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Abstract

The top-k operation, i.e., finding the k largest or smallest elements from a collection
of scores, is an important model component, which is widely used in information
retrieval, machine learning, and data mining. However, if the top-k operation is im-
plemented in an algorithmic way, e.g., using bubble algorithm, the resulting model
cannot be trained in an end-to-end way using prevalent gradient descent algorithms.
This is because these implementations typically involve swapping indices, whose
gradient cannot be computed. Moreover, the corresponding mapping from the input
scores to the indicator vector of whether this element belongs to the top-k set is
essentially discontinuous. To address the issue, we propose a smoothed approxima-
tion, namely the SOFT (Scalable Optimal transport-based diFferenTiable) top-k
operator. Specifically, our SOFT top-k operator approximates the output of the
top-k operation as the solution of an Entropic Optimal Transport (EOT) problem.
The gradient of the SOFT operator can then be efficiently approximated based on
the optimality conditions of EOT problem. We apply the proposed operator to
the k-nearest neighbors and beam search algorithms, and demonstrate improved
performance.

1 Introduction
The top-k operation, i.e., finding the k largest or smallest elements from a set, is widely used for
predictive modeling in information retrieval, machine learning, and data mining. For example, in
image retrieval (Babenko et al., 2014; Radenović et al., 2016; Gordo et al., 2016), one needs to query
the k nearest neighbors of an input image under certain metrics; in the beam search (Reddy et al.,
1977; Wiseman and Rush, 2016) algorithm for neural machine translation, one needs to find the k
sequences of largest likelihoods in each decoding step.

Although the ubiquity of top-k operation continues to grow, the operation itself is difficult to be
integrated into the training procedure of a predictive model. For example, we consider a neural
network-based k-nearest neighbor classifier. Given an input, we use the neural network to extract
features from the input. Next, the extracted features are fed into the top-k operation for identifying the
k nearest neighbors under some distance metric. We then obtain a prediction based on the k nearest
neighbors of the input. In order to train such a model, we choose a proper loss function, and minimize
the average loss across training samples using (stochastic) first-order methods. This naturally requires
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the loss function being differentiable with respect to the input at each update step. Nonetheless, the
top-k operation does not exhibit an explicit mathematical formulation: most implementations of the
top-k operation, e.g., bubble algorithm and QUICKSELECT (Hoare, 1961), involve operations on indices
such as indices swapping. Consequently, the training objective is difficult to formulate explicitly.

(a) Original top-k (b) SOFT top-k
Figure 1: Illustration of the top-k operators.

Alternative perspective — taking the top-k opera-
tion as an operator — still cannot resolve the dif-
ferentibility issue. Specifically, the top-k operator3

maps a set of inputs x1, . . . , xn to an index vector
{0, 1}n. Whereas the Jacobian matrix of such a
mapping is not well defined. As a simple example,
consider two scalars x1, x2. The top-1 operation as
in Figure 1 returns a vector [A1, A2]>, with each
entry denoting whether the scalar is the larger one
(1 for true, 0 for false). Denote A1 = f(x1, x2). For a fixed x2, A1 jumps from 0 to 1 at x1 = x2. It
is clear that f is not differentiable at x1 = x2, and the derivative is identically zero otherwise.

Due to the aforementioned difficulty, existing works resort to two-stage training for models with
the top-k operation. We consider the neural network-based k-nearest neighbor classifier again. As
proposed in Papernot and McDaniel (2018), one first trains the neural network using some surrogate
loss on the extracted features, e.g., using softmax activation in the output layer and the cross-entropy
loss. Next, one uses the k-nearest neighbor for prediction based on the features extracted by the
well-trained neural network. This training procedure, although circumventing the top-k operation,
makes the training and prediction misaligned; and the actual performance suffers.

In this work, we propose the SOFT (Scalable Optimal transport-based diFferenTiable) top-k operation
as a differentiable approximation of the standard top-k operation in Section. 2. Specifically, motivated
by the implicit differentiation (Duchi et al., 2008; Griewank and Walther, 2008; Amos and Kolter,
2017; Luise et al., 2018) techniques, we first parameterize the top-k operation in terms of the optimal
solution of an Optimal Transport (OT) problem. Such a re-parameterization is still not differentiable
with respect to the input. To rule out the discontinuity, we impose entropy regularization to the
optimal transport problem, and show that the optimal solution to the Entropic OT (EOT) problem
yields a differentiable approximation to the top-k operation. Moreover, we prove that under mild
assumptions, the approximation error can be properly controlled.

We then develop an efficient implementation of the SOFT top-k operation in Section. 3. Specifically,
we solve the EOT problem via the Sinkhorn algorithm (Cuturi, 2013). Given the optimal solution, we
can explicitly formulate the gradient of SOFT top-k operation using the KKT (Karush-Kuhn-Tucker)
condition. As a result, the gradient at each update step can be efficiently computed with complexity
O(n), where n is the number of elements in the input set to the top-k operation.

Our proposed SOFT top-k operation allows end-to-end training, and we apply SOFT top-k operation
to kNN for classification in Section C and beam search in Section D. The experimental results demon-
strate significant performance gain over competing methods, as an end-to-end training procedure
resolves the misalignment between training and prediction.

2 SOFT Top-k Operator
We adopt the following definition of the (augment of) top-k operator. Given a set of scalars X =
{xi}ni=1, the standard top-k operator returns a vector A = [A1, . . . , An]>, such that

Ai =

{
1, if xi is a top-k element in X ,
0, otherwise.

Note that the definition is essentially an "arg-top-k" operation since it marks the top-k indices as 1,
instead of returning the top-k values. This allows more flexibility since we can obtain the top-k values
by multiplying A to X . The goal is to design a smooth relaxation of the standard top-k operator.
Without loss of generality, we refer to top-k elements as the smallest k elements.
2.1 Parameterizing Top-k Operator as OT Problem
We first show that the standard top-k operator can be parameterized in terms of the solution of
an Optimal Transport (OT) problem (Monge, 1781; Kantorovich, 1960). We briefly introduce OT
problems for self-containedness. An OT problem finds a transport plan between two distributions,

3Throughout the rest of the paper, we refer to the top-k operator as the top-k operation.
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while the expected cost of the transportation is minimized. We consider two discrete distributions
defined on supports A = {ai}ni=1 and B = {bj}mj=1, respectively. Denote P({ai}) = µi and
P({bj}) = νj , and let µ = [µ1, . . . , µn]> and ν = [ν1, . . . , νm]>. We further denote C ∈ Rn×m as
the cost matrix with Cij being the cost of transporting mass from ai to bj . An OT problem can be
formulated as

Γ∗ = argmin
Γ≥0

〈C,Γ〉, s.t., Γ1m = µ, Γ>1n = ν, (1)

where 1 denotes a vector of ones. The optimal Γ∗ is referred to as the optimal transport plan.

In order to parameterize the top-k operator using the optimal transport plan Γ∗, we set the support
A = X and B = {0, 1} in (1), with µ, ν defined as

µ = 1n/n, ν = [k/n, (n− k)/n]>.

We take the cost to be the squared Euclidean distance, i.e., Ci1 = x2
i and Ci2 = (xi − 1)2 for

i = 1, . . . , n. We then establish the relationship between the output A of the top-k operator and Γ∗.

Proposition 1. Consider the setup in the previous paragraph. Without loss of generality, we assume
X has no duplicates. Then the optimal transport plan Γ∗ of (1) is

Γ∗σi,1 =

{
1/n, if i ≤ k,
0, if k + 1 ≤ i ≤ n. , Γ∗σi,2 =

{
0, if i ≤ k,
1/n, if k + 1 ≤ i ≤ n, (2)

with σ being the sorting permutation, i.e., xσ1
< xσ2

< · · · < xσn . Moreover, we have

A = nΓ∗ · [1, 0]>. (3)

The proof can be found in Appendix G. Figure 2(a) illustrates the corresponding optimal transport
plan for parameterizing the top-5 operator applied to a set of 7 elements. As can be seen, the mass
from the 5 closest points is transported to 0, and meanwhile the mass from the 2 remaining points is
transported to 1. Therefore, the optimal transport plan exactly indicates the top-5 elements.
2.2 Smoothing by Entropy Regularization
We next rule out the discontinuity of (1) to obtain a smoothed approximation to the top-k operator.

Specifically, we employ entropy regularization to the OT problem (1):
Γ∗,ε = argmin

Γ≥0
〈C,Γ〉+ εH(Γ), s.t., Γ1m = µ, Γ>1n = ν, (4)

where h(Γ) =
∑
i,j Γij log Γij is the entropy regularizer. We define Aε = nΓ∗,ε · [0, 1]> as a

smoothed counterpart of output A in the standard top-k operator. Accordingly, SOFT top-k operator
is defined as the mapping from X to Aε. We show that the Jacobian matrix of SOFT top-k operator
exists and is nonzero in the following theorem.

Theorem 1. For any ε > 0, SOFT top-k operator: X 7→ Aε is differentiable, as long as the cost Cij
is differentiable with respect to xi for any i, j. Moreover, the Jacobian matrix of SOFT top-k operator
always has a nonzero entry for any X ∈ Rn.

The proof can be found in Appendix G. We remark that the entropic OT (4) is computationally more
friendly, since it allows the usage of first-order algorithms (Cuturi, 2013).

The Entropic OT introduces bias to the SOFT top-k operator. The following theorem shows that such
a bias can be effectively controlled.

Theorem 2. Given a distinct sequence X and its sorting permutation σ, with Euclidean square cost
function, for the proposed top-k solver we have

‖Γ∗,ε − Γ∗‖F ≤
ε(lnn+ ln 2)

n(xσk+1
− xσk)

.

Therefore, with a small enough ε, the output vector Aε can well approximate A, especially when
there is a large gap between xσk and xσk+1

. Besides, Theorem 2 suggests a trade-off between the
bias and regularization of SOFT top-k operator. See Section F for a detailed discussion.

3 Efficient Implementation
We now present our implementation of SOFT top-k operator, which consists of 1) computing Aε
from X and 2) computing the Jacobian matrix of Aε with respect to X . We refer to 1) as the forward
pass and 2) as the backward pass.
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Forward Pass The forward pass from X to Aε can be efficiently computed using Sinkhorn algorithm.
Specifically, we run iterative Bregman projections (Benamou et al., 2015), where at the `-th iteration,
we update

p(`+1) =
µ

Gq(`)
, q(`+1) =

ν

G>p(`+1)
.

Here, the division is entrywise, q(0) = 12/2, and G ∈ Rn×m with Gij = e−
Cij
ε . Denote p∗ and q∗

as the stationary point of the Bregman projections. The optimal transport plan Γ∗,ε can be obtained
by Γ∗,εij = p∗iGijq

∗
j . The algorithm is summarized in Algorithm 1.

Backward Pass. Given Aε, we compute the Jacobian matrix dAε

dX using implicit differentiation and
differentiable programming techinques. Specifically, the Lagrangian function of Problem (4) is

L = 〈C,Γ〉 − ξ>(Γ1m − µ)− ζ>(Γ>1n − ν) + εH(Γ),

where ξ and ζ are dual variables. The KKT condition implies that Γ∗,ε can be formulated using the
optimal dual variables ξ∗ and ζ∗ as (Sinkhorn’s scaling theorem, Sinkhorn and Knopp (1967)),

Γ∗,ε = diag(e
ξ∗
ε )e−

C
ε diag(e

ζ∗
ε ). (5)

Substituting (5) into the Lagrangian function, we obtain

L(ξ∗, ζ∗;C) = (ξ∗)>µ+ (ζ∗)>ν − ε
n,m∑
i,j=1

e−
Cij−ξ

∗
i−ζ
∗
j

ε .

We now compute the gradient of ξ∗ and ζ∗ with respect to C, such that we can obtain dΓ∗,ε/dC
by the chain rule applied to (5). Denote ω∗ = [(ξ∗)>, (ζ∗)>]>, and φ(ω∗;C) = ∂L(ω∗;C)/∂ω∗.

Algorithm 1 SOFT Top-k

Require: X = [xi]
n
i=1, k, ε, L

Y = [y1, y2]> = [0, 1]>

µ = 1n/n, ν = [k/n, (n−K)/n]>

Cij = |xi − yj |2, Gij = e−
Cij
ε , q = 12/2

for l = 1, · · · , L do
p = µ/(Gq), q = ν/(G>p)

end for
Γ = diag(p)�G� diag(q)
Aε = nΓ · [0, 1]>

At the optimal dual variable ω∗, the KKT condition
immediately yields

φ(ω∗;C) ≡ 0.

By the chain rule, we have
dφ(ω∗;C)

dC
=
∂φ(ω∗;C)

∂C
+
∂φ(ω∗;C)

∂ω∗
dω∗

dC
= 0.

Rearranging terms, we obtain

dω∗

dC
= −

(
∂φ(ω∗;C)

∂ω∗

)−1
∂φ(ω∗;C)

∂C
. (6)

Combining (5), (6), Cij = (xi − yj)2, and Aε =
nΓ∗,ε · [1, 0]>, the Jacobian matrix dAε/dX can
then be derived using the chain rule again.

The detailed derivation and the corresponding algorithm for computing the Jacobian matrix can
be found in Appendix H. The time and space complexity of the derived algorithm is O(n) and
O(kn) for top-k and sorted top-k operators, respectively. We also include a Pytorch Paszke et al.
(2017) implementation of the forward and backward pass in Appendix H by extending the autograd
automatic differentiation package.

4 Experiments
We apply SOFT top-k operation to deep kNN for image classification and beam search for the
machine translation task, and show the results in Table 1 and Table 2, respectively. The experimental
results demonstrate significant performance gain over competing methods.

Table 1: Classification accuracy of kNN.
Algorithm MNIST CIFAR10
kNN 97.2% 35.4%
kNN+PCA 97.6% 40.9%
kNN+pretrained CNN 98.4% 91.1%
RelaxSubSample 99.3% 90.1%
kNN+NeuralSort 99.5% 90.7%
kNN+Cuturi et al. (2019) 99.0% 84.8%
kNN+Softmax k times 99.3% 92.2%
CE+CNN (He et al., 2016) 99.0% 91.3%
kNN+SOFT Top-k 99.4% 92.6%

Table 2: BLEU on WMT’14 with single LSTM.
Algorithm BLEU
Luong et al. (2014) 33.10
Durrani et al. (2014) 30.82
Cho et al. (2014) 34.54
Sutskever et al. (2014) 30.59
Bahdanau et al. (2014) 28.45
Jean et al. (2014) 34.60
Bahdanau et al. (2014) (Our implementation) 35.38
Beam Search + Sorted SOFT Top-k 36.27
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(a) (b)

Figure 2: (a). Illustration of the OT plan with input X = [0.4, 0.7, 2.3, 1.9,−0.2, 1.4, 0.1]> and k = 5. We
set ν = [ 5

7
, 2
7
]>. In this way, 5 of the 7 scores align with 0, while {2.3, 1.9} align with 1. (b). Illustration for

sorted top-k with similar input and k = 2. We set ν = [ 1
7
, 1
7
, 5
7
]> and B = [0, 1, 2]>. Then, the smallest score

−0.2 aligns with 0, the second smallest score 0.1 aligns with 1, and the rest of the scores align with 2.

(a) ε = 10−3 (b) ε = 5× 10−3 (c) ε = 10−2 (d) ε = 5× 10−2

Figure 3: Color maps of Γε (upper) and the corresponding scatter plots of values in Aε (lower), where X
contains 50 standard Gaussian samples, and K = 5. The scatter plots show the correspondence of the input X
and output Aε.

A Notations

We denote ‖ · ‖2 as the `2 norm of vectors, ‖ · ‖F as the Frobenius norm of matrices. Given two
matrices B,D ∈ Rn×m, we denote 〈B,D〉 as the inner product, i.e., 〈B,D〉 =

∑n,m
i=1,j=1BijDij .

We denote B �D as the element-wise multiplication of B and D. We denote 1(·) as the indicator
function, i.e., the output of 1(·) is 1 if the input condition is satisfied, and is 0 otherwise. For matrix
B ∈ Rn×m, we denote Bi,: as the i-th row of the matrix. The softmax function for matrix B is
defined as softmaxi(Bij) = eBij/

∑n
`=1 e

Blj . For a vector b ∈ Rn, we denote diag(b) as the matrix
where the i-th diagonal entries is bi.

B Sorted SOFT Top-k Operator

In some applications, we not only need to distinguish the top-k elements, but also sort the top-k
elements. For example, in image retrieval (Gordo et al., 2016), the retrieved k images are expected to
be sorted. Our SOFT top-k operator can be extended to the sorted SOFT top-k operator.

Analogous to the derivation of the SOFT top-k operator, we first parameterize the sorted top-k
operator in terms of an OT problem. Specifically, we keep A = X and µ = 1n/n and set

B = [0, 1, 2, · · · , k]>, and ν = [1/n, · · · , 1/n, (n− k)/n]>.

One can check that the optimal transport plan of the above OT problem transports the smallest element
in A to 0 in B, the second smallest element to 1, and so on so forth. This in turn yields the sorted
top-k elements. Figure 2(b) illustrates the sorted top-2 operator and its optimal transport plan.

The sorted SOFT top-k operator is obtained similarly to SOFT top-k operator by solving the entropy
regularized OT problem. We can show that the sorted SOFT top-k operator is differentiable and the
bias can be properly controlled.

C k-NN for Image Classification

The proposed SOFT top-k operator enables us to train an end-to-end neural network-based kNN
classifier. Specifically, we receive training samples {Zi, yi}Ni=1 with Zi being the input data and
yi ∈ {1, . . . ,M} the label from M classes. During the training, for an input data Zj (also known as
the query sample), we associate a loss as follows. Denote Z\j as all the input data excluding Zj (also
known as the template samples). We use a neural network fθ parameterized by θ to extract features
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from all the input data, and measure the pairwise Euclidean distances between the extracted features
of Z\j and that of Zj . Denote X\j,θ as the collection of these pairwise distances, i.e.,

X\j,θ = {‖fθ(Z1)− fθ(Zj)‖2, ..., ‖fθ(Zj−1)− fθ(Zj)‖2,
‖fθ(Zj+1)− fθ(Zj)‖2, ..., ‖fθ(ZN )− fθ(Zj)‖2},

where the subscript of X emphasizes its dependence on θ.

Next, we apply SOFT top-k operator to X\j,ω, and the returned vector is denoted by Aε\j,θ. Let
Y\j ∈ RM×(N−1) be the matrix by concatenating the one-hot encoding of labels yi for i 6= j as
columns, and Yj ∈ RM the one-hot encoding of the label yj . The loss of Zj is defined as

`(Zj , yj) = Y >j Y
>
\jA

ε
\j,θ.

Consequently, the training loss is L({Zj , yj}Nj=1) = 1
N

∑N
j=1 `(Zj , yj). Recall that the Jacobian

matrix of Aε\j,θ exists and has no zero entries. This allows us to utilize stochastic gradient descent al-
gorithms to update θ in the neural network. Moreover, since N is often large, to ease the computation,
we randomly sample a batch of samples to compute the stochastic gradient at each iteration.

Figure 4: Illustration of the entire forward pass of kNN.

In the prediction stage, we use all the training
samples to obtain a predicted label of a query
sample. Specifically, we feed the query sample
into the neural network to extract its features,
and compute pairwise Euclidean distances to all
the training samples. We then run the standard
kNN algorithm (Hastie et al., 2009) to obtain
the predicted label.

C.1 Experiment

We evaluate the performance of the proposed
neural network-based kNN classifier on two
benchmark datasets: MNIST dataset of handwritten digits (LeCun et al., 1998) and the CIFAR-
10 dataset of natural images (Krizhevsky et al., 2009) with the canonical splits for training and
testing without data augmentation. We adopt the coefficient of entropy regularizer ε = 10−3 for
MNIST dataset and ε = 10−5 for CIFAR-10 dataset. Further implementation details can be found in
Appendix I.
Baselines. We consider several baselines:

1. Standard kNN method.
2. Two-stage training methods: we first extract the features of the images, and then perform kNN on

the features. The feature is extracted using Principle Component Analysis (PCA, top-50 principle
components is adopted), autoencoder (AE), or a pretrained Convolutional Neural Network (CNN)
using the Cross-Entropy (CE) loss.

3. Differentiable ranking + kNN: This includes NeuralSort (Grover et al., 2019) and Cuturi et al.
(2019). Cuturi et al. (2019) is not directly applicable, which requires adaptations (see Appendix I).

4. Stochastic kNN with Gumbel top-k relaxation (Xie and Ermon, 2019): The model is referred as
RelaxSubSample.

5. Softmax Augmentation for smoothed top-k operation: A combination of k softmax operation is
used to replace the top-k operator. Specifically, we recursively perform softmax on X for k times
(Similar idea appears in Plötz and Roth (2018)). At the k-th iteration, we mask the top-(k − 1)
entries with negative infinity.

6. CNNs trained with CE without any top-k component4.
For the pretrained CNN and CNN trained with CE, we adopt identical neural networks as our method.
Results. We report the classification accuracies on the standard test sets in Table 1. On both datasets,
the SOFT kNN classifier achieves comparable or better accuracies.

D Beam Search for Machine Translation

Beam search is a popular method for the inference of Neural Language Generation (NLG) models,
e.g., machine translation models. Here, we propose to incorporate beam search into the training
procedure based on SOFT top-k operator.

4Our implementation is based on github.com/pytorch/vision.git
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D.1 Misalignment between Training and Inference

Denote the predicted sequence as y = [y(1), · · · , y(T )], and the vocabularies as {z1, · · · , zV }.
Consider a recurrent network based NLG model. The output of the model at the t-th decoding step
is a probability simplex [P(y(t) = zi|h(t)]Vi=1, where h(t) is the hidden state associated with the
sequence y(1:t) = [y(1), ..., y(t)].

Beam search recursively keeps the sequences with the k largest likelihoods, and discards the rest.
Specifically, at the (t+ 1)-th decoding step, we have k sequences ỹ(1:t),i’s obtained at the t-th step,
where i = 1, ..., k indexes the sequences. The likelihood of ỹ(1:t),i is denoted by Ls(ỹ

(1:t),i). We
then select the next k sequences by varying i = 1, . . . , k and j = 1, . . . , V :

{ỹ(1:t+1),`}k`=1 = arg top-k[ỹ(1:t),i,zj ]Ls([ỹ
(1:t),i, zj ]).

where Ls([ỹ
(1:t),i, zj ]) is the likelihood of the sequence appending zj to ỹ(1:t),i defined as

Ls([ỹ
(1:t),i, zj ])=P(y(t+1) =zj |h(t+1),i)Ls(ỹ

(1:t),i), (7)

and h(t+1),i is the hidden state generated from ỹ(1:t),i. Note that zj’s and ỹ(1:t),i’s together yield V k
choices. Here we abuse the notation: ỹ(1:t+1),` denotes the `-th selected sequence at the (t+ 1)-th
decoding step, and is not necessarily related to ỹ(1:t),i at the t-th decoding step, even if i = `.

For t = 1, we set ỹ(1) = zs as the start token, Ls(y
(1)) = 1, and h(1) = he as the output of the

encoder. We repeat the above procedure, until the end token is selected or the pre-specified max
length is reached. At last, we select the sequence y(1:T ),∗ with the largest likelihood as the prediction.

Moreover, the most popular training procedure for NLG models directly uses the so-called
“teacher forcing” framework. As the ground truth of the target sequence (i.e., gold sequence)
ȳ = [ȳ(1), · · · , ȳ(T )] is provided at the training stage, we can directly maximize the likelihood

Ltf =

T∏
t=1

P(y(t) = ȳ(t)|h(t)(ȳ(1:t-1))). (8)

As can be seen, such a training framework only involve the gold sequence, and cannot take the
uncertainty of the recursive exploration of the beam search into consideration. Therefore, it yields a
misalignment between model training and inference (Bengio et al., 2015), which is also referred as
exposure bias (Wiseman and Rush, 2016).

D.2 Differential Beam Search with Sorted SOFT Top-k

To mitigate the aforementioned misalignment, we propose to integrate beam search into the training
procedure, where the top-k operator in the beam search algorithm is replaced with our proposed
sorted SOFT top-k operator proposed in Section B.

Specifically, at the (t + 1)-th decoding step, we have k sequences denoted by E(1:t),i, where
i = 1, ..., k indexes the sequences. Here E(1:t),i consists of a sequence of D-dimensional vectors,
where D is the embedding dimension. We are not using the tokens, and the reason behind will be
explained later. Let h̃(t),i denote the hidden state generated from E(1:t),i. We then consider

X (t) = {−Ls([E
(1:t),i, wj ]), j = 1, ..., V, i = 1, ..., k},

where Ls(·) is defined analogously to (7), and wj ∈ RD is the embedding of token zj .

Recall that ε is the smoothing parameter. We then apply the sorted SOFT top-k operator to X (t) to
obtain {E(1:t+1),`}k`=1, which are k sequences with the largest likelihoods. More precisely, the sorted
SOFT top-k operator yields an output tensor A(t),ε ∈ RV×k×k, where A(t),ε

ji,` denotes the smoothed
indicator of whether [E(1:t),i, wj ] has a rank `. We then obtain

E(1:t+1),` =
[
E(1:t),r,

V∑
j=1

k∑
i=1

A
(t),ε
ji,` wj

]
, (9)

where r denotes the index i (for E(1:t),i’s) associated with the index ` (for E(1:t+1),`’s). This is why
we use vector representations instead of tokens: this allows us to compute E(t+1),` as a weighted
sum of all the word embeddings [wj ]

V
j=1, instead of discarding the un-selected words.
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Accordingly, we generate the k hidden states for the (t+ 1)-th decoding step:

h̃(t),` =

V∑
j=1

k∑
i=1

A
(t),ε
ji,` h

(t),i, (10)

where h(t),i is the hidden state generated by the decoder based on E(1:t),i.

After decoding, we select the sequence with largest likelihood E(1:T ),∗, and maximize the likelihood
as follows,

LSOFT =

T∏
t=1

P(y(t) = ȳ(t)|h̃(t-1),∗(E(1:t-1),∗)).

We provide the sketch of training procedure in Algorithm 2, where we denote logit(t),i as
[logP(y(t+1) = ωj |h̃(t),i(E(1:t),i))]Vj=1, which is part of the output of the decoder. More tech-
nical details (e.g., backtracking algorithm for finding the index r in (9)) are provided in Appendix
I.

Algorithm 2 Beam search training with SOFT Top-k

Require: Input sequence s, target sequence ȳ; embed-
ding matrix W ∈ RV×D; max length T ; k; regulariza-
tion coefficient ε; number of Sinkhorn iteration L
h̃

(1)
i = he = Encoder(s), E(1),i = ws

for t = 1, · · · , T − 1 do
for i = 1, · · · , k do
logit(t),i, h(t),i = Decoder(E(t),i, h̃(t),i)

logLs([E
(1:t),i, wj ]) = logLs(E

(1:t),i)+logit(t),ij

X (t) = {− logLs([E
(1:t),i, wj ]) | j = 1, · · · , V }

end for
A(t),ε = Sorted-SOFT-Top-k(X (t), k, ε, L)
Compute E(t+1),`, h̃(t+1),` as in (9) and (10)

end for
Compute∇LSOFT and update the model

Note that integrating the beam search into
training essentially yields a very large
search space for the model, which is not
necessarily affordable sometimes. To al-
leviate this issue, we further propose a
hybrid approach by combining the teacher
forcing training with beam search-type
training. Specifically, we maximize the
weighted likelihood defined as follows,
Lfinal = ρLtf + (1− ρ)LSOFT,

where ρ ∈ (0, 1) is referred to as the
“teaching forcing ratio”. The teaching forc-
ing loss Ltf can help reduce the search
space and improve the overall perfor-
mance.

D.3 Experiment

We evaluate our proposed beam search
+ sorted SOFT top-k training procedure
using WMT2014 English-French dataset.
We adopt beam size 5, teacher forcing ratio ρ = 0.8, and ε = 10−1. For detailed settings of the
training procedure, please refer to Appendix I.

We reproduce the experiment in Bahdanau et al. (2014), and run our proposed training procedure
with the identical data pre-processing procedure and the LSTM-based sequence-to-sequence model.
Different from Bahdanau et al. (2014), here we also preprocess the data with byte pair encoding
(Sennrich et al., 2015).

Results. As shown in Table 2, the proposed SOFT beam search training procedure achieves an
improvement in BLEU score of approximately 0.9. We also include other LSTM-based models for
baseline comparison.

E Related Work

We parameterize the top-k operator as an optimal transport problem, which shares the same spirit as
Cuturi et al. (2019). Specifically, Cuturi et al. (2019) formulate the ranking and sorting problems as
OT problems. Ranking is more complicated than identifying the top-k elements, since one needs to
align different ranks to corresponding elements. Therefore, the algorithm complexity per iteration
for ranking whole n elements is O(n2). Cuturi et al. (2019) also propose an OT problem for finding
the τ -quantile in a set of n elements and the algorithm complexity reduces to O(n). Top-k operator
essentially finds all the elements more extreme than the (n − k)/n-quantile, and our proposed
algorithm achieves the same complexity O(n) per iteration. The difference is that top-k operator
returns the top-k elements in a given input set, while finding a quantile only yields a certain threshold.
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Gumbel-Softmax trick (Jang et al., 2016) can also be utilized to derive a continuous relaxation of
the top-k operator. Specifically, Kool et al. (2019) adapted such a trick to sample k elements from
n choices, and Xie and Ermon (2019) further applied the trick to stochastic kNN, where neural
networks are used to approximating the sorting operator. However, as shown in our experiments (see
Table 1), the performance of stochastic kNN is not as good as deterministic kNN.

Our SOFT beam search training procedure is inspired by several works that incorporate some of
the characteristics of beam search into the training procedure (Wiseman and Rush, 2016; Goyal
et al., 2018; Bengio et al., 2015). Specifically, Wiseman and Rush (2016) and Goyal et al. (2018)
both address the exposure bias issue in beam search. Wiseman and Rush (2016) propose a new
loss function in terms of the error made during beam search. This mitigates the misalignment of
training and testing in beam search. Later, Goyal et al. (2018) approximates the top-k operator using
k softmax operations (This method is described and compared to our proposed method in C). Such
an approximation allows an end-to-end training of beam search. Besides, our proposed training loss
Lfinal is inspired by Bengio et al. (2015), which combines teacher forcing training procedure and

Figure 5: Visualization of MNIST
data based on features extracted
by the neural network-based k-NN
classifier trained by our proposed
method in Section C.

greedy decoding, i.e., beam search with beam size 1.

F Discussion

Relation to automatic differentiation. We compute the Jacobian
matrix of SOFT top-k operator directly in the backward pass. The
OT plan can be obtained by the Sinkhorn algorithm (Algorithm 1),
which is iterative and each iteration only involves multiplication and
addition. Therefore, we can also apply automatic differentiation
(auto-diff) to compute the Jacobian matrix. Specifically, we denote
Γ` as the transport plan at the t-th iteration of Sinkhorn algorithm.
The update of Γ` can be written as Γ`+1 = T (Γ`), where T denotes
the update of the Sinkhorn algorithm. In order to apply auto-diff,
we need to store all the intermediate states, e.g., p, q,G in each
iteration, as defined in Algorithm 1 at each iteration. This requires a huge memory size proportional
to the number of iterations of the algorithm. In contrast, our backward pass allows us to save memory.

Bias and regularization trade-off. Theorem 2 suggests a trade-off between the regularization and
bias of SOFT top-k operator. Specifically, a large ε has a strong smoothing effect on the entropic OT
problem, and the corresponding entries of the Jacobian matrix are neither too large nor too small.
This eases the end-to-end training process. However, the bias of SOFT top-k operator is large, which
can deteriorate the model performance. On the contrary, a smaller ε ensures a smaller bias. Yet the
SOFT top-k operator is less smooth, which in turn makes the end-to-end training less efficient.

On the other hand, the bias of SOFT top-k operator also depends on the gap between xσk+1
and

xσk . In fact, such a gap can be viewed as the signal strength of the problem. A large gap implies
that the top-k elements are clearly distinguished from the rest of the elements. Therefore, the bias
is expected to be small since the problem is relatively easy. Moreover, in real applications such as
neural network-based kNN classification, the end-to-end training process promotes neural networks
to extract features that exhibit a large gap (as illustrated in Figure 5). Hence, the bias of SOFT top-k
operator can be well controlled in practice.

G Theoretical Guarantees

Proposition 1. Consider the setup in the previous paragraph. Without loss of generality, we assume
X has no duplicates. Then the optimal transport plan Γ∗ of (1) is

Γ∗σi,1 =

{
1/n, if i ≤ k,
0, if k + 1 ≤ i ≤ n. , Γ∗σi,2 =

{
0, if i ≤ k,
1/n, if k + 1 ≤ i ≤ n, (11)

with σ being the sorting permutation, i.e., xσ1 < xσ2 < · · · < xσn . Moreover, we have
A = nΓ∗ · [1, 0]>. (12)

Proof. We expand the objective function of (1) as

〈C,Γ〉 =

n∑
i=1

(
(xi − 0)2Γi,1 + (xi − 1)2Γi,2

)
=

1

n

n∑
i=1

x2
i +

n− k
n
− 2

n∑
i=1

xiΓi,2.
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Therefore, to minimize 〈C,Γ〉, it suffices to maximize
∑n
i=1 xiΓi,2. It is straightforward to check

n∑
i=1

Γi,2 =
n− k
n

and Γi,2 ≤
1

n

for any i = 1, . . . , n. Hence, maximizing
∑n
i=1 xiΓi,2 is essentially selecting the largest n − K

elements from X , and the maximum is attained at

Γ∗σi,2 =

{
0, if i ≤ k,
1/n, if k + 1 ≤ i ≤ n.

The constraint Γ1m = µ further implies that Γ∗i,1 satisfies (11). Thus, A can be parameterized as
A = nΓ∗ · [1, 0]>.

We then show that after adding entropy regularization the problem is differentiable.

Theorem 1. For any ε > 0, SOFT top-k operator: X 7→ Aε is differentiable, as long as the cost Cij
is differentiable with respect to xi for any i, j. Moreover, the Jacobian matrix of SOFT top-k operator
always has a nonzero entry for any X ∈ Rn.

Proof. We first prove the differentiability. This part of proof mirrors the proof in Luise et al. (2018).
By Sinkhorn’s scaling theorem,

Γ∗,ε = diag(e
ξ∗
ε )e−

C
ε diag(e

ζ∗
ε ).

Therefore, since Cij is differentiable, Γ∗,ε is differentiable if (ξ∗, ζ∗) is differentiable as a function
of input scores X .

Let us set

L(ξ, ζ;µ, ν, C) = ξTµ+ ζT ν − ε
n,m∑
i,j=1

e−
Cij−ξi−ζj

ε .

and recall that (ξ∗, ζ∗) = argmaxξ,ζ L(ξ, ζ;µ, ν, C). The differentiability of (ξ∗, ζ∗) is proved using
the Implicit Function theorem and follows from the differentiability and strong convexity in (ξ∗, ζ∗)
of the function L.

Now we prove that dAε/dx` always has a nonzero entry for l = 1, · · · , n. First, we prove that
for any ` ∈ {1, · · · , n}, dΓ∗,ε/dx` always has a nonzero entry. We will prove it by contradiction.
Specifically, the KKT conditions for the stationarity are as follows

ξ∗i + ζ∗j = (xi − yj)2 − ε log Γ∗,εij , ∀i = 1, · · · , n, j = 1, · · · ,m.
If we view the above formula as a linear equation set of the dual variables, it has nm equations and
m+ n variables. Therefore, there are nm−m− n redundant equations. Suppose one of the scores
x`, has an infinitesimal change δx`. Assuming Γ∗,ε does not change, we have a new set of linear
equations,

ξ∗i + ζ∗j = (xi − yj)2 − ε log Γ∗,εij , ∀i 6= `,

ξ∗` + ζ∗j = (x` + δx` − yj)2 + δC`j − ε log Γ∗,ε`j .

Easy to verify that this set of linear equations has no solution. Therefore, there must be at least one
entry in Γ∗,ε has changed. As a result, dΓ∗,ε/dx` always has a nonzero entry. We denote this entry as
Γ∗,εi′j′ . Since Γ∗,εi′j′ + Γ∗,εi′,3−j′ = µi′ , we have

dΓ∗,εi′,3−j′

dx`
= −

dΓ∗,εi′j′

dx`
6= 0.

Therefore, there must be a nonzero entry in the first column of dΓ∗,ε/dx`. Recall Aε is the first
column of Γ∗,ε. As a result, there must be a nonzero entry in dAε/dx` for any ` ∈ {1, · · · , n}.

Second, we would like to know after smoothness relaxation, how much bias is introduced to Aε.
Lemma 1. Denote the feasible set of optimal transport problem as ∆ = {Γ : Γ ∈ [0, 1]n×m,Γ1m =
µ,Γ1n = ν}. Assume the optimal transport plan is unique. Denote Γ∗ as the optimal transport plan,

Γ∗ = argmin
Γ∈∆

f(Γ) = argmin
Γ∈∆

〈C,Γ〉,
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and Γ∗,ε as the entropy regularized transport plan,
Γ∗,ε = argmin

Γ∈∆
f ε(Γ) = argmin

Γ∈∆
f(Γ)− εH(Γ) = argmin

Γ∈∆
〈C,Γ〉+ ε

∑
i,j

Γij ln Γij .

We can bound the difference between Γ∗ and Γ∗,ε to be
‖Γ∗ − Γ∗,ε‖F ≤ ε

(lnn+ lnm)

B
,

where ‖ · ‖F is the Frobenius norm, and B is a positive constant irrelevant to ε.

Proof. Note that H(Γ) is the entropy function. Since 0 ≤ Γij ≤ 1 and
∑
ij Γij = 1 for any Γ ∈ ∆,

we can view ∆ as the subset of a simplex. Therefore,

1. H(Γ) is non-negative.

2. The maximum of H(Γ) in the simplex can be obtained at Γij ≡ 1
nm . Therefore the

maximum value is (lnn+ lnm).

Therefore, 0 ≤ H(Γ) ≤ (lnn+ lnm) for any Γ ∈ ∆.

Since H(Γ) ≥ 0, we have f ε(Γ) ≤ f(Γ) for any Γ ∈ ∆. As a result, we have f ε(Γ∗,ε) ≤ f(Γ∗). In
other words, we have

〈C,Γ∗,ε〉 − εH(Γ∗,ε)− 〈C,Γ∗〉 ≤ 0.
Therefore,

〈C,Γ∗,ε − Γ∗〉 = 〈C,Γ∗,ε〉 − 〈C,Γ∗〉 ≤ εH(Γ∗,ε) ≤ ε(lnn+ lnm).

Since the optimal transport problem is a linear optimization problem, Γ∗ is one of the vertices of ∆.
Denote e0, e1, · · · , eJ as the vertices of ∆, and without loss of generality we assume e0 = Γ∗. Since
Γ∗,ε ∈ ∆, we can denote Γ∗,ε =

∑J
j=0 λjej , where λj ≥ 0, and

∑
j λj = 1. Since Γ∗ is unique, we

have
〈C, ej − e0〉 > 0, ∀j = 1, · · · , J.

Denote Bj = 〈C, ej − e0〉. Since the space we are considering is Euclidean space (if we reshape the
matrices into vectors), we can write the inner product as

Bj = 〈C, ej − e0〉 = ‖C‖F ‖ej − e0‖F cos θ(C,ej−e0) > 0.
So we have cos θ(C,ej−e0) > 0. In other words, the angle betweenC and ej−e0 is always smaller than
π
2 . Therefore, the angle between C and the affine combination of ej − e0, namely

∑J
j=0 λj(ej − e0),

is also smaller than π
2 . More specifically, we have

cos θ(C,Γ∗,ε−Γ∗) = cos θ(C,
∑J
j=0 λj(ej−e0)) ≥ min

j
cos θ(C,ej−e0) = min

j

Bj
‖C‖F ‖ej − e0‖F

.

Therefore, we have

‖Γ∗,ε − Γ∗‖F =
〈C,Γ∗,ε − Γ∗〉

‖C‖F cos θ(C,Γ∗,ε−Γ∗)
≤ ε(lnn+ lnm)

‖C‖F minj
Bj

‖C‖F ‖ej−e0‖F

=
ε(lnn+ lnm)

minj
Bj

‖ej−e0‖F

.

Denote B = minj
Bj

‖ej−e0‖F , and we have the conclusion.

Remark 1. In Theorem 1 we restricted the optimal solution to be unique, only for clarity purpose. If
it is not unique, similar conclusion holds, except that the proof is more tedious – instead of divide the
vertices into e0 and others, we need to divide it into the vertices that are optimal solutions and the
others.
Lemma 2. At each of the vertices of ∆, the entries of Γ are either 0 or 1/n for Γ ∈ ∆.

Proof. The key idea is to prove by contradiction: If there exist i, j such that Γij ∈ (0, 1/n), then Γ
cannot be a vertex.

To ease the discussion, we denote Z = nΓ. We will first prove that the entries of Z are either 0 or 1
at the vertices.

Notice that
Zi,1 + Zi,2 = 1, ∀i = 1, · · · , n,∑
i

Zi,1 = k,∑
i

Zi,2 = n− k.

If there exists an entry Zi′,j′ ∈ (0, 1), then
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1. Zi′,3−j′ ∈ (0, 1).

2. there must exist i′′ 6= i′, such that Zi′′,j′ ∈ (0, 1). This is because
∑n
i=1 Zi,j is an integer,

and Zi′,j′ is not.

3. As a result, Zi′′,3−j′ ∈ (0, 1).

Therefore, consider δ ∈ (−min{1− Zi′.j′ , Zi′,j′},min{1− Zi′.j′ , Zi′,j′}) and denote

Z̃
(1)
ij =



Zi′,j′ + δ, if i = i′, j = j′,

Zi′,3−j′ − δ, if i = i′, j = 3− j′,
Zi′′,j′ − δ, if i = i′′, j = j′,

Zi′′,3−j′ + δ, if i = i′′, j = 3− j′,
Zi,j , otherwise.

Z̃
(2)
ij =



Zi′,j′ − δ, if i = i′, j = j′,

Zi′,3−j′ + δ, if i = i′, j = 3− j′,
Zi′′,j′ + δ, if i = i′′, j = j′,

Zi′′,3−j′ − δ, if i = i′′, j = 3− j′,
Zi,j , otherwise.

We can easily verify that Z̃(1)/n, Z̃(2)/n ∈ ∆, and also Z = (Z̃(1) + Z̃(2))/2. Therefore, Z cannot
be a vertex.

Lemma 3. Given a set of scalar {x1, · · · , xn}, we sort it to be {xσ1 , · · · , xσn}. If Euclidean square
cost is adopted, Γ∗ has the following form,

Γ∗ij =


1/n, if i = σ`, j = 1, ` ≤ k
0, if i = σ`, j = 1, k < ` ≤ n
1/n, if i = σ`, j = 2, k < ` ≤ n
0, if i = σ`, j = 2, ` ≤ k

And minj
Bj

‖ej−e0‖F is attained at at a vertex Γ∗∗, where Γ∗∗ij = Γ∗ij except that the σk-th row and the
σk+1-th row are swapped. As a result, we have

min
j

Bj
‖ej − e0‖F

= n(xσk+1
− xσk).

Proof. From Lemma 2, in each vertex the entries of Γ is either 0 or 1/n. Also, Γ∗ ∈ ∆ = {Γ :
Γ ∈ [0, 1]n×m,Γ1m = 1n/n,Γ1n = [k/n, (n− k)/n]>}. Therefore, for the j-th vertex, there are
k entries with value 1/n in the first row of Γ. Denote the row indices of these k entries as Ij , and
Ω = {1, · · · , n}. Then for each vertex we have

Γi,1 = 1/n, ∀i ∈ Ij
Γi,1 = 0, ∀i ∈ Ω\Ij
Γi,2 = 1/n, ∀i ∈ Ω\Ij
Γi,2 = 0, ∀i ∈ Ij .

Denote I∗ = {σ1, · · · , σk}. We now prove that I∗ corresponds to the optimal solution Γ∗. This is
because for any j ∈ {1, · · · , J}

Γ(Ij)− Γ(I∗) =

∑
i∈Ij

x2
i +

∑
i∈Ω\Ij

(xi − 1)2

−
∑
i∈I∗

x2
i +

∑
i∈Ω\I∗

(xi − 1)2


=

∑
i∈Ω

x2
i −

∑
i∈Ω\Ij

2xi + (n− k)

−
∑
i∈Ω

x2
i −

∑
i∈Ω\I∗

2xi + (n− k)


= 2

 ∑
i∈Ω\I∗

xi −
∑

i∈Ω\Ij

xi

 ≥ 0,
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where the last step is because the elements with indices Ω\Ij is the largest n− k elements. Therefore
we have Γ(I∗) = Γ∗.

Now let’s compute minj 6=0Bj/‖ej − e0‖. Denote set subtraction A− B as the set if elements that
belongs to A but do not belong to B, and |A| as the number of elements in A.

Bj
‖ej − e0‖

=
Bj

‖Γ(Ij)− Γ(I∗)‖

= 2

∑
i∈Ω\I∗ xi −

∑
i∈Ω\Ij xi

2
√
|I∗ − Ij |/n

= n

∑
i∈(Ij−I∗) xi −

∑
i∈(I∗−Ij) xi√

|I∗ − Ij |
,

where the second line can be obtained by substituting the definition ofBj . Notice that Ij−I∗ ∈ Ω\I∗
and I∗ − Ij ∈ I∗. Any element with index in Ω\I∗ is larger than any element in I∗ by at least
xσK+1

− xσK . Then we have
Bj

‖ej − e0‖
= N

∑
i∈(Ij−I∗) xi −

∑
i∈(I∗−Ij) xi√

|I∗ − Ij |

≥ N
|I∗ − Ij |(xσK+1

− xσK )√
|I∗ − Ij |

≥ N(xσK+1
− xσK ),

where the last step is because for j 6= 0, |I∗ − Ij | is at least 1.

Also notice that the value n(xσk+1
−xσk) can be attained at Ij∗ = {σ1, · · · , σk−1, σk+1}. Therefore

we have
min
j

Bj
‖ej − e0‖

= n(xσk+1
− xσk).

Theorem 2. Given a distinct sequence X and its sorting permutation σ, with Euclidean square cost
function, for the proposed top-k solver we have

‖Γ∗,ε − Γ∗‖ ≤ ε(lnn+ ln 2)

n(xσk+1
− xσk)

.

Proof. This is a direct conclusion with Lemma 1 and Lemma 3.

H The Expression of the Gradient of Aε

In this section we will derive the expression of dAε/dxi. We first list a few reminders that will be
used later:

• {xi}ni=1 is a scalar set to be solved for top-k. {yj}mj=1 is taken to be {0, 1}.
• C ∈ Rn×m is the cost matrix, usually defined as Cij = (xi − yj)2.
• The loss function of entropic optimal transport is

Γ∗,ε = argmin
Γ∈∆

f ε(Γ) = argmin
Γ∈∆

〈C,Γ〉+ ε
∑
i,j

Γij ln Γij ,

where ∆ = {Γ : Γ ∈ [0, 1]n×m,Γ1m = µ,Γ1n = ν}.
• The dual problem of the above optimization problem is

ξ∗, ζ∗ = argmax
ξ,ζ

L(ξ, ζ;C),

where

L(ξ, ζ;C) = ξ>µ+ ζ>ν − ε
n,m∑
i,j=1

e−
Cij−ξi−ζj

ε .

And it is connected to the prime form by
Γ∗,ε = diag(e

ξ∗
ε )e−

C
ε diag(e

ζ∗
ε ).

The converged p, q in Algorithm 1 is actually e
ξ∗
ε and e

ζ∗
ε .
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If we obtain the expression for dξ
∗

dC and dζ∗

dC , we can obtain the expression for dA
ε

dxi
.

In this section only, we denote Γ = Γ∗,ε, to shorten the notation. The multiplication of 3rd-order
tensors mirrors the multiplication of matrices: we always use the last dimension of the first input to
multiplies the first dimension of the second input. We denote b̄ = b:−1 as b removing the last entry,
ν̄ = ν:−1 as ν removing the last entry, Γ̄ = Γ:,:−1 as Γ removing the last column.

Theorem 3. dξ∗

dC and dζ∗

dC have the following expression,[
dξ∗

dC
dζ∗

dC

]
=

[
−H−1D

0

]
where −H−1D ∈ R(n+m−1)×n×m, 0 ∈ R1×n×m, and

D`ij =
1

ε

{
δ`iΓij , ` = 1, · · · , n
δ`jΓij , ` = n+ 1, · · · , n+m− 1

H−1 = −ε
[
(diag(µ))−1 + (diag(µ))−1Γ̄K−1Γ̄T (diag(µ))−1 −(diag(µ))−1Γ̄K−1

−K−1Γ̄T (diag(µ))−1 K−1

]
K = diag(ν̄)− Γ̄T (diag(µ))−1Γ̄.

Proof. Notice that there is one redundant dual variable, since µ1N = ν1M = 1. Therefore, we can
rewrite L(ξ, ζ;C) as

L(ξ, ζ̄;C) = ξTµ+ ζ̄T ν̄ − ε
n,m−1∑
i,j=1

e
−Cij+ξi+ζj

ε − ε
n∑
i=1

e
−Cim+ξi

ε .

Denote

φ(ξ, ζ̄, C) =
dL(ξ, ζ̄;C)

dξ
= µ− F1m, (13)

ψ(ξ, ζ̄, C) =
dL(ξ, ζ̄;C)

dζ̄
= ν̄ − F̄>1n, (14)

where

Fij = e
−Cij+ξi+ζj

ε , ∀i = 1, · · · , n, j = 1, · · · ,m− 1

Fim = e
−Cim+ξi

ε , ∀i = 1, · · · , n,
F̄ = F:,:−1.

Since (ξ∗, ζ̄∗) is a maximum of L(ξ, ζ̄;C), we have

φ(ξ∗, ζ̄∗, C) = 0,

ψ(ξ∗, ζ̄∗, C) = 0.

Therefore,

dφ(ξ∗, ζ̄∗, C)

dC
=
∂φ(ξ∗, ζ̄∗, C)

∂C
+
∂φ(ξ∗, ζ̄∗, C)

∂ξ∗
dξ∗

dC
+
∂φ(ξ∗, ζ̄∗, C)

∂ζ̄∗
dζ̄∗

dC
= 0,

dψ(ξ∗, ζ̄∗, C)

dC
=
∂ψ(ξ∗, ζ̄∗, C)

∂C
+
∂ψ(ξ∗, ζ̄∗, C)

∂ξ∗
dξ∗

dC
+
∂ψ(ξ∗, ζ̄∗, C)

∂ζ̄∗
dζ̄∗

dC
= 0.

Therefore, [
dξ∗

dC
dζ̄∗

dC

]
= −

[
∂φ(ξ∗,ζ̄∗,C)

∂ξ∗
∂φ(ξ∗,ζ̄∗,C)

∂ζ̄∗

∂ψ(ξ∗,ζ̄∗,C)
∂ξ∗

∂ψ(ξ∗,ζ̄∗,C)

∂ζ̄∗

]−1 [
∂φ(ξ∗,ζ̄∗,C)

∂C
∂ψ(ξ∗,ζ̄∗,C)

∂C

]

, −H−1

[
D(1)

D(2)

]
, −H−1D.
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Now let’s compute each of the terms.

∂φ(ξ∗, ζ̄∗, C)h
∂Cij

= −∂[F1m]h
∂Cij

= − ∂

∂Cij

(
m−1∑
`=1

e
−Ch`+ah+b`

ε + e
−Chm+ah

ε

)

=
1

ε
δhiFij =

1

ε
δhiΓij

∀h = 1, · · · , n, i = 1, · · · , n, j = 1, · · · ,m
∂ψ(ξ∗, ζ̄∗, C)`

∂Cij
= −∂[F̄>1n]`

∂Cij
= − ∂

∂Cij

n∑
h=1

e
−Ch`+ah+b`

ε

=
1

ε
δ`jFij =

1

ε
δ`jΓij

∀` = 1, · · · ,m− 1, i = 1, · · · , n, j = 1, · · · ,m

∂φ(ξ∗, ζ̄∗, C)h
∂ξ∗i

= −∂[F1m]h
∂ξ∗i

= − ∂

∂ξ∗i

(
m−1∑
`=1

e
−Ch`+ah+b`

ε + e
−Chm+ah

ε

)

= −1

ε
δhi

m∑
`=1

Fh` = −1

ε
δhiµh

∀h = 1, · · · , n, i = 1, · · · , n

∂φ(ξ∗, ζ̄∗, C)h
∂ζ̄∗j

= −∂[F1m]h
∂ζ̄∗j

= − ∂

∂ζ̄∗j

(
m−1∑
`=1

e
−Ch`+ah+b`

ε + e
−Chm+ah

ε

)

= −1

ε

m−1∑
`=1

δ`jFh` = −1

ε
Fhj = −1

ε
Γhj

∀h = 1, · · · , n, j = 1, · · · ,m− 1

∂ψ(ξ∗, ζ̄∗, C)`
∂ξ∗i

= −∂[F̄>1n]`
∂ξ∗i

= − ∂

∂ξ∗i

n∑
h=1

e
−Ch`+ah+b`

ε

= −1

ε

n∑
h=1

δhiFh` = −1

ε
Fi` = −1

ε
Γi`

∀` = 1, · · · ,m− 1, i = 1, · · · , n
∂ψ(ξ∗, ζ̄∗, C)`

∂ζ̄∗j
= −∂[F̄>1n]`

∂ζ̄∗j
= − ∂

∂ζ̄∗j

n∑
h=1

e
−Ch`+ah+b`

ε

= −1

ε

n∑
h=1

δ`jFh` = −1

ε
δ`jν`

∀` = 1, · · · ,m− 1, j = 1, · · · ,m− 1.

To sum up, we have

H = −1

ε

[
diag(µ) Γ̄

Γ̄T diag(ν̄)

]
.

Following the formula for inverse of block matrices,[
A B
C D

]−1

=

[
A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
,

denote
K = diag(ν̄)− Γ̄T (diag(µ))−1Γ̄.

Note that K is just a scalar for SOFT top-k operator, and is a (k − 1) × (k − 1) matrix for sorted
SOFT top-k operator. Therefore computing its inverse is not expensive. Finally we have

H−1 = −ε
[
(diag(µ))−1 + (diag(µ))−1Γ̄K−1Γ̄T (diag(µ))−1 −(diag(µ))−1Γ̄K−1

−K−1Γ̄T (diag(µ))−1 K−1

]
.
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And also

D
(1)
hij =

1

ε
δhiΓij

D
(2)
`ij =

1

ε
δ`jΓij .

The above derivation can actually be viewed as we explicitly force bm = 0, i.e., no matter how C
changes, bm does not change. Therefore, we can treat dbmdC = 0n×m, and we get the equation in the
theorem.

After we obtain dξ∗

dC and dζ∗

dC , we can now compute dΓ
dC .

dΓh`
dCij

=
d

dCij
e
−Ch`+ah+b`

ε =
1

ε

(
−Γh`δihδj` + Γh`

dξ∗h
dCij

+ Γh`
db∗`
dCij

)
.

Finally, in the back-propagation step, we can compute the gradient of the loss L w.r.t. C,

dL

dCij
=

n,m∑
h,`=1

dL

dΓh`

dΓh`
dCij

=
1

ε

− n,m∑
h,`=1

dL

dΓh`
Γh`δinδj` +

n,m∑
h,`=1

dL

dΓh`
Γh`

dξ∗h
dCij

+

n,m∑
h,`=1

dL

dΓh`
Γh`

db∗`
dCij


=

1

ε

− dL

dΓij
Γij +

n,m∑
h,`=1

dL

dΓh`
Γh`

dξ∗h
dCij

+

n,m∑
h,`=1

dL

dΓh`
Γh`

db∗`
dCij

 .

We summarize the above procedure for computing the gradient for sorted SOFT top-k operator in
Algorithm 3. This naive implementation takes O(n2k) complexity, which is not efficient. Therefore,
we modify the algorithm using the associative law of matrix multiplications, so that the complexity is
lowered to O(nk). We summarize the modified algorithm in Algorithm 4.

We also include the PyTorch implementation of the forward pass and backward pass as shown
below. The code is executed by creating an instance of TopK_custom, and the forward pass and the
backward pass is run similar to any other PyTorch model.

Algorithm 3 Gradient for Sorted Top-k

Require: C ∈ Rn×(k+1), µ ∈ Rn, ν ∈ Rk+1, dLdΓ ∈ Rn×(k+1), ε
Run forward pass to get Γ
ν̄ = ν[: −1], Γ̄ = Γ[:, : −1]
K ← diag(ν̄)− Γ̄T (diag(µ))−1Γ̄ # K ∈ Rk×k
H1← (diag(µ))−1 + (diag(µ))−1Γ̄K−1Γ̄T (diag(µ))−1 # H1 ∈ Rn×n
H2← −(diag(µ))−1Γ̄K−1 # H2 ∈ Rn×k
H3← (H2)T # H3 ∈ Rk×n
H4← K−1 # H4 ∈ Rk×k
Pad H2 to be [n, k + 1] in the last column with value 0
Pad H4 to be [k, k + 1] in the last column with value 0

[dξ
∗

dC ]hij ← [H1]hiΓij + [H2]hjΓij # dξ∗

dC ∈ Rn×n×(k+1)

[dζ
∗

dC ]`ij ← [H3]`iΓij + [H4]`jΓij # db∗

dC ∈ Rk×n×(k+1)

Pad dζ∗

dC to be [k + 1, n, k + 1] with value 0

[ dLdC ]ij ← 1
ε (−[dLdΓ ]ijΓij +

∑
h,`[

dL
dΓ ]h`Γh`[

dξ∗

dC ]hij +
∑
h,`[

dL
dΓ ]h`Γh`[

dζ∗

dC ]`ij)
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Algorithm 4 Gradient for Sorted Top-k, with reduced memory

Require: C ∈ RN×(K+1), µ ∈ RN , ν ∈ RK+1, dLdΓ ∈ RN×(K+1), ε
Run forward pass to get Γ
ν̄ = ν[: −1], Γ̄ = Γ[:, : −1]
K ← diag(ν̄)− Γ̄T (diag(µ))−1Γ̄ # K ∈ RK×K
µ′i = µ−1

i

L← (diag(µ))−1Γ̄K−1 # L ∈ RN×K
G1← dL

dΓ � Γ # G1 ∈ RN×K
g1← [G1]1K , g2← [G1]T1N # g1 ∈ RN , g2 ∈ RK
G21← (g1� µ′).expand_dims(1)� Γ # G21 ∈ RN×(K+1)

G22← ((g1)TLΓ̄T � µ′).expand_dims(1)� Γ # G22 ∈ RN×(K+1)

G23← −((g1)TL).pad_last_entry(0).expand_dims(0)� Γ # G23 ∈ RN×(K+1)

G2 = G21 +G22 +G23 # G2 ∈ RN×(K+1)

g2← g2[: −1]
G31← −(L(g2)).expand_dims(1)� Γ # G31 ∈ RN×(K+1)

G32← (K−1(g2)).pad_last_entry(0).expand_dims(0)� Γ # G32 ∈ RN×(K+1)

G3 = G31 +G32 # G3 ∈ RN×(K+1)

dL
dC ←

1
ε (−G1 +G2 +G3)

d e f s i n k h o r n _ f o r w a r d (C , mu , nu , e p s i l o n , m a x _ i t e r ) :
bs , n , k_ = C . s i z e ( )

v = t o r c h . ones ( [ bs , 1 , k_ ] ) / ( k_ )
G = t o r c h . exp(−C / e p s i l o n )
i f t o r c h . cuda . i s _ a v a i l a b l e ( ) :

v = v . cuda ( )

f o r i i n r a n g e ( m a x _ i t e r ) :
u = mu / ( G∗v ) . sum(−1, keepdim=True )
v = nu / ( G∗u ) . sum(−2, keepdim=True )

Gamma = u∗G∗v
r e t u r n Gamma

d e f s i n k h o r n _ f o r w a r d _ s t a b l i z e d (C , mu , nu , e p s i l o n , m a x _ i t e r ) :
bs , n , k_ = C . s i z e ( )
k = k_−1

f = t o r c h . z e r o s ( [ bs , n , 1 ] )
g = t o r c h . z e r o s ( [ bs , 1 , k + 1 ] )
i f t o r c h . cuda . i s _ a v a i l a b l e ( ) :

f = f . cuda ( )
g = g . cuda ( )

e p s i l o n _ l o g _ m u = e p s i l o n∗ t o r c h . l o g (mu)
e p s i l o n _ l o g _ n u = e p s i l o n∗ t o r c h . l o g ( nu )

d e f min_eps i l on_ row ( Z , e p s i l o n ) :
r e t u r n −e p s i l o n∗ t o r c h . logsumexp ((−Z ) / e p s i l o n , −1, keepdim=True )

d e f m i n _ e p s i l o n _ c o l ( Z , e p s i l o n ) :
r e t u r n −e p s i l o n∗ t o r c h . logsumexp ((−Z ) / e p s i l o n , −2, keepdim=True )

f o r i i n r a n g e ( m a x _ i t e r ) :
f = min_eps i l on_ row (C−g , e p s i l o n )+ e p s i l o n _ l o g _ m u
g = m i n _ e p s i l o n _ c o l (C−f , e p s i l o n )+ e p s i l o n _ l o g _ n u

Gamma = t o r c h . exp ((−C+ f +g ) / e p s i l o n )
r e t u r n Gamma

d e f s i n k h o r n _ b a c k w a r d ( grad_output_Gamma , Gamma , mu , nu , e p s i l o n ) :

nu_ = nu [ : , : , : −1 ]
Gamma_ = Gamma[ : , : , : −1 ]

bs , n , k_ = Gamma . s i z e ( )

inv_mu = 1 . / ( mu . view ( [ 1 ,−1 ] ) ) # [ 1 , n ]
Kappa = t o r c h . diag_embed ( nu_ . s q u e e z e (−2)) \

−t o r c h . matmul (Gamma_ . t r a n s p o s e (−1, −2) ∗ inv_mu . unsqueeze (−2) , Gamma_) # [ bs , k , k ]

inv_Kappa = t o r c h . i n v e r s e ( Kappa ) # [ bs , k , k ]

Gamma_mu = inv_mu . unsqueeze (−1)∗Gamma_
L = Gamma_mu . matmul ( inv_Kappa ) # [ bs , n , k ]
G1 = grad_output_Gamma ∗ Gamma #[ bs , n , k +1]
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g1 = G1 . sum(−1)
G21 = ( g1∗inv_mu ) . unsqueeze (−1)∗Gamma #[ bs , n , k +1]
g1_L = g1 . unsqueeze (−2). matmul ( L ) # [ bs , 1 , k ]
G22 = g1_L . matmul (Gamma_mu . t r a n s p o s e (−1 ,−2)). t r a n s p o s e (−1,−2)∗Gamma #[ bs , n , k +1]
G23 = − F . pad ( g1_L , pad =( 0 , 1 ) , mode= ’ c o n s t a n t ’ , v a l u e =0)∗Gamma #[ bs , n , k +1]
G2 = G21 + G22 + G23 #[ bs , n , k +1]

d e l g1 , G21 , G22 , G23 , Gamma_mu

g2 = G1 . sum(−2). unsqueeze (−1) # [ bs , k +1 , 1 ]
g2 = g2 [ : , : −1 , : ] # [ bs , k , 1 ]
G31 = − L . matmul ( g2 )∗Gamma #[ bs , n , k +1]
G32 = F . pad ( inv_Kappa . matmul ( g2 ) . t r a n s p o s e (−1,−2) , pad = (0 , 1 ) , mode= ’ c o n s t a n t ’ , v a l u e =0)∗Gamma

#[ bs , n , k +1]
G3 = G31 + G32 #[ bs , n , k +1]

grad_C = (−G1+G2+G3 ) / e p s i l o n # [ bs , n , k +1]
r e t u r n grad_C

c l a s s TopKFunc ( F u n c t i o n ) :
@ s t a t i c m e t h o d
d e f f o r w a r d ( c tx , C , mu , nu , e p s i l o n , m a x _ i t e r ) :

w i th t o r c h . no_grad ( ) :
i f e p s i l o n >1e−2:

Gamma = s i n k h o r n _ f o r w a r d (C , mu , nu , e p s i l o n , m a x _ i t e r )
i f boo l ( t o r c h . any (Gamma!=Gamma ) ) :

p r i n t ( ’ Nan a p p e a r e d i n Gamma , re−comput ing . . . ’ )
Gamma = s i n k h o r n _ f o r w a r d _ s t a b l i z e d (C , mu , nu , e p s i l o n , m a x _ i t e r )

e l s e :
Gamma = s i n k h o r n _ f o r w a r d _ s t a b l i z e d (C , mu , nu , e p s i l o n , m a x _ i t e r )

c t x . s a v e _ f o r _ b a c k w a r d (mu , nu , Gamma)
c t x . e p s i l o n = e p s i l o n

r e t u r n Gamma

@ s t a t i c m e t h o d
d e f backward ( c tx , grad_output_Gamma ) :

e p s i l o n = c t x . e p s i l o n
mu , nu , Gamma = c t x . s a v e d _ t e n s o r s
# mu [ 1 , n , 1 ]
# nu [ 1 , 1 , k +1]
#Gamma [ bs , n , k +1]
wi th t o r c h . no_grad ( ) :

grad_C = s i n k h o r n _ b a c k w a r d ( grad_output_Gamma , Gamma , mu , nu , e p s i l o n )
r e t u r n grad_C , None , None , None , None

c l a s s TopK_custom ( t o r c h . nn . Module ) :
d e f _ _ i n i t _ _ ( s e l f , k , e p s i l o n = 0 . 1 , m a x _ i t e r = 2 0 0 ) :

s u p e r ( TopK_custom1 , s e l f ) . _ _ i n i t _ _ ( )
s e l f . k = k
s e l f . e p s i l o n = e p s i l o n
s e l f . a n c h o r s = t o r c h . F l o a t T e n s o r ( [ k−i f o r i i n r a n g e ( k + 1 ) ] ) . view ( [ 1 , 1 , k + 1 ] )
s e l f . m a x _ i t e r = m a x _ i t e r

i f t o r c h . cuda . i s _ a v a i l a b l e ( ) :
s e l f . a n c h o r s = s e l f . a n c h o r s . cuda ( )

d e f f o r w a r d ( s e l f , s c o r e s ) :
bs , n = s c o r e s . s i z e ( )
s c o r e s = s c o r e s . view ( [ bs , n , 1 ] )

# f i n d t h e −i n f v a l u e and r e p l a c e i t w i th t h e minimum v a l u e e x c e p t −i n f
s c o r e s _ = s c o r e s . c l o n e ( ) . d e t a c h ( )
max_scores = t o r c h . max ( s c o r e s _ ) . d e t a c h ( )
s c o r e s _ [ s c o r e s _ == f l o a t (’− i n f ’ ) ] = f l o a t ( ’ i n f ’ )
m i n _ s c o r e s = t o r c h . min ( s c o r e s _ ) . d e t a c h ( )
f i l l e d _ v a l u e = m i n _ s c o r e s − ( max_scores−m i n _ s c o r e s )
mask = s c o r e s == f l o a t (’− i n f ’ )
s c o r e s = s c o r e s . m a s k e d _ f i l l ( mask , f i l l e d _ v a l u e )

C = ( s c o r e s−s e l f . a n c h o r s )∗∗2
C = C / (C . max ( ) . d e t a c h ( ) )

mu = t o r c h . ones ( [ 1 , n , 1 ] , r e q u i r e s _ g r a d = F a l s e ) / n
nu = [ 1 . / n f o r _ i n r a n g e ( s e l f . k ) ]
nu . append ( ( n−s e l f . k ) / n )
nu = t o r c h . F l o a t T e n s o r ( nu ) . view ( [ 1 , 1 , s e l f . k + 1 ] )

i f t o r c h . cuda . i s _ a v a i l a b l e ( ) :
mu = mu . cuda ( )
nu = nu . cuda ( )

Gamma = TopKFunc . a p p l y (C , mu , nu , s e l f . e p s i l o n , s e l f . m a x _ i t e r )

A = Gamma [ : , : , : s e l f . k ]∗n

r e t u r n A, None
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I Experiment Settings

I.1 kNN

The settings of the neural networks, the training procedure, and the number of neighbors k, and the
tuning procedures are similar to Grover et al. (2019). The tuning o ε ranging from 10−6 to 10−2.
Other settings are shown in Table 3.

Table 3: Parameter settings for kNN experiments.
Dataset MNIST CIFAR-10
k 9 9
ε 10−3 10−5

Batch size of query samples 100 100
Batch size of template samples 100 100
Optimizer SGD SGD
Learning rate 10−3 10−3

Momentum 0.9 0.9
Weight decay 5× 10−4 5× 10−4

Model 2-layer convolutional network ResNet18

Note that fθ is a feature extraction neural network, so that model specified in the last row of Table 3
does not contain the final activation layer and the linear layer.

Baselines. In the baselines, the results of kNN, kNN+PCA, kNN+AE, kNN+NeuralSort is copied
from Grover et al. (2019). The result of RelaxSubSample is copied from Xie and Ermon (2019).

The implementation of kNN+Cuturi et al. (2019) is based on Grover et al. (2019). Specifically, the
outputs of the models in Cuturi et al. (2019) and Grover et al. (2019) are both doubly stochastic
matrices. So in the implementation of kNN+Cuturi et al. (2019), we adopt the algorithm in Grover
et al. (2019), except that we replace the module of computing the doubly stochastic matrix to be the
one in Cuturi et al. (2019). We extensively tuned k, ε and the learning rate, but cannot achieve a
better score for this experiment.

The baselines kNN+Softmax k times, kNN+pretrained CNN, and CE+CNN adopts the identical
neural networks as our model. We remark that the scores reported in Grover et al. (2019) for CNN+CE
are 99.4% for MNIST and 95.1% for CIFAR-10. However, our experiments using their code cannot
reproduce the reported scores: and the scores are 99.0% and 90.9%, respectively. Therefore, the
reported score for MNIST is implemented by us, and the score for CIFAR-10 is copied from He et al.
(2016).

I.2 Beam Search

Algorithm. We now elaborate how to backtrack the predecessors E(1:t),r for an embedding E(t+1),`,
and how to compute the likelihood Ls(E

(1:t+1),`), which we have omitted in Algorithm 2. Specifi-
cally, in standard beam search algorithm, each selected token ỹ(t+1),` is generated from a specific
predecessor, and thus the backtracking is straightforward. In beam search with sorted SOFT top-k
operator, however, each computed embedding E(1:t),r is a weighted sum of the output from all
predecessors, so that it is not corresponding to one specific predecessor. To address this difficulty, we
select the predecessor for E(t+1),` with the largest weight, i.e.,

(o, r) = argmax
(j,i)

A
(t),ε
ji,` .

This is a good approximation because A(t),ε is a smoothed 0-1 tensor, i.e., for each `, there is only
one entry that is approximately 1 in A(t),ε

:,:,` , while the others are approximately 0. The likelihood is
then computed as follows

Ls(E
(1:t+1),`) = Ls(E

(1:t),r)P(yt+1 = ωo|h̃(t),r(E(1:t),r)).

Implementation. The implemented model is identical to Bahdanau et al. (2014). Different from
Bahdanau et al. (2014), here we also preprocess the data with byte pair encoding (Sennrich et al.,
2015).
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We adopt beam size 5, teacher forcing ratio ρ = 0.8, and ε = 10−1. The training procedure is
as follows: We first pretrain the model with teacher forcing training procedure. The pretraining
procedure has initial learning rate 1, learning rate decay 0.1 starting from iteration 5× 105 for every
105 iterations. We pretrain it for 106 iterations in total. We then train the model using the combined
training procedure for 105 iterations with learning rate 0.05.

I.3 Top-k Attention for Machine Translation

We apply SOFT top-k operator to yield sparse attention scores. Attention module is an integral part
of various natural language processing tasks, allowing modeling of long-term and local dependencies.
Specifically, given the vector representations of a source sequence s = [s1, · · · , sN ]> and target
sequence y = [y1, · · · , yM ]>, we compute the alignment score between si and yj by a compatibility
function f(si, yj), e.g., f(si, yj) = s>i yj , which measures the dependency between si and yj . A
softmax function then transforms the scores [f(si, yj)]

N
i=1 to a sum-to-one weight vector wj for each

yj . The output oj of this attention module is a weighted sum of si’s, i.e., oj = w>j s.

The attention module described above is called the soft attention, i.e., the attention scores wj of yj is
not sparse. This may lead to redundancy of the attention (Zhu et al., 2018; Schlemper et al., 2019).
Empirical results show that hard attention, i.e., enforcing sparsity structures in the score wj’s, yields
more appealing performance (Shankar et al., 2018). Therefore, we propose to replace the softmax
operation on [f(si, yj)]

N
i=1 by the standard top-k operator to select the top-k elements. In order for an

end-to-end training, we further deploy SOFT top-k operator to substitute the standard top-k operator.
Given [f(si, yj)]

N
i=1, the output of SOFT top-k operator is denoted by Aεj , and the weight vector wj

is now computed as

wj = softmax([f(s1, yj), . . . , f(sN , yj)]
> + logAεj).

Here log is the entrywise logarithm. The output oj of the attention module is computed the same
oj = w>j s. Such a SOFT top-k attention will promote the top-k elements in [f(si, yj)]

N
i=1 to be even

larger than the non-top-k elements, and eventually promote the attention of yj to focus on k tokens in
s.

I.3.1 Experiment

We evaluate the proposed top-k attention on WMT2016 English-German dataset. Our implementation
and settings are based on Klein et al. (2017)5. For a fair comparison, we implement a standard soft
attention using the same settings as the baseline. The details are provided in Appendix I.

Results. As shown in Table 4, the proposed SOFT top-k attention training procedure achieves an
improvement in BLEU score of approximately 0.8. We visualize the top-k attention in Figure 6. The
attention matrix is sparse, and has a clear semantic meaning – “truck" corresponds to “Lastwagen",
“blue" corresponds to “blauen", “standing" corresponds to “stehen", etc.

Table 4: BLEU scores on WMT’16.
Algorithm BLEU
Proposed Top-k Attention 37.30
Soft Attention 36.54

J Visualization of the Gradients

Figure 6: Visualization of the top-
K attention.

In this section we visualize the computed gradient using a toy
example mimicking the settings of kNN classification. Specifi-
cally, we input 10 scores computed from 10 images, i.e., X =
{0, 1, 2, · · · , 9}, into the SOFT top-k operator, and select the top-
3 elements. Denote the indices of the images with the same labels
as the query sample as I. Similar to kNN classification, we want
to maximize

∑
i∈I A

ε
i .

5Settings on data pre-processing, model, and training procedure is identical to https://opennmt.net/OpenNMT-
py/extended.html.
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0 2 4 6 8
(a) I = {0, 1, 2}.

0 2 4 6 8
(b) I = {2, 3, 4}.

Figure 7: Illustration of the gradient of the SOFT top-k operators. The arrows represent the direction and
magnitude of the gradient. The orange dots corresponds to the ground truth elements.
We visualize the gradient on X with respect to this objective
function in Figure 7. In Figure 7(a), I is the same as the indices
of top-3 scores. In this case, the gradient will push the gap between the top-3 scores and the rest
scores even further. In Figure 7(b), I is different from the indices of top-3 scores. In this case, the
scores corresponding to I are pushed to be smaller, while the others are pushed to be larger.
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