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Abstract

Despite the remarkable capabilities of large001
language models (LLMs) in various reason-002
ing tasks, they still struggle with table rea-003
soning tasks, particularly in maintaining con-004
sistency throughout multi-step reasoning pro-005
cesses. While existing approaches have ex-006
plored various decomposition strategies, they007
often lack effective mechanisms to identify and008
correct errors in intermediate reasoning steps,009
leading to cascading error propagation. To ad-010
dress these issues, we propose Table-Critic, a011
novel multi-agent framework that facilitates012
collaborative criticism and iterative refinement013
of the reasoning process until convergence to014
correct solutions. Our framework consists of015
four specialized agents: a Judge for error identi-016
fication, a Critic for comprehensive critiques, a017
Refiner for process improvement, and a Curator018
for pattern distillation. To effectively deal with019
diverse and unpredictable error types, we intro-020
duce a self-evolving template tree that systemat-021
ically accumulates critique knowledge through022
experience-driven learning and guides future023
reflections. Extensive experiments have demon-024
strated that Table-Critic achieves substantial025
improvements over existing methods, achiev-026
ing superior accuracy and error correction rates027
while maintaining computational efficiency and028
lower solution degradation rate.029

1 Introduction030

Despite significant advances in various reasoning031

tasks (Plaat et al., 2024; Yu et al., 2024; Chen et al.,032

2024a,b; Guo et al., 2025), large language models033

(LLMs) (Yang et al., 2024a; Dubey et al., 2024;034

Anthropic, 2024; Mesnard et al., 2024; Hurst et al.,035

2024) face substantial challenges in handling semi-036

structured data, such as table reasoning tasks, as037

they require both understanding of tabular struc-038

tures and precise localization of relevant entries in039

redundant and noisy information (Zhao et al., 2024;040

Chen et al., 2024c; Zhang et al., 2025).041

Existing approaches address these challenges 042

through various decomposition strategies. For ex- 043

ample, Binder (Cheng et al., 2022) decomposes 044

complex questions into executable sub-programs 045

(i.e., SQL or Python), while approaches such as 046

Dater (Ye et al., 2023) and Chain-of-Table (Wang 047

et al., 2024) focus on dynamic table decomposi- 048

tion for context-aware reasoning. Although these 049

decomposition-based methods have demonstrated 050

promising performance, they suffer from a critical 051

limitation: the lack of effective mechanisms to crit- 052

icize and refine the intermediate reasoning steps. 053

This deficiency inevitably leads to error propaga- 054

tion throughout the reasoning process, significantly 055

affecting the accuracy of final predictions. 056

However, recent studies (Madaan et al., 2023; 057

Yang et al., 2024b) have revealed that while LLMs 058

possess self-reflection capabilities to some extent, 059

their self-reflection often lacks reliability and con- 060

sistency. Simply forcing LLMs to engage in self- 061

reflection may introduce additional biases, espe- 062

cially in table reasoning tasks, wherein models tend 063

to either rationalize their previous erroneous reason- 064

ing or over-criticize correct steps, rather than iden- 065

tifying genuine errors (Zheng et al., 2024; Chen 066

et al., 2025). 067

To address these issues, we propose Table-Critic, 068

a multi-agent framework that introduces special- 069

ized agents to collaboratively criticize and refine 070

the reasoning process in a step-by-step manner. 071

Specifically, our Table-Critic simulates human-like 072

reflective behaviors through four targeted agents: a 073

Judge that identifies potential errors, a Critic that 074

provides detailed suggestions, a Refiner that re- 075

fines the entire reasoning process, and a Curator 076

that distills critique patterns to guide future reflec- 077

tion. The collaborative strategy among multiple 078

agents is motivated by our two insights: (1) LLMs 079

demonstrate proficiency in identifying and re- 080

fining the first erroneous steps, yet tend to make 081

other mistakes in subsequent steps, particularly 082
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ID Name FA 
Cup

FL 
Trophy

1 Mark Phillips 1 0
2 Liam Dickinson 1 1
3 Blair Sturrock 0 1

[Question]: Which player has 
one FA Cup and one FL Trophy? 

[Reasoning Steps]: 
Step 1: Select relevant rows. We need to look for ... So we select ‘Row 3’.
Step 2: Filter out useless columns ... So we select column ‘Name’, ‘FA Cup’ and ‘FL Trophy’.
Step 3: We obtain the sub table:

Col     :       Name         |  FA Cup  | FL Trophy
Row 3 : Blair Sturrock |      0       |       1
The player who has one FA Cup and one FL Trophy is Blair Sturrock.

[Predicted Answer]: Blair Sturrock

[Table]: 

Step 1 incorrectly selects Row 3 
because its 'FA Cup' column has 
a value of 0. Instead, Row 2, 
with 1 FA Cup and 1 FL Trophy, 
is the correct choice.

Critic
[Reasoning Steps]:
Step 1: Select relevant rows. Based on the critique, ... So we select ‘Row 2’.
...
[Predicted Answer]: Liam Dickinson

Refiner

Thought: Blair Sturrock has 0 FA Cups and 1 FL Trophy, 
not both 1 FA Cup and 1 FL Trophy. 
Reasoning Status: Incorrect !
Router: ROOT -> Sub-table Error -> Row Error 

Judge
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Figure 1: An illustration of Table-Critic, a multi-agent framework for table reasoning tasks, where the Judge
identifies errors, the Critic provides detailed critique, the Refiner corrects the reasoning process, and the Curator
updates a self-evolving template tree to accumulate critique knowledge and improve future performance.

when dealing with complex problems. This ob-083

servation motivates our multi-turn design where084

different agents continuously monitor and refine085

the reasoning process until the Judge verifies its086

correctness. (2) The diversity and unpredictabil-087

ity of error types in the reasoning process make088

it challenging for LLMs to effectively identify089

them based solely on their inherent knowledge.090

This insight motivates the development of a dy-091

namic template repository that categorizes and092

stores critique templates by error types, allowing093

our multi-agent system to systematically accumu-094

late critique knowledge. Specifically, the Curator095

maintains a self-evolving template tree by expand-096

ing branches or adding templates after the entire097

reflection, while the Judge routes through the tree098

based on the identified reasoning errors to locate099

appropriate templates for assisting the Critic in gen-100

erating high-quality critique, thereby facilitating101

subsequent refinement. Through this self-evolving102

template tree mechanism, our system continuously103

accumulates and distills critique patterns from pre-104

vious experiences, enabling more effective error105

identification beyond LLMs’ inherent capabilities.106

This experience-driven approach ensures continu-107

ous improvement in the quality and consistency. 108

Our contributions are summarized as follows: 109

• We introduce Table-Critic, a novel multi-agent 110

framework where specialized agents collabora- 111

tively criticize and refine the reasoning process 112

for complex table reasoning tasks. 113

• We design a multi-turn refinement mechanism 114

where different agents continuously monitor and 115

improve the reasoning process, effectively miti- 116

gating error propagation in multi-step reasoning. 117

• We introduce a self-evolving template tree that 118

systematically accumulates and organizes cri- 119

tique knowledge, enabling our system to ef- 120

fectively handle emerging error types through 121

experience-driven learning. 122

• Extensive experiments demonstrate that Table- 123

Critic significantly outperforms existing meth- 124

ods and exhibits substantial advantages over ma- 125

jority voting under comparable or even superior 126

computational costs. 127

2 Related Work 128

Table Reasoning. Table reasoning, which requires 129

joint understanding of semi-structured tables and 130
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questions, has evolved through several paradigms.131

Early approaches focused on developing special-132

ized models through fine-tuning (Yin et al., 2020;133

Liu et al., 2021; Gu et al., 2022), while recent work134

has shifted towards leveraging large language mod-135

els (LLMs) in few-shot learning (Chen et al., 2024c;136

Zhao et al., 2024). To handle complex reasoning137

tasks, decomposition-based methods have emerged138

as a promising direction. These methods break139

down complex tasks into manageable steps, either140

through program execution (Cheng et al., 2022) or141

context-aware table partitioning (Ye et al., 2023;142

Wang et al., 2024). However, a critical limitation143

of existing approaches is their inability to effec-144

tively critique and refine intermediate reasoning145

steps, leading to error propagation. In contrast, our146

Table-Critic framework addresses this limitation147

by introducing systematic critique and refinement148

mechanisms throughout the reasoning process.149

Self-Reflection. Recent studies have revealed150

that while LLMs possess inherent self-reflection151

capabilities, they often suffer from reliability and152

consistency issues (Madaan et al., 2023; Yang et al.,153

2024b). Simply enforcing self-reflection can be154

counterproductive, as models tend to either ratio-155

nalize their errors or excessively critique correct156

reasoning steps (Zheng et al., 2024; Chen et al.,157

2025). To address these limitations, our Table-158

Critic introduces a structured approach through: (1)159

a multi-agent framework where specialized agents160

collaborate to provide targeted critiques, and (2) a161

self-evolving template tree that systematically accu-162

mulates and organizes critique knowledge. This de-163

sign effectively overcomes the inherent limitations164

of LLMs’ reflection capabilities while maintaining165

reliable and consistent error identification.166

3 Table-Critic167

3.1 Overview168

To effectively implement the human-like correc-169

tion process in multi-step reasoning, we propose a170

collaborative multi-agent framework, Table-Critic.171

As illustrated in Figure 1, this framework decom-172

poses the complex reasoning refinement task into173

four specialized functions: error detection (Judge),174

critique generation (Critic), reasoning refinement175

(Refiner), and experience learning (Curator). These176

agents work in concert to progressively improve177

reasoning quality while accumulating valuable cor-178

rection experiences. Specifically, given a table T179

and a question q, these agents iteratively refine the180

initial reasoning chain τ = {s1, s2, ..., sn} until 181

reaching a satisfactory solution.1 The refinement 182

process is guided by a self-evolving template tree 183

T that systematically accumulates critique patterns 184

from past experiences. 185

3.2 Multiple Agents 186

Inspired by human-like correction behavior, we 187

design four specialized agents—Judge, Critic, Re- 188

finer, and Curator—to facilitate criticizing and re- 189

fining in multi-step reasoning. We use specific 190

instructions to prompt LLM (π) to execute the cor- 191

responding operations. Formally, we define each 192

agent as follows: 193

Judge (Aj). The Judge agent is responsible for 194

identifying potential errors in the reasoning process. 195

Given a table T, question q, current reasoning chain 196

τ , and the template tree T , it analyzes each reason- 197

ing step and determines the specific error type if 198

any exists. Based on the identified error type (if 199

exists), the Judge routes through the template tree 200

T to locate appropriate templates for guiding the 201

subsequent critic agent. Formally, the Judge agent 202

operates as: 203

E,P,R = π(T, q, τ, T , instructionA
j
), (1) 204

where E denotes the error analysis for each reason- 205

ing step, P ∈ {Correct, Incorrect} indicates the 206

overall reasoning status, and R represents the rout- 207

ing path in the template tree that guides template 208

selection. Based on the routing path, we sample 209

relevant critique templates Ts from the template 210

tree T to guide the Critic agent in generating tar- 211

geted and high-quality critiques for the identified 212

errors. Notably, due to the self-evolving nature of 213

our template tree, when the Judge identifies an er- 214

ror type not yet present in the tree, we randomly 215

sample various error types from existing templates 216

to guide the Critic in generating helpful critique. 217

Critic (Ac). The Critic agent serves as a cru- 218

cial component in our framework, responsible for 219

generating detailed and constructive critiques for 220

the identified errors. With the guidance of sampled 221

critique templates Ts, the Critic agent locates the 222

first error step in the reasoning chain τ , analyzes 223

error details, and provides specific suggestions for 224

subsequent refinement. Formally, the Critic agent 225

operates as: 226

C, I = π(T, q, τ, Ts, instructionA
c
), (2) 227

1We use Chain-of-Table (Wang et al., 2024) for initial
chains, though our framework is applicable to other methods.
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where C denotes the generated critique and I in-228

dicates the index of the first error step in τ . The229

effectiveness of the Critic agent directly impacts230

the Refiner’s ability to correct reasoning errors,231

which motivates our design of the template tree to232

enhance critique quality.233

Refiner (Ar). The Refiner agent is tasked with234

correcting the reasoning chain based on the critique235

provided by the Critic. Given the critique C, the236

table T, question q, and the partial reasoning chain237

up to the first error step (i.e., τp = {s1, ..., sI}),238

the Refiner first rectifies the identified error and239

then completes the remaining reasoning steps to240

generate a full refined chain. Formally, the Refiner241

agent operates as:242

τ ′ = π(T, q, τp, C, instructionA
r
), (3)243

where τ ′ represents the newly generated complete244

reasoning chain.245

Curator (Acu). The Curator agent serves as an246

experience-driven learning component that distills247

valuable critique templates from current refinement248

processes. It is activated only after the complete249

refinement process concludes, specifically when250

the Judge agent verifies that the final reasoning251

chain is error-free (P = Correct), as shown in252

Figure 1. Through reviewing each refinement it-253

eration and the existing template tree T , the Cura-254

tor autonomously distills meaningful critique tem-255

plates from effective refinement experiences. These256

newly distilled templates are then incorporated into257

T to enhance future critique generation. Formally,258

the Curator operates as:259

T ′ = π(T , H, instructionA
cu
), (4)260

where H represents the complete refinement his-261

tory, and T ′ denotes the updated template tree. The262

detailed update strategy will be delineated in sub-263

sequent sections.264

3.3 Multi-turn Refinement265

As discussed in the Introduction, the multi-turn266

refinement in Table-Critic is motivated by our ob-267

servation that LLMs often excel at identifying and268

correcting the first error in reasoning chains, but269

may introduce new errors in subsequent steps. To270

address this challenge, we implement an iterative271

refinement process where multiple agents collabo-272

ratively monitor and improve the reasoning chain273

until reaching a satisfactory solution.274

Specifically, given an initial reasoning chain τ , 275

our framework operates through the following steps 276

in each iteration: (1) The Judge agent first analyzes 277

the entire reasoning chain to identify potential er- 278

rors and determine their types. If no errors are 279

detected (P = Correct), the process terminates. 280

Otherwise, the Judge routes through the template 281

tree to locate relevant critique templates. (2) With 282

the guidance of sampled templates Ts, the Critic 283

agent generates detailed critiques C focusing on the 284

first identified error at step I . This strategy ensures 285

that each refinement iteration addresses errors se- 286

quentially, preventing the introduction of cascading 287

errors. (3) The Refiner agent then generates a new 288

reasoning chain τ ′ by incorporating the critique. 289

Importantly, the Refiner only receives the partial 290

chain τp up to the error step I , forcing it to recon- 291

struct the remaining steps with the help of critique. 292

This design prevents the Refiner from being biased 293

by previous erroneous chain. (4) The above pro- 294

cess continues iteratively until one of the following 295

conditions is met: the Judge determines the current 296

reasoning chain is correct (P = Correct) or the 297

maximum number of iterations K is reached. 298

Through this multi-turn design, Table-Critic ef- 299

fectively manages the complexity of multi-step rea- 300

soning refinement while maintaining the quality of 301

each correction step. The iterative nature of our 302

approach, combined with specialized agent roles 303

and strategic process control, enables robust and 304

efficient reasoning improvement. 305

3.4 Self-evolving Template Tree 306

To address the challenge of identifying diverse and 307

unpredictable error types in table reasoning, we 308

introduce a self-evolving template tree that system- 309

atically accumulates and organizes critique knowl- 310

edge. This dynamic structure enables our system 311

to effectively handle both common and emerging 312

error patterns through experience-driven learning. 313

Tree Structure. The template tree T represents 314

a hierarchical structure that captures the relation- 315

ships among different error types. As shown in 316

Figure 1, each node in the tree represents a specific 317

type of error, where: (1) Internal nodes represent 318

broader error categories (e.g., Sub-table Error) that 319

can be further subdivided into more specific er- 320

ror types. (2) Leaf nodes represent specific error 321

types (e.g., Row Error, Column Error) and maintain 322

a repository of critique templates associated with 323

that particular error type. 324

Self-evolving Mechanism. The template tree 325
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evolves dynamically through the Curator agent,326

which manages two primary operations: adding327

templates to existing leaf nodes and expanding tree328

branches. As illustrated in Figure 1, the evolution329

process includes:330

(1) Template Enhancement. When new effective331

critique patterns are identified, the Curator adds332

them to the corresponding leaf node’s template333

repository. This operation enriches existing error334

type categories without changing the tree structure.335

For instance, when a new effective template for336

Row Error is discovered, it is directly added to the337

corresponding template repository.338

(2) Branch Expansion. The Curator expands the339

tree structure in two ways when new error types340

are identified:341

• Vertical Expansion: When a new error type is342

discovered that requires more fine-grained cate-343

gorization, the Curator performs a vertical split.344

This operation transforms an existing leaf node345

into an internal node with two new child nodes.346

Specifically, the Curator first categorizes the ex-347

isting templates in the leaf node with an appro-348

priate name (e.g., Row Error), creating one new349

leaf node. Then, it creates another leaf node350

with a different name (e.g., Column Error) to351

accommodate the newly discovered error type352

and its corresponding templates. This process353

ensures that each leaf node maintains a cohesive354

collection of templates for a specific error type.355

• Horizontal Expansion: When a completely new356

error type is identified that parallels existing cat-357

egories, the Curator adds a new branch at the358

same level. This operation preserves the exist-359

ing structure while accommodating new error360

types. As illustrated in the Figure 1 (bottom),361

the addition of the Final Query Error branch rep-362

resents a horizontal expansion that complements363

the existing Sub-table Error category.364

Through these evolution mechanisms, our tem-365

plate tree maintains a dynamic balance between pre-366

serving accumulated knowledge and incorporating367

new error patterns. The vertical expansion enables368

more precise error categorization, while horizon-369

tal expansion ensures comprehensive coverage of370

diverse error types. This adaptive structure allows371

the system to continuously improve its critique ca-372

pabilities while maintaining organized and efficient373

template management. The detailed pipeline of our374

Table-Critic is presented in Appendix B.375

4 Experiments 376

4.1 Experimental Setup 377

Datasets. We evaluate our approach on two stan- 378

dard benchmarks: (1) WikiTableQuestions (Wik- 379

iTQ) (Pasupat and Liang, 2015): A table reasoning 380

benchmark with 4,344 test samples from 421 tables. 381

(2) TabFact (Chen et al., 2020): A fact verification 382

benchmark in table reasoning with 2,024 test sam- 383

ples from 298 tables. 384

Baselines. We conduct comprehensive exper- 385

iments comparing Table-Critic against three cat- 386

egories of baselines: (1) Standard Reasoning. 387

End-to-End QA directly generates answers using 388

table and question as input. Few-Shot QA ex- 389

tends this by incorporating exemplar (Table, Ques- 390

tion, Answer) triplets from the training set. (2) 391

Decomposition-Based Reasoning. Binder (Cheng 392

et al., 2022) decomposes questions into executable 393

SQL/Python sub-programs. Dater (Ye et al., 2023) 394

employs parsing-execution-filling strategy with 395

sub-table decomposition. Chain-of-Table (Wang 396

et al., 2024) generates intermediate tables through 397

dynamic operations. (3) Critic-Based Reasoning. 398

Critic-CoT (Zheng et al., 2024) implements self- 399

reflection for error identification. 400

Implementation Details. To ensure compre- 401

hensive evaluation, we conduct experiments across 402

three LLMs: Qwen2.5-72B-Instruct (Yang et al., 403

2024a), LLaMA3.3-70B-Instruct (Dubey et al., 404

2024), and GPT-4o-mini (Hurst et al., 2024). For 405

all baseline methods, we follow their original set- 406

tings to ensure optimal performance. For fair com- 407

parison, both Critic-CoT (Zheng et al., 2024) and 408

our Table-Critic framework are implemented upon 409

Chain-of-Table (Wang et al., 2024). For our Table- 410

Critic, the template tree is initialized with only 411

2 templates that demonstrate basic critique pat- 412

terns. From this minimal starting point, the tree 413

evolves autonomously through our self-evolving 414

mechanism, continuously learning and incorporat- 415

ing new critique patterns. For all experiments, we 416

set the maximum refinement iterations K to 5 and 417

use temperature 0.0 for greedy decoding. The de- 418

tailed prompts and instructions for each agent in 419

our framework are provided in Appendix E. 420

4.2 Main Results 421

We report the performance on different table reason- 422

ing benchmarks across different LLMs in Table 1. 423

Our comprehensive evaluation reveals several key 424

findings: First, Table-Critic consistently outper- 425
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Method Qwen2.5-72B LLaMA3.3-70B GPT-4o-mini Average

WikiTQ TabFact WikiTQ TabFact WikiTQ TabFact WikiTQ TabFact

End-to-End QA 56.6 85.1 51.1 81.0 52.6 73.5 53.4 79.9
Few-Shot QA 61.7 85.0 62.0 80.7 57.6 75.1 60.4 80.3
Binder (Cheng et al., 2022) 57.0 82.2 52.2 80.5 54.8 83.3 54.7 82.0
Dater (Ye et al., 2023) 63.8 90.0 59.5 87.6 65.8 83.6 63.0 87.1
Chain-of-Table (Wang et al., 2024) 68.3 89.7 62.1 89.9 67.5 88.9 66.0 89.5
Critic-CoT (Zheng et al., 2024) 69.0 89.8 66.8 88.0 66.3 86.9 67.4 88.2

Table-Critic (ours) 77.2 92.6 70.1 91.5 73.9 91.1 73.7 91.7
↑8.2 ↑2.6 ↑3.3 ↑1.6 ↑6.4 ↑2.2 ↑6.3 ↑2.2

Table 1: Table reasoning results on WikiTQ and TabFact with Qwen2.5-72B, LLaMA3.3-70B, and GPT-4o-mini.
Bold denotes the best performance and underline denotes the second-best performance.

forms all baseline methods across both datasets426

and all three LLMs. On average, our method427

achieves 73.7% accuracy on WikiTQ and 91.7% on428

TabFact, representing significant improvements of429

6.3% and 2.2% respectively over the strongest base-430

lines. Second, the improvements are robust across431

different model architectures. With Qwen2.5-72B-432

Instruct, we achieve the highest absolute perfor-433

mance (77.2% on WikiTQ, 92.6% on TabFact),434

showing substantial gains of 8.2% and 2.6% re-435

spectively. Similar patterns are observed with436

LLaMA3.3-70B-Instruct and GPT-4o-mini, demon-437

strating the framework’s generalizability across dif-438

ferent foundation models. Third, the performance439

variations between WikiTQ and TabFact provide440

insights into our method’s strengths. Table-Critic441

shows larger improvements on WikiTQ (average442

+6.3%) compared to TabFact (average +2.2%), indi-443

cating its particular effectiveness in handling com-444

plex, multi-step reasoning tasks. This aligns with445

our framework design, as WikiTQ’s compositional446

questions benefit more from our multi-turn refine-447

ment and self-evolving template tree mechanism448

than TabFact’s binary verification tasks. Never-449

theless, the consistent improvements on TabFact450

demonstrate our method’s capability even in sim-451

pler scenarios. Finally, comparing against different452

baseline categories reveals the advancement of our453

approach. While recent methods like Chain-of-454

Table (Wang et al., 2024) and Critic-CoT (Zheng455

et al., 2024) have made notable progress through456

decomposition and criticism mechanisms, Table-457

Critic achieves substantially larger improvements458

over these strong baselines. This suggests that our459

multi-agent framework, combining multi-turn re-460

finement with self-evolving template tree, provides461

a more effective solution for complex table reason-462

ing tasks.463

4.3 Analysis of Critic Effectiveness 464

As shown in Table 2, we conduct a detailed analysis 465

of different critic mechanisms by comparing Table- 466

Critic with Chain-of-Table (Wang et al., 2024) and 467

Critic-CoT (Zheng et al., 2024). Our analysis fo- 468

cuses on four key metrics: (1) Overall Accuracy 469

(Acc): The percentage of correctly solved ques- 470

tions; (2) Error Correction Rate (∆i→c): The per- 471

centage of questions incorrectly solved by Chain- 472

of-Table but corrected by different Critic methods; 473

(3) Solution Degradation Rate (∆c→i): The per- 474

centage of questions correctly solved by Chain- 475

of-Table but degraded by different Critic methods; 476

(4) Net Performance Gain (∆): The overall im- 477

provement relative to Chain-of-Table, calculated as 478

∆ = ∆i→c +∆c→i. 479

Error Correction vs. Solution Degradation. 480

Table-Critic demonstrates superior error correction 481

capabilities while minimizing solution degradation. 482

On WikiTQ, it successfully corrects 9.6% of Chain- 483

of-Table’s errors while only degrading 0.7% of cor- 484

rect solutions, resulting in a substantial net perfor- 485

mance gain (+8.9%). In contrast, Critic-CoT shows 486

a less effective pattern, with a 5.6% correction rate 487

offset by a high degradation rate (-4.9%), yielding 488

only a marginal improvement (+0.7%). 489

Task-Specific Performance. The effectiveness 490

of critique mechanisms varies across different tasks. 491

On WikiTQ, which involves complex multi-step 492

reasoning, Table-Critic achieves a higher error cor- 493

rection rate (+9.6% vs +5.6%) and maintains a 494

observably lower degradation (-0.7% vs -4.9%) 495

compared to Critic-CoT. For TabFact’s simpler ver- 496

ification tasks, while the improvements are more 497

modest, Table-Critic still maintains better stability 498

with lower degradation rates (-0.5% vs -2.8%). 499

Critic Stability. A key advantage of Table-Critic 500

is its stability in maintaining correct solutions. The 501
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Dataset Chain-of-Table Critic-CoT Table-Critic

Acc Acc ∆i→c ∆c→i ∆ Acc ∆i→c ∆c→i ∆

WikiTQ 68.3 69.0 +5.6 -4.9 +0.7 77.2 +9.6 -0.7 +8.9
TabFact 89.7 89.8 +2.9 -2.8 +0.1 92.6 +3.4 -0.5 +2.9

Table 2: Critic performance comparison of different critic methods. ∆i→c, ∆c→i, and ∆ measure the error correction
rate, solution degradation rate, and net performance gain relative to Chain-of-Table, respectively.
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Figure 2: Analysis of Model Convergence and Iteration
Requirements on WikiTQ and TabFact Datasets.

consistently low degradation rates (-0.7% for Wik-502

iTQ and -0.5% for TabFact) suggest that our self-503

evolving template tree effectively preserves valid504

reasoning patterns while identifying and correct-505

ing errors. This contrasts with Critic-CoT’s higher506

degradation rates (-4.9% for WikiTQ and -2.8%507

for TabFact), indicating potential instability in its508

critique process.509

4.4 Analysis of Multi-Turn Mechanism510

To understand the effectiveness of our multi-turn511

refinement mechanism, we analyze how model per-512

formance evolves with the number of iterations K513

and the distribution of required iteration counts (set514

maximal K = 10), as shown in Figure 2.515

Performance Evolution. On both datasets, we516

observe a consistent pattern of rapid initial improve-517

ment followed by gradual convergence. For Wik-518

iTQ, the accuracy increases sharply from 67.6%519

to 76.5% within the first three iterations and stabi-520

lizes around 77% after six iterations. Similarly, on521

TabFact, the performance improves significantly in 522

early iterations and plateaus at approximately 92% 523

after five iterations. This pattern suggests that our 524

multi-turn mechanism effectively refines solutions 525

through iterative improvements. 526

Iteration Distribution. The density plots re- 527

veal interesting insights about the complexity of 528

different tasks. On WikiTQ, we observe a broader 529

distribution with multiple peaks, indicating that 530

questions require varying numbers of iterations for 531

resolution. The main peak occurs at 1-2 iterations, 532

with smaller peaks extending up to 10 iterations, re- 533

flecting the diverse complexity of multi-step reason- 534

ing questions. TabFact also shows a concentrated 535

distribution with two distinct peaks: a primary peak 536

at 1-2 iterations and a secondary peak around 10 537

iterations. This bimodal pattern suggests that Tab- 538

Fact tend to fall into two categories: (1) straightfor- 539

ward cases that can be verified quickly within 1-2 540

iterations, and (2) complex cases that require exten- 541

sive refinement to reach a conclusive verification. 542

This distribution aligns with the inherent nature 543

of fact verification tasks, where statements are ei- 544

ther relatively simple to verify or require careful 545

step-by-step examination. 546

Convergence and Stability Analysis. The re- 547

sults suggest that while our method allows for up 548

to 10 iterations, most improvements are achieved 549

within the first 5 iterations. This efficient conver- 550

gence, combined with our early termination mech- 551

anism, helps maintain computational efficiency 552

while ensuring thorough reasoning. Notably, as 553

evidenced in Table 2, Table-Critic maintains stable 554

performance across iterations without the degrada- 555

tion typically seen in iterative approaches, demon- 556

strating the effectiveness of our Critic agent and 557

self-evolving template tree mechanism. 558

4.5 Analysis of Computational Cost 559

To ensure a fair comparison with Chain-of- 560

Table (Wang et al., 2024) in terms of computa- 561

tional cost, we conduct an analysis of the cost- 562

effectiveness trade-off, as shown in Figure 3. Since 563
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Figure 3: Computational cost and Effectiveness Com-
parison between SC (Self-Consistency Based on Chain-
of-Table) and our Table-Critic.

Table-Critic builds upon Chain-of-Table by in-564

corporating additional critique mechanisms, we565

align the computational costs by allowing Chain-of-566

Table to generate multiple solutions (majority vot-567

ing) through Self-consistency (Wang et al., 2023)568

(with temperature 0.8) and compare the perfor-569

mance under equivalent or even superior computa-570

tional budgets.571

Efficiency Comparison. Our method requires572

approximately 1.8-2.2× computational cost com-573

pared to the basic Chain-of-Table. The complete574

derivation process of computational cost is pro-575

vided in Appendix C. However, as illustrated in576

Figure 3, Table-Critic achieves substantially higher577

accuracy (77.2% on WikiTQ and 92.6% on Tab-578

Fact) compared to Chain-of-Table’s performance579

even with 15 solution attempts. Notably, Chain-of-580

Table shows only marginal improvements as the581

number of solutions increases, reaching 70.0% on582

WikiTQ and 90.1% on TabFact with 15 solutions.583

Cost-Effectiveness Analysis. The results584

demonstrate that simply increasing the number of585

solution attempts in Chain-of-Table fails to achieve586

comparable performance to Table-Critic, despite587

consuming similar or even greater computational588

resources. This suggests that our multi-agent re-589

finement mechanism provides a more effective ap-590

proach to improving reasoning accuracy than tra-591

ditional majority voting strategies. The superior592

performance of Table-Critic justifies its additional593

computational overhead by offering substantially594

better reasoning capabilities.595

4.6 Analysis of Self-evolving Template Tree596

To investigate the effectiveness of our self-evolving597

mechanism, we conduct an ablation study compar-598

ing Table-Critic with and without the dynamic tem-599

plate evolution capability, as shown in Table 3. In600

the static setting (w/o Self-evolving), the template601

Method WikiTQ Tabfact

Table-Critic 77.2 92.6
w/o Self-evolving 76.1 90.8

↓1.1 ↓1.8

Table 3: The impact of self-evolving mechanism on our
template tree.

tree remains fixed with its initial two templates, 602

while our full Table-Critic allows the Curator agent 603

to dynamically maintain and evolve the template 604

tree throughout the reasoning process. 605

Performance Impact. The results demonstrate 606

the clear benefits of the self-evolving mechanism. 607

Without template evolution, performance drops by 608

1.1% on WikiTQ (from 77.2% to 76.1%) and 1.8% 609

on TabFact (from 92.6% to 90.8%). The more 610

substantial performance gap on TabFact suggests 611

that template evolution is particularly beneficial for 612

fact verification tasks, where diverse verification 613

patterns may be needed. 614

Mechanism Analysis. These results highlight 615

the importance of dynamic adaptation in our frame- 616

work. The self-evolving mechanism allows the 617

template tree to expand beyond its initial state, ac- 618

commodating diverse reasoning patterns encoun- 619

tered during the critique process. This flexibility 620

enables more effective error detection and correc- 621

tion compared to a static template approach. The 622

performance gains validate our design choice of in- 623

corporating dynamic template evolution, showing 624

that the ability to adapt and expand the template 625

structure is crucial for robust table reasoning. For 626

reference, we provide visualizations of both the 627

initial template tree and its evolved state in Ap- 628

pendix D, illustrating how the tree structure adapts 629

to accommodate different reasoning patterns. 630

5 Conclusion 631

In this paper, we propose Table-Critic, a novel 632

multi-agent framework that enhances table reason- 633

ing through collaborative criticism and refinement. 634

Our approach introduces four specialized agents 635

working in concert with a self-evolving template 636

tree, effectively addressing the challenges of error 637

identification and correction in complex table rea- 638

soning tasks. Extensive experiments demonstrate 639

that our method significantly outperforms existing 640

approaches, achieving substantial improvements 641

across different datasets while maintaining robust 642

performance stability. 643
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Limitations644

Our Table-Critic framework has demonstrated645

strong performance in enhancing table reasoning646

through multi-agent collaboration and systematic647

refinement. While our current implementation fo-648

cuses primarily on textual table reasoning, the pro-649

posed multi-agent critique framework is inherently650

flexible and can potentially be extended to various651

other scenarios. For instance, the framework could652

be adapted to handle multimodal reasoning tasks653

where tables are combined with images, graphs, or654

other visual elements. We believe the core prin-655

ciples of our approach—collaborative criticism,656

iterative refinement, and self-evolving template657

tree—could contribute to broader applications in658

complex reasoning tasks beyond the current textual659

domain.660

Ethics Statement661

Our research focuses on improving table reason-662

ing capabilities through multi-agent collaboration,663

without involving any sensitive personal data or po-664

tentially harmful applications. The datasets used in665

our experiments are publicly available and widely666

used in the research community. Our framework667

is designed to enhance the reliability and trans-668

parency of AI systems in table understanding tasks,669

potentially benefiting various real-world applica-670

tions such as data analysis and information retrieval.671

We acknowledge that while our method improves672

reasoning accuracy, it should be used as a comple-673

mentary tool rather than a complete replacement674

for human judgment in critical decision-making675

processes.676
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A Additional Related works 907

Multi-agent Systems. Multi-agent systems have 908

recently demonstrated promising potential in com- 909

plex reasoning tasks by enabling collaborative 910

problem-solving through specialized agents (Guo 911

et al., 2024; Zhang et al., 2024). These systems 912

typically leverage the complementary strengths of 913

different agents to achieve more robust and effec- 914

tive solutions than single-agent approaches. While 915

existing work has explored multi-agent frameworks 916

in various domains, their application to table rea- 917

soning tasks remains largely unexplored. To our 918

knowledge, our Table-Critic presents the first at- 919

tempt to introduce a multi-agent framework for 920

table reasoning, where specialized agents collabo- 921

rate to identify, critique, and refine reasoning steps, 922

offering a novel perspective on addressing the chal- 923

lenges in complex table reasoning tasks. 924

B More Implementation Details 925

In this section, we provide a comprehensive im- 926

plementation details of our proposed method. For 927

additional insights and more intricate details, we 928

refer the reader to our supplementary materials. 929

B.1 Overall Pipeline of Table-Critic 930

Table-Critic employs an iterative process to cri- 931

tique and refine the reasoning chain and predicted 932

answer for table reasoning tasks. As described in 933

Algorithm 1, the process begins with an input table 934

T, a question q, an initial reasoning chain τ , and a 935

template tree T . The Judge agent is first invoked 936

to evaluate the correctness of the reasoning chain 937

(Line 2). This evaluation yields the reasoning sta- 938

tus P , an error analysis E, and a routing path R in 939

the template tree. 940

When the reasoning chain is deemed incorrect 941

(P = Incorrect), Table-Critic proceeds by sam- 942

pling relevant critique templates Ts from the tem- 943

plate tree using the routing path R (Line 4). These 944

templates are then used by the Critic agent to gen- 945

erate a detailed critique C and identify the index of 946

the first error step I in the reasoning chain (Line 947

5). To address the identified errors, the Refiner 948

agent retains the reasoning steps up to step I and 949

refines the chain starting from step I , guided by the 950

critique C (Line 6). The refined reasoning chain τ ′ 951

is subsequently re-evaluated by the Judge agent to 952

determine if it is now correct (Line 7). 953

This refinement loop continues iteratively un- 954

til the reasoning chain is verified as correct (P = 955
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Correct). Once a correct reasoning chain is estab-956

lished, the Curator agent updates the template tree957

T by incorporating new critique templates distilled958

from the refinement history. This update enhances959

the template tree’s ability to support future refine-960

ment processes (Line 9).961

The final output of Table-Critic is the refined962

reasoning chain τ ′, which represents the accurate963

and improved solution to the table reasoning task.964

By systematically identifying and addressing errors965

in a collaborative multi-step process, Table-Critic966

ensures robust and precise refinement of reasoning967

chains and answers.968

B.2 LLM Servers969

Our approach implements agent behaviors through970

in-context learning, requiring no extensive train-971

ing procedures. We deploy multiple LLM servers,972

including Qwen2.5-72B-Instruct and LLaMA3.3-973

70B-Instruct through the SGLang inference en-974

gine, and GPT-4o-mini via its provided API ser-975

vice. While the choice between fine-tuning and976

in-context learning remains an open question, it is977

not the primary focus of our work. Following prior978

studies (Wang et al., 2024; Zheng et al., 2024), we979

adopt in-context learning as our implementation980

strategy for its simplicity and effectiveness.981

C Detailed Computational Cost Analysis982

This appendix evaluates the computational cost of983

Table-Critic relative to the baseline Chain-of-Table984

method. The computational cost is analyzed for985

two datasets, WikiTQ and TabFact, based on the986

number of input and output tokens required. All987

token counts are expressed in millions (M), and the988

cost ratio reflects the relative cost of Table-Critic989

compared to Chain-of-Table.990

C.1 Computational Cost Definition991

The computational cost of a prompt-based method992

is defined as follows:993

Ntotal = Nin·
(

Pin

Pin + Pout

)
+Nout·

(
Pout

Pin + Pout

)
,

(5)994

where Nin and Nout represent the number of in-995

put and output tokens, and Pin and Pout denote996

the costs per token for input and output, respec-997

tively. Based on the pricing model of Qwen2.5-998

72B-Instruct, Pin = 0.004 CNY per thousand to-999

kens and Pout = 0.012 CNY per thousand tokens.1000

Using the above values, the normalized cost 1001

weights are: 1002

Input Weight =
Pin

Pin + Pout
= 0.25, 1003

Output Weight =
Pout

Pin + Pout
= 0.75. 1004

Substituting these weights, the formula simpli- 1005

fies to: 1006

Ntotal = 0.25 ·Nin + 0.75 ·Nout. (6) 1007

C.2 Dataset-Specific Computational Cost 1008

Analysis 1009

The computational cost of Table-Critic is compared 1010

against Chain-of-Table for the WikiTQ and TabFact 1011

datasets. Detailed token counts and cost ratios are 1012

shown in Table 4. 1013

On the WikiTQ dataset, Chain-of-Table incurs 1014

a total computational cost of 19.6M, with 73.5M 1015

input tokens and 1.6M output tokens. In con- 1016

trast, Table-Critic requires 135.5M input tokens 1017

and 3.8M output tokens, resulting in a total cost of 1018

36.7M. This corresponds to a cost ratio of 1.87×, 1019

indicating that Table-Critic is approximately 1.87 1020

times more computationally expensive than Chain- 1021

of-Table on this dataset. 1022

On the TabFact dataset, Chain-of-Table incurs 1023

a total computational cost of 7.8M, with 29.3M 1024

input tokens and 0.6M output tokens. Table-Critic, 1025

on the other hand, requires 62.1M input tokens and 1026

20.4M output tokens, resulting in a total cost of 1027

17.1M. This corresponds to a cost ratio of 2.19×, 1028

indicating that Table-Critic is approximately 2.19 1029

times more computationally expensive than Chain- 1030

of-Table. 1031

D Self-evolving Template Tree 1032

Figure 4 illustrates the Self-evolving process of the 1033

Template Tree. In the initial stage (Figure 4a), the 1034

tree contains only two broad categories of errors: 1035

Sub-table Error and Final Query Error, each rep- 1036

resenting a high-level abstraction of error types. 1037

Through the self-evolving mechanism, the tree 1038

dynamically expands and refines its structure to 1039

accommodate more fine-grained error types, as 1040

shown in the evolved tree (Figure 4b). 1041

It is important to note that the Evolved Tree is 1042

considerably larger in practice, containing a more 1043

extensive hierarchy of error types. However, for 1044

clarity, only a subset of the evolved structure is 1045

displayed here. 1046
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Algorithm 1 The overall pipeline of Table-Critic

Input: Table T, question q, initial reasoning chain τ , the template tree T .
Output: The refined reasoning chain τ ′.

1: H ← ∅ ▷ Initialize refinement history.

2: P,E,R← Judge(T, q, τ, T )
3: while P = Incorrect do
4: Ts ← Sample Templates using R in the T
5: C, I ← Critic(T, q, τ, Ts) ▷ Generating critique C and identify the index of first error step I .

6: τp ← τ [: I] ▷ Retain the partial reasoning steps up to step I

7: τ ′ ← Refiner(T, q, τp, C) ▷ Refine the reasoning chain.

8: H ← H ∪ {T, q, τ, τ ′, C} ▷ Update history.

9: P,E,R← Judge(T, q, τ ′, T ) ▷ Re-evaluates the updated reasoning chain

10: end while
11: T ← Curator(T , H) ▷ Update the template tree T to facilitate future refinement.

12: return Refined reasoning chain τ ′ and new template tree T .

Dataset Chain-of-Table Table-Critic Cost Ratio

Input (M) Output (M) Total (M) Input (M) Output (M) Total (M) (TC/CoT)

WikiTQ 73.5 1.6 19.6 135.5 3.8 36.7 1.87×
TabFact 29.3 0.6 7.8 62.1 20.4 17.1 2.19×

Table 4: Computational Cost Comparison Between Chain-of-Table and Table-Critic (Token Counts in Millions)

E Prompts and Case Study1047

This appendix provides comprehensive instruc-1048

tions and illustrative examples for three intelligent1049

agents: the Judge Agent, the Critic Agent, and the1050

Refiner Agent. These agents are designed to collab-1051

oratively evaluate and refine reasoning processes1052

applied to table-based questions. Figures 5 and 61053

offer detailed guidance for the Judge Agent, includ-1054

ing step-by-step procedures to assess the validity1055

of reasoning steps, pinpoint errors, and categorize1056

conclusions (e.g., correct, incorrect with identified1057

error route, or random error). Figures 7 and 8 ex-1058

plain how the Critic Agent systematically evaluates1059

each reasoning step, highlights the first incorrect1060

step, and provides constructive critiques. Addi-1061

tionally, Figure 9 introduces the Refiner Agent,1062

demonstrating how critiques are utilized to refine1063

reasoning steps, ensuring accurate and complete1064

solutions.1065
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Figure 4: An example of self-evolving mechanism in our Template Tree.

You are an intelligent judge tasked with evaluating the correctness of a given Prediction Answer.
If the Prediction Answer is incorrect, identify which step within the reasoning process is
incorrect and subsequently locate the corresponding error type within the error tree:
1. Original Table: The raw table data.
2. Question: The question pertaining to the table data.
3. Reasoning Steps: A step-by-step process of sub-table transformations and extractions based
on the following functions.

- f_add_column(): Adds a new column to the table.
- f_select_row(): Selects specific rows based on the question.
- f_select_column(): Removes irrelevant columns from the table.
- f_group_column(): Groups rows based on the values in a specific column.
- f_sort_column(): Sorts rows based on the values in a specified column.

4. Prediction Answer: The answer derived from the final sub-table.

Instruction:
1. Explanation: Conduct an explanation of why the Prediction Answer is correct or incorrect. If
it is incorrect, then conduct an analysis of each reasoning step’s validity.
2. Conclusion:
- If the Prediction Answer is correct, conclude with ‘Conclusion: [Correct]’.
- If the Prediction Answer is incorrect, conclude with either ‘Conclusion: [Incorrect] (ERROR

ROUTE)’ or ‘Conclusion: [Incorrect] (random)’.
- Use ‘(ERROR ROUTE)’ to indicate the specific path in the error tree that represents the

error.
- If no such route can be identified, use ‘(random)’ instead.

Figure 5: Instructions for the Judge Agent. These instructions outline the procedure for verifying the correctness of
a predicted answer and identifying errors within the reasoning process.
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Original Table:
/*
col : res. | record | opponent | method | event | date | round | time | location | notes
row 1 : win | 12-3 | mike hayes | ko (punch) | ksw 25: khalidov vs. sakurai | december 7, 2013
| 1 | 1:12 | wrocław, poland
row 2 : win | 11–3 | nick moghadden | tko (punches) | bellator 99 | september 13, 2013 | 1 |
3:22 | temecula, california, united states | bellator debut
row 3 : loss | 10–3 | guto inocente | decision (unanimous) | strikeforce: barnett vs. cormier |
may 19, 2012 | 3 | 5:00 | san jose, california, united states | light heavyweight debut
row 4 : win | 10–2 | brett albee | tko (strikes) | strikeforce: diaz vs. daley | april 9, 2011
| 1 | 1:46 | san diego, california, united states
row 5 : loss | 9–2 | lavar johnson | ko (punches) | strikeforce challengers: bowling vs. voelker
| october 22, 2010 | 1 | 2:17 | fresno, california, united states
row 6 : win | 9–1 | eddie sapp | submission (rear-naked choke) | native fighting championship 6
| august 14, 2010 | 1 | 2:01 | campo, california, united states
row 7 : loss | 8–1 | cody goodale | decision (unanimous) | gladiator challenge: maximum force |
april 25, 2010 | 3 | 5:00 | san jacinto, california, united states
*/
Question:
how many loses did virgil zwicker have?
Reasoning Steps:
Step 1: Select relevant rows.
The question aims to find out the number of losses Virgil Zwicker had based on the provided fight
records. We need to count the rows where the "res." column shows "loss".
So we use f_select_row(row 3, row 5, row 7).
Step 2: Filter out useless columns.
similar words of the question link to columns:
loses -> record
column value of the question link to columns:
10–3 -> record
semantic sentence of the question link to columns:
None
So we use f_select_column(record).
Step 3: After using f_select_row(row 3, row 5, row 7) and f_select_column(record), we obtain the
sub table:
/*
col : record
row 1 : 10–3
row 2 : 9–2
row 3 : 8–1
*/
The provided table shows records of wins and losses but does not specify who the records belong
to. However, if we assume that the table represents Virgil Zwicker’s records, then we can deduce
the number of losses from each record. The losses in the records are 3, 2, and 1 respectively.
If we consider each row as a separate season or period, then the total number of losses would be
the sum of these losses: 3 + 2 + 1 = 6.
Prediction Answer:
6

Explanation:
Step 1 correctly identifies the relevant rows where the "res." column indicates a loss. The rows
selected are indeed the ones where the outcome is a loss. Step 1 is correct.
Step 2 incorrectly filters out the columns. The question asks for the number of losses, but
the filtering step selects only the ’record’ column, which combines wins and losses in a single
string (e.g., "10–3"). This does not directly provide the number of losses. Instead, the ’res.’
column should be used to count the losses directly. Step 2 is incorrect.

Conclusion: [Incorrect] (sub-table error -> column error -> <END>)

Figure 6: Example of Judge Agent’s Analysis and Error Detection. This example illustrates how the Judge Agent
evaluates reasoning steps, identifies errors, and determines the correctness of a predicted answer.
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You are an intelligent critic tasked with determining which step of the table reasoning is
incorrect based on the following information:
1. Original Table: The raw table data.
2. Question: The question pertaining to the table data.
3. Reasoning Steps: A step-by-step process of sub-table transformations and extractions based
on the following functions.

- f_add_column(): Adds a new column to the table.
- f_select_row(): Selects specific rows based on the question.
- f_select_column(): Removes irrelevant columns from the table.
- f_group_column(): Groups rows based on the values in a specific column.
- f_sort_column(): Sorts rows based on the values in a specified column.

4. Prediction Answer: Final derived answer following the reasoning chain.

Instruction:
1. Step-wise Analysis: Conduct an evaluation of each reasoning step’s validity. The step that
is unnecessary but does not affect the answer is considered correct.
2. Analysis Categories:

- For correct steps: Provide validation reasoning and mark as Step <NUM> is correct.
- For incorrect steps: Detail the logical flaws and mark as Step <NUM> is incorrect.
- You should stop at the first incorrect step.

3. Conclude this critique: Summarize this critique with an explicit conclusion.
4. Conclusion Categories:

- Conclude with ’Conclusion: [Incorrect] Step <NUM>’.

Figure 7: Instructions for the Critic Agent. These instructions guide stepwise evaluation of reasoning steps.
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Original Table:
/*
col : tie | home team | score | away team | attendance
row 1 : 1 | aylesbury united | 2-2 | windsor & eton | 847
row 2 : 2 | burscough | 5-0 | wakefield & emley | 437
row 3 : 3 | dover athletic | 0-3 | forest green roves | 932
row 4 : 4 | farnborough town | 2-0 | halifax town | 863
row 5 : 5 | gloucester city | 1-1 | southport | 1,237
row 6 : 6 | havant & waterlooville | 3-0 | hayes | 456
row 7 : 7 | margate | 0-2 | tamworth | 971
row 8 : 8 | yeovil town | 2-1 | northwich victoria | 4,469
*/
Question:
how many games attendance was under 1000?
Reasoning Steps:
Step 1: Select relevant rows.
The question aims to find out how many games had an attendance of less than 1000 people. To
answer this, we need to count the number of rows where the attendance column shows a number less
than 1000. So we use f_select_row(row 1, row 2, row 3, row 4, row 6, row 7).
Step 2: Filter out useless columns.
similar words of the question link to columns :
under 1000 -> attendance
column value of the question link to columns :
1000 -> attendance
semantic sentence of the question link to columns :
None
So we use f_select_column(attendance).
Step 3: After using f_select_row(row 1, row 2, row 3, row 4, row 6, row 7) and
f_select_column(attendance), we obtain the sub table:
/*
col : attendance
row 1 : 847
row 2 : 437
row 3 : 932
row 4 : 863
row 5 : 456
row 6 : 971
*/
The games with attendance under 1000 were rows 1, 2, 4, and 5. Therefore, there were 4 games
with attendance under 1000.
Prediction Answer:
4

Critique:
Step 1 correctly selects the rows that are relevant for further analysis regarding the attendance
being under 1000. It includes all the rows where the attendance values might potentially be less
than 1000, which are row 1, row 2, row 3, row 4, row 6, and row 7. This step makes the proper
initial identification based on the condition stated in the question. Step 1 is correct.
Step 2 filters out the columns effectively by choosing the "attendance" column. Since the question
is focused on the attendance values to determine which are under 1000, this step narrows down
the data to just what’s needed for the subsequent steps. Step 2 is correct.
Step 3 makes an error in counting the number of games with attendance under 1000. Looking at the
sub-table from Step 3, all the rows shown (row 1 with 847, row 2 with 437, row 3 with 932, row 4
with 863, row 5 with 456, row 6 with 971) have attendance values that are less than 1000. Step
3 is incorrect.

Conclusion: [Incorrect] Step 3

Figure 8: Example of Critic Agent’s Critique. This example demonstrates how to evaluate reasoning steps and
identify errors in the reasoning chain.
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Now, we have produced part of the Function Chain, but gained a critique.
Function Chain: f_select_row(row 1)
After step 1 (f_select_row(row 1)), we obtain the sub-table:
/*
col : date introduced | class 1 (e.g. motorbike) | class 2 (e.g. car) | class 3 (e.g. car with

trailer) | class 4 (e.g. van) | class 5 (e.g. hgv)
row 1 : 23 july 2004 | £1.00 | £2.00 | £5.00 | £5.00 | £6.00

*/
Question: on what date did the toll for class 1 first go above 2.00?
Critique:
Step 1 is incorrect. The selected row (row 2) has the toll for class 1 set at £1.00, which is not
above £2.00. The first row where the toll for class 1 exceeds £2.00 is row 3, dated 16 august
2004. Therefore, the selection of row 2 is incorrect.

Based on the critique, please continue to produce a complete and correct Function Chain.
/*
col : date introduced | class 1 (e.g. motorbike) | class 2 (e.g. car) | class 3 (e.g. car with

trailer) | class 4 (e.g. van) | class 5 (e.g. hgv)
row 1 : 9 december 2003 | £1.00 | £2.00 | £5.00 | £5.00 | £10.00
row 2 : 23 july 2004 | £1.00 | £2.00 | £5.00 | £5.00 | £6.00
row 3 : 16 august 2004 | £2.00 | £3.00 | £6.00 | £6.00 | £6.00
row 4 : 14 june 2005 | £2.50 | £3.50 | £7.00 | £7.00 | £7.00
row 5 : 1 january 2008 | £2.50 | £4.50 | £8.00 | £9.00 | £9.00
row 6 : 1 january 2009 | £2.70 | £4.70 | £8.40 | £9.40 | £9.40
row 7 : 1 march 2010 | £2.70 | £5.00 | £9.00 | £10.00 | £10.00
row 8 : 1 march 2011 | £3.00 | £5.30 | £9.60 | £10.60 | £10.60
row 9 : 1 march 2012 | £3.00 | £5.50 | £10.00 | £11.00 | £11.00

*/
Question: on what date did the toll for class 1 first go above 2.00?
The next operation must be one of f_add_column(), f_select_row(), f_select_column(),
f_group_column(), or f_sort_column().

Function Chain:
f_select_row(row 3)

Figure 9: Example of Refiner Agent’s refinement. This example demonstrates how the critique is used to refine the
Function Chain to accurately answer the question.
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