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Abstract

We propose a method to estimate 3D human poses from
substantially blurred images. The key idea is to tackle the
inverse problem of image deblurring by modeling the for-
ward problem with a 3D human model, a texture map, and
a sequence of poses to describe human motion. The blur-
ring process is then modeled by a temporal image aggre-
gation step. Using a differentiable renderer, we can solve
the inverse problem by backpropagating the pixel-wise re-
projection error to recover the best human motion repre-
sentation that explains a single or multiple input images.
Since the image reconstruction loss alone is insufficient, we
present additional regularization terms. To the best of our
knowledge, we present the first method to tackle this prob-
lem. Our method consistently outperforms other methods
on significantly blurry inputs since they lack one or mul-
tiple key functionalities that our method unifies, i.e. image
deblurring with sub-frame accuracy and explicit 3D model-
ing of non-rigid human motion.

1. Introduction

Accurate tracking of human motion is often crucial for
understanding dynamic scenes from images. Human mo-
tion estimation has a wide field of applications such as im-
proving human-robot collaboration [2], human-machine in-
teraction in general [12], better safety for autonomous driv-
ing [20], markerless human motion capture [36, 35, 27],
sports analysis, and the movie and entertainment indus-
try. A particular difficulty occurs when the human motion
is fast, or low light conditions demand longer camera ex-
posure times, which can both lead to blurry images from
which it is significantly harder to estimate the human pose.

The main goal of our method is accurate 3D human pose
tracking from substantially blurred images or videos.

Hence, it is related to both human pose estimation and
image deblurring methods. On the one hand, while there
is a variety of methods that address 3D human pose estima-
tion from RGB or RGB-D images, there is no method that is
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Figure 1. Human from Blur (HfB) on a real-world sequence.
Given a blurry image with human motion and the corresponding
background, HfB recovers the human shape and sub-frame mo-
tion. We visualize sub-frame human pose and show the recon-
structed mesh from a novel view.

designed to handle substantially blurred images. Moreover,
none of the human pose estimation methods is able to esti-
mate human pose at sub-frame accuracy. On the other hand,
there is a large amount of methods that aim at deblurring
images and videos, but they mostly only assume simplified
scenarios, e.g. without out-of-image-plane object rotations,
or only for rigidly moving objects [43, 44].

So far, human pose estimation and image deblurring has
not been studied jointly. Also, there is no public dataset to
evaluate such task since none of standard datasets for human
pose estimation include significant amounts of motion blur.

We propose the first method that recovers human pose at
sub-frame accuracy from blurry inputs, even from a single
blurry image (Fig. 1).

We make the following contributions:
(1) We present the first method for human pose estimation

from substantially blurred images that recovers sub-
frame accurate poses as well as texture and body shape.

(2) We generate a synthetic dataset and collected real-
world motion-blurred data of humans that can be used
for training and evaluation purposes. We further pro-
pose corresponding evaluation metrics to assess and
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Figure 2. Method overview. The input to our method are a single or multiple blurry frames of a human (left), and the output is a 3D repre-
sentation of a human and its sub-frame motion over time (right). From Right to Left: Starting from the human motion representation, our
model can be seen as generative model. For a desired set of frames and sub-frames, we can render sub-frame appearances and correspond-
ing silhouettes. Then, the sub-frames are averaged to generate blurry frames and blurry silhouettes (alpha channel), which are composed
with the known background to generate the input image according to (2). The central part of our method is the image reconstruction loss
which compares the generated images with the actual input images. In order to solve for the human motion estimation, the reconstruction
loss is backpropagated through the entire differentiable pipeline. The human pose estimation uses a traditional method [27] to initialize the
optimization, and the image matting is precomputated [28] for the matting loss.

compare to future methods.

(3) The proposed method only relies on test-time optimiza-
tion and is learning-free, apart from the initialization
and the motion prior, which is only needed for the
single-frame case. Hence, our method does not require
large amounts of annotated training data.

2. Related work
The proposed method is at the intersection of human

pose tracking and image/video deblurring.
3D Human pose estimation. The 3D pose of a hu-
man is usually represented as a skeleton of 3D joints
[34, 36, 35, 62, 49]. In order to obtain more fine-grained
representations of the human body, parametric body mod-
els such as SCAPE [3] or the SMPL family [41, 42, 38]
have been introduced to capture the 3D body pose. Itera-
tive optimization-based approaches have been leveraged for
model-based human pose estimation. [9, 46, 11, 4, 42] pro-
posed to estimate the parameters of the human model by
leveraging silhouettes or 2D keypoints. On the other hand,
direct parameter regression via neural networks has been
explored [15, 51, 54, 37, 10, 52, 56, 58, 24, 50, 27, 18].
Given a single RGB image, a deep network is used to
regress the human model parameters. There is another line
of work that combines the advantages of both optimization
and regression to fit the SMPL body [19, 47]. Although
there have been significant advances of human pose estima-
tion from monocular images or videos, a method which is
able to deal with blurry input is still missing.
Image and video deblurring. A large amount of meth-
ods have studied generic image [21, 22] and video deblur-

ring, e.g. [14, 39, 59, 45, 61, 7, 23, 57, 48, 16]. Some at-
tempts to specialize on deblurring depicted humans have al-
ready been made. For instance, [8] focuses only on deblur-
ring human faces. Closely related to our problem setting,
[31] addresses deblurring of human motion using an adver-
sarial approach, which focuses on image deblurring rather
than pose estimation, and it does not recover at sub-frame
accuracy. The follow-up method [30] generalizes to joint
human motion and scene deblurring with a similar method-
ology, but the sub-frame poses are never recovered. The
proposed method is partially inspired by Shape from Blur
(SfB) [43], which uses a similar test-time optimization to
recover 3D shape and sub-frame motion of simple rigid ob-
jects with spherical topology from a single blurry image
with a given background. Motion from Blur (MfB) [44] ex-
tends SfB to multiple video frames. There is also a related
Animation from Blur method [60], but it assumes a motion
guidance is provided as an additional input.

3. Method

The inputs to our method are an image I with the blurred
human and the corresponding clean background image B.
The desired output is a human shape parameter β, texture
image T , and three functions representing sub-frame hu-
man motion that depend on a timestamp i. This timestamp
represents the sub-frame time interval and is defined be-
tween 1 and N , where N is the desired number of sub-
frames. Effectively, it means that we generate a temporal
super-resolution or a short video with N frames out of each
single input frame. Those three functions are human body
translation Ti, rotation Ri, and sub-frame human pose θi



that represents joint rotation. They are all represented by a
set of low-degree polynomials, where translations and ro-
tations have each four degrees of freedom (direction with
distance and axis with angle).

This polynomial representation generates poses in a
strict chronological order and is continuous, differentiable,
and can be easily initialized with a given initial pose
(Sec. 3.3). Human pose and shape representations follow
the SMPL human model [41]. The texture image T is
mapped using a fixed UV mapping from SMPL.

As the first step, we generate the human SMPL mesh
Θi at timestamp i with a given pose, shape, and texture pa-
rameters (Fig. 2). Then, we move the whole mesh Θi by
translation Ti and rotation Ri given by motion functionM:

Θ
i

=M
(
SMPL(θi, β, T ), Ti, Ri

)
. (1)

To render the sub-frame silhouette and appearance of the
mesh, we use Differentiable Interpolation-based Renderer
(DIB-R) [6]. This differentiable rendering provides two
outputs. The first one is appearance renderingRF (Θ

i
) that

outputs projected human appearance. The second one is
silhouette rendering RS(Θi) that outputs projected human
silhouette. In this work, we assume a static camera.
Image formation model. Given all previously defined pa-
rameters, we can finally define the image formation model.
It follows a standard alpha matting approach:

Î =
(
1− 1

N

N∑
i=1

RS(Θ
i
)
)

︸ ︷︷ ︸
Inverse alpha channel

·Bx
Background

+
1

N

N∑
i=1

RS(Θ
i
)·RF (Θ

i
)︸ ︷︷ ︸

Blurred foreground (human)

.

(2)
The generated image Î consists of the background im-

age, scaled down by the inverse alpha channel, and the
blurred foreground human body. The alpha channel is mod-
eled by averaging all projected sub-frame silhouettes.

3.1. Loss terms

The key components of our method are the image for-
mation loss and the matting loss. The image formation loss
forces the reconstructed image to be as close as possible to
the input image. The matting loss favors silhouettes that are
consistent with the initially estimated alpha channel. The
other losses are auxiliary and regularization terms that make
the optimization easier and refine the final results.
Image formation loss. This loss measures the input image
reconstruction according to the image formation model (2).
We compute the mean squared error between the observed
input image and our reconstruction as:

LI = |I − Î|2 . (3)

Matting loss. If the image formation loss (3) is the sole
loss to be minimized, the optimization becomes extremely

difficult. Experimentally, such optimization is ambiguous
and mostly results in an undesired local minimum. There-
fore, we further impose a loss on our approximated rendered
alpha channel, which is computed as the average of sub-
frame silhouettes, αtarget = 1

N

∑N
i=1RS(Θ

i
), according to

the image formation model (2). The initial alpha channel
αin is estimated using a pre-trained Background-Matting-
V2 [28] model, based on the input blurry image and the
corresponding background. Finally, the matting loss com-
putes the intersection over union between our rendered al-
pha channel from averaging and the one from [28]:

Lα = 1−
|min(αin, αtarget)|1
|max(αin, αtarget)|1

, (4)

where the intersection over union for non-binary inputs is a
ratio between the sum of pixel-wise min and max operators.
Surface texture smoothness. The UV texture map from
SMPL contains many non-overlapping regions (see Fig. 3,
HfB row), and the correct neighborhoods are not properly
defined. Therefore, the commonly used total variation loss
for texture smoothness [44] cannot be directly applied in
this case since it will propagate the color of the void area.

To address this issue, we propose a surface texture
smoothness term that accounts for the mesh faces neigh-
borhood. For a given texture pixel pk and its 8 surrounding
neighboring pixels pj ∈ N (pk), we pick those ones that
are neighbors in the mesh (ck,j = 1), i.e. they belong to
adjacent triangular faces, and that are visible in at least one
of the sub-frames (vj = 1). Then, we compute the cosine
value between the face normal nk of the current pixel and
the face normal nj of its chosen neighbors.

The introduction of the cosine of face normals takes
into account the mesh geometry, i.e. the texture should be
smoother on flat surfaces. Then, the surface texture smooth-
ness is expressed as a weighted sum of absolute differences
in RGB pixels:

LS =
1

8|T |
∑
pk∈T

∑
pj∈N (pk)

ck,jvj cos∠(nk, nj)|pk − pj |1 .

(5)
Pose prior loss. We import the pose prior loss from
SMPLify-X [42]. This prior scores how feasible are the
estimated pose parameters θi:

LP =
1

N

N∑
i=1

prior(θi) . (6)

SMPL shape regularization. We add norm regularization
on the SMPL shape parameter β to avoid irregular human
body shape as used in SMPL [41]:

Lβ = |β|22 . (7)
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Figure 3. Results on real data that we captured. The proposed method significantly outperforms SfB [43] and provides plausible human
shape and pose reconstructions. Left: initialization of human pose from METRO [27] (top) and alpha channel from [28] (bottom).

Polynomial regularization. The polynomial coefficients
of the pose, translation, and rotation could be serialized into
a matrix C ∈ R4d×(J+2), where d is the degree of the poly-
nomial, and J is the number of joints in the SMPL model.
The whole body translation and rotation are already incor-
porated into matrix C, thus we have 4(J+2) polynomials of
d degree. Since rotations, translations, and joint poses have
4 degrees of freedom each, we have a separate polynomial
for each degree of freedom. We apply both the L1-norm
and the Frobenius norm on the polynomial coefficients:

LC = |C|1 + |C|F . (8)

The intention of adding this regularization is to avoid ex-
treme joint movement.
Background regularization. We assume that the human
texture is sufficiently distinct from the background. This
is enforced by the difference between the projected object
appearance and the background:

LB =
1

N

∑
i=1

1

|B −RF (Θ
i
)|+ ε

with ε = 10−6 . (9)

Adversarial short motion prior. Since the human body
consists of multiple joints, there exists a significant amount

of ambiguity in case of a single input blurry image. The
ambiguity comes mainly from the unknown motion direc-
tion. In fact, both the forward and the backward directions
provides the same blurry image according to the image for-
mation model (2). Potentially, there are exponentially many
motion directions for each joint that lead to the same input.
And it is infeasible to estimate the correct direction directly
from a single image without any additional priors. Other-
wise, the choice of motion direction will be arbitrary.

To address this problem we propose the adversarial mo-
tion prior to recognize wrong (reversed) motion of joints.
Based on our polynomial motion representation, we pro-
pose an adversarial model that could directly supervise on
the polynomial coefficients C. The model is inspired by the
image in-painting methods [40, 29].

Our adversarial model consists of two components: a
discriminator D that generates a binary indicator function
to identify unrealistic entries in the coefficients C, and
a correction-generator G that predicts realistic polynomial
coefficients from the given polynomial coefficients C and
the indicator function Ic.

The training data are sampled from the AMASS
dataset [33] (CMU [5] and ACCAD [1]). The training is su-
pervised jointly by four loss terms. The discriminator loss
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Figure 4. Comparison on synthetic data. Given a blurry image with human motion, sub-frame human poses generated by HfB are
consistent, whereas for learning-based temporal super-resolution methods [13, 60] (with METRO [27] human poses on sub-frames) the
poses are not consistent, e.g. motion of the right arm. We also visualize the raw METRO [27] pose prediction on the input blurry image.

is the binary cross entropy loss, which is applied to the indi-
cator function predicted by the discriminator and compared
to the ground truth. The generator loss includes three terms.
The first one is L1 loss between the coefficient matrix pre-
dicted by the correction generator and the ground truth. The
second is L2 loss between the reconstructed pose and the
ground truth pose. The last one is the mean per joint po-
sition error (MPJPE) [47] between the reconstructed joint
positions and the ground truth SMPL joint positions.

This adversarial model is pre-trained as mentioned above
and is fixed during optimization. In case of a single input
blurry image, the adversarial motion prior is incorporated
into the optimization as the L1 loss between the generator
output and the polynomial coefficients C:

LA = |G(D(C),C)−C|1 . (10)

Joint loss.
The final loss is a weighted sum of all previously defined

losses:

L =wILI + wαLα + wSLS + wPLP+

wβLβ + wCLC + wBLB + wALA .
(11)

3.2. Multiple blurry images

Our approach can be extended to multiple consecutive
blurry images in a video. In this case, the human body shape
β and texture T are assumed to be the same for all input im-
ages, while the other parameters, e.g. poses, are separate for
each frame. In general, this setting is simpler since there are
more constraints from more images. Also, there is no more
ambiguity in the motion direction of each joint. Therefore,
the adversarial motion prior LA is not needed anymore.

For smooth joint motion in consecutive frames, we add
a boundary restriction on the joints rotation and position.
For instance, in case of two input blurry images, we add
a boundary restriction at the end timestamp i = N of the
first image and the start timestamp i = 1 of the second
image. The boundary restriction forces the joints rotation
and position and their first order derivatives to be equal at
the boundary to preserve the motion continuity, and it is
implemented by the L1 loss with a unit weight. For images
with exposure gap, we extend the end timestamp of first
image with exposure time τ (measured in sub-frames) and
then apply boundary restriction at N + τ .

3.3. Optimization

The joint loss (11) is minimized using the ADAM op-
timizer [17] for 200 iterations with learning rate 0.01 on a



blur rate int.
#images

[0.05, 0.1]
123

[0.1, 0.2]
206

[0.2, 0.3]
154

[0.3, 0.4]
139

[0.4, 0.5]
106

[0.5, 0.6]
108

[0.6, 0.7]
81

[0.7, 0.8]
79

[0.8, 0.9]
76

[0.9, 1.1]
52

Method MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑

SfB[43] N.A. 0.498 N.A. 0.487 N.A. 0.493 N.A. 0.455 N.A. 0.428 N.A. 0.408 N.A. 0.409 N.A. 0.397 N.A. 0.378 N.A. 0.363
METRO [27] 70.0 0.632 71.9 0.637 84.1 0.615 101.2 0.590 121.3 0.540 121.4 0.500 132.8 0.489 143.4 * 0.428 147.1 0.421 146.4 0.423
HfB w/o AMP 65.1 0.829 65.7 0.813 68.7 0.803 80.6 0.785 98.5 0.763 107.2 0.739 115.1 0.731 129.0 0.685 121.7 0.670 138.9 0.645
HfB (ours) 47.4 0.864 50.3 0.840 66.4 0.820 78.3 0.805 89.0 0.775 101.1 0.743 110.8 0.734 128.7 0.682 124.6 0.659 140.5 0.633

Table 1. Single-frame evaluation for different blur rates on BT-AMASS dataset. The proposed method outperforms SfB [43] (no
human pose output) and METRO [27], which we also use for initialization. Our method improves significantly over the initialization. The
proposed AMP prior (Sec. 3.1) improves results only slightly, and even becomes harmful for higher blur rates due to more ambiguity.

blur rate int.
#videos

[0.05, 0.1]
35

[0.1, 0.2]
39

[0.2, 0.3]
47

[0.3, 0.4]
42

[0.4, 0.5]
38

[0.5, 0.6]
32

[0.6, 0.7]
25

[0.7, 0.8]
19

[0.8, 0.9]
13

[0.9, 1.1]
15

Method MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑

MfB [44] N.A. 0.513 N.A. 0.547 N.A. 0.528 N.A. 0.509 N.A. 0.384 N.A. 0.356 N.A. 0.342 N.A. 0.281 N.A. 0.268 N.A. 0.229
METRO [27] 68.9 0.645 60.6 0.689 71.6 0.653 67.0 0.601 98.6 0.598 99.6 0.508 108.5 0.477 111.3 0.399 116.8 0.408 121.1 0.388
HfB (ours) 65.4 0.819 64.4 0.828 69.4 0.823 56.2 0.787 77.2 0.779 83.4 0.738 102.4 0.766 101.4 0.695 109.4 0.671 112.0 0.656

Table 2. Two-frame evaluation for different blur rates on BT-AMASS dataset. Similarly to Table 1, HfB outperforms other methods
even when there are two input blurry frames. We compare to MfB [44] (multi-frame method) and interpolated poses from METRO [27].

single 12 GB RTX 2080 Ti graphics card.

Initialization. To initialize our method, we use the
METRO [27] human pose estimation method, which recon-
structs a single human pose from a blurry image reasonably
well, albeit without sub-frame accuracy. We fit the initial
body translation, rotation, pose, and shape parameters to
the mesh generated from METRO using a SMPL registra-
tion model [55]. In case of sub-frame translation, rotation,
and poses, we initialize the polynomial coefficients at times-
tamp i = 1 and all other coefficients to zero.

4. Experiments

Among the chosen baselines, we selected SfB [43] and
MfB [44], designed for simple objects sub-frame deblur-
ring and 3D reconstruction. Then, we compare our method
to general temporal super-resolution methods, i.e. Jin et
al. [13] and Animation-from-Blur (AfB) [60] for single
frame experiments and Blurry Video Frame Interpolation
(BIN) [45] for multi-frame experiments. To make them
competitive, we also apply 3D human pose estimation
METRO [27] on top of their deblurred sub-frames (tempo-
ral super-resolution), except for SfB and MfB, where the
output sub-frames are of low quality, and human pose esti-
mation methods do not detect anything.

Blur rate.

In general, motion blur is determined by many factors.
However, the main factors are the camera exposure time and
the speed of the object motion. Even with those two factors,
it is still a challenging task to quantify the exact amount of
motion blur. In order to measure the approximate blur level,
we define blur rate as:

blur rate =
|
⋃N
i=1RS(Θ

i
)|1

|RS(Θ1)|1
− 1 . (12)

Here, we compute the union of all projected sub-frame
silhouettes and divide it by the first silhouette. When the hu-
man stays still, the blur rate value is zero. When the human
moves over a distance larger than its size within one blurry
frame, i.e. there is no overlap between the rendered silhou-
ettes at the first and last timestamps, the blur rate is larger
than one. We use this blur rate to classify the experiments.

original 2 avg. frames 3 avg. frames

avg. blur rate 0.27 0.36 0.45
Method PA-MPJPE(mm)↓ PA-MPJPE(mm)↓ PA-MPJPE(mm)↓

HfB (ours) 69.1 77.3 81.4
AfB [60] 52.3 63.3 87.3
Jin et al. [13] 55.3 81.6 96.1

Table 3. Results on B-AIST++ [60] dataset. We average 2 and
3 original blurry frames to increase the blur amount. We apply
METRO [27] on top of the output of two baselines [14, 60].

4.1. Synthetic datasets

We generated two datasets: BC-CAPE (Blur-
Clothed CAPE [32]) and BT-AMASS (Blur-Textured
AMASS [33]). The BT-AMASS is sampled on real-world
human poses θi, rotations Ri, and translations Ti from the
ACCAD [1] and CMU [5] dataset of the AMASS [33]
database with 120 fps. The UV textures T are sampled
from the SURREAL [53] dataset. Finally, the background
images are randomly selected from a set of random images
from the BG-20K [25] database, capturing both indoors
and outdoors scenes. We take random motion captures with
length of 5 to 60 frames. This covers blur rates in the range
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Figure 5. Comparison on real data. We evaluate our method on the real B-AIST++ [60] dataset. This example shows an average of 3
frames (see Table 3). Our method produces more consistent and accurate sub-frame human poses compared to carefully selected baselines.

between 0.05 and 1.1. We utilize the SMPL-X plugin [42]
in Blender to generate dataset images. The BC-CAPE is
based on the CAPE dataset [32], which contains SMPL
human models with poses for each frame with 60 fps. For
BC-CAPE, we interpolate human poses to render higher
speed footage. The camera position is randomly selected
facing the human model. Then, we render sub-frame
silhouettes RS(Θ

i
) and appearances RF (Θ

i
). In the end,

we average these rendered silhouettes and appearances to
acquire blurry images according to the image formation
model (2). The jittering effect is eliminated by up-sampling
and interpolation at a high frame rate of 600 fps.

In total, we generated 1861 blurry images for a sin-
gle frame experiment and 305 short videos with two video
frames to evaluate our multi-frame setting.

Evaluation metrics. We evaluate HfB on the joint po-
sition error in millimeters: Mean Per Joint Position Error
(MPJPE) and Procrustes Analysis MPJPE (PA-MPJPE) as
in [47]. For comparison to SfB and MfB, we also measure
the intersection-over-union (IoU) between the generated sil-
houette and the ground truth one.

4.2. Results on BT-AMASS

First, we compare our method on the generated BT-
AMASS dataset to the following baselines: SfB [43],
MfB [44], and static interpolated METRO [27] (1124 single

frames and 305 two-frames). The single-frame results with
1124 images are shown in Table 1, whereas multi-frame re-
sults in Table 2.

Our method outperforms all baselines by a wide margin,
especially for higher blur rate intervals. As excepted, the
performance steadily decreases with the increased blur rate.
Additionally, we evaluate the influence of the Adversarial
Motion Prior (AMP), which is only used for single-frame
experiment. This prior improves results only for higher blur
raters, whereas for lower blur raters, where there is less am-
biguity, it is harmful.

4.3. Results on BC-CAPE

Next, we evaluate the proposed method on the generated
BC-CAPE dataset, which contains 609 single frames and
205 short sequences with 4-frames. In this case, we com-
pare to three temporal super-resolution methods: AfB [60],
Jin et al. [13], and BIN [45]. For fair comparison, we aug-
mented their sub-frame output with human pose estimation
metods, either METRO [27] or HybrIK [24]. As shown
in Tables 5 and 4, the proposed Human from Blur (HfB)
method outperforms these baselines by a large margin, es-
pecially on larger blur rates. The performance gain is even
higher for the multi-frame experiment (Table 5).
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Figure 6. Multi-frame evaluation. We compared to BIN [45], with METRO [27] human poses on top of their sub-frames. The visual
results show that BIN fails, however METRO is still robust to some amount of blur and detects human poses, which are not consistent over
time. The proposed method generates motion which is more consistent with the ground truth.

blur rate <0.2 [0.2,0.3] [0.3,0.4] [0.4,0.5] [0.5,0.6] [0.6,0.8]

Method PA-MPJPE ↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓

HfB (ours) 75.2 81.2 76.4 83.0 84.6 94.2 89.7 100.5 96.2 110.6 98.5 114.6
AfB [60] + METRO [27] 82.4 89.1 84.1 89.2 90.6 100.8 105.3 119.9 107.5 133.3 112.8 135.2

Jin et al. [14] + METRO [27] 74.4 77.2 76.2 82.0 82.6 90.8 100.1 112.8 99.5 119.2 105.6 124.6

Table 4. Results on Blurred-Clothed CAPE dataset. Our method outpeforms competitive baselines on larger blur rates.

blur rate <0.2 [0.2,0.3] [0.3,0.4] [0.4,0.5] [0.5,0.7] [0.7,0.9]

Method PA-MPJPE ↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓

Hfb (ours) 83.7 85.3 86.1 91.3 90.5 96.4 92.6 99.3 104.2 114.4 110.5 117.4
BIN [45] + HybrIK [24] 76.6 78.8 86.7 96.5 93.5 106.9 107.0 122.9 116.3 134.5 120.2 150.0
AfB [60] + HybrIK [24] 82.4 84.6 96.8 105.3 100.8 111.1 103.6 120.1 119.1 137.9 120.9 156.2
BIN [45] + METRO [27] 84.0 85.9 88.5 97.5 94.0 106.8 100.1 118.4 112.8 133.7 117.4 146.4
AfB [60] + METRO [27] 87.7 90.2 90.8 98.1 97.7 108.9 109.0 126.2 113.0 133.3 121.8 151.2

Table 5. Results on Blurred-Clothed CAPE dataset with 4 consecutive frames. We also combine both METRO [27] and HybrIK [24]
with two baselines (BIN [45] and AfB [60]) to show the impact of different human pose estimation methods. With multiple input frames,
HfB outpeforms other baselines for almost all blur rates (0.2 and higher).

4.4. Real dataset B-AIST++

Finally, we evaluate on the real-world dataset with var-
ious human motion and garments: B-AIST++ [60]. They
use frame interpolation to generate high-speed frames from
original dancing dataset AIST++ [26]. B-AIST++ pro-
vides significantly blurred images with human motion. We
generate ground-truth sub-frame human pose by running
METRO [27] on top of the ground-truth sub-frames. Ta-
ble 3 shows that our method outperforms other baselines
when 3 consecutive frames are averaged, which translates to
blur rate 0.45. Note that AfB [60] is trained on this dataset,

whereas our method is purely optimization based.

4.5. Captured data

We captured 21 real-world sequences with significant
amounts of motion blur, including four male and one fe-
male subjects. The used cameras are the IDS camera and a
GoPro 7, which were deliberately set at a low frame rate of
30 fps with exposure time of 30 ms to 50 ms. The recorded
humans were asked to move fast. Background images are
captured as well. As shown in Fig. 3 and Fig. 1, the final
reconstructions are plausible. When compared to SfB [43],



our method achieves significantly better results.

5. Conclusion
We proposed the first method to reconstruct sub-

frame human motion and textured shape from substantially
blurred images. The key idea is to approach the problem
from a generative viewpoint and describe a fully differen-
tiable forward process to generate blurry images from a
given 3D human motion model. The core of our method is
an image reconstruction loss that allows to solve the inverse
problem with standard gradient descent methods. Experi-
ments showed that the proposed method achieves the best
results on both synthetic and real blurry data.
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