
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LEARNING TO RECOVER TASK EXPERTS FROM A
MULTI-TASK MERGED MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-task model merging aims to merge several task-specific models (or experts)
into a unified multi-task model. However, model merging often results in perfor-
mance degradation due to parameter interference between experts. While several
recent works have focused on improving the merging process to mitigate the pa-
rameter interference, there still exists the performance gap between merged mod-
els and task experts. In this work, we take a different perspective: we aim to
recover a task expert from a merged model, instead of trying to improve the merg-
ing process. We first note that the parameter interference arises, as a merging pro-
cess introduces offsets to expert model parameters. Thus, we propose to learn to
Recover a Task eXpert (RETEX) model, by undoing this offset. Specifically, we
train a lightweight linear module to predict the offset to recover a task expert for a
given input. Experiments demonstrate that RETEX significantly outperforms ex-
isting model merging methods across computer vision domains and NLP domains
with models of various scales, recovering more than 99% of individual expert per-
formance even when scaling to 30 tasks. Furthermore, RETEX can be applied to
several existing merging models, demonstrating its flexibility and applicability.

1 INTRODUCTION

Ever since the advent of foundation models (Achiam et al., 2023; Saab et al., 2024; Ding et al.,
2023) pre-trained on large-scale data, deep learning models have displayed striking success across
various domains, through fine-tuning such large-scale pre-trained models on each task. However,
the use of such task-specific models that are trained and stored independently raises a question: if
they all share the same structure and same initialization (i.e., a pre-trained foundation model), can
we integrate the knowledge from task-specific models into a single model?

Multi-task model merging (Ilharco et al., 2023; Yadav et al., 2023; Yang et al., 2024) has emerged
as a promising solution. Multi-task model merging aims to integrate knowledge from various task
experts through weighted summation of parameters of task experts, weighted by task coefficients that
encode the importance of each parameter for each task. Early works have mainly focused on merging
existing fine-tuned models into a single merged model, obtained via the weighted summation of the
parameters with fixed universal task coefficients (Ilharco et al., 2023; Jin et al., 2023a;b; Matena,
2022; Yadav et al., 2023; Yang et al., 2024; Tang et al., 2023). However, these merging methods
have struggled to find a single merged model that could perform as well on all tasks as corresponding
task experts.

In light of the challenge, recent multi-task model merging methods have tried to dynamically find
better merging coefficients for each input task during inference (Oh et al., 2025; Tang et al., 2024;
Lu et al., 2024; Muqeeth et al., 2023). This input-adaptive merging scheme has led to substan-
tial performance improvement, however with an increased memory overhead. These approaches
methods require all task-specific model parameters or components in memory during inference, as a
merged model is formed on the fly by combining task experts with input-adaptive coefficients. Yet,
these merged models are still formed via merging that inherently introduces parameter interference,
underperforming compared to task-specific experts on their respective tasks.

In this work, instead of trying to improve a merging process, we approach the problem from a
different perspective: we aim to Recover Task eXperts from a merged model. From the perspective
of task experts, a merging process inevitably introduces parameter interference, as parameter offsets

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

are introduced from other task experts during model merging. Thus, our key insight is that each
expert model can be recovered from a merged model, if we can undo the offset introduced by a
merging process. Building on this insight, we train a lightweight linear layer that learns to find the
offset for each input. We use this offset to recover a task expert from a merged model.

We note that RETEX can be applied to both scenarios, when task distribution is known for each
input (task-known scenarios, which is the standard multi-task model merging setting (Yadav et al.,
2023; Ilharco et al., 2023; Huang et al., 2024)) or unknown for each input. For task-known scenarios,
the offset prediction module in RETEX simply employs the task identity of each input. For task-
unknown scenarios, RETEX employs an independently trained task-id router and uses the output of
the router to estimate task identity.

We further note that the training of the offset prediction module in RETEX does not require training
data nor test samples. Since the offset prediction just needs to learn the parameter offset from
merged parameters to task-expert models for any given task identity, we can just randomly sample
task identity. Then, for each sampled task identity, the corresponding task expert parameters will be
used as ground-truth during the training of RETEX. Once the training of RETEX is finished, existing
task expert models are no longer required during inference. This enables post-hoc deployment over
existing task-specific models.

Through extensive experiments with several merged models and backbones of varying scale across
both computer vision and natural language processing tasks, we demonstrate the efficacy, efficiency,
and flexibility of RETEX. Particularly, RETEX recovers over 99% of individual-expert performance
even when scaling to 30 tasks, without incurring large inference-time memory overhead compared
to previous works.

2 RELATED WORKS

Multi-task model merging consolidates multiple fine-tuned models, often from a common pre-
trained foundation, into a single network without retraining, aiming for efficient multi-task capability
and reduced deployment overhead. Early approaches involved direct weight averaging (Utans, 1996;
Shoemake, 1985; Ilharco et al., 2022), which often suffered from performance degradation due to
task interference. More sophisticated static methods like Fisher-Merging (Matena, 2022) used pa-
rameter importance (via Fisher Information) for weighted combinations, while RegMean (Jin et al.,
2023b) explored principled averaging with regularization, though task interference remained a key
challenge. Task Arithmetic (Ilharco et al., 2023) offered a conceptual shift by introducing task vec-
tors (parameter difference from a base model), allowing arithmetic combination of these compact
representations. This spurred methods like TIES-Merging (Yadav et al., 2023), which manipulates
task vectors (e.g., sparsification, sign resolution) to mitigate interference, and TALL-Mask (Wang
et al., 2024b), which identifies salient task-specific parameters within a merged model by analyzing
parameter differences to create task masks.

Building on task vector concepts (Ilharco et al., 2023), many studies reduce parameter interference
by enforcing sparsity or operating in compact parameter regions (Deep et al., 2024; He et al., 2024;
Wang et al., 2024b; Davari & Belilovsky, 2024; Zhu et al., 2024; Kong et al., 2024). DARE (Yu
et al., 2024) drops low-magnitude updates and rescales salient weights, while AdaMerging (Yang
et al., 2024) optimizes coefficients at model or layer granularity via test-time adaptation on evalu-
ation data. EMR-Merging (Huang et al., 2024) maintains a shared backbone together with sparse,
task-specific components by selecting dominant parameter values across tasks. However, several
of these approaches require task-dependent hyperparameter tuning (e.g., TIES (Yadav et al., 2023),
TALL-Mask (Wang et al., 2024b)) or swapping task-conditioned modules at inference (e.g., EMR-
Merging (Huang et al., 2024)), which presupposes access to task identity and increases management
overhead as the number of tasks grows.

A complementary line of work adjusts combining coefficients or activates specialized branches at
inference based on the input (Kang et al., 2024; Li et al., 2023; Muqeeth et al., 2023; Lu et al.,
2024; Tang et al., 2024; Oh et al., 2025). Examples include learned routers that mix expert subnet-
works (Muqeeth et al., 2023; Lu et al., 2024) and schemes that compute coefficients from uncertainty
or entropy without extra training signals (Oh et al., 2025). These techniques often achieve strong ac-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

curacy, but they typically keep multiple expert checkpoints, masks, or routing modules available at
run time and may require additional forward passes per sample, increasing memory use and latency.

By contrast, instead of trying to find better merging coefficients, we take a different approach: aim-
ing to recover a task expert from a merged model. Upon our insight that merging process undermines
the performance due to offsets introduced to task expert parameters, our method RETEX delivers
task-expert-level performance by learning to removing such offset.

3 BACKGROUND

Problem setting. Given a pre-trained model f : X ×Θ → Y with parameters θ0 ∈ Θ, we assume
there are task-specific models, fine-tuned from the pre-trained model f to each downstream task
t ∈ {1, . . . , T}. In other words, we assume there are T task-specific models {fθt

}Tt=1, each with
parameters θt obtained by fine-tuning the pre-trained model on the corresponding dataset D(t) =

{(x(t)
i , y

(t)
i)}Nt

i=1, where x
(t)
i ∈ X(t) ⊆ X is an input with a corresponding label y(t)i ∈ Y (t) ⊆ Y .

The goal of multi-task model merging (Matena, 2022; Jin et al., 2023b) is to find the task coefficients
{αt}Tt=1 that would result in a merged model θmerged =

∑T
t=1 αtθt that can perform as well as each

task-specific model on the respective task. Then, the merged model will perform prediction for each
new input data x, which can come from any task t. Under standard settings (Yadav et al., 2023;
Ilharco et al., 2023; Huang et al., 2024), the task identity t of x is assumed to be known (hence,
task-known scenarios). Otherwise, under task-unknown scenario, the task identity t is unknown. In
this work, we tackle both scenarios.

Task arithmetic. To better facilitate the knowledge manipulation, Task Arithmetic (Ilharco et al.,
2023) has introduced the concept of task vector. For each task-specific model fθt

, task vector τt is
obtained by subtracting the pre-trained model parameters θ0 from task-specific model parameters
θt. Hence, task vector τt is a vector pointing towards θt from θ0, representing the task-specific
knowledge for task t. Leveraging the task vector concept, subsequent works (Yadav et al., 2023;
Wang et al., 2024b) have formulated the model merging process as

θmerge = θ0 +

T∑
t=1

λtτt, (1)

where λt represents task coefficients under task arithmetic scheme.

4 LEARNING TO RECOVER TASK EXPERTS

Previous merging methods have attempted to find merging coefficients that would provide better
performance on each task. As such, recent works (Oh et al., 2025; Tang et al., 2024; Lu et al., 2024;
Muqeeth et al., 2023) have tried to find input-adaptive merging coefficients for each input during
inference. The input-adaptive merging process has lead to performance improvement, however at
the cost of memory usage. Yet, there still exists the performance gap between merged models and
the task experts.

We believe that the reason for the persisting gap is that merged model parameters are the shifted ver-
sion of task expert parameters due to parameter offsets introduced during a merging process. Thus,
in this work, we take a different perspective: instead of further optimizing a merging rule, we undo
the interference of a given merged model by recovering each expert directly from it. Concretely, we
posit that each task expert can be written as the merged parameters plus a task-specific offset

θt = θmerge + βt, (2)
where βt is the offset that corrects the deviation of θmerge from the true expert θt. This offset
view is a direct way to model (and remove) the interference introduced during merging; we provide
justification and derivations for adopting the offset form in Appendix A.

The overall framework is illustrated in Figure 1-(a): given a predicted task ID, RETEX recovers the
corresponding task expert from the merged parameters θmerge by estimating βt. During inference,
we first determine the task ID for an input x (Section 4.2). As shown in Figure 1-(b), RETEX
then generates a task-conditioned offset and adds it to θmerge to recover the expert parameters (Sec-
tion 4.1).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Recovered task expert

Merged model parameter

(c) training

Learnable parameters

Generated parameters

Randomly sampled task ID

Task embedding

Task adaptation
layer

(b) inference

Input sample

Task embedding

Task identifier

Task adaptation
layer

˝

Task identity of ,

(a) overview

Figure 1: Overview of our proposed RETEX framework. (a) RETEX overview: For given
merged model parameters θmerge, RETEX recovers the task expert θ̂t. (b) RETEX inference: An
input x obtains its task ID from the task identifier, which is then mapped to a task embedding and
fed to a lightweight task adaptation layer. For each layer l, the adaptation layer generates the low-
rank factor β(l)

t,g , which combines with a shared learnable low-rank matrix β
(l)
s to form the layer

offset β(l)
t = β

(l)
t,g β

(l)
s . Adding these offsets to θmerge yields the recovered task expert θ̂t. (c) RE-

TEX training: A randomly sampled task ID t is embedded and fed to a lightweight task adaptation
layer. The learnable parameters are the task embedding, the adaptation layer weights, and β

(l)
s ,

while the adaptation layer generates β
(l)
t,g . β

(l)
t,g and β

(l)
s are combined with θmerge to recover the

task expert parameters θ̂(l)
t . Training proceeds by minimizing the difference between the recovered

parameters θ̂(l)
t and the target parameters θ(l)

t .

4.1 TASK-EXPERT RECOVERY

Task embedding. To generate the task-conditioned offsets βt, we represent each task t with a
learnable embedding et ∈ Rdemb , which captures task identity and conditions the offset generator.

Layer-wise offset generation. Motivated by layer-wise merging schemes (Yang et al., 2024) and
efficiency, we parameterize the offset at each layer l in a low-rank form. Let θ(l)

merge ∈ Ra×b denote
the merged parameters and choose a rank r < min(a, b). Conditioned on the task embedding
et̂, a lightweight adaptation module h(l) produces a task-conditioned factor β(l)

t̂,g
∈ Ra×r. This is

multiplied by a shared learnable factor β(l)
s ∈ Rr×b (initialized at zero and shared across tasks) to

form the layer offset:
β
(l)

t̂
= β

(l)

t̂,g
β(l)
s . (3)

The recovered expert parameters at layer l are then

θ̂
(l)

t̂
= θ(l)

merge + β
(l)

t̂
. (4)

Stacking layers yields θ̂t̂ = θmerge + βt̂ as in Equation 2. This design keeps generation lightweight
(only β

(l)

t̂,g
) while amortizing capacity through the shared β

(l)
s .

Training objective. RETEX does not require training or test inputs. We train the offset generator
using only task IDs: sample a task t, form θ̂

(l)
t by Equation 3–Equation 4, and minimize the L2

distance to the ground-truth expert parameters:

L =

T∑
t=1

L∑
l=1

∥∥θ̂(l)
t − θ

(l)
t

∥∥2
2
. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Recovered
task expert

Merged model
parameter

Ta
sk

 id
en

tif
ie

r

Task-unknown
test sample

(a) Task-unknown scenario (b) Task-known scenario

Ta
sk

 e
m

be
dd

in
g

Task-known
test sample

Recovered
task expert

Ta
sk

 e
m

be
dd

in
g

˝

Eq. (6)

Argmax

Figure 2: Routing for task ID in RETEX. RETEX inference with (a) Task-unknown scenario and
(b) Task-known scenario inputs. When the task identity is unknown, a lightweight router predicts
the task ID, which is then embedded and used in RETEX to recover the corresponding task expert.
If the task identity is known, the given ID is directly used in RETEX to recover the expert.

After training, task experts {θt} are no longer needed at inference; RETEX recovers experts on-the-
fly from θmerge using the predicted task ID and the lightweight generators.

4.2 TASK CLASSIFICATION

To determine which task expert to recover for a task-unknown input x, we first infer its task ID
t̂ ∈ {1, . . . , T} with a lightweight router Rϕ. As illustrated in Figure 2-(a), the input x is forwarded
through the merged model θmerge to obtain a final embedding θmerge(x), which the router maps to
logits over T tasks; the predicted task ID is

t̂ = argmax
t∈{1,...,T}

[
Rϕ

(
θmerge(x)

)]
t
. (6)

We train Rϕ with cross-entropy on task indices using a small, balanced calibration set, adding neg-
ligible overhead. When the task identity is known at inference, we skip the router entirely (Figure 2-
(b)) and directly use the given task ID to retrieve the corresponding task embedding and generate
the offsets in Section 4.1. In both cases, the (predicted or provided) task ID conditions the offset
generator to recover the appropriate task expert from θmerge.

5 EXPERIMENTS

In this section, we first study efficiency improvements of RETEX, and then evaluate its multi-task
merging performance under two inference scenarios: task-known and task-unknown. In the task-
known scenario (task identity available at inference), which is a standard multi-task model merging
setting, we compare with methods that construct a merged model conditioned on a given task: Task
Arithmetic (Ilharco et al., 2023), TIES-Merging (Yadav et al., 2023), and EMR-Merging (Huang
et al., 2024). In the task-unknown scenario (task identity not given), we compare with methods that
operate without task identity: Weight Averaging, Twin-Merging (Lu et al., 2024), and DaWin (Oh
et al., 2025). RETEX supports both settings; when task identity is unknown, we predict it with the
lightweight router (Sec. 4.2) and recover the corresponding expert, whereas when task identity is
known, we directly recover the specified expert.

Training setup. Unless specified otherwise, the base merged model θmerge upon which RETEX
operates is constructed using simple Weight Averaging of the task-specific expert models; this choice
is made to demonstrate the capability of RETEX to recover task experts even from a minimally com-
plex, conventionally defined merged model. We train RETEX for 5000 iterations. The optimization
is performed using the Adam optimizer (Kingma, 2015) with an initial learning rate of 2 × 10−4.
The learning rate schedule follows a cosine annealing approach, incorporating 600 warm-up steps.
The objective function for training RETEX is the L2 loss between the reconstructed layer parame-
ters θ̂(l)

t and the task expert layer parameters θ(l)
t , as defined in Equation 5, summed over all tasks

and layers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 1: Multi-task performance of merged models across different CLIP backbones and num-
bers of tasks. Values in parentheses (·) indicate normalized accuracy (merged / individual). All
methods are evaluated on 8, 14, and 20 computer vision tasks.

Method ViT-B/32 ViT-B/16 ViT-L/14
8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks

Zero-shot 48.3 57.2 56.1 55.3 61.3 59.7 64.7 68.2 65.2
Individual 92.9 90.9 91.4 94.7 92.8 92.8 95.9 94.3 94.8

(Task-known scenarios)
Task Arithmetic (Ilharco et al., 2023) 70.8(76.5) 65.3(72.1) 60.5(66.8) 75.4(79.6) 70.5(75.9) 65.8(70.8) 84.9(88.7) 79.4(84.0) 74.0(78.1)
TIES (Yadav et al., 2023) 75.1(81.0) 68.0(74.8) 63.4(69.9) 79.7(84.3) 73.2(78.7) 68.2(73.3) 86.9(90.7) 79.5(84.1) 75.7(79.8)
Consensus TA (Wang et al., 2024b) 75.0(80.8) 70.4(77.4) 65.4(72.0) 79.4(83.9) 74.4(79.9) 69.8(74.9) 86.3(90.1) 82.2(86.9) 79.0(83.2)
EMR-Merging (Huang et al., 2024) 91.3(97.8) 87.6(96.3) 87.4(95.6) 93.3(98.5) 90.5(97.6) 90.2(97.2) 95.2(99.3) 92.7(98.3) 92.8(97.9)
RETEX (Ours) 92.6(99.7) 90.6(99.6) 91.1(99.7) 94.4(99.7) 92.5(99.7) 92.9(99.6) 95.6(99.7) 93.9(99.6) 94.6(99.8)
(Task-unknown scenarios)
Weight Averaging 66.3(72.1) 64.3(71.1) 61.0(67.5) 72.2(76.6) 69.5(74.8) 65.3(70.4) 79.6(83.2) 76.7(81.1) 71.6(75.6)
Twin-Merging (Lu et al., 2024) 84.0(90.3) 70.0(76.7) 57.5(61.8) 91.4(96.2) 78.4(83.9) 63.1(67.0) 93.7(97.7) 86.2(91.2) 74.8(78.6)
DaWin (Oh et al., 2025) 89.0(95.3) 73.8(80.3) 52.8(57.7) 87.1(91.9) 77.8(83.5) 62.8(67.3) 91.6(95.5) 82.6(87.2) 77.5(81.8)
RETEX (Ours) 92.0(99.1) 89.8(98.8) 89.4(97.9) 94.0(99.2) 91.9(99.1) 91.3(98.0) 95.2(99.4) 93.5(99.2) 93.1(98.3)

5.1 VISION TASKS

5.1.1 MERGING 8, 14, AND 20 VISION TASKS

Setting. For evaluating RETEX on varying scale vision tasks, we follow the setting of TALL-
Mask (Wang et al., 2024b). We fine-tune a separate model for each dataset on three CLIP (Radford
et al., 2021) backbones (ViT-B/32, ViT-B/16, and ViT-L/14) and then evaluate the multi-task merged
model. The 8-task configuration comprises (a) SUN397 (Xiao et al., 2016), (b) Cars (Krause et al.,
2013), (c) RESISC45 (Cheng et al., 2017), (d) EuroSAT (Helber et al., 2019), (e) SVHN (Netzer
et al., 2011), (f) GTSRB (Stallkamp et al., 2011), (g) MNIST (Deng, 2012), and (h) DTD (Cim-
poi et al., 2014). The 14-task setting extends this list with (i) CIFAR100 (Krizhevsky et al., 2009),
(j) STL10 (Coates et al., 2011), (k) Flowers102 (Nilsback & Zisserman, 2008), (l) Oxford-IIIT-
Pet (Parkhi et al., 2012), (m) PCAM (Veeling et al., 2018), and (n) FER2013 (Goodfellow et al.,
2013). The 20-task setting further adds (o) EMNIST (Cohen et al., 2017), (p) CIFAR10 (Krizhevsky
et al., 2009), (q) Food101 (Bossard et al., 2014), (r) FashionMNIST (Xiao et al., 2017), (s) Ren-
deredSST2 (Socher et al., 2013), and (t) KMNIST (Clanuwat et al., 2018). Accuracy is reported as
the evaluation metric for all datasets.

Results. Table 1 shows that RETEX achieves the best accuracy on all three CLIP backbones and
for 8/14/20 tasks in both settings (task-known and task-unknown). Compared to strong task-known
baselines such as EMR-Merging, RETEX yields consistent gains, and in the harder task-unknown
setting it substantially surpasses Twin-Merging and DaWin across every backbone. Accuracy re-
mains stable as the number of tasks increases: RETEX recovers at least 99.6% of individual-expert
performance even at 20 tasks on every backbone. These results indicate that RETEX reliably recon-
structs high-fidelity task experts from a single merged model while scaling to larger, more diverse
task suites.

5.1.2 MERGING 30 VISION TASKS

Setting. To further assess scalability, we extend the ViT-B/32 evaluation to a challenging 30-task
suite by augmenting the 20-task configuration (Section 5.1.1) with ten additional datasets: Veg-
etables (Ahmed et al., 2021), Kvasir-v2 (Pogorelov et al., 2017), Intel Images (Bansal, 2019),
Weather (Xiao et al., 2021), Cats and dogs (Cukierski), MangoLeafBD (Ahmed et al., 2023),
Beans (Lab, 2020), Landscape Recognition (DeepNets), Garbage Classification (CCHANG, 2018),
and Fruits-360 (Muresan & Oltean, 2018). Following Task Arithmetic (Ilharco et al., 2023), each
task-specific CLIP model (Radford et al., 2021) is fine-tuned for 2000 iterations with batch size 128
using AdamW (Loshchilov & Hutter, 2019; Kingma, 2015) (learning rate 1 × 10−5, weight decay
0.1) and a cosine schedule with 200 warm-up steps.

Results. Table 2 shows that static baselines deteriorate as tasks increase (e.g., Weight Averaging
reaches 59.1% with 64.2% normalized accuracy at 30 tasks), and input-dependent methods also drop
(Twin-Merging to 60.1%, DaWin to 40.3%). In contrast, RETEX remains stable: in task-known it

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 2: Multi-task performance on ViT-B/32 across different numbers of vision tasks. Values
in parentheses (·) indicate normalized accuracy (merged / individual). All evaluations use the ViT-
B/32 backbone.

Method 8 tasks 14 tasks 20 tasks 30 tasks

Zero-shot 48.3 57.2 56.1 55.5
Individual 92.9 90.9 91.4 93.1

(Task-known scenarios)
Task Arithmetic (Ilharco et al., 2023) 70.8(76.5) 65.3(72.1) 60.5(66.8) 58.0(62.8)
TIES (Yadav et al., 2023) 75.1(81.0) 68.0(74.8) 63.4(69.9) 60.1(65.2)
Consensus TA (Wang et al., 2024b) 75.0(80.8) 70.4(77.4) 65.4(72.0) 63.4(68.5)
EMR-Merging (Huang et al., 2024) 91.3(97.8) 87.6(96.3) 87.4(95.6) 90.5(97.0)
RETEX (Ours) 92.6(99.7) 90.6(99.6) 91.1(99.7) 92.9(99.7)

(Task-unknown scenarios)
Weight Averaging 66.3(72.1) 64.3(71.1) 61.0(67.5) 59.1(64.2)
Twin-Merging (Lu et al., 2024) 84.0(90.3) 70.0(76.7) 57.5(61.8) 60.1(65.2)
DaWin (Oh et al., 2025) 89.0(95.3) 73.8(80.3) 52.8(57.7) 40.3(42.9)
RETEX (Ours) 92.0(99.1) 89.8(98.8) 89.4(97.9) 92.3(99.1)

Table 3: Multi-task performance of merged RoBERTa-based models on eight GLUE datasets.
Bold values indicate the best performance among merging methods (excluding the individual ex-
perts).

Method Single-Sentence Similarity & Paraphrase Inference Avg.
CoLA SST2 MRPC STSB QQP MNLI QNLI RTE

Individual 0.6018 0.9404 0.8922 0.9063 0.9141 0.8720 0.9271 0.7906 0.8556

(Task-known scenarios)
Task Arithmetic (Ilharco et al., 2023) 0.1878 0.8589 0.7990 0.7403 0.8378 0.5908 0.6967 0.6209 0.6665
TIES (Yadav et al., 2023) 0.2048 0.8440 0.8113 0.5819 0.8570 0.6465 0.7481 0.4296 0.6404
EMR-Merging (Huang et al., 2024) 0.3996 0.9335 0.8627 0.8277 0.8972 0.8545 0.8957 0.7437 0.8018
RETEX (Ours) 0.5919 0.9433 0.8880 0.8676 0.9117 0.8732 0.9248 0.7617 0.8453
(Task-unknown scenarios)
Weight Averaging 0.1396 0.6411 0.6936 0.3184 0.7536 0.4219 0.5870 0.5523 0.5134
Twin-Merging (Lu et al., 2024) 0.6040 0.9410 0.8720 0.8640 0.9080 0.8190 0.9050 0.7740 0.8130
DaWin (Oh et al., 2025) 0.2447 0.9141 0.8566 0.6753 0.8671 0.8364 0.7968 0.6663 0.7322
RETEX (Ours) 0.5829 0.9449 0.8823 0.6984 0.9075 0.8179 0.9167 0.7653 0.8145

attains 92.9% (99.7% normalized), and in task-unknown it reaches 92.3% (99.1% normalized),
closely matching its 8/14/20-task behavior.

5.2 NLP TASKS

Setting. For evaluating RETEX on NLP tasks our experimental setup aligns with established pro-
tocols from recent model merging studies. We utilize the RoBERTa(Liu et al., 2019) as the common
pre-trained backbone from which individual task models are fine-tuned. Performance is assessed
across eight diverse NLP benchmarks, consistent with prior work: SST-2 (Socher et al., 2013),
MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017), QQP (Iyer et al., 2017), MNLI (Williams
et al., 2017), QNLI (Rajpurkar et al., 2016), and RTE (Giampiccolo et al., 2007).

Results. To further validate the versatility of RETEX, we extend our evaluation to a suite of NLP
tasks, complementing the aforementioned vision task experiments. The detailed performance met-
rics for these NLP benchmarks are presented in Table 3. The results clearly indicate that RETEX
substantially outperforms existing model merging techniques when applied to language models. No-
tably, our approach recovers approximately 98.7% of the performance of the original task-specific
fine-tuned models. While RETEX exhibits slightly lower performance than Twin-Merging specif-
ically on the CoLA and RTE dataset, its average performance across all evaluated NLP tasks sur-
passes that of Twin-Merging by more than 3 percentage points, underscoring its overall effectiveness
and robustness in the language domain.

5.3 COMPUTATIONAL COST

Batch inference. Although RETEX recovers an input-specific expert, it supports efficient batch
inference by grouping samples that share the same predicted task ID. (i) We feed a minibatch of size

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 4: Inference cost with CLIP backbone (ViT-B/32). We report the average performance and
resource usage across all tasks in the 8 computer vision task scenario, assuming the task of the input
sample is initially unknown.

Method Inference cost (per sample) VRAM (GB) Avg. performance

DaWin (Oh et al., 2025) 0.63s 5.5 89.0%
TWIN-Merging (Lu et al., 2024) 0.03s 5.6 84.0%
RETEX (Sample-wise) 0.04s 3.1 92.0%
RETEX (Group: B = 64) 0.005s 3.3 92.0%

50 100 150 200 250
Rank (r)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Normalized Accuracy (WA)
Normalized Accuracy (TA)
Normalized Accuracy (TIES)

Figure 3: Normalized Accuracy across different
ranks r, evaluated using three base merged models
with RETEX: Weight Averaging (WA), Task Arith-
metic (TA), and TIES-Merging (TIES).

5 10 15 20 25 30
Task Embedding Dimension (demb)

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Task 8
Task 14
Task 20

Figure 4: Normalized accuracy as a function of task
embedding dimension demb for 8, 14, and 20 tasks.
Results use a ViT-B/32 backbone with fixed recovery
rank r=256 and Weight Averaging for θmerge.

B through the task identifier router Rϕ that consumes the final embedding from the merged model
and obtain predicted task IDs {t̂i}Bi=1. (ii) We partition indices by task ID, It = {i ∈ {1, . . . , B} :
t̂i = t}, and for each task ID t with |It| > 0 we generate once to form a group recovered model
for t. (iii) We run the sub batches XIt in parallel through the corresponding group recovered model
and then scatter outputs back to the original order. This procedure reduces the number of recoveries
to K unique task IDs in the batch with K ≤ min(B, T), independent of batch size B, while adding
only a single router pass and reusing one merged backbone and the lightweight projection module
across groups.

Results. Table 4 shows that grouping by predicted task ID amortizes the recovery overhead across
a minibatch. Concretely, RETEX reduces per-sample latency from 0.04 s in sample-wise execution
to 0.005 s with group execution at B=64, while maintaining accuracy at 92.0% and with only a small
VRAM change (from 3.1GB to 3.3GB). Under the same task-unknown setting, grouped RETEX
is both faster and more accurate than input-dependent baselines, outperforming Twin-Merging and
DaWin. These gains arise because the number of recoveries scales with the number of unique task
IDs in a batch, K ≤ min(B, T), so a single recovered model per task ID serves its entire sub-batch
(K ≪ B in practice).

5.4 ABLATION STUDY

We conduct ablation studies to analyze key hyperparameters in RETEX. Unless otherwise specified,
all ablations follow the TALL-Mask (Wang et al., 2024b) setting on ViT-B/32.

Other merged models. To further investigate the generalization capability and broader applica-
bility of RETEX, we extend its application beyond the default Weight Averaging (WA) base model.
Specifically, we apply RETEX to merged models generated by Task Arithmetic (Ilharco et al., 2023)
(TA) and TIES-Merging (Yadav et al., 2023) (TIES), where the merging coefficients specific to TA
and TIES are kept fixed during the training of RETEX. As illustrated in Figure 3, utilizing a base
merged model with inherently better performance (i.e., TA or TIES instead of WA) can lead to
further, albeit modest, improvements in the final recovered accuracy achieved by RETEX. This per-
formance advantage from using a more advanced base model is more pronounced at lower recovery
ranks r. Nevertheless, these findings highlight a key strength of RETEX: its adaptability to integrate
with various existing static merging techniques, potentially leveraging their individual strengths to
further enhance multi-task performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 2 4 6 8 10
Normalized Memory Usage

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

Number of Tasks = 8

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Normalized Memory Usage

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

Number of Tasks = 14

0 5 10 15 20
Normalized Memory Usage

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

Number of Tasks = 20

EMR-Merging WA TA TIES Dawin Twin-Merging ReTeX (Ours) ReTeX-E (Ours)

Figure 6: Comparison of normalized accuracy vs. normalized memory across model-merging meth-
ods, including RETEX (ReTeX) and RETEX-E (ReTeX-E). RETEX-E exhibits the strongest trade-
off—lower memory at comparable or better accuracy—across different task counts.

Task embedding dimension. We investigate the influence of the task embedding dimension, demb,
on the recovery performance of RETEX. For this analysis, we fix the rank r=256 and vary demb

while evaluating on configurations with 8, 14, and 20 tasks. Figure 4 shows that as demb increases,
the normalized accuracy generally improves and then saturates. Notably, even as the total number of
tasks (T) increases, high recovery performance (approaching or exceeding 99.7%) can be achieved
once demb is sufficiently large, typically at or modestly above T . We further note that demb can be
determined relative to the number of tasks being merged without a significant performance loss.

5.5 ADVANCED EFFICIENCY

1.5 2.0 2.5 3.0 3.5
Normalized Memory Usage

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

ReTeX
ReTeX-E (r=256)
ReTeX-E (r=128)

Figure 5: Normalized accuracy vs. nor-
malized memory for RETEX (direct gen-
erator) and RETEX-E (two-stage gener-
ator) at fixed outer rank r while varying
rg . RETEX-E attains a better memory–
performance trade-off and maintains >
99% recovery.

Low-rank generation for task-adaptive components.
Our default offset uses β

(l)

t̂
= β

(l)
g β

(l)
s , where the task

adaptation layer outputs β(l)
g ∈Ra×r and β

(l)
s ∈Rr×b is

a shared learnable factor. The dominant parameter cost
comes from producing β

(l)
g . To reduce it, we introduce

RETEX-E, which factorizes the generator itself: β(l)
g =

β
(l)
gAβ

(l)
gB with β

(l)
gA ∈Ra×rg , β(l)

gB ∈Rrg×r, and rg < r,

yielding the final offset β(l)

t̂
= (β

(l)
gAβ

(l)
gB)β

(l)
s .

Results. Figure 5 evaluates the performance–memory
trade-off by fixing the outer rank r and varying the inter-
nal rank rg . RETEX-E consistently matches or slightly
exceeds the direct generator (RETEX) while using less
memory, especially in the high-accuracy regime, and preserves over 99% recovery. Complementar-
ily, Figure 6 compares normalized accuracy vs. normalized memory across a wider set of merging
baselines. Both RETEX and RETEX-E occupy the favorable top-left region, and RETEX-E in par-
ticular achieves an excellent trade-off, delivering > 99% recovery with noticeably lower memory
than alternatives.

6 CONCLUSION

In this work, we aim to recover task-expert-level performance while reducing memory usage over-
head. We note that the task-specific offset between the task-expert parameters and the merged model
parameters can be recovered from the merged model. Building upon this, we introduce a new model
merging approach that learns to Recover Task eXperts (RETEX) from a merged model by pre-
dicting these offsets. Particularly, our framework first estimates the task identity for a given input.
Conditioned on the estimated task identity, our framework generates a low-rank, task-dependent
offset that maps the merged parameters to the corresponding expert for that input. Experimental
results across vision and NLP domains highlight the effectiveness of RETEX in recovering task-
expert-level performance while reducing memory overhead, compared to previous input-adaptive
merging methods. We hope that this work encourages future research on the relationship between
a merged model and task-specific models, and on more efficient approaches to model merging via
offset recovery.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

M Israk Ahmed, Shahriyar Mahmud Mamun, and Asif Uz Zaman Asif. Dcnn-based vegetable image
classification using transfer learning: A comparative study. In ICCCSP, 2021.

Sarder Iftekhar Ahmed, Muhammad Ibrahim, Md Nadim, Md Mizanur Rahman, Maria Mehjabin
Shejunti, Taskeed Jabid, and Md Sawkat Ali. Mangoleafbd: A comprehensive image dataset to
classify diseased and healthy mango leaves. Data in Brief, 2023.

Puneet Bansal. Intel image classification. Available on https://www. kaggle. com/puneet6060/intel-
image-classification, Online, 2019.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative com-
ponents with random forests. In ECCV, 2014.

CCHANG. Garbage classification. https://www.kaggle.com/ds/81794, 2018.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity - multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 2017.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In CVPR, 2014.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718, 2018.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In AISTATS, 2011.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: Extending mnist
to handwritten letters. In IJCNN, 2017.

Will Cukierski. Dogs vs. cats, 2013. URL https://kaggle. com/competitions/dogs-vs-cats.

MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: Scaling multi-task model
merging with sparse masks. In ECCV, 2024.

Pala Tej Deep, Rishabh Bhardwaj, and Soujanya Poria. Della-merging: Reducing interference in
model merging through magnitude-based sampling. arXiv preprint arXiv:2406.11617, 2024.

DeepNets. Landscape recognition. https://www.kaggle.com/datasets/
utkarshsaxenadn/landscape-recognition-image-dataset-12k-images.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 2012.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 2023.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In IWP, 2005.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third pascal recognizing
textual entailment challenge. In ACL-PASCAL workshop, 2007.

10

https://www.kaggle.com/ds/81794
https://www.kaggle.com/datasets/utkarshsaxenadn/landscape-recognition-image-dataset-12k-images
https://www.kaggle.com/datasets/utkarshsaxenadn/landscape-recognition-image-dataset-12k-images

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Ian J. Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi Mirza, Ben Hamner,
Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, Yingbo Zhou, Chetan Ramaiah,
Fangxiang Feng, Ruifan Li, Xiaojie Wang, Dimitris Athanasakis, John Shawe-Taylor, Maxim Mi-
lakov, John Park, Radu Ionescu, Marius Popescu, Cristian Grozea, James Bergstra, Jingjing Xie,
Lukasz Romaszko, Bing Xu, Zhang Chuang, and Yoshua Bengio. Challenges in representation
learning: A report on three machine learning contests. In ICONIP, 2013.

Yifei He, Yuzheng Hu, Yong Lin, Tong Zhang, and Han Zhao. Localize-and-stitch: Efficient model
merging via sparse task arithmetic. arXiv preprint arXiv:2408.13656, 2024.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019.

Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. Emr-merging:
Tuning-free high-performance model merging. In NeurIPS, 2024.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
lating weights. In NeurIPS, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In ICLR, 2023.

Shankar Iyer, Nikhil Dandekar, Kornél Csernai, et al. First quora dataset release: Question pairs.
data. quora. com. 2017.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. In ICLR, 2023a.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. In ICLR, 2023b.

Junmo Kang, Leonid Karlinsky, Hongyin Luo, Zhen Wang, Jacob Hansen, James Glass, David
Cox, Rameswar Panda, Rogerio Feris, and Alan Ritter. Self-moe: Towards compositional large
language models with self-specialized experts. arXiv preprint arXiv:2406.12034, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. In ICLR, 2015.

Fanshuang Kong, Richong Zhang, and Ziqiao Wang. Activated parameter locating via causal inter-
vention for model merging. arXiv preprint arXiv:2408.09485, 2024.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In ICCV Workshop, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Makerere AI Lab. Bean disease dataset, 2020. URL https://github.com/
AI-Lab-Makerere/ibean/.

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong
Chen. Merge, then compress: Demystify efficient smoe with hints from its routing policy. arXiv
preprint arXiv:2310.01334, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, and Yu Cheng. Twin-merging:
Dynamic integration of modular expertise in model merging. In NeurIPS, 2024.

11

https://github.com/AI-Lab-Makerere/ibean/
https://github.com/AI-Lab-Makerere/ibean/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Colin A. Matena, Michael S. and Raffel. Merging models with fisher-weighted averaging. In
NeurIPS, 2022.

Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adaptive routing.
Transactions on Machine Learning Research, 2023.

Horea Muresan and Mihai Oltean. Fruit recognition from images using deep learning. Acta Univer-
sitatis Sapientiae, Informatica, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y. Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop, 2011.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In ICVGIP, 2008.

Changdae Oh, Yixuan Li, Kyungwoo Song, Sangdoo Yun, and Dongyoon Han. Dawin: Training-
free dynamic weight interpolation for robust adaptation. 2025.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In CVPR,
2012.

Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada Eskeland, Thomas
de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux, Pe-
ter Thelin Schmidt, et al. Kvasir: A multi-class image dataset for computer aided gastrointestinal
disease detection. In ACM MMSys, 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang,
Tim Strother, Chunjong Park, Elahe Vedadi, et al. Capabilities of gemini models in medicine.
arXiv preprint arXiv:2404.18416, 2024.

Ken Shoemake. Animating rotation with quaternion curves. In SIGGRAPH, 1985.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, 2013.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In IJCNN, 2011.

Anke Tang, Li Shen, Yong Luo, Liang Ding, Han Hu, Bo Du, and Dacheng Tao. Concrete
subspace learning based interference elimination for multi-task model fusion. arXiv preprint
arXiv:2312.06173, 2023.

Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task
models via weight-ensembling mixture of experts. In ICML, 2024.

Joachim Utans. Weight averaging for neural networks and local resampling schemes. In AAAI
Workshop, 1996.

Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equiv-
ariant cnns for digital pathology. In MICCAI, 2018.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, François Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. In ICML, 2024a.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, François Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. In ICML, 2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Haixia Xiao, Feng Zhang, Zhongping Shen, Kun Wu, and Jinglin Zhang. Classification of weather
phenomenon from images by using deep convolutional neural network. Earth and Space Science,
2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jianxiong Xiao, Krista A. Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
Exploring a large collection of scene categories. International Journal of Computer Vision, 2016.

Feng Xiong, Runxi Cheng, Wang Chen, Zhanqiu Zhang, Yiwen Guo, Chun Yuan, and Ruifeng
Xu. Multi-task model merging via adaptive weight disentanglement. arXiv preprint
arXiv:2411.18729, 2024.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. In NeurIPS, 2023.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. In ICLR, 2024.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In ICML, 2024.

Didi Zhu, Zhongyi Sun, Zexi Li, Tao Shen, Ke Yan, Shouhong Ding, Kun Kuang, and Chao Wu.
Model tailor: Mitigating catastrophic forgetting in multi-modal large language models. arXiv
preprint arXiv:2402.12048, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A JUSTIFICATION FOR OFFSET-BASED EXPERT RECOVERY

A.1 AFFINE TRANSFORMATION–BASED TASK VECTOR RECOVERY

Math derivation. Starting from the task–arithmetic formulation in the main paper,

θmerge = θ0 +

T∑
t=1

λt τt, (7)

define the merged task vector τmerge≡θmerge − θ0 and rewrite:

τmerge =

T∑
i=1

λiτi = λtτt +
∑
i̸=t

λiτi. (8)

Isolating the target task t by subtracting the non-t terms from both sides gives

τmerge −
∑
i̸=t

λiτi = λtτt. (9)

Assuming λt is invertible (a nonzero scalar or an invertible linear operator), left–multiplying by λ−1
t

yields

λ−1
t

(
τmerge −

∑
i̸=t

λiτi

)
= τt, (10)

τt = λ−1
t τmerge − λ−1

t

∑
i̸=t

λiτi. (11)

Equation 11 shows that recovering τt from τmerge involves a multiplicative term and an additive cor-
rection that compensates for interference from other tasks. This motivates the affine approximation

τt ≈ γtτmerge + βt, (12)

where γt (scalar) approximates λ−1
t and βt (tensor) approximates −λ−1

t

∑
i̸=t λiτi. If γt,βt are

generated from the task ID t, one can recover τt from τmerge via Equation 12.

A.2 LEARNING AND SIMPLIFYING THE AFFINE RULE IN RETEX

Learning the full affine rule. Guided by Equation 12, RETEX generates the per–layer scalar γ(l)
t

and a low–rank shift β(l)
t,g , composed with a shared factor β(l)

s :

θ̂
(l)
t = θ

(l)
0 + γ

(l)
t

(
θ(l)

merge − θ
(l)
0

)
+ β

(l)
t,gβ

(l)
s . (13)

Observed behavior of the scaling factor. In practice, the task–averaged γ
(l)
t for many layer types

converges close to 1, indicating that most task–specific adjustment is carried by the shift term. Fig-
ure 7 visualizes this convergence trend over training.

Impact of fixed scaling on performance. Motivated by the above observation, we fix γ
(l)
t =1 for

all tasks and layers so that RETEX generates only the low–rank shift:

θ̂
(l)
t = θ(l)

merge + β
(l)
t,gβ

(l)
s . (14)

Figure 8 shows that this fixed–scaling variant closely matches the accuracy of the learned–γ model
across a wide range of ranks r, while reducing memory usage. This supports the offset–only re-
covery perspective: recovering a task expert amounts to predicting a task–dependent offset from the
merged parameters.

Equation 13 and Equation 14, together with the convergence in Figure 7, justify an offset–based
expert recovery rule. Setting γ

(l)
t =1 enables deployment with only a single merged model θmerge;

RETEX learns task–conditioned low–rank offsets β(l)
t,gβ

(l)
s that effectively map θmerge to θt without

storing task experts.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

0 1000 2000 3000 4000 5000
Epoch

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

(l)

Positional Embedding
Visual Projection
Conv1
Attention In Projection

Attention Out Projection
MLP-FC
MLP-Projection

Figure 7: Convergence behavior of task-averaged γ
(l)
t values for various 2D layer types during

RETEX training (where γ(l)
t is learnable). Experiment on ViT-B/32 with 8 vision tasks shows many

layers converge to γ
(l)
t ≈1.

50 100 150 200 250
rank (r)

0.92

0.94

0.96

0.98

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Accuracy (ReTeX, Fixed t = 1)
Accuracy (ReTeX)
Memory (ReTeX, Fixed t = 1)
Memory (ReTeX) 1.5

2.0

2.5

3.0

3.5

4.0

4.5

No
rm

al
ize

d
M

em
or

y
Us

ag
e

Figure 8: Performance and memory versus rank r on 8 vision tasks (ViT-B/32). Fixing γ
(l)
t =1 pre-

serves accuracy relative to the learned–γ model while lowering memory, validating the offset–only
recovery view.

B EXPERIMENT DETAILS

B.1 MODULE ARCHITECTURE AND PARAMETERS

This section details the module architecture and parameterization of RETEX in the offset-only con-
figuration justified in Appendix A. In this setting, RETEX learns to generate a task-specific offset
tensor β

(l)
t for each layer l and applies it to the merged parameters. The offset is factorized as

β
(l)
t = β

(l)
t,gβ

(l)
s , where β

(l)
t,g is generated by a lightweight task adaptation MLP h(l) conditioned on

a task embedding et, and β
(l)
s is a shared learnable component.

The core components involved in offset generation, their shapes (exemplified for a 2D layer), and
their PyTorch-like forms are summarized in Table 5. We denote the number of tasks as T , the task
embedding dimension as demb, the dimensions of a 2D layer’s parameter matrix as (a, b), and the
chosen low-rank dimension as r.

The task adaptation MLP h(l) takes the demb-dimensional task embedding et as input and generates
the task-dependent factor β(l)

t,g . For a 2D layer of shape (a, b), β(l)
t,g has dimensions (a, r), and the

MLP output dimension is a · r. The shared component β(l)
s has dimensions (r, b) and is a learnable

parameter initialized with zeros. The final offset β(l)
t is their product.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 5: Core components for offset generation in RETEX (offset-only), exemplified for a 2D
layer. T : tasks, demb: task embedding dimension, (a, b): 2D layer shape, r: rank.

Component Shape (for 2D layer) Form
Task embedding (et) (T, demb) nn.Embedding(T , demb)
Task adaptation MLP (h(l)) (demb, a · r) nn.Linear(demb, a · r)
↪→ Generated β

(l)
t,g (a, r) Reshaped h(l) output

Shared β
(l)
s (r, b) nn.Parameter(torch.zeros(r, b))

Effective offset β(l)
t (a, b) β

(l)
t = β

(l)
t,gβ

(l)
s

Parameter handling for diverse dimensions. The shapes of the generated component β(l)
t,g and

the shared component β(l)
s are adapted based on the dimensionality of the original layer parameter

θ(l):

• 0D (Scalar) parameters:

– β
(l)
t,g: Shape (1), output of h(l).

– β
(l)
s : Shape (1), learnable scalar.

• 1D (Vector) parameters: For an original parameter of shape (D):

– β
(l)
t,g: Shape (D), output of h(l).

– β
(l)
s : Shape (1), learnable scalar (scales β(l)

t,g element-wise).

• 2D (Matrix) parameters: For an original parameter of shape (a, b) and using rank r:

– β
(l)
t,g: Shape (a, r), output of h(l) (reshaped).

– β
(l)
s : Shape (r, b), learnable matrix.

• 4D (Tensor, e.g., convolutional kernels) parameters: For an original parameter of shape
(cout, cin, kh, kw), treat it as 2D by reshaping to (cout, cin ·kh ·kw) for decomposition with
rank r:

– β
(l)
t,g: Shape (cout, r), output of h(l) (reshaped).

– β
(l)
s : Shape (r, cin · kh · kw), learnable matrix.

– The resulting β
(l)
t is reshaped back to (cout, cin, kh, kw).

The task adaptation MLP h(l) adjusts its output dimensionality to produce the required β
(l)
t,g for each

layer type.

Rank adjustment. RETEX uses a common target rank r across layers. For 2D parameters of
shape (d1, d2) (or 4D parameters reshaped to such a 2D form), the rank is adjusted per layer: if
r ≥ min(d1, d2), the effective rank is set to ⌊min(d1, d2)/2⌋; otherwise, the target rank r is used.
This ensures a practical low-rank structure for all layers.

B.2 BASELINE DETAILS

The baseline approaches employed for comparative evaluation in our experiments are detailed as
follows:

• Individual Models: This represents the standard performance benchmark where a distinct,
fine-tuned model is dedicated to each specific task. These models operate independently
and are not designed for multi-task execution.

• Weight Averaging (Shoemake, 1985; Utans, 1996): As a foundational technique in model
merging, this method directly computes an average of the parameters from all constituent
task-specific models. It operates under the simplifying assumption that all tasks contribute
equally, hence applying uniform weighting to each model.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

• Task Arithmetic (Ilharco et al., 2023): This approach first defines a ”task vector” τt for
each task t as the parametric difference between the fine-tuned model θt and the initial
pre-trained model θ0 (i.e., τt = θt − θ0). A unified model θmerge is then constructed
by adding a scaled sum of these task vectors to the pre-trained parameters, formulated as
θmerge = θ0+λ

∑T
t=1 τt. The scaling factor λ is a hyperparameter selected from the range

{0.0, 0.1, . . . , 1.0} to maximize average performance across all task validation sets.

• TIES-Merging (Yadav et al., 2023): This method refines task vectors before merging
through a three-step process: Trim, Elect Sign, and Merge. In the Trim step, only the
top 20% of values by magnitude in each task vector are retained, with others zeroed out.
The Elect Sign step (implicitly handled by the original task vector signs) and the subse-
quent Merge step proceed analogously to Task Arithmetic, including the hyperparameter
tuning for the scaling factor.

• Consensus TA (Wang et al., 2024a): This technique first utilizes a multi-task model to
derive binary masks that highlight parameters deemed critical for each task. The sparsity
of these masks is controlled by a hyperparameter λ, optimized over {0.2, 0.3, 0.4, 0.5, 0.6}
using validation performance. Each task-specific mask is then applied to its correspond-
ing task vector via an element-wise (Hadamard) product before the final merging, which
follows the Task Arithmetic procedure.

• EMR-Merging (Huang et al., 2024): This approach begins by creating a consolidated
”unified task vector” derived from the sign and magnitude of individual task vectors. It then
computes task-specific binary masks and rescaling vectors for each task. The final merged
model for a given task is obtained by an element-wise multiplication of this unified task
vector with the corresponding task-specific mask and rescaler. This method is presented as
hyperparameter-free.

• Twin-Merging (Lu et al., 2024): This method involves first training a router for dynamic
task identification. A shared ”common expert” is then established using Task Arithmetic
with a predetermined scaling factor. Subsequently, ”exclusive knowledge vectors” unique
to each task are extracted, typically using Singular Value Decomposition (SVD) or a trim-
ming procedure similar to TIES-Merging (with Trim reported as superior). At inference,
the router assigns task-specific weights to an input. The final model output is derived by
combining the shared expert with a weighted sum of these exclusive knowledge vectors,
using the router-determined weights.

• DaWin (Oh et al., 2025): This dynamic merging technique assigns an input-specific weight
to each task model. These weights are calculated based on the Shannon entropy of the
outputs from both the task-specific model and the pre-trained base model for the given
input. To optimize inference speed, a Beta Mixture Model (BMM) can optionally be trained
to approximate these dynamic weights, typically using K = 3 mixture components by
default.

B.3 COMPUTATIONAL RESOURCES AND TRAINING TIME

All experimental procedures reported in this work, encompassing the training and inference of our
proposed RETEX framework, as well as performance evaluations and computational cost measure-
ments for baseline methods, were conducted on specific GPU hardware. For experiments involving
14 tasks or fewer, NVIDIA GeForce RTX 3090 GPUs were utilized. As a specific example of
training duration, the training of RETEX for the 8-task vision benchmark typically completed in
approximately 53 minutes and 49 seconds on a single NVIDIA GeForce RTX 3090 GPU. For more
extensive experiments involving 20 tasks or more, NVIDIA H100 80GB HBM3 GPUs were em-
ployed to accommodate the increased computational demands.

C MORE ABLATION STUDY

C.1 RANK

We study how the low–rank dimension r affects recovery quality and memory. Figure 9 reports
normalized accuracy (mean accuracy divided by the corresponding individual-expert accuracy) and

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

50 100 150 200 250
Rank (r)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Normalized Accuracy
Normalized Memory Usage

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
M

em
or

y
Us

ag
e

Figure 9: Normalized accuracy and required memory ratio as a function of rank r on ViT-B/32. Ac-
curacy crosses 99% at r≥128 and saturates near r=256, which we adopt by default for subsequent
experiments.

required memory ratio (memory relative to the base model) on ViT-B/32. Across a sweep of r,
RETEX exceeds 99% normalized accuracy once r ≥ 128, and the gains saturate beyond r = 256
(typically ≈ 99.7–99.8%). Since the parameter and activation costs grow roughly linearly with r
through the factors a× r and r× b, we set r=256 in the main experiments to balance accuracy and
memory.

C.2 RANDOM SEED

Table 6: Normalized accuracy for each random seed and number of tasks across all tasks in the
computer vision task with ViT-B/32 CLIP backbone. The bottom row reports the sample mean and
its standard deviation (Mean ± std) over the five seeds.

Seed 8 tasks 14 tasks 20 tasks
0 99.7352 99.6184 99.6430
1 99.7278 99.6201 99.6431
2 99.7364 99.6168 99.6431
3 99.7387 99.6159 99.6338
4 99.7317 99.6244 99.6467

Mean ± std 99.7340± 0.0043 99.6191± 0.0034 99.6419± 0.0048

To assess the stability and robustness of RETEX with respect to initialization and other sources of
randomness in the training process, we conducted experiments across multiple random seeds. Ta-
ble 6 presents the normalized accuracy of RETEX on the ViT-B/32 CLIP backbone for computer
vision task suites of 8, 14, and 20 tasks, evaluated over five different random seeds (0 through 4).
The results demonstrate a high degree of consistency across seeds. This low variance across differ-
ent seeds indicates that the performance of RETEX is not highly sensitive to the specific random
initialization used, suggesting reliable and reproducible outcomes.

C.3 COSINE SIMILARITY AS AN OBJECTIVE

Prior works in model merging Yang et al. (2024); Huang et al. (2024); Xiong et al. (2024); Davari
& Belilovsky (2024) have occasionally utilized cosine similarity as a metric, particularly to evaluate
the alignment or proximity between different task vectors or between a task vector derived from
a merged model and those from individual task-specific models. This metric captures the angu-
lar relationship between these vectors, providing insights into their directional agreement, which
can be a complementary perspective to L2 distance that measures magnitude differences in the
parameter space. Motivated by its use as an evaluative measure for task vector relationships, we
investigate whether employing cosine similarity directly as the training objective for RETEX offers

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

any advantages or differing characteristics compared to our standard L2 reconstruction loss when
reconstructing task-specific parameters.

Let L2 denote our original layer-wise L2 reconstruction loss as defined in the main paper Equation
4. For this ablation, we define a cosine similarity-based loss, Lcos, based on the overall task vectors.
Let τt = θt−θ0 be the target task vector for task t, representing the difference between the original
fine-tuned model parameters θt and the pre-trained model parameters θ0. Similarly, let τ̂t = θ̂t−θ0
be the reconstructed task vector, where θ̂t are the parameters recovered by RETEX. For the purpose
of calculating cosine similarity, τt and τ̂t are treated as single, high-dimensional vectors representing
the entirety of these parameter differences. The cosine similarity loss Lcos is then formulated as:

Lcos =

T∑
t=1

(
1− τ̂t · τt

∥τ̂t∥2 · ∥τt∥2

)
(15)

where · represents the dot product between the (flattened) task vectors.

We conducted experiments to compare these objectives. As shown in Figure 10, the red dot indicates
the normalized accuracy when using only Lcos as the objective (effectively λ = 0 in a combined
loss). The green dashed line represents the performance of our standard RETEX which uses only the
L2 loss, without any cosine similarity component. Furthermore, we evaluated a combined objective
function Lcombined = Lcos +λL2, where λ is a hyperparameter controlling the contribution of the L2
loss. The blue line in Figure 10 plots the normalized accuracy achieved with this combined loss for
varying values of λ.

0.0 0.2 0.4 0.6 0.8 1.0
coefficient ()

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Lcos + L2
(only Lcos)
(only L2)

Figure 10: Normalized accuracy of RETEX when trained with different objective functions: only
Lcos (red dot, corresponding to λ = 0 in the combined loss), only L2 (green dashed line, our standard
approach), and a combination Lcos + λL2 (blue line) for various λ coefficients. Experiments were
conducted on the 8 vision task benchmark with the ViT-B/32 backbone.

Analysis. The results presented in Figure 10 demonstrate that using only cosine similarity (Lcos,
red dot) as the training objective results in a normalized accuracy of approximately 0.73. This is
substantially lower than the near-perfect recovery (normalized accuracy ≈ 1.00) achieved when
using only the L2 loss (L2), indicated by the green dashed line. This performance gap highlights
that cosine similarity alone is insufficient for high-fidelity task expert recovery.

Interestingly, when combining the two losses as Lcos + λL2, the performance (blue line) rapidly
improves as the coefficient λ for the L2 loss increases. Even with a relatively small λ = 0.2, the
normalized accuracy of the combined loss already reaches the level achieved by the L2 loss alone
(the green dashed line) and subsequently remains saturated at this high performance for λ ≥ 0.2.
This observation strongly suggests that the performance recovery is primarily driven by the L2
component of the loss. The fact that adding a small amount of L2 to Lcos allows the model to match

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

the performance of L2 alone, and that further increasing the Lcos component (by having smaller λ)
does not improve beyond what L2 achieves, indicates that Lcos offers little to no additional benefit
for recovery when a sufficient L2 term is present.

Therefore, it can be inferred that the L2 distance is the main driver for effectively recovering the task
experts. The improvement in cosine similarity (i.e., directional alignment) appears to be a natural
consequence of minimizing the L2 distance between the reconstructed and target task vectors. If
two vectors are made very close in Euclidean space (small L2 distance), their angular deviation
will inherently decrease, leading to high cosine similarity. This suggests that directly optimizing
for cosine similarity is not essential for, and may even distract from, the core objective of precise
parameter reconstruction, for which L2 loss is more effective. Consequently, while cosine similarity
can be an insightful metric, our standard L2 loss remains the more robust and primary objective
function for RETEX.

C.4 IMPACT OF FACTORIZATION ORDER IN SHIFT TENSOR GENERATION

In our proposed RETEX framework (hereafter referred to as RETEX for clarity in this comparison),
the task-specific shift tensor β(l)

t for a 2D layer of shape (a, b) is generated via a low-rank factor-
ization: β(l)

t = β
(l)
t,gβ

(l)
s . Here, the task-adaptive component β(l)

t,g , generated by the Task Adaptation

Layer (h(l)), has dimensions (a, r), and the shared component β(l)
s , a learnable parameter initialized

with zeros, has dimensions (r, b).

This ablation study investigates the impact of reversing the order of these factorized components.
We explore an alternative formulation, denoted RETEX-Alt, where the shift tensor is constructed as
β
(l)
t = β

(l)
s,altβ

(l)
t,g,alt. In this alternative setup:

• β
(l)
s,alt is a shared, learnable parameter (initialized with zeros) with dimensions (a, r).

• β
(l)
t,g,alt is the task-adaptive component generated by the Task Adaptation Layer, now with

dimensions (r, b).

The core idea is to examine whether making the first factor shared (and learnable from zero-
initialization) and the second factor task-adaptive (generated by the Task Adaptation Layer) in-
fluences the model’s recovery performance and memory usage, compared to our standard RETEX
approach where the first factor is task-adaptive and the second is shared.

The experimental settings, including the ViT-B/32 backbone, 8 vision tasks, the training procedure
for the Task Adaptation Layer, and varying rank r, remain consistent with our main experiments.
The only modification is this reordering of the factorization for β(l)

t and the corresponding change
in the output shape of the Task Adaptation Layer.

50 100 150 200 250
rank (r)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

ReTeX Accuracy
ReTeX-Alt Accuracy
ReTeX Memory
ReTeX-Alt Memory

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
M

em
or

y
Us

ag
e

Figure 11: Comparison of normalized accuracy and normalized memory usage versus rank (r) for
the standard ReTeX (blue lines) and ReTeX-Alt (orange lines, representing the alternative factoriza-
tion order). Solid lines indicate accuracy, and dashed lines indicate memory usage. Experiments
were conducted on 8 vision tasks with ViT-B/32.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Analysis. Figure 11 illustrates the normalized accuracy and normalized memory usage for both
ReTeX (blue lines) and RETEX-Alt (orange lines) across different ranks r.

A key observation is that RETEX-Alt (orange dashed line) generally exhibits lower memory usage
compared to RETEX (light blue dashed line) for the same rank r. This is primarily because in
many neural network layers, the input dimension a is often larger than the output dimension b (i.e.,
a > b). In RETEX-Alt, the shared parameter β(l)

s,alt has shape (a, r), while the Task Adaptation

Layer generates β(l)
t,g,alt of shape (r, b). Conversely, in RETEX, the Task Adaptation Layer generates

β
(l)
t,g of shape (a, r). Since the parameters of the Task Adaptation Layer contribute significantly to

the overall memory, generating a smaller matrix (typically (r, b) in RETEX-Alt when b < a) results
in lower memory for RETEX-Alt.

However, this reduction in memory usage for RETEX-Alt is accompanied by a noticeable decrease
in normalized accuracy (orange solid line) compared to the standard RETEX (blue solid line) across
all ranks. For instance, at rank r = 256, RETEX achieves a normalized accuracy close to 1.00,
while RETEX-Alt is visibly lower.

When comparing at roughly equivalent memory usage levels (e.g., by selecting a higher rank for
RETEX-Alt to match the memory of RETEX at a lower rank, or vice-versa, though not directly
shown on a single vertical line), the performance difference might appear less substantial. However,
the consistent trend shows that for any given rank, RETEX slightly outperforms RETEX-Alt. This
suggests that while reversing the factorization order can lead to memory savings due to typical layer
dimensionalities, it may compromise the model’s capacity to learn effective task-specific shifts.
The standard RETEX configuration, where the larger task-adaptive component β(l)

t,g (often a × r
with a > b) is generated by the Task Adaptation Layer and then projected by the smaller shared,
zero-initialized learnable parameter β(l)

s (r × b), appears to offer a marginally better performance-
to-rank trade-off. Placing the shared, zero-initialized learnable parameter as the second factor in the
multiplication (as in the standard RETEX) might provide a more stable or effective learning dynamic
for task-specific recovery. Therefore, our standard RETEX factorization order (β(l)

t,gβ
(l)
s) is retained

as the primary approach.

C.5 IMPACT OF CALIBRATION SAMPLE SIZE ON ROUTER PERFORMANCE

Figure 12: Task router accuracy as a function of the number of training samples per task.
Results are shown for models trained on 8, 14, and 20 tasks with a ViT-B-32 backbone. The x-axis
is on a log scale.

Sample efficiency of the task router. A key design goal of our framework is efficiency, particu-
larly in its data requirements for task identification. The task router (Rϕ), as detailed in Section 4.2,
is a lightweight network designed to operate effectively with a minimal number of calibration sam-
ples. To validate this sample efficiency, we conduct an ablation study on the number of samples per
task used for training the router. As shown in Figure 13, we evaluate scenarios with 8, 14, and 20
tasks, varying the number of training samples from just 32 to 1024 per task.

The results highlight the practical utility of our approach. Even with as few as 32 samples per
task, the router achieves a remarkable normalized accuracy of 98.5% for the 8-task scenario. The
performance remains robust as the number of tasks increases, with the 20-task router achieving
96.9% accuracy with the same minimal sample size. Moreover, accuracy exhibits a steady, gradual

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

improvement as the number of samples increases from 32 to 1024, indicating that while the router
performs strongly with very few samples, its performance can be further refined with more data.
This result confirms that the task router does not require large, task-specific datasets for calibration,
which significantly reduces the data collection and training overhead associated with our framework.
Consequently, this high sample efficiency makes our task classification mechanism a practical and
scalable solution for multi-task scenarios.

C.6 RETEX APPLICATOIN WITH SHARED LAYERS

RETEX recovers experts in a layer-wise manner because parameter interference induced by merging
is not uniform across layers. Different blocks absorb and entangle task updates to varying degrees,
so offsets must be tailored per layer to effectively undo these layer-specific deviations.

RETEX-S (Shared layers). To test whether sharing hurts recovery, we introduce RETEX-S: for
all layers that share the same parameter shape, we tie the task adaptation layer h(l) and the shared
factor β(l)

s across those layers (i.e., a single generator and shared factor are reused for every layer in
the shape group). All other components remain identical to RETEX.

Results. Figure 14 compares normalized accuracy and memory as the rank r varies. Sharing
across layers markedly degrades recovery quality: RETEX-S underperforms the layer-wise RETEX
at virtually all ranks. Even when we equalize memory by increasing the rank of RETEX-S to match
RETEX’s parameter budget, RETEX-S still trails in accuracy, indicating that the drop is not merely
a capacity issue but stems from forcing a single offset generator to explain heterogeneous, layer-
dependent interference. These observations support the design choice to estimate offsets per layer
rather than sharing them broadly.owever, this reduction in memory usage for RETEX-Alt is accom-
panied by a noticeable decrease in normalized accuracy (orange solid line) compared to the standard
RETEX (blue solid line) across all ranks. For instance, at rank r = 256, RETEX achieves a nor-
malized accuracy close to 1.00, while RETEX-Alt is visibly lower. When comparing at roughly
equivalent memory usage levels (e.g., by selecting a higher rank for RETEX-Alt to match the mem-
ory of RETEX at a lower rank, or vice-versa, though not directly shown on a single vertical line),
the performance difference might appear less substantial. However, the consistent trend shows that
for any given rank, RETEX slightly outperforms RETEX-Alt. This suggests that while reversing the
factorization order can lead to memory savings due to typical layer dimensionalities, it may compro-
mise the model’s capacity to learn effective task-specific shifts. The standard RETEX configuration,
where the larger task-adaptive component β(l)

t,g (often a × r with a > b) is generated by the Task

Adaptation Layer and then projected by the smaller shared, zero-initialized learnable parameter β(l)
s

(r×b), appears to offer a marginally better performance-to-rank trade-off. Placing the shared, zero-
initialized learnable parameter as the second factor in the multiplication (as in the standard RETEX)
might provide a more stable or effective learning dynamic for task-specific recovery. Therefore, our
standard RETEX factorization order (β(l)

t,gβ
(l)
s) is retained as the primary approach.

C.7 IMPACT OF CALIBRATION SAMPLE SIZE ON ROUTER PERFORMANCE

Figure 13: Task router accuracy as a function of the number of training samples per task.
Results are shown for models trained on 8, 14, and 20 tasks with a ViT-B-32 backbone. The x-axis
is on a log scale.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Sample efficiency of the task router. A key design goal of our framework is efficiency, particu-
larly in its data requirements for task identification. The task router (Rϕ), as detailed in Section 4.2,
is a lightweight network designed to operate effectively with a minimal number of calibration sam-
ples. To validate this sample efficiency, we conduct an ablation study on the number of samples
per task used for training the router. As shown in Figure 13, we evaluate scenarios with 8, 14,
and 20 tasks, varying the number of training samples from just 32 to 1024 per task. The results
highlight the practical utility of our approach. Even with as few as 32 samples per task, the router
achieves a remarkable normalized accuracy of 98.5% for the 8-task scenario. The performance re-
mains robust as the number of tasks increases, with the 20-task router achieving 96.9% accuracy
with the same minimal sample size. Moreover, accuracy exhibits a steady, gradual improvement as
the number of samples increases from 32 to 1024, indicating that while the router performs strongly
with very few samples, its performance can be further refined with more data. This result confirms
that the task router does not require large, task-specific datasets for calibration, which significantly
reduces the data collection and training overhead associated with our framework. Consequently, this
high sample efficiency makes our task classification mechanism a practical and scalable solution for
multi-task scenarios.

C.8 RETEX APPLICATOIN WITH SHARED LAYERS

RETEX recovers experts in a layer-wise manner because parameter interference induced by merging
is not uniform across layers. Different blocks absorb and entangle task updates to varying degrees,
so offsets must be tailored per layer to effectively undo these layer-specific deviations.

C.9 RETEX WITH SHARED LAYERS

RETEX recovers experts in a layer-wise manner because parameter interference introduced by merg-
ing is not uniform across layers. Different blocks absorb and entangle task updates to varying de-
grees, so offsets need to be tailored per layer to effectively undo these layer-specific deviations.

RETEX-S (Shared layers). To test whether sharing hurts recovery, we introduce RETEX-S: for
all layers that share the same parameter shape, we tie the task adaptation layer h(l) and the shared
factor β(l)

s across those layers (a single generator and shared factor are reused for every layer in the
shape group). All other components remain identical to RETEX.

Results. Figure 14 compares normalized accuracy and memory as the rank r varies. Sharing
across layers markedly degrades recovery quality: RETEX-S underperforms the layer-wise RETEX
at virtually all ranks. Even when memory is equalized by increasing the rank of RETEX-S to match
RETEX’s parameter budget, RETEX-S still trails in accuracy, indicating that the drop is not merely
a capacity issue but stems from forcing a single offset generator to explain heterogeneous, layer-
dependent interference. These observations support estimating offsets per layer rather than sharing
them broadly.

D ADDITIONAL EXPERIMENTS

D.1 ROBUSTNESS TO UNSEEN TASK SCENARIOS

We utilize a lightweight router, Rϕ, to select the appropriate expert model for an input x. The router
processes a feature embedding from a unified model, θmerge, to produce a logit vector over T known
tasks. The predicted task, t̂, is determined by the argmax operation (Equation 4.2). The router is
trained with cross-entropy loss on a small calibration set:

LCE = − 1

N

N∑
i=1

T∑
t=1

yi,t log
(
softmax (Rϕ (θmerge(xi)))t

)
(16)

where N is the number of calibration samples, yi,t is the ground truth label (1 if sample i belongs to
task t, 0 otherwise). This enables the router to efficiently learn task boundaries with minimal mem-
ory overhead. Beyond task classification, we leverage the entropy of the router’s output distribution

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

50 100 150 200 250
Rank

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

ReTeX (Acc)
ReTeX-S (Acc)
ReTeX (Mem)
ReTeX-S (Mem) 100

200

300

400

500

600

700

800

M
em

or
y

(M
B)

Figure 14: Ablation: sharing generators across layers (RETEX-S). Normalized accuracy vs.
memory when tying the task adaptation layer and βs across shape-identical layers. RETEX-S con-
sistently lags behind the default layer-wise RETEX, even under matched memory, suggesting that
interference must be mitigated at the per-layer level rather than with a shared generator.

as a robust proxy for uncertainty. Our key observation is that in-distribution inputs yield low-entropy
(confident) predictions, whereas unseen tasks result in high-entropy (uncertain) predictions.

Figure 15: Entropy-based OOD Detection. Entropy distributions of router outputs on seen tasks
(Cars, DTD, GTSRB, RESISC45, SUN397, SVHN) and unseen tasks (EuroSAT, MNIST) using a
ViT-B/32 backbone. (Left) Entropy values clearly separate seen and unseen tasks. (Right) Aggre-
gated distributions confirm a distinct gap, enabling threshold-based OOD detection.

Figure 15 further illustrates why this is possible: entropy distributions of seen tasks form a sharp low-
entropy cluster, while unseen tasks produce clearly higher-entropy values. This separation enables
robust OOD detection via a simple threshold, highlighting the generality and practicality of our
approach.

Table 7 shows that our router maintains high Precision and Recall across different ViT backbones.
This confirms that entropy-based OOD detection achieves strong and consistent classification per-
formance regardless of the backbone architecture.

Model Accuracy Recall F1-Score
ViT-B/32 0.9670 0.9124 0.8893
ViT-L/14 0.9641 0.9469 0.8846
ViT-B/16 0.9701 0.9010 0.8975

Table 7: Accuracy, Recall, and F1-Score comparison across different ViT backbone models, demon-
strating the robustness of entropy-based OOD detection across architectures.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Table 8: Multi-task performance on GLUE with GPT-2 decoder models. All rows (except the
upper bound) are obtained by merging task experts fine-tuned on seven GLUE tasks (CoLA, MNLI,
MRPC, QNLI, QQP, RTE, SST-2). Bold numbers indicate the best performance among merging
methods, excluding the individual task experts.

Method CoLA MNLI MRPC QNLI QQP RTE SST-2 Avg.
Individual 76.8 82.1 80.4 88.3 89.6 65.3 91.2 82.0

Weight Averaging 55.0 55.1 51.0 57.6 76.7 44.8 52.5 56.1
Fisher Merging (Matena, 2022) 54.8 58.0 39.5 63.3 81.5 49.1 52.5 58.7
RegMean (Jin et al., 2023b) 61.7 70.4 65.4 69.7 78.8 56.0 79.7 68.8
Task Arithmetic (Ilharco et al., 2023) 68.7 68.6 69.6 70.5 81.8 47.3 83.6 70.0
TIES-Merging (Yadav et al., 2023) 68.4 71.4 68.4 69.6 82.4 47.7 81.8 70.0
EMR-Merging (Huang et al., 2024) 72.8 81.1 79.2 84.8 88.1 66.5 90.3 80.4

RETEX (Ours) 76.8 82.0 79.9 87.8 89.4 65.0 90.8 81.7

D.2 DECODER-BASED NLP TASKS

Settings. To evaluate the recovery performance of RETEX, we follow the experimental setup of
EMR-Merging Huang et al. (2024) and use GPT-2 Achiam et al. (2023) as a shared pre-trained
backbone from which individual task models are fine-tuned. Performance is assessed across seven
diverse NLP benchmarks, consistent with prior work: SST-2 Socher et al. (2013), MRPC Dolan &
Brockett (2005), QQP Iyer et al. (2017), MNLI Williams et al. (2017), QNLI Rajpurkar et al. (2016),
and RTE Giampiccolo et al. (2007).

Results. Table 8 shows that RETEX surpasses EMR-Merging by 1.3 points on average and out-
performs other merging baselines by over 11 points. Compared with individual experts, the gap is
only 0.3 points (99.6% retained), indicating strong recovery performance. These results mirror the
trends observed with encoder backbones and support the applicability of RETEX to decoder-only
language models.

E TRAINING-FREE ROUTING

We adopt a training-free, distributional classifier that uses intermediate features at a chosen layer.
Fix a layer index l ∈ {1, . . . , L} by validation. For each task t, collect a small calibration set
and forward each sample through the corresponding task-specific fine-tuned model up to layer l to
obtain features f (l)

t (x). Fit a Gaussian N
(
µ

(l)
t ,Σ

(l)
t

)
to these calibration features to model the task-t

distribution at layer l.

At test time, given a task-unknown input x, forward x through each task-t fine-tuned model up to
layer l to obtain f

(l)
t (x), then compute the Mahalanobis distance to the corresponding task distribu-

tion:
M(l)

t (x) =
(
f
(l)
t (x)− µ

(l)
t

)⊤(
Σ

(l)
t

)−1(
f
(l)
t (x)− µ

(l)
t

)
. (17)

The predicted task ID is selected by

t̂ = argmin
t∈{1,...,T}

M(l)
t (x). (18)

This formulation remains fully training-free: we estimate
{
µ

(l)
t ,Σ

(l)
t

}T

t=1
from a small calibration

set and require no learned router. In practice we instantiate routing with one validated layer l for
efficiency, but the approach is agnostic to the layer choice and can be applied at any layer without
aggregating across layers.

Experimental comparison. We evaluate the proposed training-free routing in the task-unknown
setting under the same experimental protocol as Section 5.1.1. As shown in Table 9, RETEX with
training-free routing (RETEX-Training free) achieves accuracy very close to the learned-router vari-
ant (within ∼0.3–1.3 percentage points) across all CLIP backbones (ViT-B/32, ViT-B/16, ViT-L/14)
and task counts (8/14/20). Despite requiring no router training, the training-free variant consistently

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

𝑙-th layer

Input sample

Argmin

Eq. (18)

Mahalanobis distance Eq. (17)

𝑙-th layer 𝑙-th layer

𝑇𝑎𝑠𝑘	1 𝑇𝑎𝑠𝑘	𝑇𝑇𝑎𝑠𝑘	2
Predicted task ID

Figure 16: Training-free Mahalanobis routing. For a validated layer l, each task t builds a Gaus-
sian model N (µ

(l)
t ,Σ

(l)
t) from calibration features f (l)

t (x) extracted by forwarding samples through
the task’s fine-tuned model up to layer l. At test time, an input x is forwarded up to the same layer
for every task-specific model, its Mahalanobis distance to each task distribution is computed (Equa-
tion 17), and the predicted task is chosen by the argmin over tasks (Equation 18). The router
requires no training, operates with a single chosen layer for efficiency, and is agnostic to the partic-
ular layer used.

Table 9: Task-unknown multi-task merging results on vision benchmarks. Top-1 accuracy (%)
across CLIP backbones (ViT-B/32, ViT-B/16, ViT-L/14) and task counts (8/14/20) when task identity
is not provided at inference.

Method ViT-B/32 ViT-B/16 ViT-L/14
8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks

Zero-shot 48.3 57.2 56.1 55.3 61.3 59.7 64.7 68.2 65.2
Individual 92.9 90.9 91.4 94.7 92.8 92.8 95.9 94.3 94.8

Weight Averaging 66.3(72.1) 64.3(71.1) 61.0(67.5) 72.2(76.6) 69.5(74.8) 65.3(70.4) 79.6(83.2) 76.7(81.1) 71.6(75.6)

Twin-Merging (Lu et al., 2024) 84.0(90.3) 70.0(76.7) 57.5(61.8) 91.4(96.2) 78.4(83.9) 63.1(67.0) 93.7(97.7) 86.2(91.2) 74.8(78.6)

DaWin (Oh et al., 2025) 89.0(95.3) 73.8(80.3) 52.8(57.7) 87.1(91.9) 77.8(83.5) 62.8(67.3) 91.6(95.5) 82.6(87.2) 77.5(81.8)

RETEX-Training free (Ours) 91.7(98.6)) 88.6(97.4) 88.7(97.0) 93.1(98.2) 90.7(97.7) 90.9(97.5) 94.3(98.3) 92.5(98.1) 91.8(97.0)
RETEX (Ours) 92.0(99.1) 89.8(98.8) 89.4(97.9) 94.0(99.2) 91.9(99.1) 91.3(98.0) 95.2(99.4) 93.5(99.2) 93.1(98.3)

surpasses prior input-dependent merging methods (Twin-Merging and DaWin) on every backbone
and at every task scale, and maintains high recovery as the number of tasks increases. These results
indicate that a calibration-only Mahalanobis routing scheme is sufficient to unlock most of the gains
of RETEX in task-unknown scenarios while preserving strong scalability across architectures and
task counts.

F LLM USAGE DISCLOSURE

We used a large language model solely to refine wording and improve clarity. The model did not
contribute to research design, literature search, data generation or processing, coding, experimental
analysis, or the production of technical content such as equations or proofs. All edits suggested
by the model were reviewed and finalized by the authors, who accept full responsibility for the
manuscript. The model is not an author; authorship, copyright, and research-ethics obligations rest
entirely with the authors.

26

	Introduction
	Related works
	Background
	Learning to Recover Task Experts
	Task-expert recovery
	Task classification

	Experiments
	Vision tasks
	Merging 8, 14, and 20 vision tasks
	Merging 30 vision tasks

	NLP tasks
	Computational cost
	Ablation study
	Advanced Efficiency

	Conclusion
	Justification for offset-based expert recovery
	Affine transformation–based task vector recovery
	Learning and simplifying the affine rule in ReTeX

	Experiment details
	Module architecture and parameters
	Baseline Details
	Computational resources and training time

	More ablation study
	Rank
	Random seed
	Cosine similarity as an objective
	Impact of factorization order in shift tensor generation
	Impact of calibration sample size on router performance
	ReTeX applicatoin with shared layers
	Impact of calibration sample size on router performance
	ReTeX applicatoin with shared layers
	ReTeX with shared layers

	Additional Experiments
	Robustness to Unseen Task Scenarios
	Decoder-based NLP Tasks

	Training-free routing
	LLM Usage Disclosure

