LEARNING TO RECOVER TASK EXPERTS FROM A
MULTI-TASK MERGED MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-task model merging aims to merge several task-specific models (or experts)
into a unified multi-task model. However, model merging often results in perfor-
mance degradation due to parameter interference between experts. While several
recent works have focused on improving the merging process to mitigate the pa-
rameter interference, there still exists the performance gap between merged mod-
els and task experts. In this work, we take a different perspective: we aim to
recover a task expert from a merged model, instead of trying to improve the merg-
ing process. We first note that the parameter interference arises, as a merging pro-
cess introduces offsets to expert model parameters. Thus, we propose to learn to
Recover a Task eXpert (RETEX) model, by undoing this offset. Specifically, we
train a lightweight linear module to predict the offset to recover a task expert for a
given input. Experiments demonstrate that RETEX significantly outperforms ex-
isting model merging methods across computer vision domains and NLP domains
with models of various scales, recovering more than 99% of individual expert per-
formance even when scaling to 30 tasks. Furthermore, RETEX can be applied to
several existing merging models, demonstrating its flexibility and applicability.

1 INTRODUCTION

Ever since the advent of foundation models (Achiam et al., [2023; [Saab et al.| 2024} Ding et al.,
2023)) pre-trained on large-scale data, deep learning models have displayed striking success across
various domains, through fine-tuning such large-scale pre-trained models on each task. However,
the use of such task-specific models that are trained and stored independently raises a question: if
they all share the same structure and same initialization (i.e., a pre-trained foundation model), can
we integrate the knowledge from task-specific models into a single model?

Multi-task model merging (Ilharco et al.l 2023} [Yadav et al.l |2023} |Yang et al., 2024)) has emerged
as a promising solution. Multi-task model merging aims to integrate knowledge from various task
experts through weighted summation of parameters of task experts, weighted by task coefficients that
encode the importance of each parameter for each task. Early works have mainly focused on merging
existing fine-tuned models into a single merged model, obtained via the weighted summation of the
parameters with fixed universal task coefficients (Ilharco et al., 2023} Jin et al., |2023ajb; Matena,
2022; [Yadav et al., 2023} [Yang et al., 2024} Tang et al., [2023). However, these merging methods
have struggled to find a single merged model that could perform as well on all tasks as corresponding
task experts.

In light of the challenge, recent multi-task model merging methods have tried to dynamically find
better merging coefficients for each input task during inference (Oh et al., 2025} Tang et al.| 2024;
Lu et al., |2024; Mugeeth et al., [2023). This input-adaptive merging scheme has led to substan-
tial performance improvement, however with an increased memory overhead. These approaches
methods require all task-specific model parameters or components in memory during inference, as a
merged model is formed on the fly by combining task experts with input-adaptive coefficients. Yet,
these merged models are still formed via merging that inherently introduces parameter interference,
underperforming compared to task-specific experts on their respective tasks.

In this work, instead of trying to improve a merging process, we approach the problem from a
different perspective: we aim to Recover Task eXperts from a merged model. From the perspective
of task experts, a merging process inevitably introduces parameter interference, as parameter offsets

are introduced from other task experts during model merging. Thus, our key insight is that each
expert model can be recovered from a merged model, if we can undo the offset introduced by a
merging process. Building on this insight, we train a lightweight linear layer that learns to find the
offset for each input. We use this offset to recover a task expert from a merged model.

We note that RETEX can be applied to both scenarios, when task distribution is known for each
input (task-known scenarios, which is the standard multi-task model merging setting (Yadav et al.,
2023} Ilharco et al.,[2023;|Huang et al.,|2024))) or unknown for each input. For task-known scenarios,
the offset prediction module in RETEX simply employs the task identity of each input. For task-
unknown scenarios, RETEX employs an independently trained task-id router and uses the output of
the router to estimate task identity.

We further note that the training of the offset prediction module in RETEX does not require training
data nor test samples. Since the offset prediction just needs to learn the parameter offset from
merged parameters to task-expert models for any given task identity, we can just randomly sample
task identity. Then, for each sampled task identity, the corresponding task expert parameters will be
used as ground-truth during the training of RETEX. Once the training of RETEX is finished, existing
task expert models are no longer required during inference. This enables post-hoc deployment over
existing task-specific models.

Through extensive experiments with several merged models and backbones of varying scale across
both computer vision and natural language processing tasks, we demonstrate the efficacy, efficiency,
and flexibility of RETEX. Particularly, RETEX recovers over 99% of individual-expert performance
even when scaling to 30 tasks, without incurring large inference-time memory overhead compared
to previous works.

2 RELATED WORKS

Multi-task model merging consolidates multiple fine-tuned models, often from a common pre-
trained foundation, into a single network without retraining, aiming for efficient multi-task capability
and reduced deployment overhead. Early approaches involved direct weight averaging (Utans,|1996;
Shoemake, 1985 [lharco et al., [2022)), which often suffered from performance degradation due to
task interference. More sophisticated static methods like Fisher-Merging (Matenal [2022)) used pa-
rameter importance (via Fisher Information) for weighted combinations, while RegMean (Jin et al.|
2023b) explored principled averaging with regularization, though task interference remained a key
challenge. Task Arithmetic (Ilharco et al., |2023) offered a conceptual shift by introducing task vec-
tors (parameter difference from a base model), allowing arithmetic combination of these compact
representations. This spurred methods like TIES-Merging (Yadav et al.| 2023)), which manipulates
task vectors (e.g., sparsification, sign resolution) to mitigate interference, and TALL-Mask (Wang
et al.| 2024b), which identifies salient task-specific parameters within a merged model by analyzing
parameter differences to create task masks.

Building on task vector concepts (Ilharco et al., 2023)), many studies reduce parameter interference
by enforcing sparsity or operating in compact parameter regions (Deep et al., 2024} |He et al., |2024;
Wang et al., |2024b; Davari & Belilovsky, 2024} [Zhu et al.| [2024; [Kong et al., 2024). DARE (Yu
et al., |2024) drops low-magnitude updates and rescales salient weights, while AdaMerging (Yang
et al.| [2024) optimizes coefficients at model or layer granularity via test-time adaptation on evalu-
ation data. EMR-Merging (Huang et al.| 2024) maintains a shared backbone together with sparse,
task-specific components by selecting dominant parameter values across tasks. However, several
of these approaches require task-dependent hyperparameter tuning (e.g., TIES (Yadav et al.||2023),
TALL-Mask (Wang et al.l 2024b)) or swapping task-conditioned modules at inference (e.g., EMR-
Merging (Huang et al.}2024)), which presupposes access to task identity and increases management
overhead as the number of tasks grows.

A complementary line of work adjusts combining coefficients or activates specialized branches at
inference based on the input (Kang et al., 2024; [Li et al., [2023; Mugeeth et al., 2023} |Lu et al.,
2024; Tang et al.l 2024} |Oh et al., 2025). Examples include learned routers that mix expert subnet-
works (Mugeeth et al.}[2023; |Lu et al.,2024)) and schemes that compute coefficients from uncertainty
or entropy without extra training signals (Oh et al.,|2025)). These techniques often achieve strong ac-

curacy, but they typically keep multiple expert checkpoints, masks, or routing modules available at
run time and may require additional forward passes per sample, increasing memory use and latency.

By contrast, instead of trying to find better merging coefficients, we take a different approach: aim-
ing to recover a task expert from a merged model. Upon our insight that merging process undermines
the performance due to offsets introduced to task expert parameters, our method RETEX delivers
task-expert-level performance by learning to removing such offset.

3 BACKGROUND

Problem setting. Given a pre-trained model f : X X © —) with parameters 8, € ©, we assume
there are task-specific models, fine-tuned from the pre-trained model f to each downstream task
t € {1,...,T}. In other words, we assume there are T task-specific models { fg, }-_;, each with
parameters @, obtained by fine-tuning the pre-trained model on the corresponding dataset D) =

{(:c(t), ygt))}iv:tl, where :cl(»t) € X® C X is an input with a corresponding label yl(t) ceyY®cy.

Thelgoal of multi-task model merging (Matena, 2022} Jin et al.,[2023b)) is to find the task coefficients
{a¢}{_; that would result in a merged model Onerged = Zthl a0y that can perform as well as each
task-specific model on the respective task. Then, the merged model will perform prediction for each
new input data @, which can come from any task ¢. Under standard settings (Yadav et al., 2023
Ilharco et al.l 2023} Huang et al.| |2024), the task identity ¢ of a is assumed to be known (hence,
task-known scenarios). Otherwise, under task-unknown scenario, the task identity ¢ is unknown. In
this work, we tackle both scenarios.

Task arithmetic. To better facilitate the knowledge manipulation, Task Arithmetic (Ilharco et al.,
2023) has introduced the concept of task vector. For each task-specific model fy,, task vector 7; is
obtained by subtracting the pre-trained model parameters 6, from task-specific model parameters
0;. Hence, task vector 73 is a vector pointing towards 6; from 6, representing the task-specific
knowledge for task ¢. Leveraging the task vector concept, subsequent works (Yadav et al., |2023}
Wang et al.| 2024b)) have formulated the model merging process as
T
Omerge = 00 + Y _ My, @)
t=1
where \; represents task coefficients under task arithmetic scheme.

4 LEARNING TO RECOVER TASK EXPERTS

Previous merging methods have attempted to find merging coefficients that would provide better
performance on each task. As such, recent works (Oh et al.,[2025} Tang et al., 2024;|Lu et al., [2024;
Mugeeth et al.| [2023) have tried to find input-adaptive merging coefficients for each input during
inference. The input-adaptive merging process has lead to performance improvement, however at
the cost of memory usage. Yet, there still exists the performance gap between merged models and
the task experts.

We believe that the reason for the persisting gap is that merged model parameters are the shifted ver-
sion of task expert parameters due to parameter offsets introduced during a merging process. Thus,
in this work, we take a different perspective: instead of further optimizing a merging rule, we undo
the interference of a given merged model by recovering each expert directly from it. Concretely, we
posit that each task expert can be written as the merged parameters plus a task-specific offset

Ot = Gmerge + /Bt; 2
where 3, is the offset that corrects the deviation of O from the true expert ;. This offset
view is a direct way to model (and remove) the interference introduced during merging; we provide
justification and derivations for adopting the offset form in Appendix[A]

The overall framework is illustrated in Figure[T}(a): given a predicted task ID, RETEX recovers the
corresponding task expert from the merged parameters @pergc by estimating 3;. During inference,
we first determine the task ID for an input = (Section #.2). As shown in Figure [T}(b), RETEX
then generates a task-conditioned offset and adds it to Operge to recover the expert parameters (Sec-
tion |4.1)).

-

Merged model parameter

Task identifier —
v Onmere

Task identity of 2, £

A 4
Task embedding Qe

Task adaptation

Randomly sampled task ID ¢

!

(" Task embedding

Task adaptation

layer

i
| ¥ o

{
RETEX 30 Y
t,g l@fgl) (\) gl)

gl)—;
0]
S

* L
o | enxl

— o0 |?
2| - e I
0; N

. Learnable parameters
Input sample & =—bp 05 - Y

Recovered task expert Generated parameters

(a) RETEX overview (b) RETEX inference (c) RETEX training

Figure 1: Overview of our proposed RETEX framework. (a) RETEX overview: For given

merged model parameters Operge, RETEX recovers the task expert ét. (b) RETEX inference: An
input x obtains its task ID from the task identifier, which is then mapped to a task embedding and
fed to a lightweight task adaptation layer. For each layer [, the adaptation layer generates the low-

rank factor ,Bt(g, which combines with a shared learnable low-rank matrix ,Bgl) to form the layer

offset ﬂt(l) = t(l; S). Adding these offsets to Operee yields the recovered task expert ét. (¢) RE-
TEX training: A randomly sampled task ID ¢ is embedded and fed to a lightweight task adaptation

layer. The learnable parameters are the task embedding, the adaptation layer weights, and ,Bgl),
while the adaptation layer generates ﬂ,gg. ﬁgg and ﬂgl) are combined with Operee to recover the
task expert parameters 0}”. Training proceeds by minimizing the difference between the recovered
parameters éﬁ” and the target parameters Ot(l).

4.1 TASK-EXPERT RECOVERY

Task embedding. To generate the task-conditioned offsets 3;, we represent each task ¢ with a
learnable embedding e; € R%m>, which captures task identity and conditions the offset generator.

Layer-wise offset generation. Motivated by layer-wise merging schemes (Yang et al., 2024) and

efficiency, we parameterize the offset at each layer [in a low-rank form. Let ofégrge € R**? denote
the merged parameters and choose a rank » < min(a,b). Conditioned on the task embedding

e;, a lightweight adaptation module h") produces a task-conditioned factor Btgl; € R**", This is

multiplied by a shared learnable factor 55” € R™*? (initialized at zero and shared across tasks) to
form the layer offset:

! !
BY = B Y. 3)
The recovered expert parameters at layer [are then
() _ pl ®
6 = 6. + 8; . @

Stacking layers yields 0} = Omerge + Bz asin Equation This design keeps generation lightweight
(only ﬁtglz’) while amortizing capacity through the shared Bgl).

Training objective. RETEX does not require training or test inputs. We train the offset generator

using only task IDs: sample a task ¢, form HAt(l) by Equation Equation and minimize the L2
distance to the ground-truth expert parameters:

t=1 =1

0" — o2, 5)

— RETEX™ é{ xr = ¢=—RETEX™ ét

x i
Task-unknown Merged model Recovered Task-known Recovered
test sample parameter task expert test sample task expert

Task embedding

Task embedding

+
i Argmax
7 Eq.(6) "7

Task identifier

(a) Task-unknown scenario (b) Task-known scenario

Figure 2: Routing for task ID in RETEX. RETEX inference with (a) Task-unknown scenario and
(b) Task-known scenario inputs. When the task identity is unknown, a lightweight router predicts
the task ID, which is then embedded and used in RETEX to recover the corresponding task expert.
If the task identity is known, the given ID is directly used in RETEX to recover the expert.

After training, task experts {60, } are no longer needed at inference; RETEX recovers experts on-the-
fly from Oyerge using the predicted task ID and the lightweight generators.

4.2 TASK CLASSIFICATION

To determine which task expert to recover for a task-unknown input &, we first infer its task ID
t € {1,..., T} with a lightweight router Rg. As illustrated in Figure (a), the input x is forwarded
through the merged model @erge to obtain a final embedding Gperge (), Which the router maps to
logits over 7T tasks; the predicted task ID is

t = argmax [’R¢(0merge(w))]t. (6)
te{1,...,T}

We train R4 with cross-entropy on task indices using a small, balanced calibration set, adding neg-
ligible overhead. When the task identity is known at inference, we skip the router entirely (Figure 2}
(b)) and directly use the given task ID to retrieve the corresponding task embedding and generate
the offsets in Section In both cases, the (predicted or provided) task ID conditions the offset
generator to recover the appropriate task expert from Operge.

5 EXPERIMENTS

In this section, we first study efficiency improvements of RETEX, and then evaluate its multi-task
merging performance under two inference scenarios: task-known and task-unknown. In the task-
known scenario (task identity available at inference), which is a standard multi-task model merging
setting, we compare with methods that construct a merged model conditioned on a given task: Task
Arithmetic (Ilharco et al.l 2023), TIES-Merging (Yadav et al., [2023)), and EMR-Merging (Huang
et al.| 2024)). In the task-unknown scenario (task identity not given), we compare with methods that
operate without task identity: Weight Averaging, Twin-Merging (Lu et al., |2024), and DaWin (Oh
et al, |2025). RETEX supports both settings; when task identity is unknown, we predict it with the
lightweight router (Sec. [.2)) and recover the corresponding expert, whereas when task identity is
known, we directly recover the specified expert.

Training setup. Unless specified otherwise, the base merged model Oyneree upon which RETEX
operates is constructed using simple Weight Averaging of the task-specific expert models; this choice
is made to demonstrate the capability of RETEX to recover task experts even from a minimally com-
plex, conventionally defined merged model. We train RETEX for 5000 iterations. The optimization
is performed using the Adam optimizer (Kingma, 2015) with an initial learning rate of 2 x 10~
The learning rate schedule follows a cosine annealing approach, incorporating 600 warm-up steps.
The objective function for training RETEX is the L2 loss between the reconstructed layer parame-

ters é,gl) and the task expert layer parameters 0(1), as defined in Equation |5) summed over all tasks
and layers.

Table 1: Multi-task performance of merged models across different CLIP backbones and num-
bers of tasks. Values in parentheses (.) indicate normalized accuracy (merged / individual). All
methods are evaluated on 8, 14, and 20 computer vision tasks.

Method \ ViT-B/32 \ ViT-B/16 \ VIT-L/14

| 8tasks 14 tasks 20tasks | 8tasks 14 tasks 20 tasks | 8tasks 14 tasks 20 tasks
Zero-shot 48.3 57.2 56.1 55.3 61.3 59.7 64.7 68.2 65.2
Individual 92.9 90.9 914 94.7 92.8 92.8 95.9 94.3 94.8
(Task-known scenarios)
Task Arithmetic (Tlharco et al]2023} | 70.8(75) 65.3(72.1) 605665 | 75:4(70.6) 705(75.0) 658(r08) | 849887y T94(s10) T40(7s.1)
TIES (Yadav et al.|[2023) 75.0(s10) 680(7as) 634(c0.0) | 79T (s05) 732787 6820753 | 869007 795811y 75T(r0s)

Consensus TA (Wang et al.|2024b) | 75.0(g0.8) 70.4(77.4y 65.4(72.0) | 79-4(83.9) T44(70.9) 69.8(74.9) | 86.3(90.1) 82.2(86.9) 79.0(s3.2)
EMR-Merging (Huang et al.||2024) | 91.3(g7.8) 87.6(96.3) 87.4(95.6) | 93.3(98.5) 90.5(97.6) 90.2(97.2) | 95.2(99.3) 92.7(98.3) 92.8(97.9)

RETEX (Ours) 92.6(007) 90.6(006) 9.l(oo7) | 94007 925007 929006 | 95-6(007) 939(00.6) 94:6(005)
(Task-unknown scenarios)

WeightAveraging 66.3(721) 64.3(711) 61.0(575) 72'2(76,6) 69,5(748) 65,3(7&4) 79,6(832) 76,7(81'1) 71,6(756)
Twin-Merging (Lu et al.| 2024} 84.0(00.3) 70.0¢6.7) 57.5(61s) | O4(o62) T84(sa0) 63.1(ro) |93T0r7) 8620012 T48(rs.e)
DaWin (Oh et al.| 2025) 89.0(95.3) 73.8(50.3) 52.8(57.7) 87,1(91.9) 77,8(83.5) 62,8(67.3) 91.6(95,5) 82.6(87,2> 77-5(81.8)
RETEX (Ours) 92.0(00.1) 898(0s.5) 894(07.0) | 940002y 919001) I3(05.0) | 95.2(00.4) 93.5(002) 93.1(083)

5.1 VISION TASKS

5.1.1 MERGING 8, 14, AND 20 VISION TASKS

Setting. For evaluating RETEX on varying scale vision tasks, we follow the setting of TALL-
Mask (Wang et al., 2024b). We fine-tune a separate model for each dataset on three CLIP (Radford
et al.,[2021)) backbones (ViT-B/32, ViT-B/16, and ViT-L/14) and then evaluate the multi-task merged
model. The 8-task configuration comprises (a) SUN397 (Xiao et al.,[2016), (b) Cars (Krause et al.,
2013)), (c) RESISC45 (Cheng et al., [2017)), (d) EuroSAT (Helber et al., |2019), (¢) SVHN (Netzer
et al., 2011), (f) GTSRB (Stallkamp et al. 2011), (g) MNIST (Deng, [2012)), and (h) DTD (Cim-
poi et al., [2014). The 14-task setting extends this list with (i) CIFAR100 (Krizhevsky et al., 2009),
() STL10 (Coates et al., 2011), (k) Flowers102 (Nilsback & Zisserman| 2008)), (1) Oxford-IIIT-
Pet (Parkhi et al., 2012), (m) PCAM (Veeling et al., 2018)), and (n) FER2013 (Goodfellow et al.,
2013)). The 20-task setting further adds (o) EMNIST (Cohen et al.,[2017)), (p) CIFAR10 (Krizhevsky
et al.| [2009), (q) Food101 (Bossard et al.l [2014), (r) FashionMNIST (Xiao et al 2017), (s) Ren-
deredSST?2 (Socher et al., |2013)), and (t) KMNIST (Clanuwat et al., 2018). Accuracy is reported as
the evaluation metric for all datasets.

Results. Table [T shows that RETEX achieves the best accuracy on all three CLIP backbones and
for 8/14/20 tasks in both settings (task-known and task-unknown). Compared to strong task-known
baselines such as EMR-Merging, RETEX yields consistent gains, and in the harder task-unknown
setting it substantially surpasses Twin-Merging and DaWin across every backbone. Accuracy re-
mains stable as the number of tasks increases: RETEX recovers at least 99.6% of individual-expert
performance even at 20 tasks on every backbone. These results indicate that RETEX reliably recon-
structs high-fidelity task experts from a single merged model while scaling to larger, more diverse
task suites.

5.1.2 MERGING 30 VISION TASKS

Setting. To further assess scalability, we extend the ViT-B/32 evaluation to a challenging 30-task
suite by augmenting the 20-task configuration (Section [5.1.1) with ten additional datasets: Veg-
etables (Ahmed et al., 2021), Kvasir-v2 (Pogorelov et al.l 2017), Intel Images (Bansal, |2019),
Weather (Xiao et al. 2021), Cats and dogs (Cukierski), MangoLeafBD (Ahmed et al.| |2023),
Beans (Lab, [2020), Landscape Recognition (DeepNets)), Garbage Classification (CCHANG, [2018),
and Fruits-360 (Muresan & Olteanl [2018]). Following Task Arithmetic (Ilharco et al., [2023), each
task-specific CLIP model (Radford et al.}|2021)) is fine-tuned for 2000 iterations with batch size 128
using AdamW (Loshchilov & Hutter, 2019; Kingma, [2015) (learning rate 1 X 1073, weight decay
0.1) and a cosine schedule with 200 warm-up steps.

Results. Table 2] shows that static baselines deteriorate as tasks increase (e.g., Weight Averaging
reaches 59.1% with 64.2% normalized accuracy at 30 tasks), and input-dependent methods also drop
(Twin-Merging to 60.1%, DaWin to 40.3%). In contrast, RETEX remains stable: in task-known it

Table 2: Multi-task performance on ViT-B/32 across different numbers of vision tasks. Values
in parentheses .y indicate normalized accuracy (merged / individual). All evaluations use the ViT-
B/32 backbone.

Method \ 8 tasks 14 tasks 20 tasks 30 tasks
Zero-shot 48.3 57.2 56.1 55.5
Individual 92.9 90.9 91.4 93.1

(Task-known scenarios)

Task Arithmetic (Ilharco et al..2023} | 70.8(7¢.5)y 65.3(72.1) 60.5(66.8) 58.0(62.5)
TIES (Yadav et al.]|2023] 75.1(81.0) 68.0(74.8) 63.4(69.9) 60.1(5.2)
Consensus TA (Wang et al.|[2024b} | 75.0(g0.8) 70.4(77.4) 65.4(72.0) 63.4(6s.5)
EMR-Merging (Huang et al.]2024) | 91.3(97.8) 87.6(96.3) 87.4(95.6) 90.5(97.0)

RETEX (Ours) 92.6(99.7) 90.6(99.6) 91.1(99.7) 92.9(99.7)
(Task-unknown scenarios)

Weight Averaging 66.3(72.1) 64.3(71.1) 61.0(67.5) 59.1(64.2)
Twin-Merging (Lu et al.}[2024} 84.0(90.3) 70.0(76.7) 57.5(61.8) 60.1(65.2)
DaWin (Oh et al.} 2025} 89‘0(95_3) 73‘8(80.3) 52‘8(57_7) 40‘3(42_9)
RETEX (Ours) 92.0(99_1) 89~8(98.8) 89.4(97_9) 92.3(99_1)

Table 3: Multi-task performance of merged RoBERTa-based models on eight GLUE datasets.
Bold values indicate the best performance among merging methods (excluding the individual ex-
perts).

Method ‘ Single-Sentence ‘

‘ CoLA SST2 ‘MRPC STSB QQP ‘ MNLI QNLI RTE ‘
Individual ‘ 0.6018 0.9404 ‘ 0.8922 0.9063 0.9141 ‘ 0.8720 0.9271 0.7906 ‘
(Task-known scenarios)

Similarity & Paraphrase ‘ Inference

Avg.

0.8556

Task Arithmetic (Ilharco et al.|2023) | 0.1878 0.8589 | 0.7990 0.7403 0.8378 | 0.5908 0.6967 0.6209 | 0.6665
TIES (Yadav et al.|[2023) 0.2048 0.8440 | 0.8113 0.5819 0.8570 | 0.6465 0.7481 0.4296 | 0.6404
EMR-Merging (Huang et al.|[2024) 0.3996 0.9335 | 0.8627 0.8277 0.8972 | 0.8545 0.8957 0.7437 | 0.8018
RETEX (Ours) 0.5919 0.9433 | 0.8880 0.8676 0.9117 | 0.8732 0.9248 0.7617 | 0.8453
(Task-unknown scenarios)

Weight Averaging 0.1396 0.6411 | 0.6936 0.3184 0.7536 | 0.4219 0.5870 0.5523 | 0.5134
Twin-Merging (Lu et al.|[2024) 0.6040 0.9410 | 0.8720 0.8640 0.9080 | 0.8190 0.9050 0.7740 | 0.8130
DaWin (Oh et al.[[2025) 0.2447 09141 | 0.8566 0.6753 0.8671 | 0.8364 0.7968 0.6663 | 0.7322
RETEX (Ours) 0.5829 0.9449 | 0.8823 0.6984 0.9075 | 0.8179 0.9167 0.7653 | 0.8145

attains 92.9% (99.7% normalized), and in task-unknown it reaches 92.3% (99.1% normalized),
closely matching its 8/14/20-task behavior.

5.2 NLP TASKS

Setting. For evaluating RETEX on NLP tasks our experimental setup aligns with established pro-
tocols from recent model merging studies. We utilize the RoOBERTa(Liu et al.,[2019)) as the common
pre-trained backbone from which individual task models are fine-tuned. Performance is assessed
across eight diverse NLP benchmarks, consistent with prior work: SST-2 (Socher et al.l [2013)),
MRPC (Dolan & Brockettl2005), STS-B (Cer et al.;,[2017), QQP (Iyer et al.,[2017)), MNLI (Williams
et al.,[2017), QNLI (Rajpurkar et al., 2016), and RTE (Giampiccolo et al., [2007)).

Results. To further validate the versatility of RETEX, we extend our evaluation to a suite of NLP
tasks, complementing the aforementioned vision task experiments. The detailed performance met-
rics for these NLP benchmarks are presented in Table [3] The results clearly indicate that RETEX
substantially outperforms existing model merging techniques when applied to language models. No-
tably, our approach recovers approximately 98.7% of the performance of the original task-specific
fine-tuned models. While RETEX exhibits slightly lower performance than Twin-Merging specif-
ically on the CoLA and RTE dataset, its average performance across all evaluated NLP tasks sur-
passes that of Twin-Merging by more than 3 percentage points, underscoring its overall effectiveness
and robustness in the language domain.

5.3 COMPUTATIONAL COST

Batch inference. Although RETEX recovers an input-specific expert, it supports efficient batch
inference by grouping samples that share the same predicted task ID. (i) We feed a minibatch of size

Table 4: Inference cost with CLIP backbone (ViT-B/32). We report the average performance and
resource usage across all tasks in the 8 computer vision task scenario, assuming the task of the input
sample is initially unknown.

Method Inference cost (per sample) VRAM (GB) Avg. performance
DaWin (Oh et al.}[2025) 0.63s 5.5 89.0%
TWIN-Merging (Lu et al.|[2024) 0.03s 5.6 84.0%
RETEX (Sample-wise) 0.04s 3.1 92.0%
RETEX (Group: B = 64) 0.005s 3.3 92.0%
1.00 I — 1.00 —
0.99 —
Z0.98 3095
2097 2
< £0.90
5096 3z /
So09s S 0.8
Eoo / E o/
/ —— Normalized Accuracy (WA) 2 — Task 8
0.93 —— Normalized Accuracy (TA) 080 — Task 14
0.92 / Normalized Accuracy (TIES) Task 20
50 100 150 200 250 5 10 15 20 25 30
Rank (r) Task Embedding Dimension (demb)

Figure 3: Normalized Accuracy across different Figure 4: Normalized accuracy as a function of task
ranks 7, evaluated using three base merged models embedding dimension demp, for 8, 14, and 20 tasks.
with RETEX: Weight Averaging (WA), Task Arith- Results use a ViT-B/32 backbone with fixed recovery
metic (TA), and TIES-Merging (TIES). rank r=256 and Weight Averaging for Omerge.

B through the task identifier router R that consumes the final embedding from the merged model
and obtain predicted task IDs {f;}2 ,. (ii) We partition indices by task ID, Z; = {i € {1,..., B} :
t; = t}, and for each task ID ¢ with |Z;| > 0 we generate once to form a group recovered model
for ¢. (iii) We run the sub batches X7, in parallel through the corresponding group recovered model
and then scatter outputs back to the original order. This procedure reduces the number of recoveries
to K unique task IDs in the batch with K < min(B, T'), independent of batch size B, while adding
only a single router pass and reusing one merged backbone and the lightweight projection module
across groups.

Results. Table[d]shows that grouping by predicted task ID amortizes the recovery overhead across
a minibatch. Concretely, RETEX reduces per-sample latency from 0.04 s in sample-wise execution
to 0.005 s with group execution at B=64, while maintaining accuracy at 92.0% and with only a small
VRAM change (from 3.1 GB to 3.3 GB). Under the same task-unknown setting, grouped RETEX
is both faster and more accurate than input-dependent baselines, outperforming Twin-Merging and
DaWin. These gains arise because the number of recoveries scales with the number of unique task
IDs in a batch, K < min(B,T), so a single recovered model per task ID serves its entire sub-batch
(K < B in practice).

5.4 ABLATION STUDY

We conduct ablation studies to analyze key hyperparameters in RETEX. Unless otherwise specified,
all ablations follow the TALL-Mask (Wang et al., 2024b) setting on ViT-B/32.

Other merged models. To further investigate the generalization capability and broader applica-
bility of RETEX, we extend its application beyond the default Weight Averaging (WA) base model.
Specifically, we apply RETEX to merged models generated by Task Arithmetic (Ilharco et al.,2023))
(TA) and TIES-Merging (Yadav et al.| 2023)) (TIES), where the merging coefficients specific to TA
and TIES are kept fixed during the training of RETEX. As illustrated in Figure |3} utilizing a base
merged model with inherently better performance (i.e., TA or TIES instead of WA) can lead to
further, albeit modest, improvements in the final recovered accuracy achieved by RETEX. This per-
formance advantage from using a more advanced base model is more pronounced at lower recovery
ranks r. Nevertheless, these findings highlight a key strength of RETEX: its adaptability to integrate
with various existing static merging techniques, potentially leveraging their individual strengths to
further enhance multi-task performance.

Number of Tasks = 8 Number of Tasks = 14 Number of Tasks = 20
5 1.0 5. 1.0 .. Lo—%
9 [9) « [9) x
e x e e
g 3 g oo
9 9
g 0.9 & 0. <
K] 3 g o8
N N N
T 0.8 T 0.8 o
g £ x go7),
£ £ x £
2 x 2 2 x
X
0'70 2 6 10 O'B.O 25 50 75 10.0 125 15.0 0'U(.\ 5 10 15 20
Normalized Memory Usage Normalized Memory Usage Normalized Memory Usage
X EMR-Merging X WA TA X TIES X Dawin X Twin-Merging ReTeX (Ours) ® ReTeX-E (Ours)

Figure 6: Comparison of normalized accuracy vs. normalized memory across model-merging meth-
ods, including RETEX (ReTeX) and RETEX-E (ReTeX-E). RETEX-E exhibits the strongest trade-
off—lower memory at comparable or better accuracy—across different task counts.

Task embedding dimension. We investigate the influence of the task embedding dimension, depyp,
on the recovery performance of RETEX. For this analysis, we fix the rank =256 and vary demp
while evaluating on configurations with 8, 14, and 20 tasks. Figure |4 shows that as d,;, increases,
the normalized accuracy generally improves and then saturates. Notably, even as the total number of
tasks (7') increases, high recovery performance (approaching or exceeding 99.7%) can be achieved
once denp, is sufficiently large, typically at or modestly above T'. We further note that de,;, can be
determined relative to the number of tasks being merged without a significant performance loss.

5.5 ADVANCED EFFICIENCY

Low-rank generation for task-adaptive components. o
Our default offset uses 5t§l) = _((,l) ﬂgl) where the task

adaptation layer outputs ﬁgl) € R**" and ﬁgl) eR™ s
a shared learnable factor. The dominant parameter cost

<

© o o o
©
<

©
&

0.94

Normalized Accuracy

— ReTeX
—— ReTeX-E (r=256)

comes from producing 55). To reduce it, we introduce 00 e
RETEX-E, which factorizes the generator itself: ,Bél) = " Normalized Memory Usage ’
O o) l axr l o XT : . :
5;,21/35(,1)3 with ,3;2‘ € R%7s, géf); €R"s*", and r, < r, Figure 5: Normalized accuracy vs. nor-
eldine the final offset ﬂgl) _ (ﬂ(l) B(l))ﬂ(l) malized memory for RETEX (direct gen-
yrelding i gAFgBJS erator) and RETEX-E (two-stage gener-
ator) at fixed outer rank r while varying

Results. Figure [5] evaluates the performance-memory 74. RETEX-E attains a better memory—
trade-off by fixing the outer rank r and varying the inter- performance trade-off and maintains >

nal rank r4. RETEX-E consistently matches or slightly = 99% recovery.

exceeds the direct generator (RETEX) while using less

memory, especially in the high-accuracy regime, and preserves over 99% recovery. Complementar-
ily, Figure [6] compares normalized accuracy vs. normalized memory across a wider set of merging
baselines. Both RETEX and RETEX-E occupy the favorable top-left region, and RETEX-E in par-
ticular achieves an excellent trade-off, delivering > 99% recovery with noticeably lower memory
than alternatives.

o
©

6 CONCLUSION

In this work, we aim to recover task-expert-level performance while reducing memory usage over-
head. We note that the task-specific offset between the task-expert parameters and the merged model
parameters can be recovered from the merged model. Building upon this, we introduce a new model
merging approach that learns to Recover Task eXperts (RETEX) from a merged model by pre-
dicting these offsets. Particularly, our framework first estimates the task identity for a given input.
Conditioned on the estimated task identity, our framework generates a low-rank, task-dependent
offset that maps the merged parameters to the corresponding expert for that input. Experimental
results across vision and NLP domains highlight the effectiveness of RETEX in recovering task-
expert-level performance while reducing memory overhead, compared to previous input-adaptive
merging methods. We hope that this work encourages future research on the relationship between
a merged model and task-specific models, and on more efficient approaches to model merging via
offset recovery.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

M Israk Ahmed, Shahriyar Mahmud Mamun, and Asif Uz Zaman Asif. Dcnn-based vegetable image
classification using transfer learning: A comparative study. In /[CCCSP, 2021.

Sarder Iftekhar Ahmed, Muhammad Ibrahim, Md Nadim, Md Mizanur Rahman, Maria Mehjabin
Shejunti, Taskeed Jabid, and Md Sawkat Ali. Mangoleafbd: A comprehensive image dataset to
classify diseased and healthy mango leaves. Data in Brief, 2023.

Puneet Bansal. Intel image classification. Available on https://www. kaggle. com/puneet6060/intel-
image-classification, Online, 2019.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 — mining discriminative com-
ponents with random forests. In ECCV, 2014.

CCHANG. Garbage classification. https://www.kaggle.com/ds/81794, 2018.

Daniel Cer, Mona Diab, Eneko Agirre, Ifiigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity - multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Gong Cheng, Junwei Han, and Xiaogiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 2017.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In CVPR, 2014.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718, 2018.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In AISTATS, 2011.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: Extending mnist
to handwritten letters. In JJCNN, 2017.

Will Cukierski. Dogs vs. cats, 2013. URL https://kaggle. com/competitions/dogs-vs-cats.

MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: Scaling multi-task model
merging with sparse masks. In ECCV, 2024.

Pala Tej Deep, Rishabh Bhardwaj, and Soujanya Poria. Della-merging: Reducing interference in
model merging through magnitude-based sampling. arXiv preprint arXiv:2406.11617, 2024.

DeepNets. Landscape recognition. https://www.kaggle.com/datasets/
utkarshsaxenadn/landscape—-recognition—image—-dataset—-12k—images.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 2012.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 2023.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In IWP, 2005.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third pascal recognizing
textual entailment challenge. In ACL-PASCAL workshop, 2007.

10

https://www.kaggle.com/ds/81794
https://www.kaggle.com/datasets/utkarshsaxenadn/landscape-recognition-image-dataset-12k-images
https://www.kaggle.com/datasets/utkarshsaxenadn/landscape-recognition-image-dataset-12k-images

Ian J. Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi Mirza, Ben Hamner,
Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, Yingbo Zhou, Chetan Ramaiah,
Fangxiang Feng, Ruifan Li, Xiaojie Wang, Dimitris Athanasakis, John Shawe-Taylor, Maxim Mi-
lakov, John Park, Radu Ionescu, Marius Popescu, Cristian Grozea, James Bergstra, Jingjing Xie,
Lukasz Romaszko, Bing Xu, Zhang Chuang, and Yoshua Bengio. Challenges in representation
learning: A report on three machine learning contests. In ICONIP, 2013.

Yifei He, Yuzheng Hu, Yong Lin, Tong Zhang, and Han Zhao. Localize-and-stitch: Efficient model
merging via sparse task arithmetic. arXiv preprint arXiv:2408.13656, 2024.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019.

Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. Emr-merging:
Tuning-free high-performance model merging. In NeurIPS, 2024.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
lating weights. In NeurIPS, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In ICLR, 2023.

Shankar Iyer, Nikhil Dandekar, Kornél Csernai, et al. First quora dataset release: Question pairs.
data. quora. com. 2017.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. In ICLR, 2023a.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. In /CLR, 2023b.

Junmo Kang, Leonid Karlinsky, Hongyin Luo, Zhen Wang, Jacob Hansen, James Glass, David
Cox, Rameswar Panda, Rogerio Feris, and Alan Ritter. Self-moe: Towards compositional large
language models with self-specialized experts. arXiv preprint arXiv:2406.12034, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. In /CLR, 2015.

Fanshuang Kong, Richong Zhang, and Zigiao Wang. Activated parameter locating via causal inter-
vention for model merging. arXiv preprint arXiv:2408.09485, 2024.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In ICCV Workshop, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Makerere Al Lab. Bean disease dataset, 2020. URL https://github.com/
AI-Lab-Makerere/ibean/!.

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong
Chen. Merge, then compress: Demystify efficient smoe with hints from its routing policy. arXiv
preprint arXiv:2310.01334, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In /CLR, 2019.
Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, and Yu Cheng. Twin-merging:

Dynamic integration of modular expertise in model merging. In NeurIPS, 2024.

11

https://github.com/AI-Lab-Makerere/ibean/
https://github.com/AI-Lab-Makerere/ibean/

Colin A. Matena, Michael S. and Raffel. Merging models with fisher-weighted averaging. In
NeurlPS, 2022.

Mohammed Mugeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adaptive routing.
Transactions on Machine Learning Research, 2023.

Horea Muresan and Mihai Oltean. Fruit recognition from images using deep learning. Acta Univer-
sitatis Sapientiae, Informatica, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y. Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop, 2011.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In ICVGIP, 2008.

Changdae Oh, Yixuan Li, Kyungwoo Song, Sangdoo Yun, and Dongyoon Han. Dawin: Training-
free dynamic weight interpolation for robust adaptation. 2025.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In CVPR,
2012.

Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada Eskeland, Thomas
de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux, Pe-
ter Thelin Schmidt, et al. Kvasir: A multi-class image dataset for computer aided gastrointestinal
disease detection. In ACM MMSys, 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang,
Tim Strother, Chunjong Park, Elahe Vedadi, et al. Capabilities of gemini models in medicine.
arXiv preprint arXiv:2404.18416, 2024.

Ken Shoemake. Animating rotation with quaternion curves. In SSIGGRAPH, 1985.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, 2013.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In IJCNN, 2011.

Anke Tang, Li Shen, Yong Luo, Liang Ding, Han Hu, Bo Du, and Dacheng Tao. Concrete
subspace learning based interference elimination for multi-task model fusion. arXiv preprint
arXiv:2312.06173, 2023.

Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task
models via weight-ensembling mixture of experts. In ICML, 2024.

Joachim Utans. Weight averaging for neural networks and local resampling schemes. In AAAI
Workshop, 1996.

Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equiv-
ariant cnns for digital pathology. In MICCAI, 2018.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, Francois Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. In ICML, 2024a.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, Francois Fleuret, and Pascal Frossard.
Localizing task information for improved model merging and compression. In ICML, 2024b.

12

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Haixia Xiao, Feng Zhang, Zhongping Shen, Kun Wu, and Jinglin Zhang. Classification of weather
phenomenon from images by using deep convolutional neural network. Earth and Space Science,
2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jianxiong Xiao, Krista A. Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
Exploring a large collection of scene categories. International Journal of Computer Vision, 2016.

Feng Xiong, Runxi Cheng, Wang Chen, Zhangiu Zhang, Yiwen Guo, Chun Yuan, and Ruifeng
Xu. Multi-task model merging via adaptive weight disentanglement. arXiv preprint
arXiv:2411.18729, 2024.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models. In NeurIPS, 2023.

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao.
Adamerging: Adaptive model merging for multi-task learning. In /CLR, 2024.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In ICML, 2024.

Didi Zhu, Zhongyi Sun, Zexi Li, Tao Shen, Ke Yan, Shouhong Ding, Kun Kuang, and Chao Wu.
Model tailor: Mitigating catastrophic forgetting in multi-modal large language models. arXiv
preprint arXiv:2402.12048, 2024.

13

A JUSTIFICATION FOR OFFSET-BASED EXPERT RECOVERY

A.1 AFFINE TRANSFORMATION—-BASED TASK VECTOR RECOVERY

Math derivation. Starting from the task—arithmetic formulation in the main paper,

T
Omerge = 00 + Z At Tt, (7N
t=1
define the merged task vector Tmerge = Omerge — €0 and rewrite:
T
Tmerge — Z ANiTi = MTe + Z AiTi- ¥
i=1 i£t
Isolating the target task ¢ by subtracting the non-¢ terms from both sides gives
Tmerge — Z AiTi = ATy 9
i#t

Assuming)\, is invertible (a nonzero scalar or an invertible linear operator), left—multiplying by ;™"
yields

—1
)\t (Tmerge - Z)\iTi) = T, (10)
it
-1 -1
Te = A Tmerge — A7 D AT (11)
i#t

Equation shows that recovering 7; from Tiyerge involves a multiplicative term and an additive cor-
rection that compensates for interference from other tasks. This motivates the affine approximation

Ty = Yt Tmerge + /Btv (12)

where 7, (scalar) approximates A, and 3; (tensor) approximates —\; * Do £t AT If v, By are
generated from the task ID ¢, one can recover 7; from Tiperge Via Equation @

A.2 LEARNING AND SIMPLIFYING THE AFFINE RULE IN RETEX
Learning the full affine rule. Guided by Equation , RETEX generates the per—layer scalar %(z)
and a low-rank shift 5%, composed with a shared factor 5&”:

00 = 00+ 500 0) + 80 1

merge
Observed behavior of the scaling factor. In practice, the task—averaged 'yt(l) for many layer types
converges close to 1, indicating that most task—specific adjustment is carried by the shift term. Fig-
ure [7] visualizes this convergence trend over training.

Impact of fixed scaling on performance. Motivated by the above observation, we fix vt(l) =1 for
all tasks and layers so that RETEX generates only the low—rank shift:

Al l

0 = 0. + BILBY. (14)

merge

Figure [8| shows that this fixed—scaling variant closely matches the accuracy of the learned—y model
across a wide range of ranks r, while reducing memory usage. This supports the offset—only re-
covery perspective: recovering a task expert amounts to predicting a task—dependent offset from the
merged parameters.

Equation [13]and Equation [T4] together with the convergence in Figure [7] justify an offset-based

expert recovery rule. Setting fy,fl) =1 enables deployment with only a single merged model Onerge;

RETEX learns task—conditioned low—rank offsets ,Bt(f; ﬂgl) that effectively map Operge to 8; without
storing task experts.

14

—— Positional Embedding —— Attention Out Projection
Visual Projection —— MLP-FC

—— Convl MLP-Projection

—— Attention In Projection

0 1000 2000 3000 4000 5000

Epoch

Figure 7: Convergence behavior of task-averaged vfl) values for various 2D layer types during

RETEX training (where %Sl) is learnable). Experiment on ViT-B/32 with 8 vision tasks shows many

layers converge to %El) ~1.

1.00
459
> 3
©0.98 -4.02
3 2

[9)
-3.52
&) 0.96 g
g 3.0=
N o
© — Accuracy (ReTeX, Fixed yr=1) 259
g 0.94 —— Accuracy (ReTeX) %
= Memory (ReTeX, Fixed y;=1) "2:0E
S
0.92 Memory (ReTeX) 152
50 100 150 200 250
rank (r)

Figure 8: Performance and memory versus rank r on 8 vision tasks (ViT-B/32). Fixing ’yt(l) =1 pre-

serves accuracy relative to the learned—y model while lowering memory, validating the offset—only
Tecovery view.

B EXPERIMENT DETAILS

B.1 MODULE ARCHITECTURE AND PARAMETERS

This section details the module architecture and parameterization of RETEX in the offset-only con-
figuration justified in Appendix [A] In this setting, RETEX learns to generate a task-specific offset

tensor ﬁt(l) for each layer [and applies it to the merged parameters. The offset is factorized as
0 _ 6(” (1
t

t T Mtghs
a task embedding e;, and ,Bgl) is a shared learnable component.

, where ,Bgf; is generated by a lightweight task adaptation MLP h(") conditioned on

The core components involved in offset generation, their shapes (exemplified for a 2D layer), and
their PyTorch-like forms are summarized in Table |§l We denote the number of tasks as 7', the task
embedding dimension as deyp, the dimensions of a 2D layer’s parameter matrix as (a, b), and the
chosen low-rank dimension as r.

The task adaptation MLP h® takes the dem,-dimensional task embedding e; as input and generates
the task-dependent factor ,Bt(l; For a 2D layer of shape (a, b), ﬁt(g has dimensions (a,r), and the
MLP output dimension is a - . The shared component ﬂgl) has dimensions (r, b) and is a learnable
parameter initialized with zeros. The final offset ﬁgl) is their product.

15

Table 5: Core components for offset generation in RETEX (offset-only), exemplified for a 2D
layer. T': tasks, demp: task embedding dimension, (a, b): 2D layer shape, 7: rank.

Component Shape (for 2D layer) | Form
Task embedding (e;) (T, demp) nn.Embedding(7", demp)
Task adaptation MLP (h()) | (demp, @ - 7) nn.Linear(demp, @ - 7)
— Generated ﬁgl; (a,r) Reshaped (") output
Shared ﬁgl) (r,b) nn.Parameter(torch.zeros(r, b))
Effective offset ﬂgl) (a,b) §” = ﬂt(gﬂgl)

Parameter handling for diverse dimensions. The shapes of the generated component ,6,&2 and

the shared component ﬁgl) are adapted based on the dimensionality of the original layer parameter
o0

0D (Scalar) parameters:
- ,Bt(gz Shape (1), output of ().
- 8. Shape (1), learnable scalar.
1D (Vector) parameters: For an original parameter of shape (D):

- ﬁt(,l;: Shape (D), output of A1),

- 5£l): Shape (1), learnable scalar (scales ,Bgl,)] element-wise).

2D (Matrix) parameters: For an original parameter of shape (a, b) and using rank 7:
- ﬁt(,lz]: Shape (a,r), output of (") (reshaped).
- ﬁgl): Shape (r,b), learnable matrix.

* 4D (Tensor, e.g., convolutional kernels) parameters: For an original parameter of shape
(Couts Ciny kn, kw), treat it as 2D by reshaping to (Cout, Cin - kn - kv) for decomposition with
rank r:

- gt(g; Shape (Cout,), output of A()) (reshaped).
— B: Shape (r, cip - kp - k), learnable matrix.

— The resulting ,Bt(l) is reshaped back to (Cout, Cins kny kuw)-

The task adaptation MLP k(") adjusts its output dimensionality to produce the required B,Ef()] for each
layer type. '

Rank adjustment. RETEX uses a common target rank 7 across layers. For 2D parameters of
shape (di,dy) (or 4D parameters reshaped to such a 2D form), the rank is adjusted per layer: if
r > min(dy, d2), the effective rank is set to | min(dy, d2)/2]; otherwise, the target rank r is used.
This ensures a practical low-rank structure for all layers.

B.2 BASELINE DETAILS

The baseline approaches employed for comparative evaluation in our experiments are detailed as
follows:

* Individual Models: This represents the standard performance benchmark where a distinct,
fine-tuned model is dedicated to each specific task. These models operate independently
and are not designed for multi-task execution.

* Weight Averaging (Shoemake, |1985; [Utans||1996): As a foundational technique in model
merging, this method directly computes an average of the parameters from all constituent
task-specific models. It operates under the simplifying assumption that all tasks contribute
equally, hence applying uniform weighting to each model.

16

» Task Arithmetic (Ilharco et al., 2023): This approach first defines a “’task vector” 7 for
each task t as the parametric difference between the fine-tuned model 8; and the initial
pre-trained model 8y (i.e., 7, = 6; — 6y). A unified model Oyerge is then constructed
by adding a scaled sum of these task vectors to the pre-trained parameters, formulated as
Omerge = 00 + A Zle 7¢. The scaling factor A is a hyperparameter selected from the range
{0.0,0.1,..., 1.0} to maximize average performance across all task validation sets.

* TIES-Merging (Yadav et al.l [2023): This method refines task vectors before merging
through a three-step process: Trim, Elect Sign, and Merge. In the Trim step, only the
top 20% of values by magnitude in each task vector are retained, with others zeroed out.
The Elect Sign step (implicitly handled by the original task vector signs) and the subse-
quent Merge step proceed analogously to Task Arithmetic, including the hyperparameter
tuning for the scaling factor.

* Consensus TA (Wang et all 2024a)): This technique first utilizes a multi-task model to
derive binary masks that highlight parameters deemed critical for each task. The sparsity
of these masks is controlled by a hyperparameter A, optimized over {0.2,0.3,0.4,0.5,0.6}
using validation performance. Each task-specific mask is then applied to its correspond-
ing task vector via an element-wise (Hadamard) product before the final merging, which
follows the Task Arithmetic procedure.

 EMR-Merging (Huang et al.| 2024): This approach begins by creating a consolidated
“unified task vector” derived from the sign and magnitude of individual task vectors. It then
computes task-specific binary masks and rescaling vectors for each task. The final merged
model for a given task is obtained by an element-wise multiplication of this unified task
vector with the corresponding task-specific mask and rescaler. This method is presented as
hyperparameter-free.

e Twin-Merging (Lu et al., |2024): This method involves first training a router for dynamic
task identification. A shared “common expert” is then established using Task Arithmetic
with a predetermined scaling factor. Subsequently, “exclusive knowledge vectors” unique
to each task are extracted, typically using Singular Value Decomposition (SVD) or a trim-
ming procedure similar to TIES-Merging (with Trim reported as superior). At inference,
the router assigns task-specific weights to an input. The final model output is derived by
combining the shared expert with a weighted sum of these exclusive knowledge vectors,
using the router-determined weights.

e DaWin (Oh et al., 2025): This dynamic merging technique assigns an input-specific weight
to each task model. These weights are calculated based on the Shannon entropy of the
outputs from both the task-specific model and the pre-trained base model for the given
input. To optimize inference speed, a Beta Mixture Model (BMM) can optionally be trained
to approximate these dynamic weights, typically using K = 3 mixture components by
default.

B.3 COMPUTATIONAL RESOURCES AND TRAINING TIME

All experimental procedures reported in this work, encompassing the training and inference of our
proposed RETEX framework, as well as performance evaluations and computational cost measure-
ments for baseline methods, were conducted on specific GPU hardware. For experiments involving
14 tasks or fewer, NVIDIA GeForce RTX 3090 GPUs were utilized. As a specific example of
training duration, the training of RETEX for the 8-task vision benchmark typically completed in
approximately 53 minutes and 49 seconds on a single NVIDIA GeForce RTX 3090 GPU. For more
extensive experiments involving 20 tasks or more, NVIDIA H100 80GB HBM3 GPUs were em-
ployed to accommodate the increased computational demands.

C MORE ABLATION STUDY

C.1 RANK

We study how the low—rank dimension 7 affects recovery quality and memory. Figure] reports
normalized accuracy (mean accuracy divided by the corresponding individual-expert accuracy) and

17

1.00 35
.

0.99 g
> ©
go.98 308
4

>
go.97 Z
s 0.96 2.5 g
g, / =
=0.95 °
g / 209
5094 ©
S / E
0.93 / —— Normalized Accuracy 1.5 §
0.921F —— Normalized Memory Usage
50 100 150 200 250
Rank (r)

Figure 9: Normalized accuracy and required memory ratio as a function of rank r on ViT-B/32. Ac-
curacy crosses 99% at r > 128 and saturates near r =256, which we adopt by default for subsequent
experiments.

required memory ratio (memory relative to the base model) on ViT-B/32. Across a sweep of 7,
RETEX exceeds 99% normalized accuracy once r > 128, and the gains saturate beyond r = 256
(typically ~ 99.7-99.8%). Since the parameter and activation costs grow roughly linearly with 7
through the factors a x r and x b, we set r =256 in the main experiments to balance accuracy and
memory.

C.2 RANDOM SEED

Table 6: Normalized accuracy for each random seed and number of tasks across all tasks in the
computer vision task with ViT-B/32 CLIP backbone. The bottom row reports the sample mean and
its standard deviation (Mean =+ std) over the five seeds.

Seed 8 tasks 14 tasks 20 tasks
0 99.7352 99.6184 99.6430
1 99.7278 99.6201 99.6431
2 99.7364 99.6168 99.6431
3 99.7387 99.6159 99.6338
4 99.7317 99.6244 99.6467

Mean £ std 99.7340 £ 0.0043 99.6191 £ 0.0034 99.6419 £ 0.0048

To assess the stability and robustness of RETEX with respect to initialization and other sources of
randomness in the training process, we conducted experiments across multiple random seeds. Ta-
ble [6] presents the normalized accuracy of RETEX on the ViT-B/32 CLIP backbone for computer
vision task suites of 8, 14, and 20 tasks, evaluated over five different random seeds (0 through 4).
The results demonstrate a high degree of consistency across seeds. This low variance across differ-
ent seeds indicates that the performance of RETEX is not highly sensitive to the specific random
initialization used, suggesting reliable and reproducible outcomes.

C.3 COSINE SIMILARITY AS AN OBJECTIVE

Prior works in model merging |Yang et al.| (2024); Huang et al.| (2024); Xiong et al|(2024); Davari
& Belilovsky|(2024) have occasionally utilized cosine similarity as a metric, particularly to evaluate
the alignment or proximity between different task vectors or between a task vector derived from
a merged model and those from individual task-specific models. This metric captures the angu-
lar relationship between these vectors, providing insights into their directional agreement, which
can be a complementary perspective to L2 distance that measures magnitude differences in the
parameter space. Motivated by its use as an evaluative measure for task vector relationships, we
investigate whether employing cosine similarity directly as the training objective for RETEX offers

18

any advantages or differing characteristics compared to our standard L2 reconstruction loss when
reconstructing task-specific parameters.

Let Lo denote our original layer-wise L2 reconstruction loss as defined in the main paper Equation
4. For this ablation, we define a cosine similarity-based loss, L., based on the overall task vectors.
Let 7 = 6, — 0 be the target task vector for task ¢, representing the difference between the original
fine-tuned model parameters 6; and the pre-trained model parameters 8. Similarly, let 7+ = 6; — 6
be the reconstructed task vector, where 8, are the parameters recovered by RETEX. For the purpose
of calculating cosine similarity, 7, and 7 are treated as single, high-dimensional vectors representing
the entirety of these parameter differences. The cosine similarity loss L is then formulated as:

T N
Los= (1 M) (15)

2\ R - Tl
where - represents the dot product between the (flattened) task vectors.

We conducted experiments to compare these objectives. As shown in Figure[I0] the red dot indicates
the normalized accuracy when using only L . as the objective (effectively A = 0 in a combined
loss). The green dashed line represents the performance of our standard RETEX which uses only the
L loss, without any cosine similarity component. Furthermore, we evaluated a combined objective
function Leombined = Leos + AL2, Where) is a hyperparameter controlling the contribution of the 1.2
loss. The blue line in Figure[I0] plots the normalized accuracy achieved with this combined loss for
varying values of \.

L I0)0] N N

30.95

o

-]

S 0.90¢

<

©

Y o.85;

©

§ 0.80 — Leos +AL2

Z . (Only LCOS)
0.75} - (only Ly)

0.0 0.2 0.4 0.6 0.8 1.0

coefficient (A)

Figure 10: Normalized accuracy of RETEX when trained with different objective functions: only
Lo (red dot, corresponding to A = 0 in the combined loss), only L2 (green dashed line, our standard
approach), and a combination L., + ALs (blue line) for various A coefficients. Experiments were
conducted on the 8 vision task benchmark with the ViT-B/32 backbone.

Analysis. The results presented in Figure [I0]demonstrate that using only cosine similarity (Lcos,
red dot) as the training objective results in a normalized accuracy of approximately 0.73. This is
substantially lower than the near-perfect recovery (normalized accuracy ~ 1.00) achieved when
using only the L2 loss (L3), indicated by the green dashed line. This performance gap highlights
that cosine similarity alone is insufficient for high-fidelity task expert recovery.

Interestingly, when combining the two losses as L¢os + ALz, the performance (blue line) rapidly
improves as the coefficient \ for the L2 loss increases. Even with a relatively small A = 0.2, the
normalized accuracy of the combined loss already reaches the level achieved by the L2 loss alone
(the green dashed line) and subsequently remains saturated at this high performance for A > 0.2.
This observation strongly suggests that the performance recovery is primarily driven by the L2
component of the loss. The fact that adding a small amount of £ to L. allows the model to match

19

the performance of Lo alone, and that further increasing the L.,s component (by having smaller \)
does not improve beyond what Lo achieves, indicates that L. offers little to no additional benefit
for recovery when a sufficient L2 term is present.

Therefore, it can be inferred that the L2 distance is the main driver for effectively recovering the task
experts. The improvement in cosine similarity (i.e., directional alignment) appears to be a natural
consequence of minimizing the L2 distance between the reconstructed and target task vectors. If
two vectors are made very close in Euclidean space (small L2 distance), their angular deviation
will inherently decrease, leading to high cosine similarity. This suggests that directly optimizing
for cosine similarity is not essential for, and may even distract from, the core objective of precise
parameter reconstruction, for which L2 loss is more effective. Consequently, while cosine similarity
can be an insightful metric, our standard L2 loss remains the more robust and primary objective
function for RETEX.

C.4 IMPACT OF FACTORIZATION ORDER IN SHIFT TENSOR GENERATION

In our proposed RETEX framework (hereafter referred to as RETEX for clarity in this comparison),
the task-specific shift tensor ﬁt(l) for a 2D layer of shape (a,b) is generated via a low-rank factor-
ization: ,B,gl) = ﬁt(l; Bgl). Here, the task-adaptive component 552, generated by the Task Adaptation

Layer (b)), has dimensions (a,r), and the shared component 5§” , a learnable parameter initialized
with zeros, has dimensions (7, b).

This ablation study investigates the impact of reversing the order of these factorized components.
We explore an alternative formulation, denoted RETEX-AIt, where the shift tensor is constructed as

ﬁgl) = ﬂignﬂt(,l;an' In this alternative setup:

. ﬁil;h is a shared, learnable parameter (initialized with zeros) with dimensions (a, 7).

. ﬂt(,l;,an is the task-adaptive component generated by the Task Adaptation Layer, now with

dimensions (r, b).

The core idea is to examine whether making the first factor shared (and learnable from zero-
initialization) and the second factor task-adaptive (generated by the Task Adaptation Layer) in-
fluences the model’s recovery performance and memory usage, compared to our standard RETEX
approach where the first factor is task-adaptive and the second is shared.

The experimental settings, including the ViT-B/32 backbone, 8 vision tasks, the training procedure
for the Task Adaptation Layer, and varying rank r, remain consistent with our main experiments.

The only modification is this reordering of the factorization for ,Bt(l) and the corresponding change
in the output shape of the Task Adaptation Layer.

1.00
)
0.99 352
0. 3
[}
9 =)
50.98 -
3 305
< 0.97 g
o
B 252
= —— ReTeX Accuracy g
g 0.95 ReTeX-Alt Accuracy 5 o'®
Z0.94 ReTeX Memory E
ReTeX-Alt Memory §
0.93 >
50 100 150 200 250

rank (r)

Figure 11: Comparison of normalized accuracy and normalized memory usage versus rank (r) for
the standard ReTeX (blue lines) and ReTeX-Alt (orange lines, representing the alternative factoriza-
tion order). Solid lines indicate accuracy, and dashed lines indicate memory usage. Experiments
were conducted on 8 vision tasks with ViT-B/32.

20

Analysis. Figure |11 illustrates the normalized accuracy and normalized memory usage for both
ReTeX (blue lines) and RETEX-AIt (orange lines) across different ranks 7.

A key observation is that RETEX-AIt (orange dashed line) generally exhibits lower memory usage
compared to RETEX (light blue dashed line) for the same rank r. This is primarily because in
many neural network layers, the input dimension « is often larger than the output dimension b (i.e.,

a > b). In RETEX-AIt, the shared parameter ,B(l) has shape (a,r), while the Task Adaptation

s,alt

Layer generates ﬁgl; A Of shape (7, b). Conversely, in RETEX, the Task Adaptation Layer generates

,Bgl,)] of shape (a,r). Since the parameters of the Task Adaptation Layer contribute significantly to
the overall memory, generating a smaller matrix (typically (r,b) in RETEX-Alt when b < a) results
in lower memory for RETEX-Alt.

However, this reduction in memory usage for RETEX-AIlt is accompanied by a noticeable decrease
in normalized accuracy (orange solid line) compared to the standard RETEX (blue solid line) across
all ranks. For instance, at rank r = 256, RETEX achieves a normalized accuracy close to 1.00,
while RETEX-ALt is visibly lower.

When comparing at roughly equivalent memory usage levels (e.g., by selecting a higher rank for
RETEX-AIt to match the memory of RETEX at a lower rank, or vice-versa, though not directly
shown on a single vertical line), the performance difference might appear less substantial. However,
the consistent trend shows that for any given rank, RETEX slightly outperforms RETEX-AIt. This
suggests that while reversing the factorization order can lead to memory savings due to typical layer
dimensionalities, it may compromise the model’s capacity to learn effective task-specific shifts.
The standard RETEX configuration, where the larger task-adaptive component ,BS; (often a X 7
with a > b) is generated by the Task Adaptation Layer and then projected by the smaller shared,
zero-initialized learnable parameter ﬂgl) (7 x b), appears to offer a marginally better performance-
to-rank trade-off. Placing the shared, zero-initialized learnable parameter as the second factor in the
multiplication (as in the standard RETEX) might provide a more stable or effective learning dynamic
for task-specific recovery. Therefore, our standard RETEX factorization order (ﬁt(g ﬁgl)) is retained
as the primary approach.

C.5 IMPACT OF CALIBRATION SAMPLE SIZE ON ROUTER PERFORMANCE

Numbmer of Task = 8 Number of Task = 14 Number of Task = 20

—
g 0.95 g 0.95 2 0.95
g 0.90 g 0.90 g 0.90
< < <
-‘]Si 0.85 ?d 0.85 § 0.85
T 0.80 é 0.80 T 0.80
ZO 0.75 § 0.75 ZO 0.75
0.70 200 400 600 800 1000 0.70 200 400 600 800 1000 0.70 200 400 600 800 1000
Number of Samples Number of Samples Number of Samples

Figure 12: Task router accuracy as a function of the number of training samples per task.
Results are shown for models trained on 8, 14, and 20 tasks with a ViT-B-32 backbone. The x-axis
is on a log scale.

Sample efficiency of the task router. A key design goal of our framework is efficiency, particu-
larly in its data requirements for task identification. The task router (R¢), as detailed in Section@
is a lightweight network designed to operate effectively with a minimal number of calibration sam-
ples. To validate this sample efficiency, we conduct an ablation study on the number of samples per
task used for training the router. As shown in Figure @ we evaluate scenarios with 8, 14, and 20
tasks, varying the number of training samples from just 32 to 1024 per task.

The results highlight the practical utility of our approach. Even with as few as 32 samples per
task, the router achieves a remarkable normalized accuracy of 98.5% for the 8-task scenario. The
performance remains robust as the number of tasks increases, with the 20-task router achieving
96.9% accuracy with the same minimal sample size. Moreover, accuracy exhibits a steady, gradual

21

improvement as the number of samples increases from 32 to 1024, indicating that while the router
performs strongly with very few samples, its performance can be further refined with more data.
This result confirms that the task router does not require large, task-specific datasets for calibration,
which significantly reduces the data collection and training overhead associated with our framework.
Consequently, this high sample efficiency makes our task classification mechanism a practical and
scalable solution for multi-task scenarios.

C.6 RETEX APPLICATOIN WITH SHARED LAYERS

RETEX recovers experts in a layer-wise manner because parameter interference induced by merging
is not uniform across layers. Different blocks absorb and entangle task updates to varying degrees,
so offsets must be tailored per layer to effectively undo these layer-specific deviations.

RETEX-S (Shared layers). To test whether sharing hurts recovery, we introduce RETEX-S: for
all layers that share the same parameter shape, we tie the task adaptation layer 2(") and the shared

factor /3§” across those layers (i.e., a single generator and shared factor are reused for every layer in
the shape group). All other components remain identical to RETEX.

Results. Figure [14] compares normalized accuracy and memory as the rank r varies. Sharing
across layers markedly degrades recovery quality: RETEX-S underperforms the layer-wise RETEX
at virtually all ranks. Even when we equalize memory by increasing the rank of RETEX-S to match
RETEX’s parameter budget, RETEX-S still trails in accuracy, indicating that the drop is not merely
a capacity issue but stems from forcing a single offset generator to explain heterogeneous, layer-
dependent interference. These observations support the design choice to estimate offsets per layer
rather than sharing them broadly.owever, this reduction in memory usage for RETEX-Alt is accom-
panied by a noticeable decrease in normalized accuracy (orange solid line) compared to the standard
RETEX (blue solid line) across all ranks. For instance, at rank » = 256, RETEX achieves a nor-
malized accuracy close to 1.00, while RETEX-AIt is visibly lower. When comparing at roughly
equivalent memory usage levels (e.g., by selecting a higher rank for RETEX-AIt to match the mem-
ory of RETEX at a lower rank, or vice-versa, though not directly shown on a single vertical line),
the performance difference might appear less substantial. However, the consistent trend shows that
for any given rank, RETEX slightly outperforms RETEX-AIt. This suggests that while reversing the
factorization order can lead to memory savings due to typical layer dimensionalities, it may compro-
mise the model’s capacity to learn effective task-specific shifts. The standard RETEX configuration,

where the larger task-adaptive component ﬁig (often a x r with @ > b) is generated by the Task
Adaptation Layer and then projected by the smaller shared, zero-initialized learnable parameter ,Ggl)
(7 x b), appears to offer a marginally better performance-to-rank trade-off. Placing the shared, zero-

initialized learnable parameter as the second factor in the multiplication (as in the standard RETEX)
might provide a more stable or effective learning dynamic for task-specific recovery. Therefore, our

standard RETEX factorization order (ﬁt(g ,@gl)) is retained as the primary approach.

C.7 IMPACT OF CALIBRATION SAMPLE SIZE ON ROUTER PERFORMANCE

Numbmer of Task = 8 Number of Task = 14 Number of Task = 20

I —

-
o
=]
=
o
o
-
o
=]

0.95

0.90

0.85

T 0.80

Normalized Accuracy
S S o« ¢ +
©
w
Normalized Accuracy
Normalized Accuracy
o
©
w

e
~
G

o
~
)

200 400 600 800 1000 : 200 400 600 800 1000 : 200 400 600 800 1000
Number of Samples Number of Samples Number of Samples

Figure 13: Task router accuracy as a function of the number of training samples per task.
Results are shown for models trained on 8, 14, and 20 tasks with a ViT-B-32 backbone. The x-axis
is on a log scale.

22

Sample efficiency of the task router. A key design goal of our framework is efficiency, particu-
larly in its data requirements for task identification. The task router (R), as detailed in Section 4.2}
is a lightweight network designed to operate effectively with a minimal number of calibration sam-
ples. To validate this sample efficiency, we conduct an ablation study on the number of samples
per task used for training the router. As shown in Figure we evaluate scenarios with 8, 14,
and 20 tasks, varying the number of training samples from just 32 to 1024 per task. The results
highlight the practical utility of our approach. Even with as few as 32 samples per task, the router
achieves a remarkable normalized accuracy of 98.5% for the 8-task scenario. The performance re-
mains robust as the number of tasks increases, with the 20-task router achieving 96.9% accuracy
with the same minimal sample size. Moreover, accuracy exhibits a steady, gradual improvement as
the number of samples increases from 32 to 1024, indicating that while the router performs strongly
with very few samples, its performance can be further refined with more data. This result confirms
that the task router does not require large, task-specific datasets for calibration, which significantly
reduces the data collection and training overhead associated with our framework. Consequently, this
high sample efficiency makes our task classification mechanism a practical and scalable solution for
multi-task scenarios.

C.8 RETEX APPLICATOIN WITH SHARED LAYERS

RETEX recovers experts in a layer-wise manner because parameter interference induced by merging
is not uniform across layers. Different blocks absorb and entangle task updates to varying degrees,
so offsets must be tailored per layer to effectively undo these layer-specific deviations.

C.9 RETEX WITH SHARED LAYERS

RETEX recovers experts in a layer-wise manner because parameter interference introduced by merg-
ing is not uniform across layers. Different blocks absorb and entangle task updates to varying de-
grees, so offsets need to be tailored per layer to effectively undo these layer-specific deviations.

RETEX-S (Shared layers). To test whether sharing hurts recovery, we introduce RETEX-S: for
all layers that share the same parameter shape, we tie the task adaptation layer 2(!) and the shared

factor ﬂgl) across those layers (a single generator and shared factor are reused for every layer in the
shape group). All other components remain identical to RETEX.

Results. Figure compares normalized accuracy and memory as the rank r varies. Sharing
across layers markedly degrades recovery quality: RETEX-S underperforms the layer-wise RETEX
at virtually all ranks. Even when memory is equalized by increasing the rank of RETEX-S to match
RETEX’s parameter budget, RETEX-S still trails in accuracy, indicating that the drop is not merely
a capacity issue but stems from forcing a single offset generator to explain heterogeneous, layer-
dependent interference. These observations support estimating offsets per layer rather than sharing
them broadly.

D ADDITIONAL EXPERIMENTS

D.1 ROBUSTNESS TO UNSEEN TASK SCENARIOS

We utilize a lightweight router, R, to select the appropriate expert model for an input 2. The router
processes a feature embedding from a unified model, Operge, to produce a logit vector over 7' known
tasks. The predicted task, 7, is determined by the argmax operation (Equation . The router is
trained with cross-entropy loss on a small calibration set:

NI
Lcg = N Z Z Vit log (softmax (Rg (emerge(xi)))t) (16)

=1 t=1

where N is the number of calibration samples, y; ; is the ground truth label (1 if sample ¢ belongs to
task ¢, O otherwise). This enables the router to efficiently learn task boundaries with minimal mem-
ory overhead. Beyond task classification, we leverage the entropy of the router’s output distribution

23

1.00 -800

0.98 -700
>
2
: o e00_
[2a]

©0.96

e

3

Joos 5002

32 fal

$092 4008

= [

g 0.90 3002
—— ReTeX (Acc

Zo0.88 {ace)

—— ReTeX-S (Acc) -200
ReTeX (Mem)
ReTeX-S (Mem) ~100

50 100 150 200 250
Rank

ot
@
o

o
o
iy

Figure 14: Ablation: sharing generators across layers (RETEX-S). Normalized accuracy vs.
memory when tying the task adaptation layer and 3, across shape-identical layers. RETEX-S con-
sistently lags behind the default layer-wise RETEX, even under matched memory, suggesting that
interference must be mitigated at the per-layer level rather than with a shared generator.

as a robust proxy for uncertainty. Our key observation is that in-distribution inputs yield low-entropy
(confident) predictions, whereas unseen tasks result in high-entropy (uncertain) predictions.

Router Entropy Analysis: Seen vs Unseen Tasks
Mean Entropy by Dataset Entropy Distribution

—+ Seen Seen (1=0.004)
08 Unseen 40 Unseen (u1=0.232)

° °
S e
w
8

Mean Entropy

o
o

—
—
N

w{ T I r —

& & S S Entropy
ntroj
Q_U\ > &

& $

Figure 15: Entropy-based OOD Detection. Entropy distributions of router outputs on seen tasks
(Cars, DTD, GTSRB, RESISC45, SUN397, SVHN) and unseen tasks (EuroSAT, MNIST) using a
ViT-B/32 backbone. (Left) Entropy values clearly separate seen and unseen tasks. (Right) Aggre-
gated distributions confirm a distinct gap, enabling threshold-based OOD detection.

Figure[I5]further illustrates why this is possible: entropy distributions of seen tasks form a sharp low-
entropy cluster, while unseen tasks produce clearly higher-entropy values. This separation enables
robust OOD detection via a simple threshold, highlighting the generality and practicality of our
approach.

Table [/| shows that our router maintains high Precision and Recall across different ViT backbones.
This confirms that entropy-based OOD detection achieves strong and consistent classification per-
formance regardless of the backbone architecture.

Model \Accuracy Recall F1-Score

ViT-B/32 0.9670 09124 0.8893
ViT-L/14 0.9641 0.9469 0.8846
ViT-B/16 0.9701 0.9010 0.8975

Table 7: Accuracy, Recall, and F1-Score comparison across different ViT backbone models, demon-
strating the robustness of entropy-based OOD detection across architectures.

24

Table 8: Multi-task performance on GLUE with GPT-2 decoder models. All rows (except the
upper bound) are obtained by merging task experts fine-tuned on seven GLUE tasks (CoLA, MNLI,
MRPC, QNLI, QQP, RTE, SST-2). Bold numbers indicate the best performance among merging
methods, excluding the individual task experts.

Method | COLA MNLI MRPC QNLI QQP RTE SST-2 | Avg.
Individual | 768 821 804 83 896 653 912 | 820
Weight Averaging 550 551 510 576 767 448 525 | 56.1
Fisher Merging (Matenal 2022) 548 580 395 633 815 491 525 | 58.7
RegMean (Jin et al.] 2023b) 617 704 654 697 788 560 79.7 | 68.8
Task Arithmetic (Ilharco et al.|2023) | 68.7 686 69.6 705 818 473 836 | 70.0
TIES-Merging (Yadav et aL.]2023) 684 714 684 696 824 477 818 | 70.0
EMR-Merging (Huang et al.|2024) | 728 811 792 848 881 665 903 | 80.4
RETEX (Ours) | 768 820 799 878 894 650 908 | 817

D.2 DECODER-BASED NLP TASKS

Settings. To evaluate the recovery performance of RETEX, we follow the experimental setup of
EMR-Merging |[Huang et al.| (2024) and use GPT-2 |Achiam et al. (2023) as a shared pre-trained
backbone from which individual task models are fine-tuned. Performance is assessed across seven
diverse NLP benchmarks, consistent with prior work: SST-2 [Socher et al.| (2013), MRPC Dolan &
Brockett|(2005), QQP lyer et al.|(2017), MNLI|Williams et al.|(2017), QNLI Rajpurkar et al.| (2016)),
and RTE Giampiccolo et al.|(2007).

Results. Table [§] shows that RETEX surpasses EMR-Merging by 1.3 points on average and out-
performs other merging baselines by over 11 points. Compared with individual experts, the gap is
only 0.3 points (99.6% retained), indicating strong recovery performance. These results mirror the
trends observed with encoder backbones and support the applicability of RETEX to decoder-only
language models.

E TRAINING-FREE ROUTING

We adopt a training-free, distributional classifier that uses intermediate features at a chosen layer.
Fix a layer index | € {1,...,L} by validation. For each task ¢, collect a small calibration set
and forward each sample through the corresponding task-specific fine-tuned model up to layer [to

obtain features ft(l) (x). Fit a Gaussian N/ (ugl), Egl)) to these calibration features to model the task-¢
distribution at layer /.

At test time, given a task-unknown input x, forward x through each task-¢ fine-tuned model up to

layer [to obtain ft(l) (z), then compute the Mahalanobis distance to the corresponding task distribu-
tion:
! 1 NSO Y l
MP(@) = (17 @) —u?) (530) 7 (10 @) -). (7)
The predicted task ID is selected by
f = argmin M (z). (18)
te{l,...,T}

This formulation remains fully training-free: we estimate { ugl), 25}’ }il from a small calibration
set and require no learned router. In practice we instantiate routing with one validated layer [for
efficiency, but the approach is agnostic to the layer choice and can be applied at any layer without
aggregating across layers.

Experimental comparison. We evaluate the proposed training-free routing in the task-unknown
setting under the same experimental protocol as Section As shown in Table[9] RETEX with
training-free routing (RETEX-Training free) achieves accuracy very close to the learned-router vari-
ant (within ~0.3—1.3 percentage points) across all CLIP backbones (ViT-B/32, ViT-B/16, ViT-L/14)
and task counts (8/14/20). Despite requiring no router training, the training-free variant consistently

25

Input sample &
1

Task1 | Task 2 | TaskT | Pred'CtedjaSk D
t
I-th layer I-th layer b I-th layer
(o L. cee L (o
01 (z) 05(z) 07 ()
Mahalanobis distance Eq.(17) e

Argmin

v v v v

N(p1, 1) N (p2, 32) N (pr, 2r)

Figure 16: Training-free Mahalanobis routing. For a validated layer [, each task ¢ builds a Gaus-

sian model NV (ugl) , Egl)) from calibration features ft(l) () extracted by forwarding samples through
the task’s fine-tuned model up to layer [. At test time, an input is forwarded up to the same layer
for every task-specific model, its Mahalanobis distance to each task distribution is computed (Equa-
tion [I7), and the predicted task is chosen by the arg min over tasks (Equation [I8). The router
requires no training, operates with a single chosen layer for efficiency, and is agnostic to the partic-
ular layer used.

Table 9: Task-unknown multi-task merging results on vision benchmarks. Top-1 accuracy (%)
across CLIP backbones (ViT-B/32, ViT-B/16, ViT-L/14) and task counts (8/14/20) when task identity
is not provided at inference.

Method ‘ ViT-B/32 ‘ ViT-B/16 ‘ ViT-L/14

| 8tasks 14tasks 20tasks | 8tasks 14tasks 20tasks | 8tasks 14 tasks 20 tasks
Zero-shot 483 57.2 56.1 55.3 61.3 59.7 64.7 68.2 65.2
Individual 92.9 90.9 91.4 94.7 92.8 92.8 ‘ 95.9 94.3 94.8
Weight Averaging 66.3(72,1> 64.3(71‘1) 61 .0(57‘5) 72~2(76.6) 69.5(74,8) 65.3(70,4) 79.6(33'2) 76.7(81'1) 71.6(75_6)
Twin-Merging (Lu et al.||2024) | 84.0(90.3) 70.0(76.7) 57.5(61.8) | 91.4(96.2) 78.483.9) 63.1(67.0) | 93.7(97.7) 86.2(91.2) 7T4.8(78.6)
DaWin (Oh et al.| 2025:' 890(953) 73.8(80_3) 5248(57_7) 87.1(919) 77-8(835) 628(67‘3) 916(95_5) 82.6(57_2) 77-5(81 .8)
RETEX-Training free (Ours) | 91.7936)) 88.6(97.4) 88.7(97.0) | 93-1(98.2) 90.7(97.7) 90.9(97.5) 94.3(08.3) 92-5098.1) 91.8(97.0)
RETEX (Ours) 92.0(99.1) 89.8(98.8) 894(97.9) | 94.0(00.2) 91.9(99.1) 9I1.3(98.0) 952(99.4) 93.5(99.2) 93.1(98.3)

surpasses prior input-dependent merging methods (Twin-Merging and DaWin) on every backbone
and at every task scale, and maintains high recovery as the number of tasks increases. These results
indicate that a calibration-only Mahalanobis routing scheme is sufficient to unlock most of the gains
of RETEX in task-unknown scenarios while preserving strong scalability across architectures and
task counts.

F LLM USAGE DISCLOSURE

We used a large language model solely to refine wording and improve clarity. The model did not
contribute to research design, literature search, data generation or processing, coding, experimental
analysis, or the production of technical content such as equations or proofs. All edits suggested
by the model were reviewed and finalized by the authors, who accept full responsibility for the
manuscript. The model is not an author; authorship, copyright, and research-ethics obligations rest
entirely with the authors.

26

	Introduction
	Related works
	Background
	Learning to Recover Task Experts
	Task-expert recovery
	Task classification

	Experiments
	Vision tasks
	Merging 8, 14, and 20 vision tasks
	Merging 30 vision tasks

	NLP tasks
	Computational cost
	Ablation study
	Advanced Efficiency

	Conclusion
	Justification for offset-based expert recovery
	Affine transformation–based task vector recovery
	Learning and simplifying the affine rule in ReTeX

	Experiment details
	Module architecture and parameters
	Baseline Details
	Computational resources and training time

	More ablation study
	Rank
	Random seed
	Cosine similarity as an objective
	Impact of factorization order in shift tensor generation
	Impact of calibration sample size on router performance
	ReTeX applicatoin with shared layers
	Impact of calibration sample size on router performance
	ReTeX applicatoin with shared layers
	ReTeX with shared layers

	Additional Experiments
	Robustness to Unseen Task Scenarios
	Decoder-based NLP Tasks

	Training-free routing
	LLM Usage Disclosure

