
000 001 002 003 004 005 LEARNING TO RECOVER TASK EXPERTS FROM A 006 MULTI-TASK MERGED MODEL 007 008 009

010 **Anonymous authors**
011
012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Multi-task model merging aims to merge several task-specific models (or experts)
028 into a unified multi-task model. However, model merging often results in perfor-
029 mance degradation due to parameter interference between experts. While several
030 recent works have focused on improving the merging process to mitigate the pa-
031 rameter interference, there still exists the performance gap between merged mod-
032 els and task experts. In this work, we take a different perspective: we aim to
033 recover a task expert from a merged model, instead of trying to improve the merg-
034 ing process. We first note that the parameter interference arises, as a merging pro-
035 cess introduces offsets to expert model parameters. Thus, we propose to learn to
036 **Recover a Task eXpert (RETEX)** model, by undoing this offset. Specifically, we
037 train a lightweight linear module to predict the offset to recover a task expert for a
038 given input. Experiments demonstrate that RETEX significantly outperforms ex-
039 isting model merging methods across computer vision domains and NLP domains
040 with models of various scales, recovering more than 99% of individual expert per-
041 formance even when scaling to 30 tasks. Furthermore, RETEX can be applied to
042 several existing merging models, demonstrating its flexibility and applicability.
043

044 1 INTRODUCTION 045

046 Ever since the advent of foundation models (Achiam et al., 2023; Saab et al., 2024; Ding et al.,
047 2023) pre-trained on large-scale data, deep learning models have displayed striking success across
048 various domains, through fine-tuning such large-scale pre-trained models on each task. However,
049 the use of such task-specific models that are trained and stored independently raises a question: if
050 they all share the same structure and same initialization (i.e., a pre-trained foundation model), can
051 we integrate the knowledge from task-specific models into a single model?

052 Multi-task model merging (Ilharco et al., 2023; Yadav et al., 2023; Yang et al., 2024) has emerged
053 as a promising solution. Multi-task model merging aims to integrate knowledge from various task
054 experts through weighted summation of parameters of task experts, weighted by task coefficients that
055 encode the importance of each parameter for each task. Early works have mainly focused on merging
056 existing fine-tuned models into a single merged model, obtained via the weighted summation of the
057 parameters with fixed universal task coefficients (Ilharco et al., 2023; Jin et al., 2023a;b; Matena,
058 2022; Yadav et al., 2023; Yang et al., 2024; Tang et al., 2023). However, these merging methods
059 have struggled to find a single merged model that could perform as well on all tasks as corresponding
060 task experts.

061 In light of the challenge, recent multi-task model merging methods have tried to dynamically find
062 better merging coefficients for each input task during inference (Oh et al., 2025; Tang et al., 2024;
063 Lu et al., 2024; Muqeeth et al., 2023). This input-adaptive merging scheme has led to substan-
064 tial performance improvement, however with an increased memory overhead. These approaches
065 methods require all task-specific model parameters or components in memory during inference, as a
066 merged model is formed on the fly by combining task experts with input-adaptive coefficients. Yet,
067 these merged models are still formed via merging that inherently introduces parameter interference,
068 underperforming compared to task-specific experts on their respective tasks.

069 In this work, instead of trying to improve a merging process, we approach the problem from a
070 different perspective: we aim to **Recover Task eXperts** from a merged model. From the perspective
071 of task experts, a merging process inevitably introduces parameter interference, as parameter offsets
072

054 are introduced from other task experts during model merging. Thus, our key insight is that each
055 expert model can be recovered from a merged model, if we can *undo* the offset introduced by a
056 merging process. Building on this insight, we train a lightweight linear layer that learns to find the
057 offset for each input. We use this offset to recover a task expert from a merged model.

058 We note that RETEX can be applied to both scenarios, when task distribution is known for each
059 input (task-known scenarios, which is the standard multi-task model merging setting (Yadav et al.,
060 2023; Ilharco et al., 2023; Huang et al., 2024)) or unknown for each input. For task-known scenarios,
061 the offset prediction module in RETEX simply employs the task identity of each input. For task-
062 unknown scenarios, RETEX employs an independently trained task-id router and uses the output of
063 the router to estimate task identity.

064 We further note that the training of the offset prediction module in RETEX does not require training
065 data nor test samples. Since the offset prediction just needs to learn the parameter offset from
066 merged parameters to task-expert models for any given task identity, we can just randomly sample
067 task identity. Then, for each sampled task identity, the corresponding task expert parameters will be
068 used as ground-truth during the training of RETEX. Once the training of RETEX is finished, existing
069 task expert models are no longer required during inference. This enables post-hoc deployment over
070 existing task-specific models.

071 Through extensive experiments with several merged models and backbones of varying scale across
072 both computer vision and natural language processing tasks, we demonstrate the efficacy, efficiency,
073 and flexibility of RETEX. Particularly, RETEX recovers over 99% of individual-expert performance
074 even when scaling to 30 tasks, without incurring large inference-time memory overhead compared
075 to previous works.

078 2 RELATED WORKS

081 Multi-task model merging consolidates multiple fine-tuned models, often from a common pre-
082 trained foundation, into a single network without retraining, aiming for efficient multi-task capability
083 and reduced deployment overhead. Early approaches involved direct weight averaging (Utans, 1996;
084 Shoemaker, 1985; Ilharco et al., 2022), which often suffered from performance degradation due to
085 task interference. More sophisticated static methods like Fisher-Merging (Matena, 2022) used pa-
086 rameter importance (via Fisher Information) for weighted combinations, while RegMean (Jin et al.,
087 2023b) explored principled averaging with regularization, though task interference remained a key
088 challenge. Task Arithmetic (Ilharco et al., 2023) offered a conceptual shift by introducing task vec-
089 tors (parameter difference from a base model), allowing arithmetic combination of these compact
090 representations. This spurred methods like TIES-Merging (Yadav et al., 2023), which manipulates
091 task vectors (e.g., sparsification, sign resolution) to mitigate interference, and TALL-Mask (Wang
092 et al., 2024b), which identifies salient task-specific parameters within a merged model by analyzing
093 parameter differences to create task masks.

094 Building on task vector concepts (Ilharco et al., 2023), many studies reduce parameter interference
095 by enforcing sparsity or operating in compact parameter regions (Deep et al., 2024; He et al., 2024;
096 Wang et al., 2024b; Davari & Belilovsky, 2024; Zhu et al., 2024; Kong et al., 2024). DARE (Yu
097 et al., 2024) drops low-magnitude updates and rescales salient weights, while AdaMerging (Yang
098 et al., 2024) optimizes coefficients at model or layer granularity via test-time adaptation on eval-
099 uation data. EMR-Merging (Huang et al., 2024) maintains a shared backbone together with sparse,
100 task-specific components by selecting dominant parameter values across tasks. However, several
101 of these approaches require task-dependent hyperparameter tuning (e.g., TIES (Yadav et al., 2023),
102 TALL-Mask (Wang et al., 2024b)) or swapping task-conditioned modules at inference (e.g., EMR-
103 Merging (Huang et al., 2024)), which presupposes access to task identity and increases management
104 overhead as the number of tasks grows.

104 A complementary line of work adjusts combining coefficients or activates specialized branches at
105 inference based on the input (Kang et al., 2024; Li et al., 2023; Muqeeth et al., 2023; Lu et al.,
106 2024; Tang et al., 2024; Oh et al., 2025). Examples include learned routers that mix expert sub-
107 networks (Muqeeth et al., 2023; Lu et al., 2024) and schemes that compute coefficients from uncertainty
or entropy without extra training signals (Oh et al., 2025). These techniques often achieve strong ac-

108 curacy, but they typically keep multiple expert checkpoints, masks, or routing modules available at
109 run time and may require additional forward passes per sample, increasing memory use and latency.
110

111 By contrast, instead of trying to find better merging coefficients, we take a different approach: aiming
112 to recover a task expert from a merged model. Upon our insight that merging process undermines
113 the performance due to offsets introduced to task expert parameters, our method RETEX delivers
114 task-expert-level performance by learning to *removing* such offset.

115 3 BACKGROUND

116 **Problem setting.** Given a pre-trained model $f : \mathcal{X} \times \Theta \rightarrow \mathcal{Y}$ with parameters $\theta_0 \in \Theta$, we assume
117 there are task-specific models, fine-tuned from the pre-trained model f to each downstream task
118 $t \in \{1, \dots, T\}$. In other words, we assume there are T task-specific models $\{f_{\theta_t}\}_{t=1}^T$, each with
119 parameters θ_t obtained by fine-tuning the pre-trained model on the corresponding dataset
120 $\mathcal{D}^{(t)} = \{(\mathbf{x}_i^{(t)}, y_i^{(t)})\}_{i=1}^{N_t}$, where $\mathbf{x}_i^{(t)} \in \mathcal{X}^{(t)} \subseteq \mathcal{X}$ is an input with a corresponding label
121 $y_i^{(t)} \in \mathcal{Y}^{(t)} \subseteq \mathcal{Y}$. The goal of multi-task model merging (Matena, 2022; Jin et al., 2023b) is to find the task coefficients
122 $\{\alpha_t\}_{t=1}^T$ that would result in a merged model $\theta_{\text{merged}} = \sum_{t=1}^T \alpha_t \theta_t$ that can perform as well as each
123 task-specific model on the respective task. Then, the merged model will perform prediction for each
124 new input data \mathbf{x} , which can come from any task t . Under standard settings (Yadav et al., 2023;
125 Ilharco et al., 2023; Huang et al., 2024), the task identity t of \mathbf{x} is assumed to be known (hence,
126 task-known scenarios). Otherwise, under task-unknown scenario, the task identity t is unknown. In
127 this work, we tackle both scenarios.
128

129 **Task arithmetic.** To better facilitate the knowledge manipulation, Task Arithmetic (Ilharco et al.,
130 2023) has introduced the concept of task vector. For each task-specific model f_{θ_t} , task vector τ_t is
131 obtained by subtracting the pre-trained model parameters θ_0 from task-specific model parameters
132 θ_t . Hence, task vector τ_t is a vector pointing towards θ_t from θ_0 , representing the task-specific
133 knowledge for task t . Leveraging the task vector concept, subsequent works (Yadav et al., 2023;
134 Wang et al., 2024b) have formulated the model merging process as
135

$$\theta_{\text{merge}} = \theta_0 + \sum_{t=1}^T \lambda_t \tau_t, \quad (1)$$

136 where λ_t represents task coefficients under task arithmetic scheme.
137

138 4 LEARNING TO RECOVER TASK EXPERTS

139 Previous merging methods have attempted to find merging coefficients that would provide better
140 performance on each task. As such, recent works (Oh et al., 2025; Tang et al., 2024; Lu et al., 2024;
141 Muqeeth et al., 2023) have tried to find input-adaptive merging coefficients for each input during
142 inference. The input-adaptive merging process has lead to performance improvement, however at
143 the cost of memory usage. Yet, there still exists the performance gap between merged models and
144 the task experts.
145

146 We believe that the reason for the persisting gap is that merged model parameters are the shifted ver-
147 sion of task expert parameters due to parameter offsets introduced during a merging process. Thus,
148 in this work, we take a different perspective: instead of further optimizing a merging rule, we undo
149 the interference of a given merged model by recovering each expert directly from it. Concretely, we
150 posit that each task expert can be written as the merged parameters plus a task-specific offset
151

$$\theta_t = \theta_{\text{merge}} + \beta_t, \quad (2)$$

152 where β_t is the offset that corrects the deviation of θ_{merge} from the true expert θ_t . This offset
153 view is a direct way to model (and remove) the interference introduced during merging; we provide
154 justification and derivations for adopting the offset form in Appendix A.
155

156 The overall framework is illustrated in Figure 1-(a): given a predicted task ID, RETEX recovers the
157 corresponding task expert from the merged parameters θ_{merge} by estimating β_t . During inference,
158 we first determine the task ID for an input \mathbf{x} (Section 4.2). As shown in Figure 1-(b), RETEX
159 then generates a task-conditioned offset and adds it to θ_{merge} to recover the expert parameters (Sec-
160 tion 4.1).
161

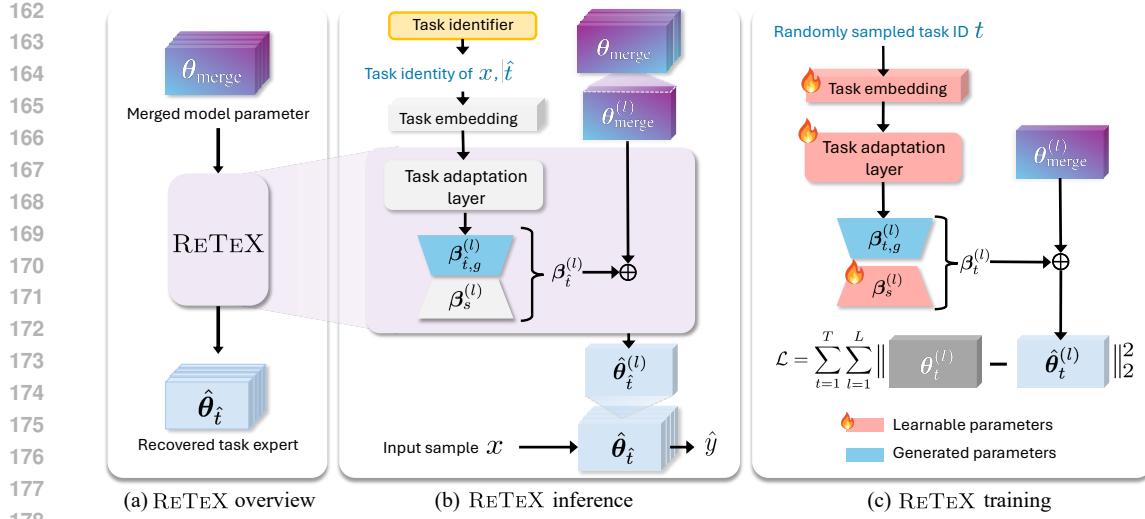


Figure 1: **Overview of our proposed RETEX framework.** (a) RETEX overview: For given merged model parameters θ_{merge} , RETEX recovers the task expert $\hat{\theta}_t$. (b) RETEX inference: An input x obtains its task ID from the task identifier, which is then mapped to a task embedding and fed to a lightweight task adaptation layer. For each layer l , the adaptation layer generates the low-rank factor $\beta_{t,g}^{(l)}$, which combines with a shared learnable low-rank matrix $\beta_s^{(l)}$ to form the layer offset $\beta_t^{(l)} = \beta_{t,g}^{(l)} \beta_s^{(l)}$. Adding these offsets to θ_{merge} yields the recovered task expert $\hat{\theta}_t$. (c) RETEX training: A randomly sampled task ID t is embedded and fed to a lightweight task adaptation layer. The learnable parameters are the task embedding, the adaptation layer weights, and $\beta_s^{(l)}$, while the adaptation layer generates $\beta_{t,g}^{(l)}$. $\beta_{t,g}^{(l)}$ and $\beta_s^{(l)}$ are combined with θ_{merge} to recover the task expert parameters $\hat{\theta}_t^{(l)}$. Training proceeds by minimizing the difference between the recovered parameters $\hat{\theta}_t^{(l)}$ and the target parameters $\theta_t^{(l)}$.

4.1 TASK-EXPERT RECOVERY

Task embedding. To generate the task-conditioned offsets β_t , we represent each task t with a learnable embedding $e_t \in \mathbb{R}^{d_{\text{emb}}}$, which captures task identity and conditions the offset generator.

Layer-wise offset generation. Motivated by layer-wise merging schemes (Yang et al., 2024) and efficiency, we parameterize the offset at each layer l in a low-rank form. Let $\theta_{\text{merge}} \in \mathbb{R}^{a \times b}$ denote the merged parameters and choose a rank $r < \min(a, b)$. Conditioned on the task embedding e_t , a lightweight adaptation module $h^{(l)}$ produces a task-conditioned factor $\beta_{t,g}^{(l)} \in \mathbb{R}^{a \times r}$. This is multiplied by a shared learnable factor $\beta_s^{(l)} \in \mathbb{R}^{r \times b}$ (initialized at zero and shared across tasks) to form the layer offset:

$$\beta_t^{(l)} = \beta_{t,g}^{(l)} \beta_s^{(l)}. \quad (3)$$

The recovered expert parameters at layer l are then

$$\hat{\theta}_t^{(l)} = \theta_{\text{merge}} + \beta_t^{(l)}. \quad (4)$$

Stacking layers yields $\hat{\theta}_t = \theta_{\text{merge}} + \beta_t$ as in Equation 2. This design keeps generation lightweight (only $\beta_{t,g}^{(l)}$) while amortizing capacity through the shared $\beta_s^{(l)}$.

Training objective. RETEX does not require training or test inputs. We train the offset generator using only task IDs: sample a task t , form $\hat{\theta}_t^{(l)}$ by Equation 3–Equation 4, and minimize the L2 distance to the ground-truth expert parameters:

$$\mathcal{L} = \sum_{t=1}^T \sum_{l=1}^L \|\hat{\theta}_t^{(l)} - \theta_t^{(l)}\|_2^2. \quad (5)$$

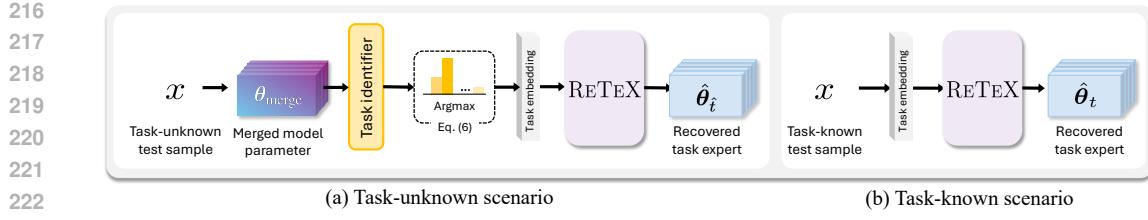


Figure 2: **Routing for task ID in RETEX.** RETEX inference with (a) *Task-unknown scenario* and (b) *Task-known scenario* inputs. When the task identity is unknown, a lightweight router predicts the task ID, which is then embedded and used in RETEX to recover the corresponding task expert. If the task identity is known, the given ID is directly used in RETEX to recover the expert.

After training, task experts $\{\theta_t\}$ are no longer needed at inference; RETEX recovers experts on-the-fly from θ_{merge} using the predicted task ID and the lightweight generators.

4.2 TASK CLASSIFICATION

To determine which task expert to recover for a task-unknown input x , we first infer its task ID $\hat{t} \in \{1, \dots, T\}$ with a lightweight router \mathcal{R}_ϕ . As illustrated in Figure 2-(a), the input x is forwarded through the merged model θ_{merge} to obtain a final embedding $\theta_{\text{merge}}(x)$, which the router maps to logits over T tasks; the predicted task ID is

$$\hat{t} = \arg \max_{t \in \{1, \dots, T\}} [\mathcal{R}_\phi(\theta_{\text{merge}}(x))]_t. \quad (6)$$

We train \mathcal{R}_ϕ with cross-entropy on task indices using a small, balanced calibration set, adding negligible overhead. When the task identity is known at inference, we skip the router entirely (Figure 2-(b)) and directly use the given task ID to retrieve the corresponding task embedding and generate the offsets in Section 4.1. In both cases, the (predicted or provided) task ID conditions the offset generator to recover the appropriate task expert from θ_{merge} .

5 EXPERIMENTS

In this section, we first study efficiency improvements of RETEX, and then evaluate its multi-task merging performance under two inference scenarios: *task-known* and *task-unknown*. In the *task-known* scenario (task identity available at inference), which is a standard multi-task model merging setting, we compare with methods that construct a merged model conditioned on a given task: Task Arithmetic (Ilharco et al., 2023), TIES-Merging (Yadav et al., 2023), and EMR-Merging (Huang et al., 2024). In the *task-unknown* scenario (task identity not given), we compare with methods that operate without task identity: Weight Averaging, Twin-Merging (Lu et al., 2024), and DaWin (Oh et al., 2025). RETEX supports both settings; when task identity is unknown, we predict it with the lightweight router (Sec. 4.2) and recover the corresponding expert, whereas when task identity is known, we directly recover the specified expert.

Training setup. Unless specified otherwise, the base merged model θ_{merge} upon which RETEX operates is constructed using simple Weight Averaging of the task-specific expert models; this choice is made to demonstrate the capability of RETEX to recover task experts even from a minimally complex, conventionally defined merged model. We train RETEX for 5000 iterations. The optimization is performed using the Adam optimizer (Kingma, 2015) with an initial learning rate of 2×10^{-4} . The learning rate schedule follows a cosine annealing approach, incorporating 600 warm-up steps. The objective function for training RETEX is the L2 loss between the reconstructed layer parameters $\hat{\theta}_t^{(l)}$ and the task expert layer parameters $\theta_t^{(l)}$, as defined in Equation 5, summed over all tasks and layers.

270
271 **Table 1: Multi-task performance of merged models across different CLIP backbones and num-**
272 **bers of tasks.** Values in parentheses (.) indicate normalized accuracy (merged / individual). All
273 methods are evaluated on 8, 14, and 20 computer vision tasks.

Method	ViT-B/32			ViT-B/16			ViT-L/14		
	8 tasks	14 tasks	20 tasks	8 tasks	14 tasks	20 tasks	8 tasks	14 tasks	20 tasks
Zero-shot	48.3	57.2	56.1	55.3	61.3	59.7	64.7	68.2	65.2
Individual	92.9	90.9	91.4	94.7	92.8	92.8	95.9	94.3	94.8
<i>(Task-known scenarios)</i>									
Task Arithmetic (Ilharco et al., 2023)	70.8 _(76.5)	65.3 _(72.1)	60.5 _(66.8)	75.4 _(79.6)	70.5 _(75.9)	65.8 _(70.8)	84.9	79.4 _(84.0)	74.0 _(78.1)
TIES (Yadav et al., 2023)	75.1 _(81.0)	68.0 _(74.8)	63.4 _(69.9)	79.7 _(84.3)	73.2 _(78.7)	68.2 _(73.3)	86.9 _(90.7)	79.5 _(84.1)	75.7 _(79.8)
Consensus TA (Wang et al., 2024b)	75.0 _(80.8)	70.4 _(77.4)	65.4 _(72.0)	79.4 _(83.9)	74.4 _(79.9)	69.8 _(74.9)	86.3 _(90.1)	82.2 _(86.9)	79.0 _(83.2)
EMR-Merging (Huang et al., 2024)	91.3 _(97.8)	87.6 _(96.3)	87.4 _(95.6)	93.3 _(98.5)	90.5 _(97.6)	90.2 _(97.2)	95.2 _(99.3)	92.7 _(98.3)	92.8 _(97.9)
RETEX (Ours)	92.6 _(99.7)	90.6 _(99.6)	91.1 _(99.7)	94.4 _(99.7)	92.5 _(99.7)	92.9 _(99.6)	95.6 _(99.7)	93.9 _(99.6)	94.6 _(99.8)
<i>(Task-unknown scenarios)</i>									
Weight Averaging	66.3 _(72.1)	64.3 _(71.1)	61.0 _(67.5)	72.2 _(76.6)	69.5 _(74.8)	65.3 _(70.4)	79.6 _(83.2)	76.7 _(81.1)	71.6 _(75.6)
Twin-Merging (Lu et al., 2024)	84.0 _(90.3)	70.0 _(76.7)	57.5 _(61.8)	91.4 _(96.2)	78.4 _(83.9)	63.1 _(67.0)	93.7 _(97.7)	86.2 _(91.2)	74.8 _(78.6)
DaWin (Oh et al., 2025)	89.0 _(95.3)	73.8 _(80.3)	52.8 _(57.7)	87.1 _(91.9)	77.8 _(83.5)	62.8 _(67.3)	91.6 _(95.5)	82.6 _(87.2)	77.5 _(81.8)
RETEX (Ours)	92.0 _(99.1)	89.8 _(98.8)	89.4 _(97.9)	94.0 _(99.2)	91.9 _(99.1)	91.3 _(98.0)	95.2 _(99.4)	93.5 _(99.2)	93.1 _(98.3)

281
282 **5.1 VISION TASKS**

283 **5.1.1 MERGING 8, 14, AND 20 VISION TASKS**

284
285 **Setting.** For evaluating RETEX on varying scale vision tasks, we follow the setting of TALL-
286 Mask (Wang et al., 2024b). We fine-tune a separate model for each dataset on three CLIP (Radford
287 et al., 2021) backbones (ViT-B/32, ViT-B/16, and ViT-L/14) and then evaluate the multi-task merged
288 model. The 8-task configuration comprises (a) SUN397 (Xiao et al., 2016), (b) Cars (Krause et al.,
289 2013), (c) RESISC45 (Cheng et al., 2017), (d) EuroSAT (Helber et al., 2019), (e) SVHN (Netzer
290 et al., 2011), (f) GTSRB (Stallkamp et al., 2011), (g) MNIST (Deng, 2012), and (h) DTD (Cim-
291 poi et al., 2014). The 14-task setting extends this list with (i) CIFAR100 (Krizhevsky et al., 2009),
292 (j) STL10 (Coates et al., 2011), (k) Flowers102 (Nilsback & Zisserman, 2008), (l) Oxford-IIIT-
293 Pet (Parkhi et al., 2012), (m) PCAM (Veeling et al., 2018), and (n) FER2013 (Goodfellow et al.,
294 2013). The 20-task setting further adds (o) EMNIST (Cohen et al., 2017), (p) CIFAR10 (Krizhevsky
295 et al., 2009), (q) Food101 (Bossard et al., 2014), (r) FashionMNIST (Xiao et al., 2017), (s) Ren-
296 deredSST2 (Socher et al., 2013), and (t) KMNIST (Clanuwat et al., 2018). Accuracy is reported as
297 the evaluation metric for all datasets.

302
303 **Results.** Table 1 shows that RETEX achieves the best accuracy on all three CLIP backbones and
304 for 8/14/20 tasks in both settings (task-known and task-unknown). Compared to strong task-known
305 baselines such as EMR-Merging, RETEX yields consistent gains, and in the harder task-unknown
306 setting it substantially surpasses Twin-Merging and DaWin across every backbone. Accuracy re-
307 mains stable as the number of tasks increases: RETEX recovers at least 99.6% of individual-expert
308 performance even at 20 tasks on every backbone. These results indicate that RETEX reliably recon-
309 structs high-fidelity task experts from a single merged model while scaling to larger, more diverse
310 task suites.

311 **5.1.2 MERGING 30 VISION TASKS**

312
313 **Setting.** To further assess scalability, we extend the ViT-B/32 evaluation to a challenging 30-task
314 suite by augmenting the 20-task configuration (Section 5.1.1) with ten additional datasets: Vegetables
315 (Ahmed et al., 2021), Kvasir-v2 (Pogorelov et al., 2017), Intel Images (Bansal, 2019),
316 Weather (Xiao et al., 2021), Cats and dogs (Cukierski), MangoLeafBD (Ahmed et al., 2023),
317 Beans (Lab, 2020), Landscape Recognition (DeepNets), Garbage Classification (CCHANG, 2018),
318 and Fruits-360 (Muresan & Oltean, 2018). Following Task Arithmetic (Ilharco et al., 2023), each
319 task-specific CLIP model (Radford et al., 2021) is fine-tuned for 2000 iterations with batch size 128
320 using AdamW (Loshchilov & Hutter, 2019; Kingma, 2015) (learning rate 1×10^{-5} , weight decay
0.1) and a cosine schedule with 200 warm-up steps.

321
322 **Results.** Table 2 shows that static baselines deteriorate as tasks increase (e.g., Weight Averaging
323 reaches 59.1% with 64.2% normalized accuracy at 30 tasks), and input-dependent methods also drop
(Twin-Merging to 60.1%, DaWin to 40.3%). In contrast, RETEX remains stable: in task-known it

324 **Table 2: Multi-task performance on ViT-B/32 across different numbers of vision tasks.** Values
 325 in parentheses (.) indicate normalized accuracy (merged / individual). All evaluations use the ViT-
 326 B/32 backbone.

Method	8 tasks	14 tasks	20 tasks	30 tasks
Zero-shot	48.3	57.2	56.1	55.5
Individual	92.9	90.9	91.4	93.1
(Task-known scenarios)				
Task Arithmetic (Ilharco et al., 2023)	70.8 _(76.5)	65.3 _(72.1)	60.5 _(66.8)	58.0 _(62.8)
TIES (Yadav et al., 2023)	75.1 _(81.0)	68.0 _(74.8)	63.4 _(69.9)	60.1 _(65.2)
Consensus TA (Wang et al., 2024b)	75.0 _(80.8)	70.4 _(77.4)	65.4 _(72.0)	63.4 _(68.5)
EMR-Merging (Huang et al., 2024)	91.3 _(97.8)	87.6 _(96.3)	87.4 _(95.6)	90.5 _(97.0)
RETEX (Ours)	92.6 _(99.7)	90.6 _(99.6)	91.1 _(99.7)	92.9 _(99.7)
(Task-unknown scenarios)				
Weight Averaging	66.3 _(72.1)	64.3 _(71.1)	61.0 _(67.5)	59.1 _(64.2)
Twin-Merging (Lu et al., 2024)	84.0 _(90.3)	70.0 _(76.7)	57.5 _(61.8)	60.1 _(65.2)
DaWin (Oh et al., 2025)	89.0 _(95.3)	73.8 _(80.3)	52.8 _(57.7)	40.3 _(42.9)
RETEX (Ours)	92.0 _(99.1)	89.8 _(98.8)	89.4 _(97.9)	92.3 _(99.1)

339 **Table 3: Multi-task performance of merged RoBERTa-based models on eight GLUE datasets.**
 340 Bold values indicate the best performance among merging methods (excluding the individual ex-
 341 perts).

Method	Single-Sentence		Similarity & Paraphrase			Inference			Avg.
	CoLA	SST2	MRPC	STS-B	QQP	MNLI	QNLI	RTE	
Individual	0.6018	0.9404	0.8922	0.9063	0.9141	0.8720	0.9271	0.7906	0.8556
(Task-known scenarios)									
Task Arithmetic (Ilharco et al., 2023)	0.1878	0.8589	0.7990	0.7403	0.8378	0.5908	0.6967	0.6209	0.6665
TIES (Yadav et al., 2023)	0.2048	0.8440	0.8113	0.5819	0.8570	0.6465	0.7481	0.4296	0.6404
EMR-Merging (Huang et al., 2024)	0.3996	0.9335	0.8627	0.8277	0.8972	0.8545	0.8957	0.7437	0.8018
RETEX (Ours)	0.5919	0.9433	0.8880	0.8676	0.9117	0.8732	0.9248	0.7617	0.8453
(Task-unknown scenarios)									
Weight Averaging	0.1396	0.6411	0.6936	0.3184	0.7536	0.4219	0.5870	0.5523	0.5134
Twin-Merging (Lu et al., 2024)	0.6040	0.9410	0.8720	0.8640	0.9080	0.8190	0.9050	0.7740	0.8130
DaWin (Oh et al., 2025)	0.2447	0.9141	0.8566	0.6753	0.8671	0.8364	0.7968	0.6663	0.7322
RETEX (Ours)	0.5829	0.9449	0.8823	0.6984	0.9075	0.8179	0.9167	0.7653	0.8145

354 attains **92.9%** (**99.7%** normalized), and in task-unknown it reaches **92.3%** (**99.1%** normalized),
 355 closely matching its 8/14/20-task behavior.

357 5.2 NLP TASKS

359 **Setting.** For evaluating RETEX on NLP tasks our experimental setup aligns with established pro-
 360 tocols from recent model merging studies. We utilize the RoBERTa(Liu et al., 2019) as the common
 361 pre-trained backbone from which individual task models are fine-tuned. Performance is assessed
 362 across eight diverse NLP benchmarks, consistent with prior work: SST-2 (Socher et al., 2013),
 363 MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017), QQP (Iyer et al., 2017), MNLI (Williams
 364 et al., 2017), QNLI (Rajpurkar et al., 2016), and RTE (Giampiccolo et al., 2007).

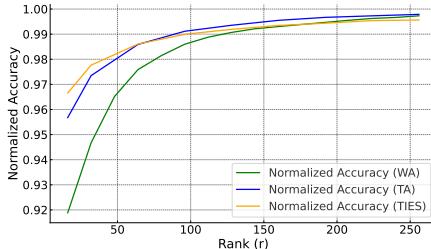
365 **Results.** To further validate the versatility of RETEX, we extend our evaluation to a suite of NLP
 366 tasks, complementing the aforementioned vision task experiments. The detailed performance met-
 367 rics for these NLP benchmarks are presented in Table 3. The results clearly indicate that RETEX
 368 substantially outperforms existing model merging techniques when applied to language models. No-
 369 tably, our approach recovers approximately 98.7% of the performance of the original task-specific
 370 fine-tuned models. While RETEX exhibits slightly lower performance than Twin-Merging specifi-
 371 cally on the CoLA and RTE dataset, its average performance across all evaluated NLP tasks sur-
 372 passes that of Twin-Merging by more than 3 percentage points, underscoring its overall effectiveness
 373 and robustness in the language domain.

375 5.3 COMPUTATIONAL COST

377 **Batch inference.** Although RETEX recovers an input-specific expert, it supports efficient batch
 inference by grouping samples that share the same predicted task ID. (i) We feed a minibatch of size

378
 379 Table 4: **Inference cost with CLIP backbone (ViT-B/32).** We report the average performance and
 380 resource usage across all tasks in the 8 computer vision task scenario, assuming the task of the input
 381 sample is initially unknown.

Method	Inference cost (per sample)	VRAM (GB)	Avg. performance
DaWin (Oh et al., 2025)	0.63s	5.5	89.0%
TWIN-Merging (Lu et al., 2024)	0.03s	5.6	84.0%
RETEX (Sample-wise)	0.04s	3.1	92.0%
RETEX (Group: $B = 64$)	0.005s	3.3	92.0%



387
 388 Figure 3: Normalized Accuracy across different
 389 ranks r , evaluated using three base merged models
 390 with RETEX: Weight Averaging (WA), Task Arithmetic
 391 (TA), and TIES-Merging (TIES).



392
 393 Figure 4: Normalized accuracy as a function of task
 394 embedding dimension d_{emb} for 8, 14, and 20 tasks.
 395 Results use a ViT-B/32 backbone with fixed recovery
 396 rank $r=256$ and Weight Averaging for θ_{merge} .

400
 401 B through the task identifier router \mathcal{R}_ϕ that consumes the final embedding from the merged model
 402 and obtain predicted task IDs $\{\hat{t}_i\}_{i=1}^B$. (ii) We partition indices by task ID, $\mathcal{I}_t = \{i \in \{1, \dots, B\} : \hat{t}_i = t\}$, and for each task ID t with $|\mathcal{I}_t| > 0$ we generate once to form a group recovered model
 403 for t . (iii) We run the sub batches $X_{\mathcal{I}_t}$ in parallel through the corresponding group recovered model
 404 and then scatter outputs back to the original order. This procedure reduces the number of recoveries
 405 to K unique task IDs in the batch with $K \leq \min(B, T)$, independent of batch size B , while adding
 406 only a single router pass and reusing one merged backbone and the lightweight projection module
 407 across groups.

408
 409 **Results.** Table 4 shows that grouping by predicted task ID amortizes the recovery overhead across
 410 a minibatch. Concretely, RETEX reduces per-sample latency from 0.04 s in sample-wise execution
 411 to 0.005 s with group execution at $B=64$, while maintaining accuracy at 92.0% and with only a small
 412 VRAM change (from 3.1 GB to 3.3 GB). Under the same task-unknown setting, grouped RETEX
 413 is both faster and more accurate than input-dependent baselines, outperforming Twin-Merging and
 414 DaWin. These gains arise because the number of recoveries scales with the number of unique task
 415 IDs in a batch, $K \leq \min(B, T)$, so a single recovered model per task ID serves its entire sub-batch
 416 ($K \ll B$ in practice).

417 5.4 ABLATION STUDY

418
 419 We conduct ablation studies to analyze key hyperparameters in RETEX. Unless otherwise specified,
 420 all ablations follow the TALL-Mask (Wang et al., 2024b) setting on ViT-B/32.

421
 422 **Other merged models.** To further investigate the generalization capability and broader applicability
 423 of RETEX, we extend its application beyond the default Weight Averaging (WA) base model.
 424 Specifically, we apply RETEX to merged models generated by Task Arithmetic (Ilharco et al., 2023)
 425 (TA) and TIES-Merging (Yadav et al., 2023) (TIES), where the merging coefficients specific to TA
 426 and TIES are kept fixed during the training of RETEX. As illustrated in Figure 3, utilizing a base
 427 merged model with inherently better performance (i.e., TA or TIES instead of WA) can lead to
 428 further, albeit modest, improvements in the final recovered accuracy achieved by RETEX. This per-
 429 formance advantage from using a more advanced base model is more pronounced at lower recovery
 430 ranks r . Nevertheless, these findings highlight a key strength of RETEX: its adaptability to integrate
 431 with various existing static merging techniques, potentially leveraging their individual strengths to
 432 further enhance multi-task performance.

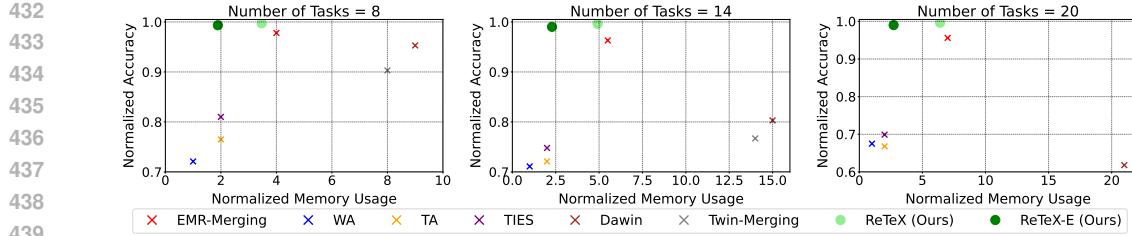


Figure 6: Comparison of normalized accuracy vs. normalized memory across model-merging methods, including RETEX (ReTeX) and RETEX-E (ReTeX-E). RETEX-E exhibits the strongest trade-off—lower memory at comparable or better accuracy—across different task counts.

Task embedding dimension. We investigate the influence of the task embedding dimension, d_{emb} , on the recovery performance of RETEX. For this analysis, we fix the rank $r=256$ and vary d_{emb} while evaluating on configurations with 8, 14, and 20 tasks. Figure 4 shows that as d_{emb} increases, the normalized accuracy generally improves and then saturates. Notably, even as the total number of tasks (T) increases, high recovery performance (approaching or exceeding 99.7%) can be achieved once d_{emb} is sufficiently large, typically at or modestly above T . We further note that d_{emb} can be determined relative to the number of tasks being merged without a significant performance loss.

5.5 ADVANCED EFFICIENCY

Low-rank generation for task-adaptive components.

Our default offset uses $\beta_{\hat{t}}^{(l)} = \beta_g^{(l)} \beta_s^{(l)}$, where the task adaptation layer outputs $\beta_g^{(l)} \in \mathbb{R}^{a \times r}$ and $\beta_s^{(l)} \in \mathbb{R}^{r \times b}$ is a shared learnable factor. The dominant parameter cost comes from producing $\beta_g^{(l)}$. To reduce it, we introduce **RETEX-E**, which factorizes the generator itself: $\beta_g^{(l)} = \beta_{gA}^{(l)} \beta_{gB}^{(l)}$ with $\beta_{gA}^{(l)} \in \mathbb{R}^{a \times r_g}$, $\beta_{gB}^{(l)} \in \mathbb{R}^{r_g \times r}$, and $r_g < r$, yielding the final offset $\beta_{\hat{t}}^{(l)} = (\beta_{gA}^{(l)} \beta_{gB}^{(l)}) \beta_s^{(l)}$.

Results. Figure 5 evaluates the performance–memory trade-off by fixing the outer rank r and varying the internal rank r_g . RETEX-E consistently matches or slightly exceeds the direct generator (RETEX) while using less memory, especially in the high-accuracy regime, and preserves over 99% recovery. Complementarily, Figure 6 compares normalized accuracy vs. normalized memory across a wider set of merging baselines. Both RETEX and RETEX-E occupy the favorable top-left region, and RETEX-E in particular achieves an excellent trade-off, delivering > 99% recovery with noticeably lower memory than alternatives.

6 CONCLUSION

In this work, we aim to recover task-expert-level performance while reducing memory usage overhead. We note that the task-specific offset between the task-expert parameters and the merged model parameters can be recovered from the merged model. Building upon this, we introduce a new model merging approach that learns to **Recover Task eXperts (RETEX)** from a merged model by predicting these offsets. Particularly, our framework first estimates the task identity for a given input. Conditioned on the estimated task identity, our framework generates a low-rank, task-dependent offset that maps the merged parameters to the corresponding expert for that input. Experimental results across vision and NLP domains highlight the effectiveness of RETEX in recovering task-expert-level performance while reducing memory overhead, compared to previous input-adaptive merging methods. We hope that this work encourages future research on the relationship between a merged model and task-specific models, and on more efficient approaches to model merging via offset recovery.

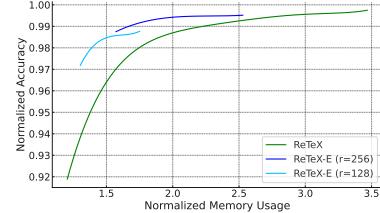


Figure 5: Normalized accuracy vs. normalized memory for RETEX (direct generator) and RETEX-E (two-stage generator) at fixed outer rank r while varying r_g . RETEX-E attains a better memory–performance trade-off and maintains > 99% recovery.

486 REFERENCES

487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 M Israk Ahmed, Shahriyar Mahmud Mamun, and Asif Uz Zaman Asif. Dcnn-based vegetable image
492 classification using transfer learning: A comparative study. In *ICCCSP*, 2021.

493

494 Sarder Iftekhar Ahmed, Muhammad Ibrahim, Md Nadim, Md Mizanur Rahman, Maria Mehjabin
495 Shejunti, Taskeed Jabid, and Md Sawkat Ali. Mangoleafbd: A comprehensive image dataset to
496 classify diseased and healthy mango leaves. *Data in Brief*, 2023.

497 Puneet Bansal. Intel image classification. Available on <https://www.kaggle.com/puneet6060/intel-image-classification>, Online, 2019.

498

500 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative com-
501 ponents with random forests. In *ECCV*, 2014.

502

503 CCHANG. Garbage classification. <https://www.kaggle.com/ds/81794>, 2018.

504

505 Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
506 1: Semantic textual similarity - multilingual and cross-lingual focused evaluation. *arXiv preprint*
507 *arXiv:1708.00055*, 2017.

508

509 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
510 mark and state of the art. *Proceedings of the IEEE*, 2017.

511

512 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
513 scribing textures in the wild. In *CVPR*, 2014.

514

515 Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
516 Ha. Deep learning for classical japanese literature. *arXiv preprint arXiv:1812.01718*, 2018.

517

518 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
519 feature learning. In *AISTATS*, 2011.

520

521 Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: Extending mnist
522 to handwritten letters. In *IJCNN*, 2017.

523

524 Will Cukierski. Dogs vs. cats, 2013. URL <https://kaggle.com/competitions/dogs-vs-cats>.

525

526 MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: Scaling multi-task model
527 merging with sparse masks. In *ECCV*, 2024.

528

529 Pala Tej Deep, Rishabh Bhardwaj, and Soujanya Poria. Della-merging: Reducing interference in
530 model merging through magnitude-based sampling. *arXiv preprint arXiv:2406.11617*, 2024.

531

532 DeepNets. Landscape recognition. <https://www.kaggle.com/datasets/utkarshsaxena/dn/landscape-recognition-image-dataset-12k-images>.

533

534 Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
535 web]. *IEEE signal processing magazine*, 2012.

536

537 Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
538 Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
539 language models. *Nature Machine Intelligence*, 2023.

540

541 William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
542 In *IWP*, 2005.

543

544 Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third pascal recognizing
545 textual entailment challenge. In *ACL-PASCAL workshop*, 2007.

540 Ian J. Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi Mirza, Ben Hamner,
541 Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, Yingbo Zhou, Chetan Ramaiah,
542 Fangxiang Feng, Ruifan Li, Xiaojie Wang, Dimitris Athanasakis, John Shawe-Taylor, Maxim Mi-
543 lakov, John Park, Radu Ionescu, Marius Popescu, Cristian Grozea, James Bergstra, Jingjing Xie,
544 Lukasz Romaszko, Bing Xu, Zhang Chuang, and Yoshua Bengio. Challenges in representation
545 learning: A report on three machine learning contests. In *ICONIP*, 2013.

546 Yifei He, Yuzheng Hu, Yong Lin, Tong Zhang, and Han Zhao. Localize-and-stitch: Efficient model
547 merging via sparse task arithmetic. *arXiv preprint arXiv:2408.13656*, 2024.

548

549 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
550 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected
551 Topics in Applied Earth Observations and Remote Sensing*, 2019.

552

553 Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. Emr-merging:
554 Tuning-free high-performance model merging. In *NeurIPS*, 2024.

555

556 Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
557 mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
558 lating weights. In *NeurIPS*, 2022.

559

560 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
561 and Ali Farhadi. Editing models with task arithmetic. In *ICLR*, 2023.

562

563 Shankar Iyer, Nikhil Dandekar, Kornél Csérai, et al. First quora dataset release: Question pairs.
564 data. quora. com. 2017.

565

566 Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
567 merging weights of language models. In *ICLR*, 2023a.

568

569 Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
570 merging weights of language models. In *ICLR*, 2023b.

571

572 Junmo Kang, Leonid Karlinsky, Hongyin Luo, Zhen Wang, Jacob Hansen, James Glass, David
573 Cox, Rameswar Panda, Rogerio Feris, and Alan Ritter. Self-moe: Towards compositional large
574 language models with self-specialized experts. *arXiv preprint arXiv:2406.12034*, 2024.

575

576 Diederik P Kingma. Adam: A method for stochastic optimization. In *ICLR*, 2015.

577

578 Fanshuang Kong, Richong Zhang, and Ziqiao Wang. Activated parameter locating via causal inter-
579 vention for model merging. *arXiv preprint arXiv:2408.09485*, 2024.

580

581 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
582 categorization. In *ICCV Workshop*, 2013.

583

584 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
585 2009.

586

587 Makerere AI Lab. Bean disease dataset, 2020. URL <https://github.com/AI-Lab-Makerere/ibean/>.

588

589 Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong
590 Chen. Merge, then compress: Demystify efficient smoe with hints from its routing policy. *arXiv
591 preprint arXiv:2310.01334*, 2023.

592

593 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. *arXiv preprint arXiv:1907.11692*, 2019.

594

595 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *ICLR*, 2019.

596

597 Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, and Yu Cheng. Twin-merging:
598 Dynamic integration of modular expertise in model merging. In *NeurIPS*, 2024.

594 Colin A. Matena, Michael S. and Raffel. Merging models with fisher-weighted averaging. In
595 *NeurIPS*, 2022.

596

597 Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adaptive routing.
598 *Transactions on Machine Learning Research*, 2023.

599 Horea Muresan and Mihai Oltean. Fruit recognition from images using deep learning. *Acta Universitatis Sapientiae, Informatica*, 2018.

600

601 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y. Ng, et al.
602 Reading digits in natural images with unsupervised feature learning. In *NIPS Workshop*, 2011.

603

604 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
605 of classes. In *ICVGIP*, 2008.

606

607 Changdae Oh, Yixuan Li, Kyungwoo Song, Sangdoo Yun, and Dongyoon Han. Dawin: Training-
608 free dynamic weight interpolation for robust adaptation. 2025.

609 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In *CVPR*,
610 2012.

611

612 Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada Eskeland, Thomas
613 de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux, Pe-
614 ter Thelin Schmidt, et al. Kvasir: A multi-class image dataset for computer aided gastrointestinal
615 disease detection. In *ACM MMSys*, 2017.

616

617 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
618 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
619 Sutskever. Learning transferable visual models from natural language supervision. In *ICML*,
2021.

620

621 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
622 for machine comprehension of text. *arXiv preprint arXiv:1606.05250*, 2016.

623

624 Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang,
625 Tim Strother, Chunjong Park, Elahe Vedadi, et al. Capabilities of gemini models in medicine.
arXiv preprint arXiv:2404.18416, 2024.

626

627 Ken Shoemake. Animating rotation with quaternion curves. In *SIGGRAPH*, 1985.

628

629 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
630 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In *EMNLP*, 2013.

631

632 Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
633 recognition benchmark: a multi-class classification competition. In *IJCNN*, 2011.

634

635 Anke Tang, Li Shen, Yong Luo, Liang Ding, Han Hu, Bo Du, and Dacheng Tao. Concrete
636 subspace learning based interference elimination for multi-task model fusion. *arXiv preprint
arXiv:2312.06173*, 2023.

637

638 Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task
models via weight-ensembling mixture of experts. In *ICML*, 2024.

639

640 Joachim Utans. Weight averaging for neural networks and local resampling schemes. In *AAAI
Workshop*, 1996.

641

642 Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equiv-
643 ariant cnns for digital pathology. In *MICCAI*, 2018.

644

645 Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, François Fleuret, and Pascal Frossard.
646 Localizing task information for improved model merging and compression. In *ICML*, 2024a.

647

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, François Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. In *ICML*, 2024b.

648 Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
649 sentence understanding through inference. *arXiv preprint arXiv:1704.05426*, 2017.
650

651 Haixia Xiao, Feng Zhang, Zhongping Shen, Kun Wu, and Jinglin Zhang. Classification of weather
652 phenomenon from images by using deep convolutional neural network. *Earth and Space Science*,
653 2021.

654 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
655 ing machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.
656

657 Jianxiong Xiao, Krista A. Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
658 Exploring a large collection of scene categories. *International Journal of Computer Vision*, 2016.

659 Feng Xiong, Runxi Cheng, Wang Chen, Zhanqiu Zhang, Yiwen Guo, Chun Yuan, and Ruifeng
660 Xu. Multi-task model merging via adaptive weight disentanglement. *arXiv preprint
661 arXiv:2411.18729*, 2024.

662 Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging: Re-
663 solving interference when merging models. In *NeurIPS*, 2023.
664

665 Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
666 Adamerging: Adaptive model merging for multi-task learning. In *ICLR*, 2024.

667 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
668 Absorbing abilities from homologous models as a free lunch. In *ICML*, 2024.

669 Didi Zhu, Zhongyi Sun, Zexi Li, Tao Shen, Ke Yan, Shouhong Ding, Kun Kuang, and Chao Wu.
670 Model tailor: Mitigating catastrophic forgetting in multi-modal large language models. *arXiv
671 preprint arXiv:2402.12048*, 2024.
672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A JUSTIFICATION FOR OFFSET-BASED EXPERT RECOVERY**
 703

704 **A.1 AFFINE TRANSFORMATION-BASED TASK VECTOR RECOVERY**
 705

706 **Math derivation.** Starting from the task–arithmetic formulation in the main paper,

707
$$\boldsymbol{\theta}_{\text{merge}} = \boldsymbol{\theta}_0 + \sum_{t=1}^T \lambda_t \boldsymbol{\tau}_t, \quad (7)$$

 708

710 define the merged task vector $\boldsymbol{\tau}_{\text{merge}} \equiv \boldsymbol{\theta}_{\text{merge}} - \boldsymbol{\theta}_0$ and rewrite:

712
$$\boldsymbol{\tau}_{\text{merge}} = \sum_{i=1}^T \lambda_i \boldsymbol{\tau}_i = \lambda_t \boldsymbol{\tau}_t + \sum_{i \neq t} \lambda_i \boldsymbol{\tau}_i. \quad (8)$$

 713

715 Isolating the target task t by subtracting the non- t terms from both sides gives

717
$$\boldsymbol{\tau}_{\text{merge}} - \sum_{i \neq t} \lambda_i \boldsymbol{\tau}_i = \lambda_t \boldsymbol{\tau}_t. \quad (9)$$

 718

719 Assuming λ_t is invertible (a nonzero scalar or an invertible linear operator), left–multiplying by λ_t^{-1}
 720 yields

722
$$\lambda_t^{-1} \left(\boldsymbol{\tau}_{\text{merge}} - \sum_{i \neq t} \lambda_i \boldsymbol{\tau}_i \right) = \boldsymbol{\tau}_t, \quad (10)$$

 723

724
$$\boldsymbol{\tau}_t = \lambda_t^{-1} \boldsymbol{\tau}_{\text{merge}} - \lambda_t^{-1} \sum_{i \neq t} \lambda_i \boldsymbol{\tau}_i. \quad (11)$$

 725

726 Equation 11 shows that recovering $\boldsymbol{\tau}_t$ from $\boldsymbol{\tau}_{\text{merge}}$ involves a multiplicative term and an additive cor-
 727 rection that compensates for interference from other tasks. This motivates the affine approximation

729
$$\boldsymbol{\tau}_t \approx \gamma_t \boldsymbol{\tau}_{\text{merge}} + \boldsymbol{\beta}_t, \quad (12)$$

 730

730 where γ_t (scalar) approximates λ_t^{-1} and $\boldsymbol{\beta}_t$ (tensor) approximates $-\lambda_t^{-1} \sum_{i \neq t} \lambda_i \boldsymbol{\tau}_i$. If $\gamma_t, \boldsymbol{\beta}_t$ are
 731 generated from the task ID t , one can recover $\boldsymbol{\tau}_t$ from $\boldsymbol{\tau}_{\text{merge}}$ via Equation 12.

733 **A.2 LEARNING AND SIMPLIFYING THE AFFINE RULE IN RETEX**
 734

735 **Learning the full affine rule.** Guided by Equation 12, RETEX generates the per-layer scalar $\gamma_t^{(l)}$
 736 and a low-rank shift $\boldsymbol{\beta}_{t,g}^{(l)}$, composed with a shared factor $\boldsymbol{\beta}_s^{(l)}$:

738
$$\hat{\boldsymbol{\theta}}_t^{(l)} = \boldsymbol{\theta}_0^{(l)} + \gamma_t^{(l)} (\boldsymbol{\theta}_{\text{merge}}^{(l)} - \boldsymbol{\theta}_0^{(l)}) + \boldsymbol{\beta}_{t,g}^{(l)} \boldsymbol{\beta}_s^{(l)}. \quad (13)$$

 739

740 **Observed behavior of the scaling factor.** In practice, the task–averaged $\gamma_t^{(l)}$ for many layer types
 741 converges close to 1, indicating that most task–specific adjustment is carried by the shift term. Fig-
 742 ure 7 visualizes this convergence trend over training.

744 **Impact of fixed scaling on performance.** Motivated by the above observation, we fix $\gamma_t^{(l)} = 1$ for
 745 all tasks and layers so that RETEX generates only the low-rank shift:

747
$$\hat{\boldsymbol{\theta}}_t^{(l)} = \boldsymbol{\theta}_{\text{merge}}^{(l)} + \boldsymbol{\beta}_{t,g}^{(l)} \boldsymbol{\beta}_s^{(l)}. \quad (14)$$

 748

748 Figure 8 shows that this fixed–scaling variant closely matches the accuracy of the learned– γ model
 749 across a wide range of ranks r , while reducing memory usage. This supports the offset–only re-
 750 covery perspective: recovering a task expert amounts to predicting a task–dependent offset from the
 751 merged parameters.

752 Equation 13 and Equation 14, together with the convergence in Figure 7, justify an offset–based
 753 expert recovery rule. Setting $\gamma_t^{(l)} = 1$ enables deployment with only a single merged model $\boldsymbol{\theta}_{\text{merge}}$;
 754 RETEX learns task–conditioned low–rank offsets $\boldsymbol{\beta}_{t,g}^{(l)} \boldsymbol{\beta}_s^{(l)}$ that effectively map $\boldsymbol{\theta}_{\text{merge}}$ to $\boldsymbol{\theta}_t$ without
 755 storing task experts.

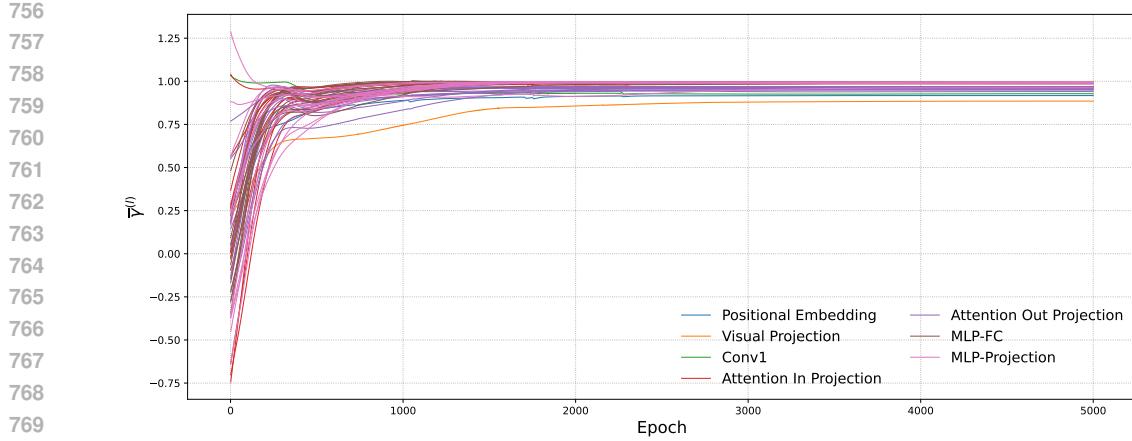


Figure 7: Convergence behavior of task-averaged $\gamma_t^{(l)}$ values for various 2D layer types during RETEX training (where $\gamma_t^{(l)}$ is learnable). Experiment on ViT-B/32 with 8 vision tasks shows many layers converge to $\gamma_t^{(l)} \approx 1$.

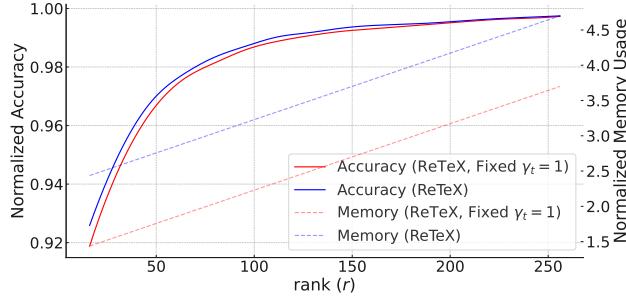


Figure 8: Performance and memory versus rank r on 8 vision tasks (ViT-B/32). Fixing $\gamma_t^{(l)} = 1$ preserves accuracy relative to the learned- γ model while lowering memory, validating the offset-only recovery view.

B EXPERIMENT DETAILS

B.1 MODULE ARCHITECTURE AND PARAMETERS

This section details the module architecture and parameterization of RETEX in the offset-only configuration justified in Appendix A. In this setting, RETEX learns to generate a task-specific offset tensor $\beta_t^{(l)}$ for each layer l and applies it to the merged parameters. The offset is factorized as $\beta_t^{(l)} = \beta_{t,g}^{(l)} \beta_s^{(l)}$, where $\beta_{t,g}^{(l)}$ is generated by a lightweight task adaptation MLP $h^{(l)}$ conditioned on a task embedding e_t , and $\beta_s^{(l)}$ is a shared learnable component.

The core components involved in offset generation, their shapes (exemplified for a 2D layer), and their PyTorch-like forms are summarized in Table 5. We denote the number of tasks as T , the task embedding dimension as d_{emb} , the dimensions of a 2D layer’s parameter matrix as (a, b) , and the chosen low-rank dimension as r .

The task adaptation MLP $h^{(l)}$ takes the d_{emb} -dimensional task embedding e_t as input and generates the task-dependent factor $\beta_{t,g}^{(l)}$. For a 2D layer of shape (a, b) , $\beta_{t,g}^{(l)}$ has dimensions (a, r) , and the MLP output dimension is $a \cdot r$. The shared component $\beta_s^{(l)}$ has dimensions (r, b) and is a learnable parameter initialized with zeros. The final offset $\beta_t^{(l)}$ is their product.

810 Table 5: **Core components for offset generation in RETEX (offset-only), exemplified for a 2D**
 811 **layer.** T : tasks, d_{emb} : task embedding dimension, (a, b) : 2D layer shape, r : rank.

Component	Shape (for 2D layer)	Form
Task embedding (e_t)	(T, d_{emb})	<code>nn.Embedding(T, d_{emb})</code>
Task adaptation MLP ($h^{(l)}$)	$(d_{\text{emb}}, a \cdot r)$	<code>nn.Linear($d_{\text{emb}}, a \cdot r$)</code>
↪ Generated $\beta_{t,g}^{(l)}$	(a, r)	Reshaped $h^{(l)}$ output
Shared $\beta_s^{(l)}$	(r, b)	<code>nn.Parameter(torch.zeros(r, b))</code>
Effective offset $\beta_t^{(l)}$	(a, b)	$\beta_t^{(l)} = \beta_{t,g}^{(l)} \beta_s^{(l)}$

820
 821 **Parameter handling for diverse dimensions.** The shapes of the generated component $\beta_{t,g}^{(l)}$ and
 822 the shared component $\beta_s^{(l)}$ are adapted based on the dimensionality of the original layer parameter
 823 $\theta^{(l)}$:

- 825 • **0D (Scalar) parameters:**
 - 826 – $\beta_{t,g}^{(l)}$: Shape (1), output of $h^{(l)}$.
 - 828 – $\beta_s^{(l)}$: Shape (1), learnable scalar.
- 829 • **1D (Vector) parameters:** For an original parameter of shape (D):
 - 830 – $\beta_{t,g}^{(l)}$: Shape (D), output of $h^{(l)}$.
 - 832 – $\beta_s^{(l)}$: Shape (1), learnable scalar (scales $\beta_{t,g}^{(l)}$ element-wise).
- 834 • **2D (Matrix) parameters:** For an original parameter of shape (a, b) and using rank r :
 - 835 – $\beta_{t,g}^{(l)}$: Shape (a, r) , output of $h^{(l)}$ (reshaped).
 - 836 – $\beta_s^{(l)}$: Shape (r, b) , learnable matrix.
- 838 • **4D (Tensor, e.g., convolutional kernels) parameters:** For an original parameter of shape
 - 839 $(c_{\text{out}}, c_{\text{in}}, k_h, k_w)$, treat it as 2D by reshaping to $(c_{\text{out}}, c_{\text{in}} \cdot k_h \cdot k_w)$ for decomposition with
 - 840 rank r :
 - 841 – $\beta_{t,g}^{(l)}$: Shape (c_{out}, r) , output of $h^{(l)}$ (reshaped).
 - 842 – $\beta_s^{(l)}$: Shape $(r, c_{\text{in}} \cdot k_h \cdot k_w)$, learnable matrix.
 - 844 – The resulting $\beta_t^{(l)}$ is reshaped back to $(c_{\text{out}}, c_{\text{in}}, k_h, k_w)$.

845 The task adaptation MLP $h^{(l)}$ adjusts its output dimensionality to produce the required $\beta_{t,g}^{(l)}$ for each
 846 layer type.

848 **Rank adjustment.** RETEX uses a common target rank r across layers. For 2D parameters of
 849 shape (d_1, d_2) (or 4D parameters reshaped to such a 2D form), the rank is adjusted per layer: if
 850 $r \geq \min(d_1, d_2)$, the effective rank is set to $\lfloor \min(d_1, d_2)/2 \rfloor$; otherwise, the target rank r is used.
 851 This ensures a practical low-rank structure for all layers.

852 **B.2 BASELINE DETAILS**

855 The baseline approaches employed for comparative evaluation in our experiments are detailed as
 856 follows:

- 858 • **Individual Models:** This represents the standard performance benchmark where a distinct,
 859 fine-tuned model is dedicated to each specific task. These models operate independently
 860 and are not designed for multi-task execution.
- 861 • **Weight Averaging** (Shoemaker, 1985; Utans, 1996): As a foundational technique in model
 862 merging, this method directly computes an average of the parameters from all constituent
 863 task-specific models. It operates under the simplifying assumption that all tasks contribute
 864 equally, hence applying uniform weighting to each model.

864 • **Task Arithmetic** (Ilharco et al., 2023): This approach first defines a "task vector" τ_t for
 865 each task t as the parametric difference between the fine-tuned model θ_t and the initial
 866 pre-trained model θ_0 (i.e., $\tau_t = \theta_t - \theta_0$). A unified model θ_{merge} is then constructed
 867 by adding a scaled sum of these task vectors to the pre-trained parameters, formulated as
 868 $\theta_{\text{merge}} = \theta_0 + \lambda \sum_{t=1}^T \tau_t$. The scaling factor λ is a hyperparameter selected from the range
 869 $\{0.0, 0.1, \dots, 1.0\}$ to maximize average performance across all task validation sets.
 870
 871 • **TIES-Merging** (Yadav et al., 2023): This method refines task vectors before merging
 872 through a three-step process: Trim, Elect Sign, and Merge. In the Trim step, only the
 873 top 20% of values by magnitude in each task vector are retained, with others zeroed out.
 874 The Elect Sign step (implicitly handled by the original task vector signs) and the subse-
 875 quent Merge step proceed analogously to Task Arithmetic, including the hyperparameter
 876 tuning for the scaling factor.
 877
 878 • **Consensus TA** (Wang et al., 2024a): This technique first utilizes a multi-task model to
 879 derive binary masks that highlight parameters deemed critical for each task. The sparsity
 880 of these masks is controlled by a hyperparameter λ , optimized over $\{0.2, 0.3, 0.4, 0.5, 0.6\}$
 881 using validation performance. Each task-specific mask is then applied to its correspond-
 882 ing task vector via an element-wise (Hadamard) product before the final merging, which
 883 follows the Task Arithmetic procedure.
 884
 885 • **EMR-Merging** (Huang et al., 2024): This approach begins by creating a consolidated
 886 "unified task vector" derived from the sign and magnitude of individual task vectors. It then
 887 computes task-specific binary masks and rescaling vectors for each task. The final merged
 888 model for a given task is obtained by an element-wise multiplication of this unified task
 889 vector with the corresponding task-specific mask and rescaler. This method is presented as
 890 hyperparameter-free.
 891
 892 • **Twin-Merging** (Lu et al., 2024): This method involves first training a router for dynamic
 893 task identification. A shared "common expert" is then established using Task Arithmetic
 894 with a predetermined scaling factor. Subsequently, "exclusive knowledge vectors" unique
 895 to each task are extracted, typically using Singular Value Decomposition (SVD) or a trim-
 896 ming procedure similar to TIES-Merging (with Trim reported as superior). At inference,
 897 the router assigns task-specific weights to an input. The final model output is derived by
 898 combining the shared expert with a weighted sum of these exclusive knowledge vectors,
 899 using the router-determined weights.
 900
 901 • **DaWin** (Oh et al., 2025): This dynamic merging technique assigns an input-specific weight
 902 to each task model. These weights are calculated based on the Shannon entropy of the
 903 outputs from both the task-specific model and the pre-trained base model for the given
 904 input. To optimize inference speed, a Beta Mixture Model (BMM) can optionally be trained
 905 to approximate these dynamic weights, typically using $K = 3$ mixture components by
 906 default.

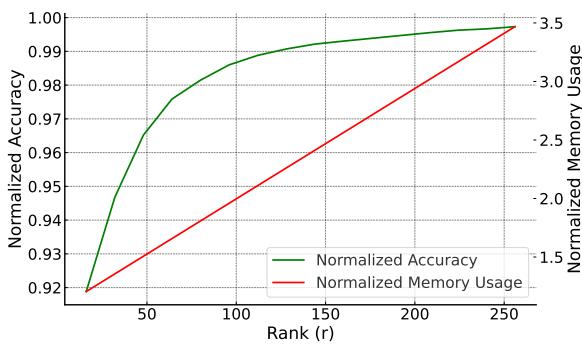
902 B.3 COMPUTATIONAL RESOURCES AND TRAINING TIME
 903

904 All experimental procedures reported in this work, encompassing the training and inference of our
 905 proposed RETEX framework, as well as performance evaluations and computational cost measure-
 906 ments for baseline methods, were conducted on specific GPU hardware. For experiments involving
 907 14 tasks or fewer, NVIDIA GeForce RTX 3090 GPUs were utilized. As a specific example of
 908 training duration, the training of RETEX for the 8-task vision benchmark typically completed in
 909 approximately 53 minutes and 49 seconds on a single NVIDIA GeForce RTX 3090 GPU. For more
 910 extensive experiments involving 20 tasks or more, NVIDIA H100 80GB HBM3 GPUs were em-
 911 ployed to accommodate the increased computational demands.

912
 913 C MORE ABLATION STUDY
 914

915 C.1 RANK
 916

917 We study how the low-rank dimension r affects recovery quality and memory. Figure 9 reports
 918 normalized accuracy (mean accuracy divided by the corresponding individual-expert accuracy) and



918
919
920
921
922
923
924
925
926
927
928
929
930 Figure 9: Normalized accuracy and required memory ratio as a function of rank r on ViT-B/32. Ac-
931 curacy crosses 99% at $r \geq 128$ and saturates near $r = 256$, which we adopt by default for subsequent
932 experiments.

933
934 required memory ratio (memory relative to the base model) on ViT-B/32. Across a sweep of r ,
935 RETEX exceeds 99% normalized accuracy once $r \geq 128$, and the gains saturate beyond $r = 256$
936 (typically $\approx 99.7\text{--}99.8\%$). Since the parameter and activation costs grow roughly linearly with r
937 through the factors $a \times r$ and $r \times b$, we set $r = 256$ in the main experiments to balance accuracy and
938 memory.

939 C.2 RANDOM SEED

940
941 Table 6: Normalized accuracy for each random seed and number of tasks across all tasks in the
942 computer vision task with ViT-B/32 CLIP backbone. The bottom row reports the sample mean and
943 its standard deviation (Mean \pm std) over the five seeds.

947	948	949	950	951	952	953	954	955	956	957	958	959	960	961	962	963	964	965	966	967	968	969	970	971
Seed	8 tasks	14 tasks	20 tasks	Mean \pm std																				
0	99.7352	99.6184	99.6430																					
1	99.7278	99.6201	99.6431																					
2	99.7364	99.6168	99.6431																					
3	99.7387	99.6159	99.6338																					
4	99.7317	99.6244	99.6467																					
Mean \pm std		99.7340 ± 0.0043	99.6191 ± 0.0034	99.6419 ± 0.0048																				

956 To assess the stability and robustness of RETEX with respect to initialization and other sources of
957 randomness in the training process, we conducted experiments across multiple random seeds. Ta-
958 ble 6 presents the normalized accuracy of RETEX on the ViT-B/32 CLIP backbone for computer
959 vision task suites of 8, 14, and 20 tasks, evaluated over five different random seeds (0 through 4).
960 The results demonstrate a high degree of consistency across seeds. This low variance across differ-
961 ent seeds indicates that the performance of RETEX is not highly sensitive to the specific random
962 initialization used, suggesting reliable and reproducible outcomes.

963 C.3 COSINE SIMILARITY AS AN OBJECTIVE

964 Prior works in model merging Yang et al. (2024); Huang et al. (2024); Xiong et al. (2024); Davari
965 & Belilovsky (2024) have occasionally utilized cosine similarity as a metric, particularly to evaluate
966 the alignment or proximity between different task vectors or between a task vector derived from
967 a merged model and those from individual task-specific models. This metric captures the angular
968 relationship between these vectors, providing insights into their directional agreement, which
969 can be a complementary perspective to L2 distance that measures magnitude differences in the
970 parameter space. Motivated by its use as an evaluative measure for task vector relationships, we
971 investigate whether employing cosine similarity directly as the training objective for RETEX offers

any advantages or differing characteristics compared to our standard L2 reconstruction loss when reconstructing task-specific parameters.

Let \mathcal{L}_2 denote our original layer-wise L2 reconstruction loss as defined in the main paper Equation 4. For this ablation, we define a cosine similarity-based loss, \mathcal{L}_{\cos} , based on the overall task vectors. Let $\tau_t = \theta_t - \theta_0$ be the target task vector for task t , representing the difference between the original fine-tuned model parameters θ_t and the pre-trained model parameters θ_0 . Similarly, let $\hat{\tau}_t = \hat{\theta}_t - \theta_0$ be the reconstructed task vector, where $\hat{\theta}_t$ are the parameters recovered by RETEX. For the purpose of calculating cosine similarity, τ_t and $\hat{\tau}_t$ are treated as single, high-dimensional vectors representing the entirety of these parameter differences. The cosine similarity loss \mathcal{L}_{\cos} is then formulated as:

$$\mathcal{L}_{\cos} = \sum_{t=1}^T \left(1 - \frac{\hat{\tau}_t \cdot \tau_t}{\|\hat{\tau}_t\|_2 \cdot \|\tau_t\|_2} \right) \quad (15)$$

where \cdot represents the dot product between the (flattened) task vectors.

We conducted experiments to compare these objectives. As shown in Figure 10, the red dot indicates the normalized accuracy when using only \mathcal{L}_{\cos} as the objective (effectively $\lambda = 0$ in a combined loss). The green dashed line represents the performance of our standard RETEX which uses only the \mathcal{L}_2 loss, without any cosine similarity component. Furthermore, we evaluated a combined objective function $\mathcal{L}_{\text{combined}} = \mathcal{L}_{\cos} + \lambda \mathcal{L}_2$, where λ is a hyperparameter controlling the contribution of the L2 loss. The blue line in Figure 10 plots the normalized accuracy achieved with this combined loss for varying values of λ .

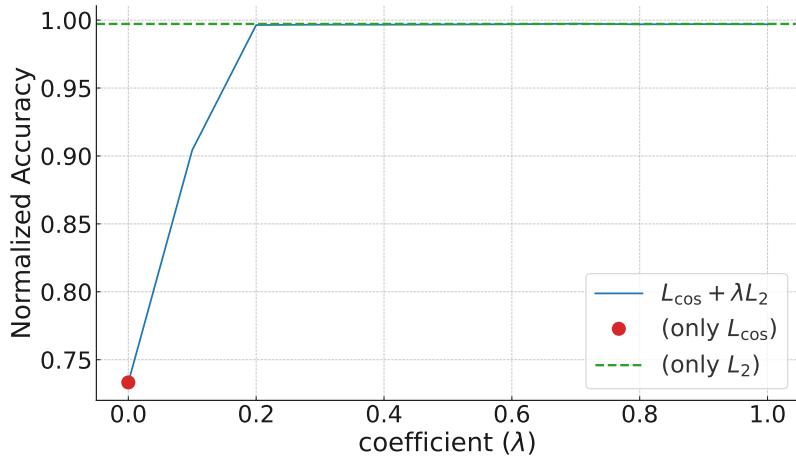


Figure 10: Normalized accuracy of RETEX when trained with different objective functions: only \mathcal{L}_{\cos} (red dot, corresponding to $\lambda = 0$ in the combined loss), only \mathcal{L}_2 (green dashed line, our standard approach), and a combination $\mathcal{L}_{\cos} + \lambda \mathcal{L}_2$ (blue line) for various λ coefficients. Experiments were conducted on the 8 vision task benchmark with the ViT-B/32 backbone.

Analysis. The results presented in Figure 10 demonstrate that using only cosine similarity (\mathcal{L}_{\cos} , red dot) as the training objective results in a normalized accuracy of approximately 0.73. This is substantially lower than the near-perfect recovery (normalized accuracy ≈ 1.00) achieved when using only the L2 loss (\mathcal{L}_2), indicated by the green dashed line. This performance gap highlights that cosine similarity alone is insufficient for high-fidelity task expert recovery.

Interestingly, when combining the two losses as $\mathcal{L}_{\cos} + \lambda \mathcal{L}_2$, the performance (blue line) rapidly improves as the coefficient λ for the L2 loss increases. Even with a relatively small $\lambda = 0.2$, the normalized accuracy of the combined loss already reaches the level achieved by the L2 loss alone (the green dashed line) and subsequently remains saturated at this high performance for $\lambda \geq 0.2$. This observation strongly suggests that the performance recovery is primarily driven by the L2 component of the loss. The fact that adding a small amount of \mathcal{L}_2 to \mathcal{L}_{\cos} allows the model to match

1026 the performance of \mathcal{L}_2 alone, and that further increasing the \mathcal{L}_{\cos} component (by having smaller λ)
 1027 does not improve beyond what \mathcal{L}_2 achieves, indicates that \mathcal{L}_{\cos} offers little to no additional benefit
 1028 for recovery when a sufficient L2 term is present.

1029 Therefore, it can be inferred that the L2 distance is the main driver for effectively recovering the task
 1030 experts. The improvement in cosine similarity (i.e., directional alignment) appears to be a natural
 1031 consequence of minimizing the L2 distance between the reconstructed and target task vectors. If
 1032 two vectors are made very close in Euclidean space (small L2 distance), their angular deviation
 1033 will inherently decrease, leading to high cosine similarity. This suggests that directly optimizing
 1034 for cosine similarity is not essential for, and may even distract from, the core objective of precise
 1035 parameter reconstruction, for which L2 loss is more effective. Consequently, while cosine similarity
 1036 can be an insightful metric, our standard L2 loss remains the more robust and primary objective
 1037 function for RETEX.

1038

1039 C.4 IMPACT OF FACTORIZATION ORDER IN SHIFT TENSOR GENERATION

1040

1041 In our proposed RETEX framework (hereafter referred to as RETEX for clarity in this comparison),
 1042 the task-specific shift tensor $\beta_t^{(l)}$ for a 2D layer of shape (a, b) is generated via a low-rank factoriza-
 1043 tion: $\beta_t^{(l)} = \beta_{t,g}^{(l)} \beta_s^{(l)}$. Here, the task-adaptive component $\beta_{t,g}^{(l)}$, generated by the Task Adaptation
 1044 Layer ($h^{(l)}$), has dimensions (a, r) , and the shared component $\beta_s^{(l)}$, a learnable parameter initialized
 1045 with zeros, has dimensions (r, b) .

1046

1047 This ablation study investigates the impact of reversing the order of these factorized components.
 1048 We explore an alternative formulation, denoted RETEX-Alt, where the shift tensor is constructed as
 1049 $\beta_t^{(l)} = \beta_{s,alt}^{(l)} \beta_{t,g,alt}^{(l)}$. In this alternative setup:

1050

- $\beta_{s,alt}^{(l)}$ is a shared, learnable parameter (initialized with zeros) with dimensions (a, r) .
- $\beta_{t,g,alt}^{(l)}$ is the task-adaptive component generated by the Task Adaptation Layer, now with
 1053 dimensions (r, b) .

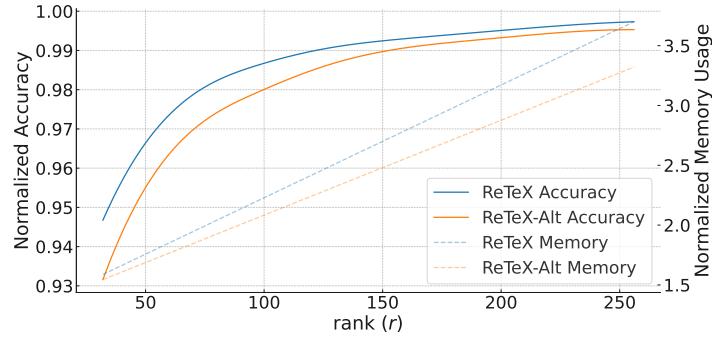
1054

1055 The core idea is to examine whether making the first factor shared (and learnable from zero-
 1056 initialization) and the second factor task-adaptive (generated by the Task Adaptation Layer) in-
 1057 fluences the model’s recovery performance and memory usage, compared to our standard RETEX
 1058 approach where the first factor is task-adaptive and the second is shared.

1059

1060 The experimental settings, including the ViT-B/32 backbone, 8 vision tasks, the training procedure
 1061 for the Task Adaptation Layer, and varying rank r , remain consistent with our main experiments.
 1062 The only modification is this reordering of the factorization for $\beta_t^{(l)}$ and the corresponding change
 1063 in the output shape of the Task Adaptation Layer.

1064



1076

1077 Figure 11: Comparison of normalized accuracy and normalized memory usage versus rank (r) for
 1078 the standard ReTeX (blue lines) and ReTeX-Alt (orange lines, representing the alternative factoriza-
 1079 tion order). Solid lines indicate accuracy, and dashed lines indicate memory usage. Experiments
 were conducted on 8 vision tasks with ViT-B/32.

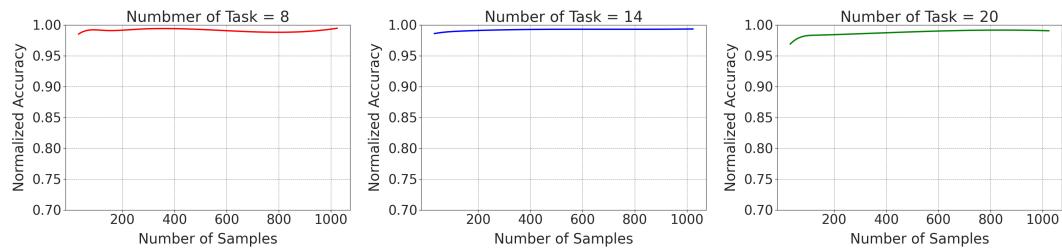
1080 **Analysis.** Figure 11 illustrates the normalized accuracy and normalized memory usage for both
 1081 ReTeX (blue lines) and RETEX-Alt (orange lines) across different ranks r .
 1082

1083 A key observation is that RETEX-Alt (orange dashed line) generally exhibits lower memory usage
 1084 compared to RETEX (light blue dashed line) for the same rank r . This is primarily because in
 1085 many neural network layers, the input dimension a is often larger than the output dimension b (i.e.,
 1086 $a > b$). In RETEX-Alt, the shared parameter $\beta_{s,alt}^{(l)}$ has shape (a, r) , while the Task Adaptation
 1087 Layer generates $\beta_{t,g,alt}^{(l)}$ of shape (r, b) . Conversely, in RETEX, the Task Adaptation Layer generates
 1088 $\beta_{t,g}^{(l)}$ of shape (a, r) . Since the parameters of the Task Adaptation Layer contribute significantly to
 1089 the overall memory, generating a smaller matrix (typically (r, b) in RETEX-Alt when $b < a$) results
 1090 in lower memory for RETEX-Alt.
 1091

1092 However, this reduction in memory usage for RETEX-Alt is accompanied by a noticeable decrease
 1093 in normalized accuracy (orange solid line) compared to the standard RETEX (blue solid line) across
 1094 all ranks. For instance, at rank $r = 256$, RETEX achieves a normalized accuracy close to 1.00,
 1095 while RETEX-Alt is visibly lower.

1096 When comparing at roughly equivalent memory usage levels (e.g., by selecting a higher rank for
 1097 RETEX-Alt to match the memory of RETEX at a lower rank, or vice-versa, though not directly
 1098 shown on a single vertical line), the performance difference might appear less substantial. However,
 1099 the consistent trend shows that for any given rank, RETEX slightly outperforms RETEX-Alt. This
 1100 suggests that while reversing the factorization order can lead to memory savings due to typical layer
 1101 dimensionalities, it may compromise the model’s capacity to learn effective task-specific shifts.
 1102 The standard RETEX configuration, where the larger task-adaptive component $\beta_{t,g}^{(l)}$ (often $a \times r$
 1103 with $a > b$) is generated by the Task Adaptation Layer and then projected by the smaller shared,
 1104 zero-initialized learnable parameter $\beta_s^{(l)}$ ($r \times b$), appears to offer a marginally better performance-
 1105 to-rank trade-off. Placing the shared, zero-initialized learnable parameter as the second factor in the
 1106 multiplication (as in the standard RETEX) might provide a more stable or effective learning dynamic
 1107 for task-specific recovery. Therefore, our standard RETEX factorization order ($\beta_{t,g}^{(l)} \beta_s^{(l)}$) is retained
 1108 as the primary approach.

1109 C.5 IMPACT OF CALIBRATION SAMPLE SIZE ON ROUTER PERFORMANCE
 1110



1120 Figure 12: **Task router accuracy as a function of the number of training samples per task.**
 1121 Results are shown for models trained on 8, 14, and 20 tasks with a ViT-B-32 backbone. The x-axis
 1122 is on a log scale.
 1123

1124 **Sample efficiency of the task router.** A key design goal of our framework is efficiency, partic-
 1125 ularly in its data requirements for task identification. The task router (\mathcal{R}_ϕ), as detailed in Section 4.2,
 1126 is a lightweight network designed to operate effectively with a minimal number of calibration sam-
 1127 ples. To validate this sample efficiency, we conduct an ablation study on the number of samples per
 1128 task used for training the router. As shown in Figure 13, we evaluate scenarios with 8, 14, and 20
 1129 tasks, varying the number of training samples from just 32 to 1024 per task.
 1130

1131 The results highlight the practical utility of our approach. Even with as few as **32 samples** per
 1132 task, the router achieves a remarkable normalized accuracy of **98.5%** for the 8-task scenario. The
 1133 performance remains robust as the number of tasks increases, with the 20-task router achieving
96.9% accuracy with the same minimal sample size. Moreover, accuracy exhibits a steady, gradual

improvement as the number of samples increases from 32 to 1024, indicating that while the router performs strongly with very few samples, its performance can be further refined with more data. This result confirms that the task router does not require large, task-specific datasets for calibration, which significantly reduces the data collection and training overhead associated with our framework. Consequently, this high sample efficiency makes our task classification mechanism a practical and scalable solution for multi-task scenarios.

C.6 RETEX APPLICATION WITH SHARED LAYERS

RETEX recovers experts in a layer-wise manner because parameter interference induced by merging is not uniform across layers. Different blocks absorb and entangle task updates to varying degrees, so offsets must be tailored per layer to effectively undo these layer-specific deviations.

RETEX-S (Shared layers). To test whether sharing hurts recovery, we introduce RETEX-S: for all layers that share the same parameter shape, we tie the task adaptation layer $h^{(l)}$ and the shared factor $\beta_s^{(l)}$ across those layers (i.e., a single generator and shared factor are reused for every layer in the shape group). All other components remain identical to RETEX.

Results. Figure 14 compares normalized accuracy and memory as the rank r varies. Sharing across layers markedly degrades recovery quality: RETEX-S underperforms the layer-wise RETEX at virtually all ranks. Even when we equalize memory by increasing the rank of RETEX-S to match RETEX’s parameter budget, RETEX-S still trails in accuracy, indicating that the drop is not merely a capacity issue but stems from forcing a single offset generator to explain heterogeneous, layer-dependent interference. These observations support the design choice to estimate offsets per layer rather than sharing them broadly. However, this reduction in memory usage for RETEX-Alt is accompanied by a noticeable decrease in normalized accuracy (orange solid line) compared to the standard RETEX (blue solid line) across all ranks. For instance, at rank $r = 256$, RETEX achieves a normalized accuracy close to 1.00, while RETEX-Alt is visibly lower. When comparing at roughly equivalent memory usage levels (e.g., by selecting a higher rank for RETEX-Alt to match the memory of RETEX at a lower rank, or vice-versa, though not directly shown on a single vertical line), the performance difference might appear less substantial. However, the consistent trend shows that for any given rank, RETEX slightly outperforms RETEX-Alt. This suggests that while reversing the factorization order can lead to memory savings due to typical layer dimensionalities, it may compromise the model’s capacity to learn effective task-specific shifts. The standard RETEX configuration, where the larger task-adaptive component $\beta_{t,g}^{(l)}$ (often $a \times r$ with $a > b$) is generated by the Task Adaptation Layer and then projected by the smaller shared, zero-initialized learnable parameter $\beta_s^{(l)}$ ($r \times b$), appears to offer a marginally better performance-to-rank trade-off. Placing the shared, zero-initialized learnable parameter as the second factor in the multiplication (as in the standard RETEX) might provide a more stable or effective learning dynamic for task-specific recovery. Therefore, our standard RETEX factorization order ($\beta_{t,g}^{(l)}\beta_s^{(l)}$) is retained as the primary approach.

C.7 IMPACT OF CALIBRATION SAMPLE SIZE ON ROUTER PERFORMANCE

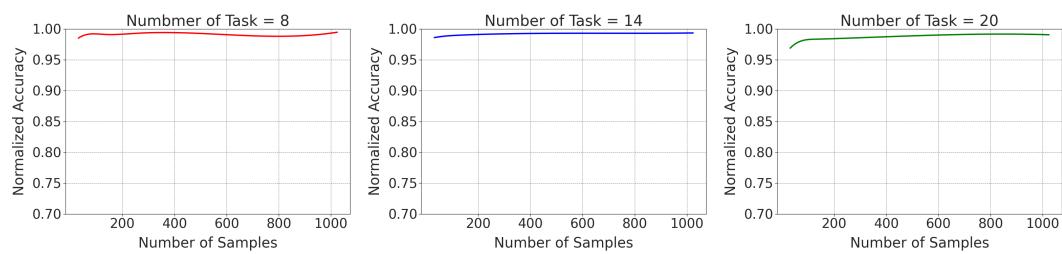


Figure 13: **Task router accuracy as a function of the number of training samples per task.** Results are shown for models trained on 8, 14, and 20 tasks with a ViT-B-32 backbone. The x-axis is on a log scale.

1188 **Sample efficiency of the task router.** A key design goal of our framework is efficiency, particu-
 1189 larly in its data requirements for task identification. The task router (\mathcal{R}_ϕ), as detailed in Section 4.2,
 1190 is a lightweight network designed to operate effectively with a minimal number of calibration sam-
 1191 ples. To validate this sample efficiency, we conduct an ablation study on the number of samples
 1192 per task used for training the router. As shown in Figure 13, we evaluate scenarios with 8, 14,
 1193 and 20 tasks, varying the number of training samples from just 32 to 1024 per task. The results
 1194 highlight the practical utility of our approach. Even with as few as **32 samples** per task, the router
 1195 achieves a remarkable normalized accuracy of **98.5%** for the 8-task scenario. The performance re-
 1196 mains robust as the number of tasks increases, with the 20-task router achieving **96.9%** accuracy
 1197 with the same minimal sample size. Moreover, accuracy exhibits a steady, gradual improvement as
 1198 the number of samples increases from 32 to 1024, indicating that while the router performs strongly
 1199 with very few samples, its performance can be further refined with more data. This result confirms
 1200 that the task router does not require large, task-specific datasets for calibration, which significantly
 1201 reduces the data collection and training overhead associated with our framework. Consequently, this
 1202 high sample efficiency makes our task classification mechanism a practical and scalable solution for
 1203 multi-task scenarios.

1204 **C.8 RETEX APPLICATION WITH SHARED LAYERS**

1205 RETEX recovers experts in a layer-wise manner because parameter interference induced by merging
 1206 is not uniform across layers. Different blocks absorb and entangle task updates to varying degrees,
 1207 so offsets must be tailored per layer to effectively undo these layer-specific deviations.

1209 **C.9 RETEX WITH SHARED LAYERS**

1211 RETEX recovers experts in a layer-wise manner because parameter interference introduced by merg-
 1212 ing is not uniform across layers. Different blocks absorb and entangle task updates to varying de-
 1213 grees, so offsets need to be tailored per layer to effectively undo these layer-specific deviations.

1215 **RETEX-S (Shared layers).** To test whether sharing hurts recovery, we introduce RETEX-S: for
 1216 all layers that share the same parameter shape, we tie the task adaptation layer $h^{(l)}$ and the shared
 1217 factor $\beta_s^{(l)}$ across those layers (a single generator and shared factor are reused for every layer in the
 1218 shape group). All other components remain identical to RETEX.

1220 **Results.** Figure 14 compares normalized accuracy and memory as the rank r varies. Sharing
 1221 across layers markedly degrades recovery quality: RETEX-S underperforms the layer-wise RETEX
 1222 at virtually all ranks. Even when memory is equalized by increasing the rank of RETEX-S to match
 1223 RETEX’s parameter budget, RETEX-S still trails in accuracy, indicating that the drop is not merely
 1224 a capacity issue but stems from forcing a single offset generator to explain heterogeneous, layer-
 1225 dependent interference. These observations support estimating offsets per layer rather than sharing
 1226 them broadly.

1228 **D ADDITIONAL EXPERIMENTS**

1229 **D.1 ROBUSTNESS TO UNSEEN TASK SCENARIOS**

1232 We utilize a lightweight router, \mathcal{R}_ϕ , to select the appropriate expert model for an input x . The router
 1233 processes a feature embedding from a unified model, θ_{merge} , to produce a logit vector over T known
 1234 tasks. The predicted task, \hat{t} , is determined by the argmax operation (Equation 4.2). The router is
 1235 trained with cross-entropy loss on a small calibration set:

$$1237 \quad \mathcal{L}_{\text{CE}} = -\frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T y_{i,t} \log (\text{softmax} (\mathcal{R}_\phi (\theta_{\text{merge}}(x_i)))_t) \quad (16)$$

1240 where N is the number of calibration samples, $y_{i,t}$ is the ground truth label (1 if sample i belongs to
 1241 task t , 0 otherwise). This enables the router to efficiently learn task boundaries with minimal mem-
 1242 ory overhead. Beyond task classification, we leverage the **entropy** of the router’s output distribution

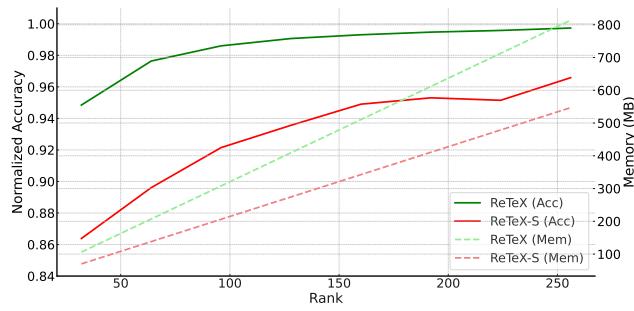


Figure 14: **Ablation: sharing generators across layers (RETEX-S).** Normalized accuracy vs. memory when tying the task adaptation layer and β_s across shape-identical layers. RETEX-S consistently lags behind the default layer-wise RETEX, even under matched memory, suggesting that interference must be mitigated at the per-layer level rather than with a shared generator.

as a robust proxy for uncertainty. Our key observation is that in-distribution inputs yield low-entropy (confident) predictions, whereas unseen tasks result in high-entropy (uncertain) predictions.

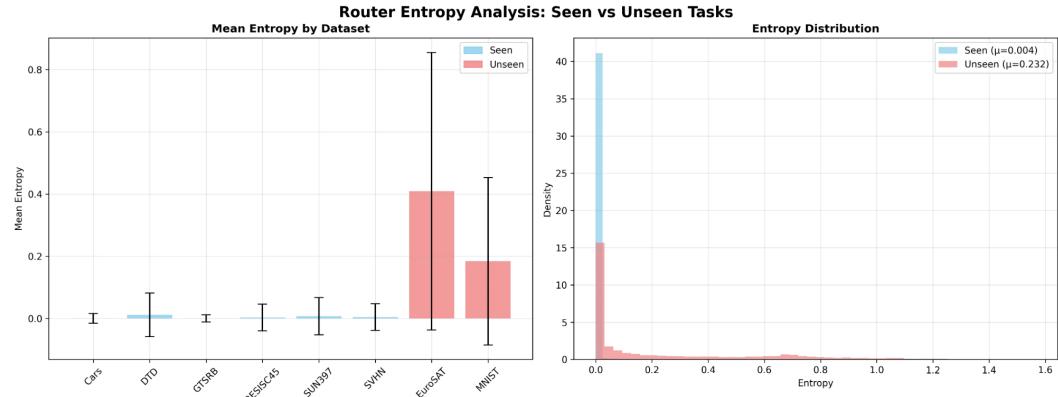


Figure 15: **Entropy-based OOD Detection.** Entropy distributions of router outputs on seen tasks (Cars, DTD, GTSRB, RESISC45, SUN397, SVHN) and unseen tasks (EuroSAT, MNIST) using a ViT-B/32 backbone. **(Left)** Entropy values clearly separate seen and unseen tasks. **(Right)** Aggregated distributions confirm a distinct gap, enabling threshold-based OOD detection.

Figure 15 further illustrates why this is possible: entropy distributions of seen tasks form a sharp low-entropy cluster, while unseen tasks produce clearly higher-entropy values. This separation enables robust OOD detection via a simple threshold, highlighting the generality and practicality of our approach.

Table 7 shows that our router maintains high Precision and Recall across different ViT backbones. This confirms that entropy-based OOD detection achieves strong and consistent classification performance regardless of the backbone architecture.

Model	Accuracy	Recall	F1-Score
ViT-B/32	0.9670	0.9124	0.8893
ViT-L/14	0.9641	0.9469	0.8846
ViT-B/16	0.9701	0.9010	0.8975

Table 7: Accuracy, Recall, and F1-Score comparison across different ViT backbone models, demonstrating the robustness of entropy-based OOD detection across architectures.

1296 **Table 8: Multi-task performance on GLUE with GPT-2 decoder models.** All rows (except the
1297 upper bound) are obtained by merging task experts fine-tuned on seven GLUE tasks (CoLA, MNLI,
1298 MRPC, QNLI, QQP, RTE, SST-2). Bold numbers indicate the best performance among merging
1299 methods, excluding the individual task experts.

Method	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	Avg.
Individual	76.8	82.1	80.4	88.3	89.6	65.3	91.2	82.0
Weight Averaging	55.0	55.1	51.0	57.6	76.7	44.8	52.5	56.1
Fisher Merging (Matena, 2022)	54.8	58.0	39.5	63.3	81.5	49.1	52.5	58.7
RegMean (Jin et al., 2023b)	61.7	70.4	65.4	69.7	78.8	56.0	79.7	68.8
Task Arithmetic (Ilharco et al., 2023)	68.7	68.6	69.6	70.5	81.8	47.3	83.6	70.0
TIES-Merging (Yadav et al., 2023)	68.4	71.4	68.4	69.6	82.4	47.7	81.8	70.0
EMR-Merging (Huang et al., 2024)	72.8	81.1	79.2	84.8	88.1	66.5	90.3	80.4
RETEX (Ours)	76.8	82.0	79.9	87.8	89.4	65.0	90.8	81.7

D.2 DECODER-BASED NLP TASKS

Settings. To evaluate the recovery performance of RETEX, we follow the experimental setup of EMR-Merging Huang et al. (2024) and use GPT-2 Achiam et al. (2023) as a shared pre-trained backbone from which individual task models are fine-tuned. Performance is assessed across seven diverse NLP benchmarks, consistent with prior work: SST-2 Socher et al. (2013), MRPC Dolan & Brockett (2005), QQP Iyer et al. (2017), MNLI Williams et al. (2017), QNLI Rajpurkar et al. (2016), and RTE Giampiccolo et al. (2007).

Results. Table 8 shows that RETEX surpasses EMR-Merging by 1.3 points on average and outperforms other merging baselines by over 11 points. Compared with individual experts, the gap is only 0.3 points (99.6% retained), indicating strong recovery performance. These results mirror the trends observed with encoder backbones and support the applicability of RETEX to decoder-only language models.

E TRAINING-FREE ROUTING

We adopt a training-free, distributional classifier that uses intermediate features at a chosen layer. Fix a layer index $l \in \{1, \dots, L\}$ by validation. For each task t , collect a small calibration set and forward each sample through the corresponding task-specific fine-tuned model up to layer l to obtain features $f_t^{(l)}(\mathbf{x})$. Fit a Gaussian $\mathcal{N}(\boldsymbol{\mu}_t^{(l)}, \boldsymbol{\Sigma}_t^{(l)})$ to these calibration features to model the task- t distribution at layer l .

At test time, given a task-unknown input \mathbf{x} , forward \mathbf{x} through each task- t fine-tuned model up to layer l to obtain $f_t^{(l)}(\mathbf{x})$, then compute the Mahalanobis distance to the corresponding task distribution:

$$\mathcal{M}_t^{(l)}(\mathbf{x}) = (f_t^{(l)}(\mathbf{x}) - \boldsymbol{\mu}_t^{(l)})^\top (\boldsymbol{\Sigma}_t^{(l)})^{-1} (f_t^{(l)}(\mathbf{x}) - \boldsymbol{\mu}_t^{(l)}). \quad (17)$$

The predicted task ID is selected by

$$\hat{t} = \arg \min_{t \in \{1, \dots, T\}} \mathcal{M}_t^{(l)}(\mathbf{x}). \quad (18)$$

This formulation remains fully training-free: we estimate $\{\boldsymbol{\mu}_t^{(l)}, \boldsymbol{\Sigma}_t^{(l)}\}_{t=1}^T$ from a small calibration set and require no learned router. In practice we instantiate routing with one validated layer l for efficiency, but the approach is agnostic to the layer choice and can be applied at any layer without aggregating across layers.

Experimental comparison. We evaluate the proposed training-free routing in the task-unknown setting under the same experimental protocol as Section 5.1.1. As shown in Table 9, RETEX with training-free routing (RETEX-*Training free*) achieves accuracy very close to the learned-router variant (within ~ 0.3 – 1.3 percentage points) across all CLIP backbones (ViT-B/32, ViT-B/16, ViT-L/14) and task counts (8/14/20). Despite requiring no router training, the training-free variant consistently

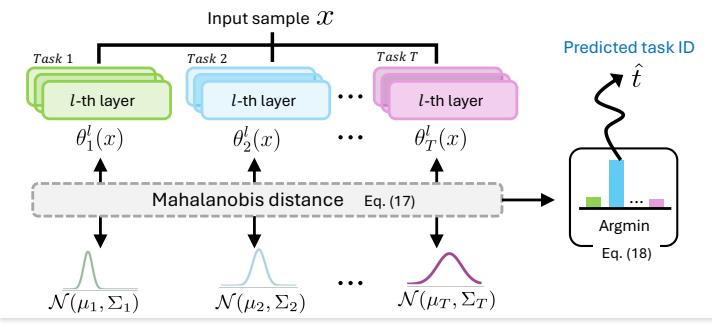


Figure 16: **Training-free Mahalanobis routing.** For a validated layer l , each task t builds a Gaussian model $\mathcal{N}(\mu_t^{(l)}, \Sigma_t^{(l)})$ from calibration features $f_t^{(l)}(\mathbf{x})$ extracted by forwarding samples through the task’s fine-tuned model up to layer l . At test time, an input \mathbf{x} is forwarded up to the same layer for every task-specific model, its Mahalanobis distance to each task distribution is computed (Equation 17), and the predicted task is chosen by the arg min over tasks (Equation 18). The router requires no training, operates with a single chosen layer for efficiency, and is agnostic to the particular layer used.

Table 9: **Task-unknown multi-task merging results on vision benchmarks.** Top-1 accuracy (%) across CLIP backbones (ViT-B/32, ViT-B/16, ViT-L/14) and task counts (8/14/20) when task identity is not provided at inference.

Method	ViT-B/32			ViT-B/16			ViT-L/14		
	8 tasks	14 tasks	20 tasks	8 tasks	14 tasks	20 tasks	8 tasks	14 tasks	20 tasks
Zero-shot	48.3	57.2	56.1	55.3	61.3	59.7	64.7	68.2	65.2
Individual	92.9	90.9	91.4	94.7	92.8	92.8	95.9	94.3	94.8
Weight Averaging	66.3 _(72.1)	64.3 _(71.1)	61.0 _(67.5)	72.2 _(76.6)	69.5 _(74.8)	65.3 _(70.4)	79.6 _(83.2)	76.7 _(81.1)	71.6 _(75.6)
Twin-Merging (Lu et al., 2024)	84.0 _(90.3)	70.0 _(76.7)	57.5 _(61.8)	91.4 _(96.2)	78.4 _(83.9)	63.1 _(67.0)	93.7 _(97.7)	86.2 _(91.2)	74.8 _(78.6)
DaWin (Oh et al., 2025)	89.0 _(95.3)	73.8 _(80.3)	52.8 _(57.7)	87.1 _(91.9)	77.8 _(83.5)	62.8 _(67.3)	91.6 _(95.5)	82.6 _(87.2)	77.5 _(81.8)
RETEX-Training free (Ours)	91.7 _(98.6)	88.6 _(97.4)	88.7 _(97.0)	93.1 _(98.2)	90.7 _(97.7)	90.9 _(97.5)	94.3 _(98.3)	92.5 _(98.1)	91.8 _(97.0)
RETEX (Ours)	92.0_(99.1)	89.8_(98.8)	89.4_(97.9)	94.0_(99.2)	91.9_(99.1)	91.3_(98.0)	95.2_(99.4)	93.5_(99.2)	93.1_(98.3)

surpasses prior input-dependent merging methods (Twin-Merging and DaWin) on every backbone and at every task scale, and maintains high recovery as the number of tasks increases. These results indicate that a calibration-only Mahalanobis routing scheme is sufficient to unlock most of the gains of RETEX in task-unknown scenarios while preserving strong scalability across architectures and task counts.

F LLM USAGE DISCLOSURE

We used a large language model solely to refine wording and improve clarity. The model did not contribute to research design, literature search, data generation or processing, coding, experimental analysis, or the production of technical content such as equations or proofs. All edits suggested by the model were reviewed and finalized by the authors, who accept full responsibility for the manuscript. The model is not an author; authorship, copyright, and research-ethics obligations rest entirely with the authors.