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Abstract
Accurate segmentation of the region of interest in medical images can provide an essential pathway for devising effective

treatment plans for life-threatening diseases. It is still challenging for U-Net, and its modern state-of-the-art variants to

effectively model the higher-level output feature maps of the convolutional units of the network mostly due to the presence

of various scales of the region of interest, the intricacy of context environments, ambiguous boundaries, and multiformity

of textures in medical images. In this paper, we exploit multi-contextual features and several attention strategies to increase

networks’ ability to model discriminative feature representation for more accurate medical image segmentation, and we

present a novel dual-stacked U-Net-based architecture named DoubleU-NetPlus. The DoubleU-NetPlus incorporates

several architectural modifications. In particular, we integrate EfficientNetB7 as the feature encoder module, a newly

designed multi-kernel residual convolution module, and an adaptive feature re-calibrating attention-based atrous spatial

pyramid pooling module to progressively and precisely accumulate discriminative multi-scale high-level contextual feature

maps and emphasize the salient regions. In addition, we introduce a novel triple attention gate module and a hybrid triple

attention module to encourage selective modeling of relevant medical image features. Moreover, to mitigate the gradient

vanishing issue while incorporating high-resolution features with deeper spatial details, the standard convolution operation

is replaced with the attention-guided residual convolution operations, which enables the model to achieve effective and

relevant feature maps from a significantly increased network depth. Empirical results confirm that the proposed model

accomplishes superior semantic segmentation performance compared to other state-of-the-art approaches on six publicly

available benchmark datasets of diverse modalities. The proposed network achieves a Dice score of 85.17%, 99.34%,

94.30%, 96.40%, 95.76%, and 97.10% on DRIVE, LUNA, BUSI, CVCclinicDB, 2018 DSB, and ISBI 2012 datasets.

Keywords Semantic segmentation � Medical image analysis � Computer-aided diagnosis � Convolutional neural networks �
Attention mechanisms � Deep learning � Stacked U-Net � Transfer learning

1 Introduction

Medical imaging is a highly critical element in modern

medical practice and biotechnology to undertake numerous

diagnostic procedures, from wellness and screening to

early diagnosis, clinical analysis, treatment selection,

image-guided surgery, and subsequent follow-ups for

continuous assessments of the patient’s health condition

[36]. It has become a crucial resource for physicians to

understand and assess the disease. Moreover, it is essential

to determine the efficacy of the treatment, allowing clini-

cians to better analyze a patient by creating a pictorial and

functional representation of hidden physiological structures

of body parts such as bones, organs, tissue, and blood

vessels for clinical examination [4, 52] and evaluate vari-

ous cellular and molecular events. Noninvasive medical

imaging techniques, such as X-ray, computerized tomog-

raphy (CT), ultrasound, colonoscopy, dermoscopy, micro-

scopy, electrocardiogram (ECG), and magnetic resonance

imaging (MRI), can reveal crucial anatomical functional-

ity-related information on diseases and anomalies within

the body [39].Extended author information available on the last page of the article
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In recent years, deep learning-based methods have

achieved incredible success in many challenging tasks in

diverse research domains [1, 2, 31, 51]. Semantic medical

image segmentation (MIS) is one of the significant areas of

research in medical image analysis. In semantic segmen-

tation, every distinct pixel in the image is assigned a dis-

tinct category, thus partitioning an image into a set of non-

overlapping regions, which can also be regarded as a dense

classification problem [29]. MIS refers to the process of

distinguishing specific areas within a 2D or 3D medical

image, which can facilitate the clinicians to study only the

desired parts or region of interest (ROI) of the multi-modal

medical images [29]. It is an essential preliminary step for

any computer-aided diagnosis (CAD) system and often

plays an integral role in both quantitative and qualitative

analysis of medical images [4], such as segmentation of

polyps [30, 56], lung region [42, 48], brain tumors [85],

retinal blood vessels [83], cell nuclei [80], cell contour

[70], and breast ultrasound images [40].

During the past decade, the vast majority of architec-

tures created for semantic segmentation in various appli-

cations of computer vision (CV) and medical image

analysis are based on deep neural networks (DNNs), such

as fully convolutional networks (FCNs), coined by Long

et al. [38] or encoder-decoder-based convolutional neural

networks (CNNs) such as Seg-Net [6]. The establishment

of encoder-decoder-based CNNs achieved promising seg-

mentation performance in CV and medical imaging. Nev-

ertheless, U-Net, proposed by Ronneberger et al. [49],

made a significant breakthrough in the MIS task by

incorporating the idea of skip connections between each

symmetric layer of the encoder and decoder. Primarily, the

encoder performs multiple convolutions and pooling

operations to capture various representations of images,

from low to high-level. It decreases the spatial dimensions

of each layer and increases the number of channels. More

high-level feature maps, such as objects and various

shapes, are captured as the architecture goes deeper. On the

contrary, the decoder performs multiple up-sample and

concatenation operations, followed by convolution opera-

tions to predict the segmented mask. It increases the spatial

dimensions while decreasing the channels.

Over the few years, several variants of U-Net followed,

such as U-Net?? [85], MultiResU-Net [29], LadderNet

[87], Attention U-Net [43], R2U-Net [5], DoubleU-Net

[30], CE-Net [22], and KiU-Net [65]. Even though these

methods have improved the feature representation to a

satisfactory level, they are still constrained by a number of

significant drawbacks. Similar scale feature maps with

various receptive fields that are generated from the con-

volution kernel have distinct semantic feature representa-

tions. The dimension of the receptive field in the

convolutional kernel can affect network performance

[2, 58]. Most of the datasets have images where the ROI is

of diverse shapes and sizes, for example, polyps in colo-

noscopy images. When the receptive field is too large,

smaller targets can get disregarded, and on the other side, a

smaller receptive field can capture redundant information.

Hence, processing the image using convolution kernels

with different receptive fields is vital for capturing the

global contextual representation of features [22]. Because

of the substantial loss of spatial information during

encoding, it is usually challenging to reconstruct the details

of low-level feature maps such as edges, dots, corners, and

lines using orthodox de-convolution operations [35]. The

resultant feature maps are sparse, resulting in a reduction in

segmentation performance. Moreover, U-Net and its vari-

ants also suffer from semantic gaps in feature representa-

tions because of longer skip connections present between

the corresponding encoder and decoder. Combining the

two incompatible representations of feature sets of the

encoder and decoder blocks introduces inconsistency in the

architecture’s learning process. In order to reduce the

semantic gaps and loss of spatial information during

encoding and improve the high- and low-level fusion of

semantic information throughout the network, multiple

U-Net-based architectures can be deployed to achieve

state-of-the-art (SOTA) segmentation results [30].

The attention mechanism concentrates solely on the

most informative feature representations for a specific task

without additional supervision, thereby penalizing less

informative regions of the image and avoiding using sim-

ilar feature maps in the network; thus, attention-based

networks have recently been widely employed in MIS

tasks. The channel-based attention mechanism is one of the

most investigated attention mechanisms in literature. It

exploits the inter-channel relations of features and focuses

on desired object selection by actively re-calibrating each

channel’s weight [23]. Hu et al. [28] initially presented the

idea of channel attention and introduced SE-Net architec-

ture. SE-Net utilizes the global average pooling mechanism

to capture the global representations of contextual features.

However, a simple global average pooling mechanism can

fail to extract complex high-level intra-channel feature

representations [20]. The spatial attention mechanism

mainly focuses on relevant spatial regions of informative

features. Nevertheless, integration of only SE-Net’s atten-

tion has been found to be inadequate and sub-optimal in

many MIS tasks [71]. Woo et al. [71] suggested the con-

cept of a convolutional block attention module (CBAM),

which is a sequential combination of these two attention

mechanisms and can bring effective results for many CNN-

based tasks. Oktay et al. [43] introduced a low-cost,

lightweight attention gate mechanism to focus mainly on

the selected ROIs while suppressing feature activations in

non-ROIs. Recently various transfer learning techniques
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have been applied to the task of MIS due to their robustness

and quick convergence mechanism [22, 30, 68]. It allows

the pre-trained weights from one task to be utilized in

different but related tasks.

In this paper, we extend and significantly improve the

SOTA DoubleU-Net [30] architecture and propose a robust

novel architecture that can effectively perform the MIS

tasks of multi-modal domains by modeling global contex-

tual information and high-level multi-scale semantic fea-

ture representations of pixels of varying receptive fields.

EfficientNetB7 [61] architecture is adopted through trans-

fer learning as our backbone encoder module for extracting

effective feature information. We incorporate a novel triple

attention gate (TAG) mechanism in every skip connection

to attend to selective inputs with high relevancy to the

target region. To reduce the semantic gap issues of the skip

connections of U-Net [49], DoubleU-Net [30], and other

similar variants, we incorporate attention-guided residual

(AG-Residual) convolution operations instead of regular

convolutions. We also design a multi-kernel residual con-

volution (MKRC) module to acquire high-level global

contextual features. The MKRC block extracts fine-grained

contextual information of higher levels from images with

various levels of receptive fields such as 1 � 1, 3 � 3,

5 � 5, and 7 � 7. The receptive field of a CNN usually

refers to the size of the kernel. The generated feature maps

from the MKRC block are then passed through the newly

designed squeeze and excitation-based atrous spatial

pyramid pooling (SE-ASPP) module [14] to extract high-

resolution relevant feature maps for effective learning of

the proposed model. In addition, inspired by the CBAM

architecture [71], we also integrate a hybrid triple attention

module (TAM), which performs features refinement

through parallel execution of spatial attention, modified

channel-based attention mechanism, and squeeze and

excitation-based attention to capturing relevant spatial

regions of the higher-level global contextual features and

inter-dependencies among different channels, respectively.

Overall, the main contributions of this work can be

summarized as follows:

• A robust EfficientNetB7 encoder backbone-based seg-

mentation framework, referred to as DoubleU-NetPlus,

is proposed to enhance the semantic segmentation

performance for biomedical images.

• A newly proposed multi-kernel residual convolution

module, which expands the field of view representation

of heterogeneous, semantic global contextual features at

different scales.

• A modified hybrid triple attention module, which

performs an aggregation of spatial and channel-based

attention and squeeze and excitation-based attention,

thus, improves the channel inter-dependencies and

inter-spatial relationships of the high-level feature

maps.

• A novel lightweight triple attention gate module is

integrated at the decoder side of each network to

highlight salient features from the skip connections.

• Embedding of features re-calibration through squeeze

and excitation operation in the attention-based atrous

spatial pyramid pooling mechanism.

• We demonstrate the effectiveness of the proposed

DoubleU-NetPlus architecture on six publicly available

benchmark datasets of different modalities, and com-

parative analysis exhibits that the proposed method

outperformed several SOTA medical image segmenta-

tion methods.

2 Related works

This section provides a brief summary of the research

pertaining to MIS techniques, including context-aware

segmentation, attention-guided segmentation, and stacked

multi-U-Net techniques.

2.1 Context-aware segmentation

Contextual information from multiple levels of a network

plays a significant role in the performance of any CNN-

based MIS model. Xie et al. [76] proposed a context

hierarchical integrated network (CHI-Net), which intro-

duced a dense dilated convolution module for gathering

features from four cascaded branches of hybrid dilated

convolutions. The authors also introduced a stacked

residual pooling module that uses multiple effective fields

of view. Residual dilated convolution was utilized in the

encoder part of the network to capture multi-level hierar-

chical features. Gu et al. [22] used a context encoder net-

work (CE-Net) that utilizes a pre-trained ResNet34 as the

encoder module. The authors integrate a context extractor

module consisting of a dense atrous convolution block and

a residual multi-kernel pooling block. Al-masni and Kim

[4] applied a contextual multi-scale multi-level network

(CMM-Net) by fusing the global contextual features of

different spatial scales in the encoding part of the U-Net.

The authors also used a dilated convolution module that

expanded the receptive field with different rates depending

on feature maps network sizes.

Xiao et al. [75] introduced a deep residual contextual

and sub-pixel convolution network (RC-SPCNet) for the

segmentation of neuronal structure. The encoding section

of the U-Net included residual-convolution blocks along

with summation-based skip connections, and the decoding

section was deployed with sub-pixel convolutional layers.
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Lifted multi-cut was used for optimizing the output for

reconstruction results. Lou et al. [40] introduced an

inverted residual pyramid block and a context-aware fusion

block in a new U-Net architecture. The authors deployed a

multi-level context refinement network (MCRNet) using

these two context refinement blocks into a U-net archi-

tecture in a multi-level manner. In another study, Wu et al.

[72] proposed a new U-Net architecture comprising three

new modules: a scale-aware feature aggregation module,

an adaptive feature fusion, and a multi-level semantic

supervision module.

Recently various transformer-based architectures have

been effectively used in the MIS task too. By modeling

global context-based features effectively, architectures like

Swin-UNet [10], Ds-TransUNet [34], and UNETR [25]

achieved SOTA results on MIS tasks of diverse modalities.

In all of the studies discussed above, the authors tried to

extract multi-scale representations to reduce gaps in

semantics between the encoder and decoder features.

Although, these readjustments in many a case introduced

over-fitting problems [81], which resulted in not so much

significant rise in evaluation metrics.

2.2 Attention-guided segmentation

Over the years, with the successful application of many

computer vision-oriented tasks, various attention mecha-

nisms have been increasingly applied to the field of MIS.

Wang et al. [68] proposed an iterative edge attention net-

work (EANet) where the authors integrated the edge-at-

tention preservation (EAP) module along with a dynamic

scale-aware context module. The authors employ the VGG-

19 [54] pre-trained architecture as the feature encoder. The

EAP module captures edge-related attention information

such as background noise and shape by preserving the low-

level local edge features. The gated convolutional blocks

(GCB) interleaved with some residual blocks in the EAP

module allow the edge stream to solely analyze boundary-

related data.

Zhao et al. [84] proposed an MIS architecture where the

authors apply spatial and squeeze and excitation networks

(SE-Net) to focus mainly on the initial low-level feature

maps and channel inter-dependencies in the high-level

feature maps in the bottleneck part of the network. Wang

et al. [67] incorporate the SE attention mechanism in the

encoder part of the network to adaptively extract the fea-

ture maps and the ASPP module to capture the context-

based semantic information from the extracted feature

maps at multiple scales. SE-Net is also incorporated by Li

et al. [33], where the authors use Res2Net [19] as the

encoder backbone. The extracted features are grouped by

channels, and convolution operations are performed on

each group separately. SE-Net is integrated to learn the

relationship between groups and re-calibrate the channel

weights to focus on the target object.

Gao et al. [18] proposed a multi-scale fused network that

employs two attention mechanisms, additive channel

attention and additive spatial attention in the skip con-

nections, which utilize high-level features to prune the

responses of low-level features in both channel and spatial

dimensions. It improves the learning of the superior spatial

relationship between adjacent pixels and inter-dependen-

cies between channels. Yeung et al. [79] proposed an

attention-gated U-Net architecture that employs a new

attention module named focus gate and combines spatial

and channel-based attention with a focal parameter to

regulate the degree of background suppression. The focus

gate utilizes the gating signal to refine incoming signals

from the encoding network as long-range skip connections,

indicating selected image features and regions included in

the decoding network.

Tomar et al. [63] introduced a new attention-based

mechanism named FANet, which combines the feature

maps from the current training epoch with the prior epoch

mask. The prior epoch mask provides hard attention to the

learned feature maps at different convolutional layers. Han

et al. [24], in their proposed ConvUNeXt architecture,

utilized the ConvNeXt [37] as the encoder backbone along

with the attention gate mechanism in every skip connec-

tion. Tong et al. [64] also utilized the lightweight attention

gate mechanism in the decoder part of the network. The

feature map generated by the attention gate module is

processed by the channel and spatial attention modules in

parallel, whose outputs are combined to produce the final

feature maps.

Though all the aforementioned attention-based methods

achieved reasonable performance in the MIS tasks, they

still face challenges in achieving SOTA segmentation

performance in terms of diverse shapes, intricate textures,

and subjects, especially in the breast ultrasound image and

retinal modalities.

2.3 Stacking/cascading of multiple U-Nets

Another popular method explored by researchers to

improve feature representation of segmentation tasks is to

stack multiple U-Net architectures together in a k-cascad-

ing U-Net format, where k refers to the number of sub-U-

Nets [47, 82]. For example, DoubleU-Net [30], with two

U-Net architectures stacked on top of each other. Ghosh

et al. [21] proposed the idea of incorporating dilated

stacked U-Nets for semantic scene segmentation. In

another work, Ding et al. [16] utilize a series of U-Nets

stacked together for brain tumor segmentation. In addition,

a multi-level nested U-net structure with encoders and

decoders comprised of U-Net structured modules has been
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constructed [47] for salient object detection and segmen-

tation. Furthermore, W-shaped networks have been estab-

lished in recent years. W-Net [74] functions by

concatenating two U-Nets into an autoencoder format, one

for encoding and one for decoding, and achieves satisfac-

tory results in unsupervised image segmentation tasks.

All of the above-mentioned architectures connect two or

more U-Nets together and can therefore extract a separate

group of features using the same set of original features.

However, the challenge is that the same features may be

extracted repeatedly, which can degrade the network’s

efficiency [82].

3 Proposed method

In this section, we describe the architecture of the proposed

segmentation network and the details of the constituent

modules. Firstly, the architecture of the DoubleU-Net [30]

model is briefly described, and then we elaborately

describe the proposed architecture and the incorporated

modules in it. The proposed architecture is demonstrated in

Fig. 1.

3.1 Overview of DoubleU-Net architecture

DoubleU-Net [30] is an encoder–decoder architecture

comprising two U-Net-like networks stacked on top of each

other. There are two encoders and two decoders in the

DoubleU-Net architecture. In the first U-Net architecture,

VGG-19 [54] is incorporated as the backbone of the first

encoder, which is pre-trained on ImageNet [32]. The

decoder of the first U-Net architecture is built by per-

forming the up-sampling of the feature maps, then con-

catenating with the corresponding skip connections, and

lastly, two regular convolution operations of 3 � 3 fol-

lowed by batch normalization, ReLu, and squeeze and

excitation operation. In order to utilize more high-level

semantic information efficiently, the authors placed the

second U-Net at the bottom of the first U-Net. The encoder

of the second U-Net is formed by performing consecutive

convolution and max-pooling operations. The decoder of

the second U-Net is similar to the decoder of the first

U-Net. The results generated by the DoubleU-Net archi-

tecture outperformed several MIS algorithms by a signifi-

cant margin in four benchmark datasets. Despite achieving

significant performances, DoubleU-Net lacks effectiveness

in the skip connections of the network [50], limiting the

precise flow of information throughout the network.

Moreover, it does not fully exploit the high-level feature

maps from varying receptive fields, which can increase the

results further. A further shortcoming of DoubleU-Net is its

outdated VGG-19 encoder backbone, which can be

replaced by a more recently proposed deeper architecture

like EfficientNetB7 [24]. Hence, we select DoubleU-Net as

our basic architecture for further enhancement.

3.2 Overview of the proposed DoubleU-NetPlus
architecture

We performed enhancements in both the networks of the

DoubleU-Net architecture by deploying the EfficientNetB7

architecture as the encoder one backbone for extracting

multi-scale information. In all the skip connections, we

employ a novel triple attention gate (TAG) module to

selectively attend to the significantly relevant features in

the decoder while suppressing irrelevant feature represen-

tations. Compared to high-level feature information, low-

level feature information tends to contribute less to net-

work performance and use a lot of computational resour-

ces, as pointed out by [55, 73]. As demonstrated in Fig. 1,

to capture more effective multi-scale high-level contextual

encoder information and pass it to be decoded by the

decoder in the bottleneck/bridge of each encoder-decoder

network, we design and embed the multi-kernel residual

convolution (MKRC) module, modified squeeze and exci-

tation-based atrous spatial pyramid pooling (SE-ASPP)

module, and triple attention module (TAM) sequentially.

Deeper networks considerably enhance the performance of

the model. However, an increase in the depth of the net-

work might occur in vanishing or exploding gradient

problems [26, 67]. In order to address this issue and reduce

the semantic gaps between the feature representations of

the encoder and decoder, we utilize shortcut connections

between layers in the residual learning paradigm. We have

performed attention-guided residual (AG-Residual) con-

volution operations (see Fig. 2) in the encoder of the sec-

ond network and decoders of both networks. The

motivation behind deploying two multi-contextual atten-

tion-guided residual U-Net architectures is that the output

feature maps of network one are not fully explored [82].

We can enhance it by capturing the unexplored high-level

multi-contextual information from the generated output

feature maps of network one by multiplying it with the

original input image and processing them together again in

the second network to capture more semantic information.

3.3 Encoder and decoder

The encoder portion of a U-Net is responsible for con-

densing the spatial information by each level. While it does

so, the number of inputs halves, and the number of chan-

nels doubles. Consequently, we are left with highly con-

densed feature information that needs to be passed on to be

decoded by the following levels. In our proposed DoubleU-

NetPlus architecture, we utilize the EfficientNetB7 pre-
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trained architecture as the backbone for the encoder of

network one using the transfer learning method, whereas

the encoder in network two is built by performing two

residual convolutions of 3 � 3 followed by spatial and

channel attentions. In the first encoder, we chose the Effi-

cientNetB7 architecture mainly because of its higher

accuracy and increased network depth. The deployment of

EfficientNetB7 as the encoder of the first network gives the

Fig. 1 Composition of the proposed DoubleU-NetPlus architecture
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network effective feature extraction capability that the

decoder of the first network can employ to generate

extremely precise segmentation maps [53]. EfficientNetB7

implements a mobile inverted bottleneck convolution with

an injected SE-Net [28] block, which can attend to relevant

features. By utilizing shortcuts directly between bottle-

necks, which connect a significantly less number of chan-

nels than expansion layers, and depth-wise separable

convolution, which effectively reduces computing cost

compared to traditional layers. It performs more effectively

by uniformly scaling the network’s resolution, depth, and

width, resulting in improved performance. Hence,

deploying an EfficientNetB7 encoder enables us to have a

contracting path that is significantly deeper and can per-

form effective contextual feature extraction of medical

images. Each encoder block of the second encoder executes

AG-residual convolution operations, as illustrated in

Fig. 2. The AG-residual convolution module performs two

3 � 3 convolution operations, each of which is followed by

batch normalization and ReLU. The batch normalization

decreases the internal covariant shift and regularizes the

model [30], while ReLU introduces nonlinearity to the

architecture. A shortcut residual connection is added with a

1 � 1 convolution of the input features to provide an

identity mapping of features, followed by batch normal-

ization and ReLU operations. Features from the 3 � 3

convolution operations and 1 � 1 shortcut connection are

concatenated, followed by another ReLU operation. The

generated feature maps are then passed to the TAM mod-

ule, which performs both spatial and channel-based atten-

tion as well as squeeze and excitation-based attention on

the features to focus more on the relevant feature maps.

Then we perform a max-pooling operation with a 2 � 2

window and stride of 2 � 2 to reduce the spatial dimension

of the feature maps.

As shown in Fig. 1, the architecture has two decoders,

one in each network. Each input feature is passed to the

gating signal module, which captures high-level feature

representations from the immediate lower part of the net-

work. Then, each block in the decoder applies a 2 � 2 up-

sampling of bi-liner interpolation to each input feature,

hence doubling the dimension of the input feature maps.

The generated feature maps are then passed to the attention

gate module, which takes the skip connections, and the

gating signal as inputs and performs additive soft attention

on these two feature maps, and the network learns to attend

to the desired ROI while suppressing feature activation in

irrelevant areas as the training proceeds. Then, we con-

catenate the up-sampled feature maps with the output

feature maps of the attention gates. The concatenated fea-

ture maps are then passed to the AG-residual module for

attention-based convolution operations. Every skip con-

nection in the proposed model passes through the attention

gate. In the first decoder, we only employ attention-gated-

skip connections from the first encoder of network one.

However, in the second decoder, we use attention-gated-

skip connections from both the encoders from networks

one and two. This procedure maintains spatial resolution

and improves the output feature maps’ quality without

focusing on irrelevant regions. Similar to the DoubleU-Net

architecture [30], the final step is applying a convolution

layer with a sigmoid activation function to construct the

mask for the modified U-Net.

3.4 Multi-kernel residual convolution module

One of the challenges in MIS is the larger variation in the

size and shape of an object in the medical image. Hence, to

achieve effective results in the MIS task, extracting high-

level multi-scale contextual features through different

receptive fields is necessary. In our proposed architecture,

we applied an inception architecture [60] inspired multi-

kernel residual convolution (MKRC) module in both of the

bottlenecks of networks one and two, which helps reduce

saturation and degradation in the learning gradient. The

proposed MKRC module is demonstrated in Fig. 3. The

MKRC module expands the field of view representation of

heterogeneous features for more effective and robust

learning of the model. The module consists of multiple

parallel convolution layers with different kernel sizes of

(1 � 1), (3 � 3), (5 � 5), and (7 � 7), respectively.

Increasing the kernel size in the convolution layers enables

Fig. 2 Composition of the attention gated (AG)-residual convolution module
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the networks to extract a more robust feature representation

from multi-scale receptive fields, causing them to modulate

the learning of features differently for each block. The next

step after each convolution layer is a batch normalization

layer and a ReLU activation function. After that, all four

feature maps are concatenated together, which leaves us

with information on every relevant receptive field. Next,

we feed the concatenated feature maps to a (1 � 1) con-

volution followed by batch normalization and ReLU. Next,

we integrate a residual shortcut connection, also known as

identity mapping [27], passed through a (1 � 1) convolu-

tion and batch normalization and perform concatenation

with the previously generated feature maps. An effective

identity mapping through a (1 � 1) convolution in lesser

residual settings can ensure smooth propagation of infor-

mation in a network with reduced overfitting. A ReLU

activation is performed next. The resulting feature maps

are then processed through a modified SE-ASPP module

that expands the field-of-view representation of features to

encompass a broader context.

3.5 Squeeze and excitation-based atrous spatial
pyramid pooling module

Atrous spatial pyramid pooling (ASPP) introduced by Chen

et al. [14] allows us to effectively enlarge the filters’ field

of view to include multi-scale contextual representation of

semantic features by parallel atrous convolution layers with

different dilation rates. It can efficiently mitigate the issue

of reduced spatial resolution resulting from repeated down-

sampling in the encoder [67]. We modify the ASPP module

and propose a new SE-ASPP module by embedding the

squeeze and excitation networks (SE-Net) to the increased

and enlarged field of view of the convolution filters. The

structure of the SE-ASPP module is demonstrated in Fig. 4.

We have utilized a deeper set of dilated convolutions in the

SE-ASPP module in order to capture more robust and

expanded representations of features from the MKRC

module. The dilation rates utilized in the seven parallel

convolution layers of the SE-ASPP module are 1, 1, 2, 6,

10, 13, and 16, respectively. We apply the squeeze and

excitation network to effectively re-calibrate and refine the

acquired features through different dilation rates. All the

feature maps from the SE-Net modules of each branch of

the SE-ASPP network are concatenated together, and a

(1 � 1) convolution operation is performed on the con-

catenated feature maps, followed by batch normalization

and a ReLU activation function. The SE-ASPP module

captures efficient and relevant semantic information at

multi scales. The generated feature maps are then passed to

the hybrid triple attention module (TAM) for further

processing.

Fig. 3 Composition of the multi-kernel residual convolution (MKRC) module

Fig. 4 Composition of the squeeze and excitation-based atrous spatial

pyramid pooling (SE-ASPP) module

14386 Neural Computing and Applications (2023) 35:14379–14401

123



3.6 Hybrid triple attention module

The hybrid triple attention module (TAM) performs

effective attention-based feature refinement and extends

the concepts introduced by CBAM [71] and Focus U-Net

[79]. As shown in Fig. 5, it performs a feature fusion

through parallel processing of squeeze and excitation net-

works [28], modified channel-based attention, and spatial

attention mechanisms. We utilize these attention mecha-

nisms to fully explore the high-level inter-spatial rela-

tionship of relevant features and effective inter-channel

relationships. By adjusting the weight of each channel, SE-

Net offers channel-based attention that can improve the

channel inter-dependencies and can be seen as an object

selection process while suppressing noise. However, SE-

Net performs only global average pooling operations to

perform channel-based attention. Later, CBAM [71]

suggested that these features could be sub-optimal and

suggested using max pooling operations for modeling

improved channel inter-dependencies. As illustrated in

Fig. 5, to achieve effective channel-based attention, we

extend the ideas of CBAM and employ initial global

average pooling and global max pooling operations along

the channel axis, followed by concatenation and sigmoid

activation to generate efficient feature descriptor that helps

to determine where to highlight or suppress along the

channel axis. Through the spatial attention mechanism, the

architecture focuses on the location of high-level feature

maps of the target regions. In conjunction with channel-

based attention, spatial attention module aggregate features

along the channel axis [28, 71, 79]. We utilized the CBAM

implementation of spatial attention by establishing two

distinct channel contexts using average and max pooling

along the channel axis, following spatial re-calibration

Fig. 5 Composition of the triple

attention module (TAM)
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using a kernel of size 7. Similar to modified channel-based

attention, we experimented by incorporating initial global

average pooling and global max pooling operations in the

spatial attention module; however, the performance did not

improve, and hence opted to use the original implementa-

tion of CBAM.

3.7 Triple attention gate module

Having introduced the SE-Net, channel-based attention,

and spatial attention modules in the previous subsection,

we describe the structure of the triple attention gate (TAG)

module. Due to the lightweight design of the attention gate

module, it significantly improves the model’s representa-

tion ability without significantly increasing the computing

cost or the number of model parameters [43]. Here, similar

to the attention gate and focus gate [79] modules, we

introduce a novel triple attention-gated deep neural net-

work named the TAG module, which performs parallel

implementation of channel attention, spatial attention, and

squeeze and excitation-based attention mechanisms into a

single TAG module to encourage selective learning of

efficient, relevant features. The TAG module takes two

inputs, as shown in Fig. 6; one is the gating signal from the

one-step lower levels, which has a better representation of

features such as edges, texture, and dots through training,

and the other is the corresponding skip connection at that

level, having a better representation of the spatial infor-

mation. First, the gating signal and skip connection are

resized to matching dimensions, and then they are com-

bined through element-wise addition followed by nonlinear

activation (ReLu) and create attention coefficients. After

that, the attention coefficients are passed through the

channel, spatial, squeeze, and excitation-based attention

modules and are then concatenated together to produce

effective refinement of the relevant features. Next, we

perform a 2 � 2 up-sampling operation to match the

dimensions from the output of the 1 � 1 convolutions,

followed by sigmoid operations, and 2 � 2 up-sampling

performed on the output of the previously mentioned

nonlinear activation function. The aligned weights get

larger, and the unaligned weights get relatively smaller.

The spatial contextual information of ROIs is captured by

concatenating the original skip connection by the generated

attention coefficients. Hence, the vector gets scaled based

on its relevance.

4 Experimental analysis

4.1 Datasets

This section briefly describes all the utilized datasets in this

study. For the evaluation of the proposed model, we have

utilized six datasets of different modalities, namely BUSI,

CVCclinicDB, Drive, ISBI 2012, 2018 DSB, and LUNA. A

representative image and the corresponding mask from

each of the datasets are shown in Fig. 7.

4.1.1 DRIVE

A diabetic retinopathy screening program in the Nether-

lands provided the data used to create the Digital Retinal

Images for Vessel Extraction (DRIVE) dataset facilitating

retinal vessel segmentation as described in [57]. A Canon

CR5 non-mydriatic 3CCD camera with a 45-degree field of

view (FOV) was used for image acquisition, and there is a

total of 40, 8-bit per color channel images with a resolution

of 768 � 584 pixels.

Fig. 6 Composition of the triple attention gate (TAG) module
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4.1.2 Lung segmentation

Based on the computed tomography (CT) image modality,

lung segmentation from CT images is available in the lung

nodule analysis (LUNA) competition [41]. This dataset

contains 267 2D CT images with full annotations of the

labeled lung images provided by experts in the medical

sector. The size of each image is 512 � 512 pixels.

4.1.3 Breast ultrasound image

Utilizing LOGIQ E9 ultrasound system-guided scanning,

the breast ultrasound image (BUSI) dataset was created

from images collected from 600 females aged between 25

and 75 years old [3]. The dataset contains seven hundred

eighty images with an average image size of 500 � 500

pixels in three distinct categories: benign, normal, and

malignant. The ground truth for each image was generated

using MATLAB.

4.1.4 CVCclinicDB

The CVCclinicDB dataset contains image frames extracted

from colonoscopy videos, using Window Median Depth of

Valley (WM-Dova) methodology as mentioned in [7].

From a collection of twenty-nine video sequences, 612 still

image frames were extracted for polyp detection. Each

image is of the size 384 � 288, while the corresponding

ground truth image is presented as the segmentation mask

of the polyps.

4.1.5 2018 data science bowl

The 2018 data science bowl (DSB) dataset was created as a

challenge for generic segmentation of nuclei of cells in a

diverse set of stained two-dimensional (2D) microscopic

images [9]. The training set contains 670 images from both

bright-stained and fluorescence modalities of microscopic

images with sizes 256 � 256 � 3. In addition to the images

captured under various lighting conditions, corresponding

annotations (segmentation masks) for each image are also

provided to be used as ground truth.

4.1.6 ISBI 2012

The ISBI 2012 dataset, introduced in [11], is comprised of

transmission electron microscopy (TEM) images of Dro-

sophila larval brain for the purpose of analyzing the

structural aspect of neural micro-circuitry. The training

data are comprised of 30 TEM 512 � 512 serial section

images of the first instar larval Dorsophila brain using

TrakEm2 [12] software. The corresponding labels of each

image were produced by an expert neuro-anatomist for the

purpose of segmentation (Table 1).

4.1.7 Preprocessing and data augmentation

In our experiments, we used several augmentation tech-

niques to ensure that over-fitting does not occur for a small

number of samples present in the datasets. To ensure effi-

cient, robust learning of the proposed model in five data-

sets, namely CVCclincDB, 2018 DSB, BUSI, and LUNA,

we employed a total of thirteen data augmentation tech-

niques, including two variations of random rotations, grid

distortion, horizontal and vertical flips, transpose, a com-

position of vertical flip and random rotation, random

brightness, random contrast, random brightness contrast,

random gamma, hue-saturation contrast, and RGB shifting

to increase the image variability during the training pro-

cess. For the DRIVE and ISBI 2012 datasets, we employed

a total of twenty-two data augmentation techniques, that

includes the techniques mentioned above, as well as

CLAHE, FancyPCA, and Gaussian noise injection. It

Fig. 7 Input images and their corresponding segmentation masks in the dataset. Sample images and their masks of DRIVE, LUNA, BUSI,

CVCclinicDB, 2018 DSB and ISBI 2012 can be found in (a, b, c, d, e), and (f), respectively
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should be noted that the original DoubleU-Net architecture

employed a total of twenty-five augmentation types of a

single image mask pair. After the data augmentation pro-

cess, the augmented RGB images were compressed to

256 � 256 to prepare them for fitting into the models. It

should also be noted that the original images were also

resized and incorporated into the training dataset.

4.2 Training setup and experimental metrics

In order to train the models, the augmented dataset was

divided using an 80:10:10 ratio, i.e., 80% of the images

were used for composing the training dataset, 10% for the

testing, and the rest 10% for the validation dataset. We

initialize the pre-trained weights of EfficientNetB7 archi-

tecture, and the batch size was set at 4. The learning rate

starts from 0.0001, and the learning rate is reduced by a

factor of 0.1, with patience of 10. We fed 2D images of size

256 � 256 as input for the proposed network. Our system

was implemented using Tesla P100-PCIE GPU with 16 GB

RAM and a Tensorflow backend. The total number of

trainable parameters of the proposed model is 22.4 million.

We incorporated a hybrid loss function by adding the

binary cross-entropy loss (LossBCE) and Dice loss

(LossDice) [59], offering smooth gradient flow and handling

of the class imbalance problems [8]. The hybrid loss

function can be defined as:

LossHybrid ¼ LossBCE þ LossDice ð1Þ

LossBCE ¼ �
XM

c¼1

yo;c logðpo;cÞ

¼ �ðy logðpÞ þ ð1 � yÞ logð1 � pÞÞ
ð2Þ

The LossBCE specified in Eq. (2) can be defined in terms of

the number of classes M, the natural log, binary indicator (0

or 1) y, class label c the correct classification for obser-

vation o, and p is the predicted probability observation o is

of class c.

LossDice ¼ 1 � 2
PN

i¼1 pigi þ �
PN

i¼1 p
2
i þ

PN
i¼1 g

2
i þ �

ð3Þ

The Dice coefficient between the prediction samples p

and the mask g can be defined as given in Eq. (3). Here, � is

a constant added to avoid the divide by zero error.

4.2.1 Precision and recall

True positive (TP) outcomes are the number of samples

that were correctly classified as the mask, and false posi-

tives (FP) are the number of samples that were falsely

predicted as part of the mask region. On the other hand, the

true negatives (TN) are the number of samples that are

correctly classified as not present inside the mask region,

and the false negatives (FN) are the pixels that are falsely

classified as not present inside the masked region. Thus, we

can now calculate the precision and recall from the con-

fusion matrix as follows:

Precision ¼ TP

TP þ FP
ð4Þ

Recall ¼ TP

TP þ FN
ð5Þ

4.2.2 Dice similarity coefficient

The Dice coefficients, as coined by [15], are used widely

for image segmentation purpose, and it has been used in the

case of both 2D and 3D image segmentation tasks. The

Dice coefficients required for image segmentation can be

constructed from a contingency table [88] of four possible

outcomes as represented in the probabilities of segmenta-

tion results from an image. Dice score can be generalized

using the definitions of true positives (TP), false positives

(FP), and false negatives (FN) as:

DICE ¼ 2TP

2TP þ FP þ FN
ð6Þ

The Dice coefficient measures how much the area of

interest of two images has overlapped. Dice score values

Table 1 Overview of the datasets employed in our experiments

Dataset #Training samples Modality Original shape #Samples after augmentation

DRIVE 20 Retinal 565 � 684 368

LUNA 267 Computed Tomography 512 � 512 2992

BUSI 647 Ultrasound 558 � 462 7080

CVCclinicDB 612 Colonoscopy 384 � 288 6856

2018 DSB 670 Brightfield & Fluorescence 256 � 256 7504

ISBI 2012 30 Electron Microscopy 512 � 512 528
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Table 2 Comparisons of the segmentation result for the proposed and conventional methods in all the employed datasets

Dataset Model Backbone Precision Recall Dice mIoU

DRIVE U-Net [49] – 94.46 88.32 77.19 62.94

U-Net?? [85] – 97.31 90.59 82.24 70.44

Attention UNet [43] – 97.55 92.49 80.51 67.52

MultiResU-Net [29] 97.20 88.12 83.08 71.17

FA-Net [63] – 81.89 82.15 81.83 69.27

ConvUNeXt [24] ConvNeXt – – 82.30 82.60

LCP-Net [44] – 89.69 78.72 – 82.14

Res2UNet [33] – – – 81.86 69.26

LadderNet [87] – – 78.56 82.02 –

DoubleU-Net [30] VGG-19 94.22 91.63 83.22 70.82

IterNet?? [86] – – 83.99 83.13 71.15

Sharp U-Net [89] ResNet-50 – – 82.03 71.43

CE-Net [22] – - 83.09 81.35 68.54

R2U-Net [5] – – – 81.24 68.38

SUD-GAN [78] – 88.21 83.40 – –

DoubleU-NetPlus EfficientNetB7 98.05 96.48 85.17 73.92

LUNA U-Net [49] – 97.42 95.36 95.11 91.30

U-Net?? [85] – 99.29 98.48 94.07 93.61

Attention U-Net [43] – 99.25 96.96 93.60 93.09

MultiResU-Net [29] 99.33 97.63 92.14 90.07

CE-Net [22] – – 98.00 – 96.20

DCU-Net [13] – 97.31 96.99 97.33 96.17

DoubleU-Net [30] VGG-19 95.68 89.20 97.74 95.11

FBUNet [66] – 98.33 98.67 98.50 97.06

EANet [68] VGG-19 98.66 98.77 98.65 –

Sharp U-Net [89] ResNet-50 – 98.77 97.25 95.22

FA-Net [63] – 83.16 84.14 95.44 93.70

Bose et al. [8] – – 97.90 – 97.00

DoubleU-NetPlus EfficientNetB7 99.57 98.82 99.34 98.93

BUSI U-Net [49] – 94.04 84.67 80.44 63.86

U-Net?? [85] – 93.81 85.19 81.29 65.55

Attention U-Net [43] – 91.06 77.31 81.34 68.10

MultiResU-Net [29] – 96.77 85.15 78.76 63.60

FA-Net [63] – 93.10 88.73 90.63 71.95

CE-Net [22] – – – 80.69 67.63

MCRNet [40] ResNet-34 – 81.92 82.31 69.94

RCA-IUnet [46] – 94.01 89.11 91.40 89.95

DoubleU-Net [30] VGG-19 93.11 88.85 89.93 71.49

Sharp U-Net [89] ResNet-50 – 92.42 90.82 74.20

CFPNet [39] – – – 80.92 67.95

GC-Net [77] – 86.5 – 82.10 73.80

DoubleU-NetPlus EfficientNetB7 96.90 92.47 94.30 84.71
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have a range of [0,1]. The higher the Dice score is, the

better segmentation is achieved from the prediction.

4.2.3 Intersection-Over-Union (IoU)

Along with the Dice score, mean intersection-over-union

(mIoU) can be used to calculate the prediction similarity

with ground truth. IoU values have a range of [0,1]. The

higher value of IoU means there is a better similarity

between prediction and ground truth. IoU can be defined in

terms of the common confusion metrics as follows:

IoU ¼ TP

TP þ FP þ FN
ð7Þ

Table 2 (continued)

Dataset Model Backbone Precision Recall Dice mIoU

CVCclinicDB U-Net [49] – 95.21 89.35 88.11 83.52

U-Net?? [85] – 92.11 82.23 87.40 77.27

Attention U-Net [43] – 94.20 92.00 93.88 88.87

MultiResU-Net [29] – 95.96 92.59 94.10 89.96

DoubleU-Net [30] VGG-19 95.92 84.57 92.39 86.11

CRF-EfficientUNet [62] EfficientNetB7 96.83 97.94 95.12 91.85

MSRF-Net [56] – 94.27 95.67 94.20 90.43

Sharp U-Net [89] ResNet-50 – – 90.05 83.98

AMNet [55] Res2Net – – 93.60 88.80

FA-Net [63] – 94.01 93.39 93.55 89.37

Focus U-Net [79] – 93.00 95.60 94.10 89.30

Ds-transunet [34] Transformer 93.69 95.00 93.80 89.10

Swin U-Net [10] Transformer – – 92.30 87.50

Polyp-PVT [17] Transformer – – 93.70 88.90

DoubleU-NetPlus EfficientNetB7 97.96 93.87 96.40 95.12

2018 DSB U-Net [49] ResNet-101 96.84 78.55 92.09 85.60

U-Net?? [85] – 91.99 79.41 85.81 85.52

Attention U-Net [43] – 98.09 80.07 93.21 87.61

MultiResU-Net [29] – 98.45 83.77 87.55 83.51

DoubleU-Net [30] VGG-19 94.96 94.07 92.33 88.07

Sharp U-Net [89] ResNet-50 – – 95.40 89.60

FA-Net [63] – 91.94 92.22 91.76 85.69

MSRF-Net [56] – 90.22 94.02 92.24 85.34

Poudel and Lee [45] EfficientNetB3 – – 90.07 90.97

DoubleU-NetPlus EfficientNetB7 98.82 95.64 95.76 90.29

ISBI 2012 U-Net [49] – 99.53 81.58 94.30 89.38

U-Net?? [85] - 94.61 95.56 93.94 88.60

Attention U-Net [43] – 99.70 82.20 96.80 93.81

MultiResU-Net [29] - 99.72 82.50 96.13 92.90

FBUNet [66] – 93.73 94.19 93.96 88.62

LCP-Net [44] – 89.69 98.95 98.12 82.14

DoubleU-Net [30] VGG-19 95.85 92.36 93.60 89.87

Sharp U-Net [89] ResNet50 – – 93.52 91.21

FA-Net [63] – 95.29 95.68 95.47 91.34

DoubleU-NetPlus EfficientNetB7 99.75 88.62 97.10 94.38

The numbers in bold indicate the best performance of the corresponding indicators

‘‘–’’ denotes that there is no backbone used in the network
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4.3 Evaluation of the segmentation results

This section provides the quantitative and qualitative

analysis result analysis of the proposed DoubleU-NetPlus

method with other SOTA methods.

4.3.1 Quantitative result analysis

Here, we report the quantitative results on six various

modalities of medical image datasets and compare them to

other SOTA approaches to ensure that the proposed model

surpasses the performance or performs at par with other

SOTA methods (on the same train-test split ratio and

similar types of data augmentation methods). It is impor-

tant to note that in order to provide a fair comparison, the

evaluation metrics are provided only for the approaches

that prioritize segmentation performance over computa-

tional efficiency. The performance of the model on all the

utilized datasets is shown in Table 2.

Results on DRIVE A comparison with well-established

segmentation architectures with different backbones

demonstrates that our proposed method outperforms the

SOTA architectures. With a Dice score of 85.17%, mIoU

of 73.92%, precision of 98.05%, and recall of 96.48% (see

Table 2), the DoubleU-NetPlus architecture significantly

surpasses all SOTA architectures on the DRIVE dataset.

While outperforming U-Net and most of its variants, it can

also be observed that DoubleU-NetPlus exceeds the per-

formance of the recently proposed ConvNeXt [37] encoder

backbone-based ConvUNeXt [24] architecture by a Dice

score of 2.87% though ConvUNeXt reports the highest

mIoU value of 82.60%. Compared to FANet [63], the

model achieves an increase of 4.65% in the mIoU metric

with a lesser number of augmented images during training.

Results on LUNA In the LUNA dataset, the DouleU-

NetPlus network achieves SOTA segmentation results of

99.34% on Dice, 98.93% on mIoU, 99.57% on precision,

and 98.82% on recall metrics, respectively (see Table 2).

The results outperform U-Net [49], U-Net?? [85], VGG-

19 encoder-based EANet [68], and ResNet-50 based Sharp

U-Net [89] architectures in the Dice metric by a margin of

4.23%, 5.27%, 0.69%, and 2.09%. DoubleU-NetPlus also

has the best balance on both the precision-recall and Dice-

mIoU pairs.

Results on BUSI In the BUSI dataset, the DoubleU-

NetPlus achieves significantly improved results compared

to all the SOTA architectures. It achieves a precision of

96.90% and a recall of 92.47%. The model achieves a

significantly improved Dice value of 94.30% which is

13.01% and 15.54% better compared to the UNet?? [85],

and MultiResUNet [29] architectures, respectively (see

Table 2). Although the highest mIoU is achieved by RCA-

IUnet [46] with 89.95%, compared to DoubleU-NetPlus’s

84.71%.

Results on CVCclinicDB Table 2 demonstrates that in

the CVCclinicDB dataset, DoubleU-NetPlus produces a

Dice score of 96.40%, mIoU of 95.12%, precision of

97.96%, and a recall value of 93.87% with an improvement

of 4.01% in Dice with respect to SOTA DoubleU-Net

architecture. Our model achieves the best trade-off between

Dice and mIoU metrics compared with the SOTA archi-

tectures resulting in the highest mIoU metric value of

95.12%, surpassing the dual Swin Transformer-based Ds-

transunet [34] model by 6.02% in the mIoU metric.

Results on 2018 DSB DoubleU-NetPlus obtains signifi-

cantly improved precision value of 98.82%, Dice of

95.76%, and mIoU of 90.29% which are much improved

results compared to U-Net [49], U-Net?? [85], and

DoubleU-Net [30] (see Table 2). It also achieves the best

trade-off between Dice-mIoU compared to other SOTA

architectures. Though Sharp U-Net [89] reports the highest

Dice value of 95.40%, in terms of mIou, DoubleU-NetPlus

generates better results. Poudel and Lee [45] report the

highest mIoU of 90.97%; however, DoubleU-NetPlus

outperforms their architecture by 5.69% in the Dice metric.

Results on ISBI 2012 In the ISBI 2012 dataset, Dou-

bleU-NetPlus achieves 99.75% in precision, 88.62% in the

recall, 97.10% in Dice, and 94.38% in mIoU metric, which

are significantly improved results compared to the U-Net

[49], U-Net?? [85], and MultiResU-Net [29] architec-

tures. Especially in the mIoU metric, the proposed model

obtains an increase of 5.00%, 5.78%, 0.57%, and 1.48%

compared to U-Net, U-Net??, Attention U-Net [43], and

MultiResU-Net architectures respectively (see Table 2).

The highest Dice value of 98.12% is reported in LCP-Net

[44].

The results of the DoubleU-NetPlus model show that the

proposed model greatly improves the performance of MIS

tasks in diverse modalities of colonoscopy, fluorescence,

electron microscopy, CT, retinal, and ultrasound.

4.3.2 Qualitative result analysis

The results that were obtained from the experiments on six

datasets of diverse modalities were evaluated critically on

visual qualitative criteria to ensure proper segmentation

performance. Specifically, we illustrate the predictions of

U-Net, U-Net??, Attention U-Net, MultiResU-Net, and

our proposed DoubleU-NetPlus segmentation architectures,

which were also applied in the quantitative comparisons

too. The visual comparisons of the mentioned architectures

with the proposed DoubleU-NetPlus, as demonstrated in

Figs. 8a, b, c, and 9a, b, c, shows that the segmentation

map of the DoubleU-NetPlus network achieves better

semantic segmentation performance in every datasets. On
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Table 3 Ablation experiments that analyze the contributions of the different modules on the utilized datasets

Dataset Model Precision Recall Dice mIoU

(�0:5%) (�0:5%) (�0:5%) (�0:5%)

Drive Baseline 98.42 96.36 97.90 96.64

DoubleU-NetPlus w/o MKRC 97.51 95.81 83.27 71.53

DoubleU-NetPlus w/o TAM 97.53 95.67 83.65 72.12

DoubleU-NetPlus w/o TAG 97.55 96.98 83.71 72.09

DoubleU-NetPlus w/o (TAM & MKRC) 96.52 97.08 82.29 70.00

DoubleU-NetPlus w/o (TAM & MKRC & TAG) 97.19 96.11 82.30 70.24

DoubleU-NetPlus 98.05 96.48 85.17 73.92

LUNA Baseline 98.42 96.36 97.90 96.64

DoubleU-NetPlus w/o MKRC 98.04 98.10 98.40 97.07

DoubleU-NetPlus w/o TAM 98.79 98.19 98.61 97.53

DoubleU-NetPlus w/o TAG 98.83 97.29 98.10 96.90

DoubleU-NetPlus w/o (TAM & MKRC) 98.10 98.25 98.11 96.83

DoubleU-NetPlus w/o (TAM & MKRC & TAG) 97.91 98.05 97.92 96.77

DoubleU-NetPlus 99.57 98.82 99.34 98.93

BUSI Baseline 94.04 84.67 88.47 80.67

DoubleU-NetPlus w/o MKRC 96.11 90.48 93.74 79.32

DoubleU-NetPlus w/o TAM 97.36 91.78 93.84 75.11

DoubleU-NetPlus w/o TAG 95.88 91.71 93.13 82.71

DoubleU-NetPlus w/o (TAM & MKRC) 96.46 91.81 94.01 84.45

DoubleU-NetPlus w/o (TAM & MKRC & TAG) 96.93 92.17 94.20 83.58

DoubleU-NetPlus 96.90 92.47 94.30 84.71

CVCclinicDB Baseline 97.36 91.85 95.07 90.87

DoubleU-NetPlus w/o MKRC 98.92 95.72 97.83 94.51

DoubleU-NetPlus w/o TAM 98.89 96.12 98.05 95.52

DoubleU-NetPlus w/o TAG 98.96 95.72 97.83 94.51

DoubleU-NetPlus w/o (TAM & MKRC) 98.89 95.68 97.78 93.27

DoubleU-NetPlus w/o (TAM & MKRC & TAG) 99.02 95.83 97.97 96.08

DoubleU-NetPlus 97.96 93.87 96.40 95.12

2018 DSB Baseline 96.84 78.55 92.09 85.60

DoubleU-NetPlus w/o MKRC 96.39 83.10 91.32 83.91

DoubleU-NetPlus w/o TAM 99.03 82.67 90.84 90.57

DoubleU-NetPlus w/o TAG 97.58 83.29 89.21 85.73

DoubleU-NetPlus w/o (TAM & MKRC) 96.46 80.63 88.57 82.18

DoubleU-NetPlus w/o (TAM & MKRC & TAG) 94.62 90.29 92.48 86.88

DoubleU-NetPlus 98.82 95.64 95.76 90.29

ISBI 2012 Baseline 99.53 81.58 94.30 89.38

DoubleU-NetPlus w/o MKRC 99.73 82.35 96.99 94.17

DoubleU-NetPlus w/o TAM 99.61 82.31 96.72 93.66

DoubleU-NetPlus w/o TAG 99.69 82.12 96.79 93.79

DoubleU-NetPlus w/o (TAM & MKRC) 99.69 82.04 96.66 93.54

DoubleU-NetPlus w/o (TAM & MKRC & TAG) 99.61 82.27 96.62 93.47

DoubleU-NetPlus 99.75 88.62 97.10 94.38

The numbers in bold indicate the best performance of the corresponding indicators
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Fig. 8 Visual comparative

analysis among different

segmentation methods. First

row (left to right): input image,

ground truth, U-Net output,

U-Net?? output. Second row

(left to right): MultiResU-Net

output, Attention U-Net output,

and results of the DoubleU-

NetPlus network (Mask 1 and 2)

on the LUNA dataset. A similar

pattern is followed in rows three

to six for CVCclinicDB and

ISBI 2012 datasets. Blue, red,

yellow, and green boxes denote

exemplary ROI, unsatisfactory,

moderate, and good results
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Fig. 9 Visual comparative

analysis among different

segmentation methods. First

row (left to right): input image,

ground truth, U-Net output,

U-Net?? output. Second row

(left to right): MultiResU-Net

output, Attention U-Net output,

and results of the DoubleU-

NetPlus network (Mask 1 and 2)

on the DRIVE dataset. A similar

pattern is followed in rows three

to six for BUSI and 2018 DSB

datasets. Blue, red, yellow, and

green boxes denote exemplary

ROI, unsatisfactory, moderate,

and good results
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visual inspection, it is clear that there are several instances

where the proposed network outperforms SOTA architec-

tures such as the U-Net, U-Net??, Attention U-Net, and

MultiResU-Net (Table 3).

4.3.3 Statistical significance test

To statistically investigate the performance of the proposed

DoubleU-NetPlus over other SOTA segmentation methods

on different quantitative metrics, we conduct paired sample

t tests between the Dice and mIoU obtained by DoubleU-

NetPlus and the Dice and mIoU obtained by other methods.

A paired sample t test is often used for comparing two

methods on the same evaluation metric in the MIS domain

[56, 65, 69, 77]. We perform the test on Dice and mIoU

metrics mainly because these two are the most significant

evaluation metrics in semantic image segmentation. It

should be noted that we do not include the precision and

recall metrics in the test because every compared method

does not report these two metrics. A comparison was done

with those methods which utilized all six datasets in their

study or reported in the literature. A p-value less than 0.05

is considered as statistically significant, and the paired-wise

p-values are reported in Table 4. From Table 4, it is clear

that in all seven paired methods, the p-values are smaller

than 0.05 for the Dice and mIoU metrics, which demon-

strates that our proposed method achieved significantly

improved results compared to seven other SOTA models.

4.3.4 Ablation studies

We have performed an extensive ablation study in each of

the employed datasets to empirically verify some of our

incorporated modules in the proposed DoubleU-NetPlus

network. A baseline U-Net was used to benchmark the

performance of various datasets that were used in our

experiments. We investigate the baseline performance of

the U-Net by training it with the same number of aug-

mented images that were used to train the proposed Dou-

bleU-NetPlus model and sequentially assess the

performance with subsequent removal of the individual

MKRC, TAM, and TAG modules. We also investigated by

removing (TAM, MKRC), and (TAM, MKRC, and TAG)

modules combined from the proposed architecture. The

results of module removal on the BUSI and DRIVE dataset

are demonstrated in Table 3. It can be observed that the

EfficientNetB7-based encoder backbone, TAM, MKRC,

and TAG modules contribute significantly to the

improvements in Dice score, mIoU, precision, and recall

metric values.

5 Conclusion

Semantic segmentation of medical images is a key element

in medical image analysis. This paper presents a robust

deep learning-based MIS network named DoubleU-Net-

Plus equipped with several architectural modifications,

mainly the integration of pre-trained EfficientNetB7 as a

feature encoder backbone, a newly proposed multi-kernel

residual convolution module, multi-scale feature re-cali-

brating SE-ASPP module, and a hybrid triple attention

module at the bottleneck of each network. We also inte-

grated attention-driven residual convolutions throughout

the encoder and decoder part of the network. To capture

salient regions with higher precision, we have integrated a

novel triple attention gate module that focuses on the rel-

evant regions and suppresses other irrelevant regions in the

skip connections features. A combination of all these

modules together captures high-level semantic and dis-

criminative feature maps while preserving effective spatial

Table 4 P-values between proposed DoubleU-NetPlus and other

SOTA methods on different evaluation metrics

Pair Dice mIoU

U-Net versus DoubleU-NetPlus 0.0101 0.0091

U-Net?? versus DoubleU-NetPlus 0.0074 0.0231

Att.U-Net versus DoubleU-NetPlus 0.0455 0.0364

MultiResU-Net versus DoubleU-NetPlus 0.0432 0.0451

FANet versus DoubleU-NetPlus 0.0003 0.0078

DoubleU-Net versus DoubleU-NetPlus 0.0010 0.0185

Sharp U-Net versus DoubleU-NetPlus 0.0114 0.0326
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information. Experimental results evaluated on six bench-

mark datasets of different modalities demonstrate the pro-

posed model’s superiority over SOTA segmentation

methods in MIS tasks. We believe that DoubleU-NetPlus is

a generic segmentation model and can be applied to similar

2D MIS tasks. One of the challenges in this architecture is

its high number of trainable parameters. We plan to reduce

the number of parameters and computational complexity in

the future. We also plan to adjust the design of the network

to make it adaptable in the 3D image domain.
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