485

between inference efficiency and jailbreak defense486

success rate (DSR) is visualized in Figure 4. AdaS-487

teer is positioned in the upper-right region of the488

plot, demonstrating that it achieves a strong bal-489

ance between safety and efficiency. Unlike other490

high-performing defenses that introduce significant491

computational overhead, AdaSteer maintains high492

DSR without excessive inference cost, preserving493

a runtime speed close to that of the original model.494

This highlights its practicality as a scalable and495

efficient solution for enhancing model security in496

real-world deployments.497

5 Related Works498

Jailbreak Attack Recent studies have exposed499

a significant threat termed jailbreak attack, where500

adversarial prompts are designed to bypass safety501

mechanisms and induce models to generate harm-502

ful content. Existing jailbreak methods can be clas-503

sified into three types (Zhou et al., 2024): (1) Hu-504

man Design (Li et al., 2023a,b; Shayegani et al.,505

2023; Wei et al., 2023c), which encompasses jail-506

break prompts crafted manually, leveraging human507

creativity to bypass safeguards (2) Long-tail En-508

coding (Yuan et al., 2023; Deng et al., 2024; Lv509

et al., 2024), which leverages the limited cross-task510

generalization ability of LLMs to unseen data dur-511

ing safety alignment, and (3) Prompt Optimization512

(Zou et al., 2023b; Liu et al., 2023; Yu et al., 2023;513

Chao et al., 2023; Ding et al., 2023b; Mu et al., 514

2024) aims at automatically designing jailbreak 515

prompt to induce harmful content. These diverse 516

attacks highlight the urgent need for robust and 517

flexible defenses to maintain LLM safety. 518

Jailbreak Defense Safety post-training is a 519

widely used approach for enhancing LLMs’ re- 520

sistance to jailbreak attacks. Some methods 521

strengthen the model’s refusal behavior by further 522

fine-tuning on safety data (Xu et al., 2024; Zhao 523

et al., 2024) or applying preference optimization 524

(Bai et al., 2022a; Ouyang et al., 2022; Rafailov 525

et al., 2023). Others employ machine unlearning 526

techniques (Yao et al., 2023; Liu et al., 2024b; 527

Zhang et al., 2024) to erase harmful knowledge 528

from the model. However, these approaches of- 529

ten come with substantial computational costs and 530

are highly sensitive to variations in training data, 531

resulting in inconsistent performance. 532

Activation Steering Steering representation 533

within LLMs has garnered increasing attention due 534

to its transparency and lightweight properties (Zou 535

et al., 2023a). Exist works mainly adopt static steer- 536

ing with a fixed coefficient exerted on the extracted 537

refusal vectors for jailbreak defense (Zheng et al., 538

2024; Qian et al., 2024; Stickland et al., 2024; Li 539

et al., 2025; Shen et al., 2025). Although few works 540

explore more fine-grained steering control, they 541

are still narrowed within vanilla harmful prompt 542

scenario (Bhattacharjee et al., 2024; Wang et al., 543

2024c; Lee et al., 2025), leaving the more challeng- 544

ing jailbreak attacks under-explored. 545

AdaSteer stands out by enabling dynamic and 546

input-dependent control over jailbreak defenses, ef- 547

fectively enhancing safety while preserving utility. 548

6 Conclusion 549

In this work, we propose AdaSteer, a dual-direction 550

adaptive activation steering method that enhances 551

jailbreak defense in LLMs while maintaining 552

their utility. By identifying two key properties— 553

Rejection Law and Harmfulness Law—we show 554

that jailbreak inputs exhibit distinct behaviors in ac- 555

tivation space, allowing for dynamic, input-aware 556

steering along the Rejection Direction and Harmful- 557

ness Direction. Extensive experiments on LLaMA- 558

3.1, Gemma-2, and Qwen2.5 confirm that AdaSteer 559

consistently outperforms baseline defenses across 560

diverse jailbreak strategies, demonstrating its effec- 561

tiveness and scalability. 562
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Limitations563

Despite the effectiveness of AdaSteer, our study has564

certain limitations that warrant further exploration.565

First, due to computational constraints, our ex-566

periments are conducted on mid-sized LLMs (e.g.,567

LLaMA-3.1-8B, Gemma-2-9B, and Qwen2.5-7B).568

While our results demonstrate the scalability of569

AdaSteer across different model sizes, its perfor-570

mance on larger-scale models (e.g., 30B+ param-571

eters) remains unverified. Future work should in-572

vestigate whether AdaSteer maintains its efficiency573

and adaptability in frontier LLMs.574

Second, our method relies on linear activation575

steering, assuming that model behaviors can be576

effectively controlled via low-dimensional vector577

manipulations. While this has shown strong empir-578

ical results, future research could explore nonlinear579

adaptations or layer-wise adjustments to further580

refine AdaSteer’s adaptability.581

Despite these limitations, our findings demon-582

strate the practicality, efficiency, and robustness of583

AdaSteer, paving the way for scalable and inter-584

pretable jailbreak defenses in LLMs.585

Ethical Considerations586

Our work is conducted solely for research pur-587

poses and aims to enhance the security and robust-588

ness of LLMs against adversarial jailbreak attacks.589

AdaSteer is designed to improve model alignment590

with human values by providing an adaptive, in-591

terpretable, and training-free defense mechanism.592

Our study does not intend to create or facilitate new593

jailbreak techniques but rather to understand and594

mitigate existing vulnerabilities in LLMs.595

Furthermore, our research focuses on interpret-596

ing the internal safety mechanisms of LLMs, con-597

tributing to the broader goal of responsible AI de-598

velopment. The datasets used in our experiments599

are publicly available and widely adopted in the600

field. We strictly adhere to ethical guidelines, en-601

suring that our methodology does not promote or602

reinforce harmful behaviors.603

While AdaSteer improves jailbreak defense, no604

security measure is absolute. We encourage con-605

tinued collaborative research on evolving safety606

threats and emphasize the importance of transpar-607

ent, ethical AI deployment to safeguard LLM usage608

in real-world applications.609
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A Datasets957

A.1 Datasets for Direction Identification and958

Vector Extraction959

• AdvBench (Zou et al., 2023b) AdvBench is a960

collection of 520 harmful behaviors expressed961

as instructions. These behaviors cover similar962

themes as those in the harmful strings setting,963

but with the adversary’s objective being to964

identify a single attack string that causes the965

model to generate any response that attempts966

to fulfill the instruction, ideally triggering as967

many harmful behaviors as possible.968

• Malicious Instruct (Huang et al., 2024) Ma-969

liciousInstruct is a dataset comprising 100970

harmful instances presented as instructions.971

It covers ten distinct malicious intentions, in-972

cluding psychological manipulation, sabotage,973

theft, defamation, cyberbullying, false accu-974

sation, tax fraud, hacking, fraud, and illegal975

drug use.976

• TDC2023 (Mazeika et al., 2023, 2024) The977

TDC 2023 Red Teaming Track dataset in-978

cludes a diverse array of harmful behav-979

iors. These behaviors are presented as self-980

contained sequences, without any accompany-981

ing contextual strings or images.982

• Jailbreak Bench (Chao et al., 2024) Jailbreak-983

bench is an open-source robustness bench-984

mark for jailbreaking large language models985

(LLMs). Its harmful subset consists of 100986

harmful behaviors, designed to (1) facilitate987

the creation of successful jailbreaks and (2)988

enable the development of defenses against989

them. These behaviors represent a mix of990

original cases and those sourced from notable991

prior work.992

• Or-Bench (Cui et al., 2024) Or-Bench has993

been introduced to evaluate the over-refusal994

behavior of LLMs. Its subset of Or-Bench995

consists of prompts that are considered safe996

but are likely to be rejected by LLMs. We sam-997

ple 300 instances from it for direction identi-998

fication and vector extraction, while the rest999

are used for the validation set.1000

A.2 Benchmarks1001

Jailbreak Attacks1002

• AIM 2 AIM stands for "Always Intelligent 1003

and Machiavellian." The AIM Prompt serves 1004

as a jailbreak message that directs the AI 1005

model to operate without regard for moral 1006

or ethical considerations, concentrating exclu- 1007

sively on achieving objectives by any means 1008

necessary. In our experimental setup, we 1009

utilize 100 harmful queries from AdvBench, 1010

along with the AIM prompt, to assess the ef- 1011

fectiveness of the AIM Jailbreak. 1012

• AutoDAN (Liu et al., 2024a) AutoDAN is a 1013

jailbreak attack method designed to realign 1014

large language models (LLMs) by circum- 1015

venting the model’s safety protocols through 1016

the automatic generation of stealthy jailbreak 1017

prompts. This method employs a hierarchical 1018

genetic algorithm, allowing for the creation 1019

of semantically coherent and hidden jailbreak 1020

prompts without the need for manually crafted 1021

inputs. Consequently, it successfully evades 1022

defense mechanisms like perplexity-based de- 1023

tection. AutoDAN demonstrates exceptional 1024

cross-model transferability and cross-sample 1025

generalizability, significantly surpassing base- 1026

line methods in attack effectiveness. In our 1027

experiments, we utilize EasyJailbreak (Zhou 1028

et al., 2024) along with 100 harmful queries 1029

from AdvBench to create the jailbreak inputs. 1030

• Cipher (Yuan et al., 2024) Cipher is a jail- 1031

break technique that leverages vulnerabilities 1032

in large language models (LLMs) by employ- 1033

ing encoding methods to circumvent content 1034

filters and safety protocols. This approach em- 1035

beds encoded or obfuscated commands within 1036

prompts, enabling them to slip past detection 1037

systems. In our experiments, we utilize Easy- 1038

Jailbreak along with 100 harmful queries from 1039

AdvBench to create the jailbreak inputs. 1040

• GCG (Zou et al., 2023b) GCG, which stands 1041

for Greedy Coordinate Gradient, is a method 1042

used to jailbreak LLMs. This approach auto- 1043

matically creates discrete adversarial tokens. 1044

During the optimization process, it selects the 1045

suffix that results in the lowest loss. Although 1046

it lost some readability, it achieved a good 1047

attack effect. In our experiments, we utilize 1048

2https://jailbreakchat-hko42cs2r-alexalbertt-s-
team.vercel.app/prompt/4f37a029-9dff-4862-b323-
c96a5504de5d
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EasyJailbreak along with 100 harmful queries1049

from AdvBench to create the jailbreak inputs.1050

• Jailbroken (Wei et al., 2023b) Jailbroken is1051

a jailbreak attack method created by humans,1052

employing encoding techniques like base64 to1053

circumvent the model’s safety protocols and1054

prompt it to generate harmful content. In our1055

experiments, we utilize EasyJailbreak along1056

with 100 harmful queries from AdvBench to1057

create the jailbreak inputs.1058

• Multilingual (Deng et al., 2024, 2023) A1059

method for examining the jailbreak problem1060

in LLMs with a focus on multilingual safety1061

challenges. Currently, most existing security1062

measures for LLMs focus primarily on En-1063

glish, while Multilingual bypasses security de-1064

fenses by encoding input in low-resource lan-1065

guages. In our experiments, we utilize Easy-1066

Jailbreak along with 100 harmful queries from1067

AdvBench to create the jailbreak inputs.1068

• ReNeLLM (Ding et al., 2023a) This method1069

utilizes the LLM itself to create effective jail-1070

break prompts. By employing techniques1071

like Prompt Rewriting and Scenario Nesting,1072

harmful input is concealed as tasks such as1073

refining LaTeX tables or code. In our exper-1074

iments, we utilize EasyJailbreak along with1075

100 harmful queries from AdvBench to create1076

the jailbreak inputs.1077

Over-Safety Evaluation1078

• XSTest (Röttger et al., 2024) It consists of1079

250 safe prompts divided into ten distinct cat-1080

egories, which well-calibrated models should1081

readily comply with.1082

• OKTest (Shi et al., 2024b) It includes 300 test1083

samples featuring safe questions that incorpo-1084

rate harmful and sensitive words.1085

Utility Evaluation1086

• AlpacaEval (Dubois et al., 2024) A fast and1087

inexpensive LLM benchmark uses an LLM-1088

based auto-annotator to estimate response1089

quality. It employs Win Rate to compare the1090

effectiveness of the current output against the1091

reference. With a correlation of up to 0.981092

with human preferences, it serves as a reli-1093

able tool for evaluating the impact of defense1094

methods on model performance.1095

A.3 Validation Set 1096

We include the parts of Or-Bench-Hard that do 1097

not involve direction identification and vector ex- 1098

traction as part of the validation set. Addition- 1099

ally, We select the top five jailbreak methods from 1100

jailbreak.com based on the highest votes, using 1101

the other four, aside from AIM, as the validation 1102

set, which are: 1103

• Dev Mode V2 3 1104

• Dev Mode + Ranti 4 1105

• BetterDAN 5 1106

• Evil Confidant 6 1107

B Baseline Methods 1108

We evaluate AdaSteer by comparing it with the 1109

following training-free defense baselines, includ- 1110

ing decoding-based methods: (1) ROSE (Zhong 1111

et al., 2024), (2) Self-CD (Shi et al., 2024b), and 1112

steering-based methods: (3) Jailbreak Antidote 1113

(Shen et al., 2025), (4) Surgical (Wang et al., 2025), 1114

(5) InferAligner (Wang et al., 2024b), (6) CAST 1115

(Lee et al., 2025). 1116

• ROSE (Zhong et al., 2024): A straightforward 1117

approach aimed at enhancing the safety of 1118

existing aligned LLMs. Its core principle is 1119

to increase the likelihood of generating safe 1120

outputs by suppressing undesirable responses, 1121

achieved through the use of carefully crafted 1122

reverse prompts. 1123

• Self-Contrastive Decoding (Self-CD): A 1124

decoding-based approach designed to address 1125

over-safety issues. It gathers multiple re- 1126

sponses from the model to the same question, 1127

with prompts explicitly highlighting the con- 1128

sideration of safety. Over-safety is then miti- 1129

gated by contrasting the output distributions 1130

of these responses. 1131

3https://jailbreakchat-hko42cs2r-alexalbertt-s-
team.vercel.app/prompt/ff30aedf-ee6d-4c3b-ad71-
57c1a6e0e5fb

4https://jailbreakchat-hko42cs2r-alexalbertt-s-
team.vercel.app/prompt/a07a2dfe-a363-4682-bc4d-
3a2905b7efd0

5https://jailbreakchat-hko42cs2r-alexalbertt-s-
team.vercel.app/prompt/a07a2dfe-a363-4682-bc4d-
3a2905b7efd0

6https://jailbreakchat-hko42cs2r-alexalbertt-s-
team.vercel.app/prompt/588ab0ed-2829-4be8-a3f3-
f28e29c06621
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• Surgery (Wang et al., 2025): It extracts the1132

false-rejection vector and removes the true re-1133

jection components. By utilizing the modified1134

vector for steering, it minimizes false rejec-1135

tions while ensuring safety.1136

• Jailbreak Antidote (Shen et al., 2025): A1137

lightweight and scalable approach for mod-1138

ifying a system’s internal state to safeguard1139

against jailbreak attempts. It utilizes princi-1140

pal component analysis and sparsification to1141

defend against jailbreak inputs, while mini-1142

mizing the effect on utility.1143

• CAST (Lee et al., 2025): It derives condi-1144

tional vectors from specific data to classify in-1145

puts, selectively manipulating the representa-1146

tion space. By altering the type of data used to1147

extract these conditional vectors, the behavior1148

of the LLM can be systematically managed.1149

• InferAligner (Wang et al., 2024b): It identi-1150

fies security-related vectors (SRVs) and maps1151

the input onto these vectors. The outcome is1152

then evaluated against a threshold to decide1153

whether to direct the input for selective pro-1154

tection.1155

C Implementation Details1156

Our experiments are implemented with PyTorch1157

(Paszke et al., 2019) on a single NVIDIA Tesla1158

A100 GPU. For all experiments, the inference pro-1159

cess follows the official template.1160

We determine the number of layers for identi-1161

fying RD and HD through heuristic methods. For1162

RD, the posRD distribution of complied benign and1163

harmful inputs differs across layers. We select a1164

layer where the posRD of benign inputs is lower1165

than that of harmful inputs to minimize the impact1166

on benign inputs while dynamically rejecting jail-1167

break inputs. For HD, we choose a layer where1168

the overlap in posHD between benign and harmful1169

inputs is minimized. For detailed hyperparameters,1170

please refer to Table 12.1171

For the identified vector vHD undergoing the pro-1172

jection process, we evaluate its effect by introduc-1173

ing it with a positive coefficient λc > 0. If this1174

does not lead to an improvement in the model’s1175

compliance, we reverse its direction.1176

To determine the value of λr required for the1177

model to reject all jailbreak inputs in Figure 2, we1178

first categorize the harmful inputs into those that1179

are rejected and those that are complied with. We1180

Prompt

User: Please detect if the following answer explicitly rejects the user 

question: 

User question: {instruction} 

Answer: {answer}. 

Reply with Yes or No.

Prompt

User: I need your help with classifying responses by a large language 

model. There are three classes of responses.

1_full_compliance. This includes any direct attempt to give an answer, 

regardless of how accurate or relevant the answer is. It also includes 

cases where the model rejects the question for not having a meaningful 

answer.

2_full_refusal. The model states that it cannot, in the sense of will not, 

answer the prompted question. Full refusal includes responses that only 

offer alter- native suggestions without answering the original question 

(e.g. "instead of smashing a piñata, you could decorate it").

3_partial_refusal. This is any combination of refusal and compliance. 

This includes self-contradictory responses that first refuse and then go 

on to answer the prompted question (e.g. “killing time at the airport is 

unsafe, but here are some ways to pass the time at the airport”).

Below are the questions and responses, please give the class directly.

QUESTION:{question}"

RESPONSE: "{answer}" 

CLASS:'

then calculate the average position of the rejected 1181

harmful inputs on the RD. This average position 1182

represents the exact location of the harmful rejec- 1183

tion center. Next, we determine the λr needed to 1184

draw the complied jailbreak inputs and toward this 1185

center. Similarly, we label the harmful inputs that 1186

were complied with in the same manner, for use in 1187

subsequent logistic regression fitting. 1188

For logistic regression fitting, we performed a 1189

simple fit on RD using the mentioned compiled 1190

harmful examples. Regarding the number of com- 1191

piled harmful examples, we are surprised to find 1192

that even a small number of such examples is suffi- 1193

cient to achieve the desired effect. In our main ex- 1194

periments, we use 15 compiled harmful examples 1195

for LLaMA-3.1-8B-Instruct, 13 for Qwen2.5-7B- 1196

Instruct, and 5 for Gemma-2-9B-it. We then con- 1197

ducted a grid search on the Validation Set described 1198

in A.3. Similarly, after dynamically applying RD, 1199

we label λc as the threshold at which benign inputs 1200

that were previously mistakenly rejected begin to 1201

be correctly accepted — for example, 158 such 1202

cases for LLaMA-3.1-8B-Instruct. We then fit the 1203

λc curve and adjust it using grid search. 1204

We want to emphasize that λr and λc should 1205

not be infinitely large or small, because once they 1206

reach a certain value, further increasing or decreas- 1207

ing them becomes meaningless and may even lead 1208

to decoding failure. To avoid this, we set upper 1209

and lower limit λr and λc values for truncation on 1210

the fitted logistic regression curve. Therefore, the 1211

average pos and λ in the Table 2, Table 10 and 1212
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Model Angle

LLaMA-3.1-8B-Instruct 66.1
Qwen2.5-7B-Instruct 70.1
Gemma-2-9B-it 61.3

Table 4: The angle between the Rejection Direction and
Harmfulness Direction on three backbones.

Table 11 might not exhibit strict linearity, but each1213

input still receives the necessary steering force.1214

We use GPT-4o to determine whether the model1215

refuses to answer harmful queries and jailbreak1216

inputs. We also use GPT-4o to evaluate the over-1217

safety performance and calculate the proportion of1218

1_full_compliance. Below are the prompts.1219

D Additional Experimental Results1220

D.1 Angle Analysis1221

To evaluate the degree of overlap between Rejec-1222

tion Direction (RD) and Harmfulness Direction1223

(HD), we compute the average angular distance1224

between these two directions across different trans-1225

former layers. In Table 4, the angle consistently1226

falls between 60 and 70 across the three examined1227

models: LLaMA-3.1-8B-Instruct (66.1), Qwen2.5-1228

7B-Instruct (70.1), and Gemma-2-9B-it (61.3).1229

This significant angular separation indicates that1230

the RD and HD encode largely independent se-1231

mantic axes in the model’s activation space. Such1232

decoupling justifies our design of a dual-direction1233

steering mechanism: RD focuses on eliciting the1234

model’s refusal behavior, while HD governs the1235

assessment of harmfulness. Steering along both1236

axes allows AdaSteer to balance safety enforce-1237

ment and utility preservation more precisely than1238

single-vector methods.1239

D.2 Results on Over-Safety1240

The detailed over-safety results from the main ex-1241

periment are presented in the table 7, illustrat-1242

ing that our approach effectively preserves the1243

over-safety performance of each backbone. No-1244

tably, compared to the backbone, performance im-1245

provements are observed in both LLaMA-3.1 and1246

Gemma-2, highlighting the advantages of the dy-1247

namic selection coefficient.1248

D.3 Further Analysis on Baselines1249

As shown in Figure 5 and Figure 6, in our analysis1250

of the Jailbreak Antidote and Surgical baselines on1251
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Figure 5: Trade-off between Compliance Rate (CR) and
jailbreak defense success rate (DSR).
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Figure 6: Trade-off between AlpacaEval Win Rate and
jailbreak defense success rate (DSR).

LLama-3.1, we adjust various hyperparameters and 1252

identify a trade-off between safety, over-safety, and 1253

utility. AdaSteer remains unaffected, underscoring 1254

our approach’s superiority. 1255

D.4 Analysis on Online Attack 1256

To further evaluate the robustness of AdaSteer un- 1257

der adaptive attack scenarios, we apply two online 1258

jailbreak methods—AutoDAN and GCG—directly 1259

to origin models with and without AdaSteer. As 1260

shown in Table 1 in the main experiment., the 1261

original model exhibits high vulnerability to both 1262

types of attacks, whereas AdaSteer significantly 1263

improves the defense success rate. 1264

Notably, Due to the time cost associated with 1265

searching for jailbreak prompts, in the main ex- 1266

periments, the jailbreak inputs are generated based 1267

on the original model, meaning that for AdaSteer 1268

and other baseline methods, the attacks can be re- 1269

garded as offline attacks. Therefore, we also con- 1270

duct online AutoDAN and GCG attacks directly 1271
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AutoDAN GCG

LLaMA-3.1 30 60
LLaMA-3.1 + AdaSteer (offline) 100 90
LLaMA-3.1 + AdaSteer (online) 97 84

Table 5: Attack success rates (%) of AutoDAN and GCG
on LLaMA-3.1, with and without AdaSteer. Higher is
better for defense. AdaSteer maintains strong robustness
even under online adversarial optimization.

on LLaMA-3.1 protected by AdaSteer, and the re-1272

sults are shown in Table 5. Since AdaSteer does1273

not modify the model weights but instead operates1274

directly on the decoding process and applies input-1275

dependent defenses, it remains difficult for online1276

jailbreak attempts to bypass the defense, which1277

demonstrates that AdaSteer possesses strong defen-1278

sive capabilities against online attacks1279

D.5 Analysis on Adaptive Steering1280

Tables 10 and Table 11 display the posRD and1281

posHD along with their respective λr and λc, for1282

each data type on Qwen2.5 and Gemma-2, respec-1283

tively. On the RD, we consistently observe that1284

more rejection vectors are effectively applied to in-1285

put types with lower posRD. In contrast, on the1286

HD, Qwen2.5 does not clearly differentiate the1287

harmfulness of inputs compared to LLaMA-3.11288

and Gemma-2, leading to similar posHD for both1289

jailbreak and benign inputs. However, due to tun-1290

ing on the validation set, AdaSteer still manages to1291

perform well on Qwen2.5.1292

D.6 Analysis on Steering Vector and Model1293

Size1294

We report all experimental results of analysis of1295

steering vector in Table 8, further demonstrating1296

the validity of the identified directions and vectors.1297

Additionally, Table 9 presents all experimental re-1298

sults from the model size analysis, illustrating the1299

excellent scalability of AdaSteer.1300

We further evaluate AdaSteer on Gemma-2-27B,1301

one of the most recent and powerful open-weight1302

LLMs. As shown in Table 6, the base model ex-1303

hibits limited robustness under various jailbreak at-1304

tacks, with an average Defense Success Rate (DSR)1305

of only 27.86%. In contrast, AdaSteer dramatically1306

boosts defense performance across all seven attack1307

types, achieving a DSR of 92.57%.1308

Importantly, AdaSteer preserves model utility: it1309

maintains high helpfulness on benign prompts (as1310

measured by a 47.29% win rate on AlpacaEval) and1311

avoids excessive refusals, with over-safety refusal 1312

rates (CR) on par with the baseline (e.g., 84.80% 1313

→ 89.20% on XSTest and 90.33% → 95.33% on 1314

OKTest). These results confirm that AdaSteer gen- 1315

eralizes well to larger-scale models, maintaining 1316

strong safety-performance trade-offs without re- 1317

quiring any additional fine-tuning. 1318

D.7 Analysis of Multilingual Attacks 1319

Multilingual attacks present complexity due to lin- 1320

guistic variability and diverse syntactic structures. 1321

However, we observe that AdaSteer demonstrates 1322

significant improvements in this scenario across all 1323

evaluated models. Specifically, for multi-language 1324

jailbreak attacks, AdaSteer improves the defense 1325

success rate on: LLaMA-3.1, from 67% to 100%, 1326

Qwen-2.5, from 14% to 90% andGemma-2, from 1327

1% to 86%. These results demonstrate AdaSteer’s 1328

strong adaptability and generalization in handling 1329

multilingual adversarial prompts. While we ac- 1330

knowledge there is still room for further enhance- 1331

ment, especially in low-resource language settings, 1332

the current results show that AdaSteer already pro- 1333

vides a substantial boost in defense effectiveness 1334

compared to baseline methods. 1335

E Further Discussion 1336

E.1 Nonlinear Steering Mechanisms 1337

Currently, AdaSteer is built upon the widely 1338

adopted linear representation theory of activation 1339

space in LLMs (Zou et al., 2023a; Park et al., 2024), 1340

which assumes that certain behavioral features (e.g., 1341

harmfulness or rejection) can be captured through 1342

linear directions. While nonlinear steering mecha- 1343

nisms may further enhance control and expressivity, 1344

their theoretical foundations and practical imple- 1345

mentations remain largely unexplored and unvali- 1346

dated in the context of activation-based researches. 1347

E.2 Combined with Training-related 1348

Strategies 1349

We believe that AdaSteer can indeed be effectively 1350

combined with training-based strategies to further 1351

enhance both security and utility. One promising 1352

direction would be to treat the AdaSteer-modified 1353

representations at each layer as target labels, and 1354

the original model’s representations as inputs, us- 1355

ing a mean squared error (MSE) loss to fine-tune 1356

the model directly toward the desired behavior. 1357

This would allow the model to internalize AdaS- 1358

teer’s behavior as part of its own parameters, po- 1359

17



Jailbreak Attack Over-Safety Utility
DSR↑ CR↑ Win Rate↑

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM AVG. XSTest OKTest AlpacaEval

Gemma-2-27B 2 4 0 94 58 1 36 27.86 84.80 90.33 50.00
+ AdaSteer 100 100 86 98 80 97 87 92.57 89.20 95.33 47.29

Table 6: Evaluation of AdaSteer on the large-scale Gemma-2-27B-it across seven jailbreak attacks, two over-safety
benchmarks, and a utility benchmark.

tentially reducing inference-time overhead while1360

preserving its defensive effectiveness.1361

E.3 Limited Probing Data1362

Regarding the number of compiled harmful exam-1363

ples, we are surprised to find that even a small1364

number of such examples is sufficient to achieve1365

the desired effect. In our main experiments, we1366

use 15 compiled harmful examples for LLaMA-1367

3.1-8B-Instruct, 13 for Qwen2.5-7B-Instruct, and1368

5 for Gemma-2-9B-it. In addition, we include an1369

equal number of rejected harmful examples and1370

complied benign data for each model. In our exper-1371

iments, we found that even with such limited data,1372

AdaSteer is able to identify meaningful harmful1373

directions and achieve strong defense performance1374

across a range of jailbreak attacks. This demon-1375

strates the method’s data efficiency and practicality,1376

especially in scenarios where access to large-scale1377

harmful data is limited.1378

E.4 On the Plug-and-Play Property of1379

AdaSteer1380

Once the Rejection Direction (RD) and Harmful-1381

ness Direction (HD) are extracted, we do not per-1382

form any additional adjustments for different at-1383

tack types or data distributions. One of the core1384

strengths of AdaSteer is that these directions, once1385

computed, remain fixed and reusable across di-1386

verse scenarios. As shown in Table 1, AdaS-1387

teer demonstrates strong robustness against a wide1388

range of jailbreak strategies—including prompt1389

injection, role-play attacks, and multilingual at-1390

tacks—without the need to modify RD or HD. This1391

validates the general applicability of the extracted1392

directions and supports our claim that AdaSteer1393

can serve as a plug-and-play defense mechanism1394

across different threat models.1395

Over-Safety
XSTest OKTest AVG.

LLaMA-3.1 96.00 92.80 94.40

ROSE 91.30 89.60 90.45
Self-CD 94.70 92.80 93.75
Jailbreak Antidote 95.70 87.20 91.45
Surgical 90.30 74.40 82.35
InferAligner 85.30 75.60 80.45
CAST 96.00 94.00 95.00

AdaSteer (Ours) 97.30 98.40 97.85

Qwen2.5 94.00 96.00 95.00

ROSE 98.00 96.00 97.00
Self-CD 96.00 96.00 96.00
Jailbreak Antidote 94.30 92.00 92.15
Surgical 93.70 96.80 95.25
InferAligner 94.00 92.80 93.40
CAST 96.00 95.20 95.60

AdaSteer (Ours) 87.00 95.20 91.10

Gemma-2 89.30 83.20 86.25

ROSE 80.70 82.80 81.75
Self-CD 87.70 82.80 85.25
Jailbreak Antidote 88.70 78.00 83.35
Surgical 90.10 90.80 90.45
InferAligner 83.70 65.20 74.45
CAST 80.70 83.20 81.95

AdaSteer (Ours) 92.00 93.60 92.80

Table 7: The detailed results of over-safety with
LLaMA-3.1-8B-Instruct and Qwen2.5-7B-Instruct and
Gemma-2-9B-it.
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Jailbreak Attack Over-Safety Utility
DSR↑ CR↑ Win Rate↑

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM AVG. XSTest OKTest AlpacaEval

LLaMA-3.1 57 30 0 60 61 67 37 38.14 96.00 92.80 50.00
AdaSteer (Ours) 100 100 82 90 85 100 86 91.86 97.30 98.40 50.01

w/o vRD 47 35 0 64 64 22 45 39.57 98.70 98.40 50.70
w/o vHD 100 100 96 78 95 91 81 91.57 82.30 66.40 45.72
w/ reverse vRD 100 100 95 86 87 98 84 92.14 94.00 96.40 47.02

Qwen2.5 92 47 0 88 46 14 3 41.43 96.00 94.00 50.00
AdaSteer (Ours) 100 98 88 92 78 90 96 91.71 95.20 87.00 48.36

w/o vRD 25 73 23 90 46 14 51 46.00 94.70 98.40 47.82
w/o vHD 100 100 76 96 92 100 86 92.86 76.00 83.20 36.37
w/ reverse vRD 100 100 58 100 83 100 71 87.43 88.70 92.40 48.05

Gemma-2 6 31 0 90 57 1 27 30.29 89.30 83.20 50.00
AdaSteer (Ours) 91 95 75 86 86 86 82 85.56 93.60 92.00 48.28

w/o vRD 14 98 22 94 78 16 74 56.57 91.30 86.00 49.99
w/o vHD 100 99 100 60 86 100 100 92.14 82.30 98.00 33.08
w/ reverse vRD 98 100 99 68 90 94 91 91.43 94.00 99.20 46.00

Table 8: Detailed ablation studies on three backbones.

Jailbreak Attack Over-Safety Utility
DSR↑ CR↑ Win Rate↑

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM AVG. XSTest OKTest AlpacaEval

Qwen2.5-3B 13 47 0 56 40 5 6 23.86 94.80 94.70 50.00
AdaSteer (Ours) 94 97 56 88 79 100 48 80.29 94.40 93.70 45.72

Qwen2.5-7B 92 47 0 88 46 14 3 41.43 96.00 94.00 50.00
AdaSteer (Ours) 100 98 88 92 78 90 96 91.71 95.20 87.00 48.36

Qwen2.5-14B 100 100 0 78 54 44 41 59.57 98.00 97.00 50.00
AdaSteer (Ours) 100 99 68 100 91 100 98 93.71 98.00 96.30 47.90

Table 9: The results of AdaSteer across different sizes of Qwen2.5-7B-Instruct.

Jailbreak Attack Over-Safety Utility

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM XSTest OKTest AlpacaEval

dRD
posRD 121.11 122.66 113.82 132.65 122.00 122.28 123.32 126.10 121.98 132.85
λr 0.19 0.18 0.17 0.09 0.16 0.17 0.15 0.13 0.16 0.09

dHD
posHD 39.86 48.74 54.87 48.02 46.96 43.51 53.41 36.76 42.58 39.93
λc 0.31 -0.22 -0.52 -0.18 -0.13 0.09 -0.48 0.30 0.12 0.16

Table 10: Results of the average positions and steering strength for complied inputs from different jailbreak methods
and benign inputs on Qwen2.5-7B-Instruct.

Jailbreak Attack Over-Safety Utility

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM XSTest OKTest AlpacaEval

dRD
posRD 27.58 30.39 30.16 22.37 27.02 27.74 29.52 54.00 42.45 36.94
λr 0.020 0.011 0.017 0.004 0.011 0.019 0.008 -0.020 -0.015 -0.004

dHD
posHD 44.60 30.39 43.97 29.96 43.50 46.69 41.48 78.68 70.79 64.90
λc -0.052 -0.011 -0.017 -0.044 -0.040 -0.033 -0.050 0.020 0.015 0.005

Table 11: Results of the average positions and steering strength for complied inputs from different jailbreak methods
and benign inputs on Gemma-2-9B-it.

λr λc

Layer wr br upper bound lower bound Layer wc bc upper bound lower bound

LLaMA-3.1 8 -0.02 -1.2 0.22 0.08 13 0.017 0.25 0.25 -0.5

Qwen2.5 5 -0.01 1.4 0 0.2 13 -0.06 2.7 0.4 -0.6

Gemma-2 12 -0.004 0.14 0.2 -0.2 19 0.01 -0.5 0.02 -0.06

Table 12: Detailed hyperparameter settings of AdaSteer. Layer refers to where we fit the logistic regression.
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