
IMAGINATION POLICY: Using Generative Point
Cloud Models for Learning Manipulation Policies

Haojie Huang1, Karl Schmeckpeper†2, Dian Wang†1, Ondrej Biza†1,2, Yaoyao Qian‡1,
Haotian Liu‡3, Mingxi Jia‡4, Robert Platt 1,2, Robin Walters1

†, ‡ Equal Contribution, 1Northeastern University, Boston, MA 02115, USA
2Boston Dynamics AI Institute, 3Worcester Polytechnic Institute, 4Brown University

{huang.haoj; r.platt; r.walters}@northeastern.edu
https://haojhuang.github.io/imagine page/

Abstract: Humans can imagine goal states during planning and perform actions
to match those goals. In this work, we propose IMAGINATION POLICY, a novel
multi-task key-frame policy network for solving high-precision pick and place
tasks. Instead of learning actions directly, IMAGINATION POLICY generates point
clouds to imagine desired states which are then translated to actions using rigid
action estimation. This transforms action inference into a local generative task.
We leverage pick and place symmetries underlying the tasks in the generation
process and achieve extremely high sample efficiency and generalizability to un-
seen configurations. Finally, we demonstrate state-of-the-art performance across
various tasks on the RLbench benchmark compared with several strong baselines
and validate our approach on a real robot.

Keywords: Manipulation policy learning, Generative model, Geometric learning

1 Introduction

Humans can look at a scene and imagine how it would look with the objects in it rearranged. For
example, given a flower and a bottle on the table, we can imagine the flower placed in the bottle.
Using this mental picture, we can then manipulate the objects to match the imagined scene. How-
ever, most robotic policy learning algorithms shortcut this process and map observations directly to
actions (SE(3) poses or displacements) [1, 2, 3, 4, 5, 6]. These approaches lose important informa-
tion about the desired geometry of the scene and are therefore less sample efficient and less precise
than they might be.

Inspired by how humans solve tasks, we propose IMAGINATION POLICY which takes two point
clouds as input and generates a new point cloud combining the inputs into a desirable configuration
using a conditional point flow model (see Figure 1). Given the generated point cloud, we use point
cloud registration methods to match the observed input point clouds with the “imagined” scene.
This gives rigid body transformations which can be used to command a robot arm to manipulate the
objects. IMAGINATION POLICY consists of two generative processes, each of which uses the above
method. As shown in Figure 1a, the pick generator generates the points of the object positioned rel-
ative to the gripper point cloud. The place generator generates a pair of objects rearranged together
as shown in Figure 1b. Compared to directly generating actions, this adds many degrees of freedom
to the generative process which aids optimization and sensitivity to geometric interactions.

IMAGINATION POLICY addresses two key challenges in current multitask manipulation policy
learning: high precision manipulation and sample efficient learning. Methods like PerAct [1],
RVT [2] and Diffuser Actor [3] struggle to learn high precision manipulation policies such as those
required to solve the RLBench [7] tasks Plug-Charger and Insert-Knife. IMAGINATION POLICY
outperforms on these tasks by enabling the model to reason about detailed geometric interaction,

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://haojhuang.github.io/imagine_page

(a) Pick/Single Generation (b) Place/Pair Generation

Figure 1. Illustration of pick generation and place generation. The pick generator generates the points of the object to be picked conditioned
on the gripper point cloud. The place generator generates two new objects repositioned together. The generated points are colored in orange.

such as how different parts of an object’s surface should be displaced, which in turn facilitates pre-
cise reasoning about the movement of a tool tip to align with a mating surface. Our method also
excels in sample efficiency, the ability to learn good policies with relatively few expert demon-
strations. Because IMAGINATION POLICY reasons about the desired relative configuration of two
objects, it can more easily incorporate symmetries of two object systems, called bi-equivariance,
into the model. This significantly improves the sample efficiency of the model. While previous
work [8, 9, 10, 11] has also used this kind of bi-equivariant structure to improve sample efficiency,
our method is the first to apply the idea outside of the pick-place setting in the more general key-
frame multitask setting. While IMAGINATION POLICY can still solve pick-place tasks, it can also
solve more general manipulation tasks like Plug-Charger, Insert-Knife, and Open-Microwave.

Our contributions in this paper are as follows. 1) We are the first to propose a generative point cloud
model to estimate desired rigid body motion in a keyframe manipulation setting. 2) We show how
to implement SE(3) bi-equivariant constraints in this setting. 3) We demonstrate that the resulting
method, IMAGINATION POLICY, achieves state-of-the-art performance on several RLBench tasks
against several strong baselines.

2 Related Work

Point Cloud Generation. Previous works have explored point cloud generation using VAEs [12, 13]
and GANs [14, 15]. Recently, score-based denoising models and normalizing flows [16, 17, 18,
19, 20, 21] have demonstrated the power and flexibility to generate high-quality point clouds. For
example, Zhou et al. [18] proposed a probabilistic diffusion approach for unconditional point cloud
generation. Luo and Hu [19] and Vahdat et al. [20] formulated conditional point cloud diffusion.
PSF [22] achieved fast point cloud generation with rectified flow [21]. Ours, however, generates pick
and place point clouds conditioned on the observation that can be used to estimate a rigid action to
command the robot arm.

Point Clouds in 3D Pick-and-place Manipulation. Point clouds provide a flexible, geometric rep-
resentation to encode object shapes and poses. In terms of pick-and-place manipulation, Simeonov
et al. [23] used SE(3)-invariant point features to encode descriptor fields enabling sample efficient
policy learning. Simeonov et al. [4] extended Diffusion Policy [24] to work with point cloud obser-
vations and to learn multimodal actions. Pan et al. [25] propose TAX-POSE which is closely related
to our method. Pan et al. [25] used two segmented point clouds as input and directly output a new
point cloud using a weighted summary of target points together with residual predictions. Concur-
rently, Eisner et al. [26] adopted TAX-POSE [25] with relative distance inferred by a kernel method.
However, it was designed to output the new point cloud directly in one step without penalty for the
generated results. Our method, instead, uses generative models to predict the movement of each
point iteratively with a velocity model. Moreover, they are limited to single-task training, only work
in one-step pick-and-place settings, and thus cannot be applied to complex tasks without predefined
prior actions. Recently, Shridhar et al. [1], Goyal et al. [2], and Ke et al. [3] showed impressive
multi-task capabilities with transformer-based architectures. However, these methods require hun-
dreds of expert demonstrations and cannot successfully learn high-precision tasks. In contrast, our

2

method leverages bi-equivariant symmetry and amortizes the action prediction across multiple tasks.
As a result, it can solve high-precision tasks with few demonstrations.

Symmetry in Robot Learning. Robotic tasks defined in 3D Euclidean space are invariant to trans-
lations, rotations, and reflections which redefine the coordinate frame but do not otherwise alter the
task. Recent advancements in equivariant modeling, such as those discussed by [27, 28, 29, 30],
offer a convenient approach to capturing these symmetries in robotics. Zhu et al. [31] and Huang
et al. [32] utilized equivariant models to enforce pick symmetries for grasp learning. Yang et al.
[33] proposed an equivariant policy for deformable and articulated object manipulation on top of
pre-trained equivariant visual representation. Other works [23, 34, 8, 35, 9, 10, 11, 36, 37, 38, 39]
leverage symmetries in pick and place and achieve high sample efficiency. However, they are lim-
ited to single-task pick-and-place equivariance. As a result, they cannot be directly applied to the
Plug-Charger and Insert-Knife tasks without a pre-place action. Our proposed method, however, can
achieve bi-equivariance in the key-frame and multi-task setting. In addition, we employ equivariant
action inference using an invariant point cloud generating process, which is different from previous
methods.

3 Method

Problem Statement. Consider a dataset D with samples of the form (Pa, Pb, Ta, Tb, Pab, ℓ)
where Pa ∈ Rn×3 and Pb ∈ Rm×3 are point clouds that represent two segmented objects,
Pab ∈ R(n+m)×3 represents the two objects at the desired configuration described by the lan-
guage instruction ℓ, and Ta ∈ R4×4 and Tb ∈ R4×4 are two rigid transformations in SE(3) rep-
resented in homogeneous coordinates that transform Pa and Pb into the desired configuration, i.e.,
Pab = Ta · Pa ∪ Tb · Pb. As shown in Figure 1, for the pick, (Pa, Pb) indicates the gripper and
the object to pick (the flower). For the place, it represents the placement (the mug) and the object
to arrange (the flower). In either the pick or place setting our goal is model the policy function
f : (Pa, Pb, ℓ) 7→ a which outputs the gripper movement a ∈ SE(3). We consider placing to include
the pre-place action and the place action.1

Imagination Policy. We factor action inference into two parts, point cloud generation (Figure 2ab)
and transformation inference (Figure 2c). In the first part, we train a generative model which, when
conditioned on ℓ, generates a new coordinate for each point of Pa and Pb to approximate Pab, i.e.,
fgen : (Pa, Pb, ℓ) 7→ (P̂a, P̂b) where P̂a ∪ P̂b ≈ Pab. In the second part, we estimate two transfor-
mations T̂a from Pa to P̂a, and T̂b from Pb to P̂b using singular value decomposition (SVD) [40].
Then, the pick action of the gripper can be calculated as apick = (T̂b)

−1T̂a and the pre-place and
place action can be estimated as aplace = (T̂a)

−1T̂b.

3.1 Pair Generation for Place

We first explain how the above method works in the place setting fplace : (Pa, Pb, ℓ) 7→ aplace. The
generative model fgen has two sequential parts, a point cloud feature encoder (Figure 2a) and a
conditional generator (Figure 2b). Then, we calculate the transformation aplace from the generated
points (Figure 2c). Finally, we prove a condition for when the full method is bi-equivariant.

Encoding Point Feature. Given Pa = {pia}ni=1 and Pb = {pjb}mj=1, we first compute a feature at
each point using two point cloud encoders ϕa and ϕb. The encoder ϕa takes the XYZ coordinate
and RGB color of all points of Pa as input and outputs pointwise features {f i

a}ni=1. Similarly,
ϕb : Pb 7→ {f j

b }mj=1 ,which shares an architecture but has separate parameters.

Generating Points. The combined point cloud Pab is generated conditioned on the point features
Fa = {f i

a}ni=1 and Fb = {f j
b }mj=1using a modified version of Point Straight Flow [22]. This is a

generative flow model where, at inference time, samples X1 are taken by flowing over a vector field
parameterized by a neural network vθ. Initial conditions are given by X0 = XPa

0 ∪XPb
0 = {xk

0}n+m
k=1

1The pre-place action is the prerequisite to perform the place action. An example is shown in Figure 4c.

3

Figure 2. Architecture of IMAGINATION POLICY. (a). Encoding the observed point features as Fa and Fb. (b). Conditional pair generation
of the place scene from random Gaussian noise. xk

t illustrates the k-th noise at time step t with the point feature fk and fℓ is the language
feature. (c). Estimating the rigid transformation (Ta and Tb) from the observed point cloud to the generation using correspondence.

where XPa
0 ∈ Rn×3 and XPb

0 ∈ Rm×3 which are sampled from a scaled Gaussian. The network vθ
defines the vector field for the ODE:

dXt = vθ(Xt, Fa, Fb, fℓ, t) dt, t ∈ [0, 1] (1)

where Xt is the intermediate point cloud states at time t and fℓ is the encoded language feature
of the language description ℓ from CLIP [41]. To solve the ODE, we iteratively update Xt+∆t =
Xt + vθ(Zt)∆t for 1

∆t steps. The model is trained by setting the optimal direction at any time t as
Pab −X0 which provides the objective,

min
θ

E(||vθ(Xt, Fa, Fb, fℓ, t)− (Pab −X0)||2) (2)

where Xt = tPab + (1 − t)X0. Intuitively, this sets dXt to be the drift force needed to move Xt

to Pab. Specifically, for a single point pk ∈ Pa ∪ Pb, we sample a noise xk
0 and a time step t to

calculate the intermediate point

xk
t = t(Tpk) + (1− t)x0, T = Tα if pk ∈ Pα where α ∈ {a, b} (3)

The generator input is pk = (xk
t , f

k, fℓ, t). We then optimize θ with respect to the loss function
defined in Equation 2.

Estimating the Action. Given two sets of points Pa ∪ Pb = (p1a, p
2
a, · · · , pna) ∪ (p1b , p

2
b , · · · , pmb)

and their corresponding target positions Pab = (Tap
1
a, Tap

2
a, · · · , Tap

n
a)∪ (Tbp

1
b , Tbp

2
b , · · · , Tbp

m
b),

we can recover the rigid transformations Ta and Tb using SVD [40]. However, the output
P̂a ∪ P̂b of the generator fgen is not constrained to be given by rigid transforms of the orig-
inal two point clouds. Each point may move independently by transformation T i

α such that
P̂a ∪ P̂b = (T 1

a p
1
a, T

2
a p

2
a, · · · , Tn

a p
n
a) ∪ (T 1

b p
1
b , T

2
b p

2
b , · · · , Tm

b pmb). We can still use SVD to es-
timate the best fitting T̂a between (Pa, P̂a) as well as T̂b between (Pb, P̂b). Assuming Pb represents
the object to be arranged and Pa represents the placement, as shown in Figure 2, the pre-place or
place action can be calculated as aplace = (T̂a)

−1T̂b.

Realizing Bi-equivariance. As noted in prior work [8, 9, 10], place actions that transform an object
B with respect to another object A are bi-equivariant. That is, independent transformations of object
B with gb ∈ SE(3) and object A with ga ∈ SE(3) result in a change (a′place = gaaplaceg

−1
b) to

complete the rearrangement at the new configuration. Leveraging bi-equivariant symmetries can
generalize learned place knowledge to different configurations and improve sample efficiency.Our
placement model is constrained to be bi-equivariant, with invariant generation during training.

Proposition 1. Assuming rotation-invariant Gaussian noise X0, if the encoded point feature Fa and
Fb are invariant to rotations then fplace is bi-equivariant

fplace(ga · Pa, gb · Pb) = gafplace(Pa, Pb)g
−1
b

for all pairs of rotations (ga, gb) ∈ SO(3)× SO(3).

Proof. If X0 = {xk
0}n+m

k=1 and Fa ∪ Fb = {fk}n+m
k=i are rotation-invariant, the intermediate point

states Xt = tPab + (1 − t)X0 are rotation invariant with a fixed Pab. Since all inputs to vθ are

4

Figure 3. Trajectory of the pick generation process (“grasp the banana by the crown”). Unlike the place generation, our pick generation is
conditioned on the canonicalized gripper point cloud. The generated point cloud at each timestep is colored in orange.

invariant and the output always approaches Pab, we have

fgen(ga · Pa, gb · Pb) = fgen(Pa, Pb) (4)

With the same generated points Pab, the estimated transformation from rotated observation gaPa =
(gap

1
a, gap

2
a, · · · , gapna) to P̂a is T̂ag

−1
a . Similarly, the estimated transformation from gbPb to P̂b

is T̂bg
−1
b . Then, the new place action a′place can be calculated as a′place = (T̂ag

−1
a)−1T̂bg

−1
b =

gaT̂
−1
a T̂bg

−1
b = gaaplaceg

−1
b , which satisfies bi-equivariance .

3.2 Single Generation for Pick

Our pick network fpick : (Pa, Pb) 7→ apick has a similar design to fplace. In this setting, Pa are the
points of the gripper and Pb are the points of the object to pick. The function fpick differs from
fplace in that we only generate the new points for Pb conditioned on Pa. Figure 3 illustrates the
generation process of grasping the banana by the crown.

Since the pose and the shape of the gripper are always known, we fix Pa in a canonical pose, sample
only XPb

0 from a Gaussian distribution, and construct X0 = Pa ∪Xpb

0 . We set the target Pab as the
union of the canonicalized gripper with the point cloud Pb posed so it is held by the gripper, i.e.,
Pab = Pa ∪ TbPb. We only use Pb to calculate the loss:

min
θ

E(||vθ(Xt, Fa, Fb, fℓ, t)− (TbPb −XPb
0)||2) (5)

After estimating T̂b from (Pb, P̂b), the pick action is calculated as apick = T̂−1
b .

Proposition 2. Assuming rotation-invariant Gaussian noise XPa
0 , fpick is equivariant to rotations

on the pick target if the encoded point feature Fa and Fb are rotation-invariant: fpick(Pa, gb ·Pb) =
gbfpick(Pa, Pb).

Specifically, if there is a rotation gb acting on Pb, the generated points P̂b are the same as those
without rotation. The estimated transformation from gbPb to P̂b is T̂bg

−1
b and the new pick action

can be calculated as a′pick = (T̂bg
−1
b)−1 = gbT̂

−1
b , which realizes the desired equivariance property.

4 Experiments

Model Architecture Details. The generative models fpick and fplace share the same architecture.
Each has two point cloud encoders and a generation network. We select PVCNN [42] as the back-
bone of our point encoders, which output a 64-dimension feature for each point. We use a pre-
trained CLIP-ViT32 [41] model as our language encoder and project the language embedding to a
32-dimension vector with a linear layer. The time step t is encoded as a 32-dimension positional
embedding. We also encode a binary mask that indicates if the point belongs to Pa or Pb as a
32-dimension positional embedding. As a result, the generator input of a point is a 163-dimension
vector. We adopt PSF [22] as our generator backbone. Both fpick and fplace are trained end-to-end
with the MSE loss defined in Equation 2 and Equation 5. We use the Adam optimizer with an ini-
tial learning rate of 10−4. Training takes 7 hours to converge with 200k training steps on a single
RTX-4090 graphic card. During inference, we randomly sample X0 from a Gaussian distribution
and integrate over vθ with 1000 steps to generate Pab and calculate the action. Generating one batch
takes 20 seconds.

5

Figure 4. Illustration of the keyframe pipeline of IMAGINATION POLICY on Insert-Knife: (a) the RGB-D image captured by the front camera
and the segmented point clouds, (b) pick generation, (c) preplace generation, and (d) place generation. The top row shows the generated points
with orange color and the bottom row demonstrates the configurations of pick, preplace, and place with the calculated rigid transformations.

All point clouds Pa and Pb in our experiments are captured by RGB-D cameras instead of directly
sampling from the ground truth mesh. We first center the point cloud and then downsample by
selecting at most one point in each cell of a 4mm voxel grid. We further randomly subsample or
duplicate to get 2048 points for Pa and Pb. To get rotation-invariant generation, we apply extensive
SO(3) data augmentation to Pa and Pb during training, i.e., an SO(3) rotation is sampled uniformly
at each training step. This enforces fgen(gaPa, gbPb) = fgen(Pa, Pb), which leads to the desired
symmetry properties from Proposition 1. We found the results slightly outperform the equivariant
point encoder of Vector Neurons [28], as shown in Table 3. We hypothesize that VN’s expressivity
is not as strong as that of PVCNN.

4.1 3D Key-frame Pick and Place

We conduct our primary experiments on six tasks shown in Figure 5 from RLbench [7] and compare
it with three strong multi-task baselines [1, 2, 3].

3D Task Description. We choose the six difficult tasks from James et al. [7] to test our proposed
method. Phone-on-Base: The agent must pick up the phone and plug it onto the phone base cor-
rectly. Stack-Wine: This task consists of grabbing the wine bottle and putting it on the wooden rack
at one of three specified locations. Put-Plate: The agent is asked to pick up the plate and insert it
between the red spokes in the colored dish rack. The colors of other spokes are randomly generated
from the full set of 19 color instances. Put-Roll: This consists of grasping the toilet roll and slid-
ing the roll onto its stand. This task requires high precision. Plug-Charger: The agent must pick
up the charger and plug it into the power supply on the wall. Thus is also a high-precision task.
Insert-Knife: This task requires picking up the knife from the chopping board and sliding it into its
slot in the knife block. The different 3D tasks are shown graphically in Figure 5. Object poses are
randomly sampled at the beginning of each episode and the agent must generalize to novel poses.

Baselines. Our method is compared against three strong baselines: PerAct [1] is the state-of-the-art
multi-task behavior cloning agent that tokenizes the voxel grids together with a language descrip-
tion of the task and learns a language-conditioned policy with Perceiver Transformer [43]. RVT [2]
projects the 3D observation onto five orthographic images and uses the dense feature map of each
image to generate 3D actions. 3D Diffuser Actor [3] is a variation of Diffusion Policy [24] that
denoises noisy actions conditioned on point cloud features. Comparison with this baseline tests the
importance of point cloud generation since this baseline generates actions directly. RPDiff [4] con-
sumes segmented Pa and Pb and denoises the relative pose iteratively. To make a fair comparison,
we adapt [4] to a multi-task policy. See Appendix 6.4 for our implementation details. NDFs [23]
and its variation [34] are not included since they require per-object pretraining.

Settings. All methods are trained as multi-task models. There are four cameras (front, right shoul-
der, left shoulder, hand) pointing toward the workspace. For our method, we formulate the action
sequence as (pick, preplace, place), as shown in Figure 4. Specifically, our method generates the
pick action with fpick, and the preplace and place action with fplace simultaneously. We use the
ground truth mask to segment Pa and Pb for RPDiff [4] and our method, as shown in Figure 4a.

Training and Metrics. We train our method with 1, 5, or 10 demonstrations and train the base-
lines with 10 demonstrations. All methods are evaluated on 25 unseen configurations and each

6

Figure 5. 3D pick-place tasks from RLBench [7]. From left to right the tasks are: Phone-on-Base, Stack-Wine, Put-Plate, Put-Roll, Plug-
Charger, and Insert-Knife. The top row shows the initial scene and the bottom row shows the completion state.

Model # demos phone-on-base stack-wine put-plate put-roll plug-charger insert-knife

IMAGINATION POLICY (ours) 1 4.00 2.67 1.33 2.78 0 0
IMAGINATION POLICY (ours) 5 78.67 97.33 0 1.39 24.00 38.67

IMAGINATION POLICY (ours) 10 90.67 97.33 34.67 23.61 26.67 42.67
RVT [2] 10 56.00 18.67 53.33 0 0 8.00

PerAct [1] 10 66.67 5.33 12.00 0 0 0
3D Diffusor Actor [3] 10 29.33 26.67 12.00 0 0 0

RPDiff [4] 10 62.67 32.00 5.33 0 0 2.67

Key-Frame Expert 98.67 100 74.6 56 72 90.6
Table 1. Performance comparisons on RL benchmark. Success rate (%) on 25 tests when using 1,5, or 10 demonstration episodes for training.
Results are averaged over 3 runs. Even with only 5 demos, our method can outperform existing baselines by a significant margin.

evaluation is averaged over 3 evaluation seeds. We report the mean success rate of each method
in Table 1. Since some tasks are very complex, to measure the effects of path planning, we also
report the performance of the key-frame formulation used by our method with poses from the expert
demonstrations (Key-Frame Expert) as an upper bound on performance.

Results. We report the results of all methods in Table 1. Several conclusions can be drawn from
Table 1: 1) IMAGINATION POLICY significantly outperforms all baselines trained with 10 demos
on all the tasks except Put-Plate. It can also achieve over 90% success rates in Phone-on-Base and
Stack-Wine. 2) For tasks with a high-precision requirement, e.g., Plug-Charger, Insert-Knife and
Put-Roll, IMAGINATION POLICY has a relatively high success rate while all the baselines fail to
learn a good policy. 3) IMAGINATION POLICY achieves better sample efficiency and demonstrates
few-shot learning performance. With one or five demonstrations, it sometimes outperforms the base-
lines trained with 10 demonstrations, e.g., IMAGINATION POLICY achieves a 97.2% success rate on
Stack-Wine trained with 5 demos while the best baseline can only achieve 32%. We believe this
sample efficiency is due to the models equivariance which allows it exploit the symmetry inherent
in the generation task. In the end, our method underperforms one baseline in Put-Plate. We hy-
pothesize that the object in this task is symmetric and is hard to encode with distinguishable point
features, which might result in wrong correspondences when estimating the rigid transformations.
Since many complex manipulation tasks can be decomposed as a sequence of single pick and place,
we illustrate that our method can address long-horizon tasks in Appendix 6.2.

4.2 Real Robot Experiment

We validated IMAGINATION POLICY on a physical robot. We trained a multi-task agent from scratch
on 3 tasks using a total of just 30 demonstrations. There was no use of the simulated data or pre-
training in this experiment – all demonstrations were performed on the real robot.

Settings. The experiment was performed on a UR5 robot with a Robotiq-85 end effector, as shown
in Figure 6a. The workspace was a 48cm × 48cm region on a table. There were three RealSense
455 cameras mounted pointing toward the workspace. We split the workspace into two parts to
place the object and the placement. The segmented point cloud was directly obtained by cropping
the workspace accordingly. To collect the demonstrations, we released the UR5 brakes to push
the arm physically and record data of the form (initial observation, pick pose, preplace pose, place
pose). The combined point cloud Pab was constructed with segmented points and the poses. During
testing, we used MoveIt as our path planner to execute the action sequentially.

7

(a) Workspace Settings (b) Mug-Tree (c) Plug-Flower (d) Pour-Ball

Figure 6. Settings and tasks of real-world experiments.

Task # demos # pick completions # place completions # completions / # trials success rate
Mug-Tree 10 15/15 (100%) 12/15 (80.0%) 12 /15 80.0%

Plug-Flower 10 15/15 (100%) 14/15 (93.3%) 14/15 93.3%
Pour-Ball 10 14/15 (93.3%) 14/14 (100%) 14/15 93.3%

Table 2. Performance on real-world experiments.

Tasks. We evaluate IMAGINATION POLICY on three pick and place tasks, as shown in Figure 6bcd.
Mug-Tree: The robot needs to pick up the mug and place it on the mug holder. Plug-Flower: This
task consists of picking up the flower and plugging it into the mug. Pouring-Ball: The agent is
asked to grasp the small blue cup and pour the ball into the big green cup.

Results. We collected 10 human demonstrations of each task. Our model was trained for 200k SGD
steps with the same settings as the simulated experiments. We evaluated 15 unseen configurations
of each task. The results are reported in Table 2. Visualizations of the captured observation and
the generated actions are shown in Appendix 6.5. Videos can be found in supplementary materials.
Our failures are mainly caused by the distortion of observations and motion planning errors. For
example, the handle of the green mug in Mug-Tree task might disappear due to sensor noise and
calibration, which results in a place failure.

5 Conclusion

In this work, we propose IMAGINATION POLICY, a multi-task model for manipulation pick and
place problems. It utilizes point cloud generation for key-frame manipulation policy learning by
reasoning about the geometric configuration of the goal state. This process amortizes action predic-
tion during generation by estimating the drift force of each point. We also analyze the key-frame
equivariance of the task and implement it in the model by learning rotation-invariant point features.
IMAGINATION POLICY demonstrates high sample efficiency and superior performance on six chal-
lenging RLbench tasks against several strong baselines. Finally, we demonstrate that the method can
effectively be used to learn manipulation policies on a physical robot. We test our design choices
using an ablation study on a multimodal pick-part dataset in Appendix 6.1.

One limitation of the formulation in this paper is that it relies on segmented point clouds. We
believe state-of-the-art segmentation models [44, 45] are sufficient to provide high-quality masks.
Additionally, our generation process takes 20 seconds with 1000 steps to finish point cloud gen-
eration. Fortunately, a large number of works have studied a range of methods for improving the
inference speed of diffusion models [46, 47, 48, 49, 50, 51, 22]. We leave applying these existing
techniques to future work. Moreover, this paper mainly focuses on rigid-object manipulation. We
add one experiment of articulated object manipulation in Appendix 6.3. Our method might also
work well for deformable objects. We will explore articulated objects and deformable objects in fu-
ture work. Lastly, this paper assumes a fixed one-to-one correspondence between points in the object
point clouds and generated point clouds. However, our pipeline of generation and pose estimation
proposed here does not strictly require this. Specifically, one can generate point clouds without a
correspondence and then train a point cloud registration model to estimate the transformations.

8

Acknowledgments

This project were supported in part by NSF 1750649, NSF 2107256, NSF 2314182, NSF 2134178,
NSF 2409351, and NASA 80NSSC19K1474. Dian Wang was also funded by the JPMorgan Chase
PhD fellowship. We would like to thank Jung Yeon Park and Nichols Crawford Taylor for their
helpful discussions.

References
[1] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic

manipulation. In Conference on Robot Learning, pages 785–799. PMLR, 2023.

[2] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. Rvt: Robotic view transformer
for 3d object manipulation. In Conference on Robot Learning, pages 694–710. PMLR, 2023.

[3] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki. 3d diffuser actor: Policy diffusion with 3d scene
representations. arXiv preprint arXiv:2402.10885, 2024.

[4] A. Simeonov, A. Goyal, L. Manuelli, L. Yen-Chen, A. Sarmiento, A. Rodriguez, P. Agrawal,
and D. Fox. Shelving, stacking, hanging: Relational pose diffusion for multi-modal rearrange-
ment. arXiv preprint arXiv:2307.04751, 2023.

[5] S. James and A. J. Davison. Q-attention: Enabling efficient learning for vision-based robotic
manipulation. IEEE Robotics and Automation Letters, 7(2):1612–1619, 2022.

[6] P. Sundaresan, S. Belkhale, D. Sadigh, and J. Bohg. Kite: Keypoint-conditioned policies for
semantic manipulation. arXiv preprint arXiv:2306.16605, 2023.

[7] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[8] H. Huang, D. Wang, R. Walters, and R. Platt. Equivariant Transporter Network. In Proceedings
of Robotics: Science and Systems, New York City, NY, USA, June 2022. doi:10.15607/RSS.
2022.XVIII.007.

[9] H. Huang, O. L. Howell, D. Wang, X. Zhu, R. Platt, and R. Walters. Fourier transporter: Bi-
equivariant robotic manipulation in 3d. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=UulwvAU1W0.

[10] H. Ryu, H.-i. Lee, J.-H. Lee, and J. Choi. Equivariant descriptor fields: Se (3)-equivariant
energy-based models for end-to-end visual robotic manipulation learning. arXiv preprint
arXiv:2206.08321, 2022.

[11] H. Ryu, J. Kim, J. Chang, H. S. Ahn, J. Seo, T. Kim, J. Choi, and R. Horowitz. Diffusion-edfs:
Bi-equivariant denoising generative modeling on se (3) for visual robotic manipulation. arXiv
preprint arXiv:2309.02685, 2023.

[12] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Generative and discriminative voxel modeling
with convolutional neural networks. arXiv preprint arXiv:1608.04236, 2016.

[13] J. Kim, J. Yoo, J. Lee, and S. Hong. Setvae: Learning hierarchical composition for generative
modeling of set-structured data. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15059–15068, 2021.

[14] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. Learning representations and gen-
erative models for 3d point clouds. In International conference on machine learning, pages
40–49. PMLR, 2018.

9

http://dx.doi.org/10.15607/RSS.2022.XVIII.007
http://dx.doi.org/10.15607/RSS.2022.XVIII.007
https://openreview.net/forum?id=UulwvAU1W0

[15] D. W. Shu, S. W. Park, and J. Kwon. 3d point cloud generative adversarial network based on
tree structured graph convolutions. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 3859–3868, 2019.

[16] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan. Nor-
malizing flows for probabilistic modeling and inference. Journal of Machine Learning Re-
search, 22(57):1–64, 2021.

[17] G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Hariharan. Pointflow: 3d point
cloud generation with continuous normalizing flows. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 4541–4550, 2019.

[18] L. Zhou, Y. Du, and J. Wu. 3d shape generation and completion through point-voxel diffusion.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 5826–
5835, 2021.

[19] S. Luo and W. Hu. Diffusion probabilistic models for 3d point cloud generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2837–2845,
2021.

[20] A. Vahdat, F. Williams, Z. Gojcic, O. Litany, S. Fidler, K. Kreis, et al. Lion: Latent point
diffusion models for 3d shape generation. Advances in Neural Information Processing Systems,
35:10021–10039, 2022.

[21] X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and transfer data
with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[22] L. Wu, D. Wang, C. Gong, X. Liu, Y. Xiong, R. Ranjan, R. Krishnamoorthi, V. Chandra, and
Q. Liu. Fast point cloud generation with straight flows. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9445–9454, 2023.

[23] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-
mann. Neural descriptor fields: Se (3)-equivariant object representations for manipulation. In
2022 International Conference on Robotics and Automation (ICRA), pages 6394–6400. IEEE,
2022.

[24] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[25] C. Pan, B. Okorn, H. Zhang, B. Eisner, and D. Held. Tax-pose: Task-specific cross-pose esti-
mation for robot manipulation. In Conference on Robot Learning, pages 1783–1792. PMLR,
2023.

[26] B. Eisner, Y. Yang, T. Davchev, M. Vecerik, J. Scholz, and D. Held. Deep se (3)-equivariant
geometric reasoning for precise placement tasks. arXiv preprint arXiv:2404.13478, 2024.

[27] M. Weiler and G. Cesa. General E(2)-Equivariant Steerable CNNs. In Conference on Neural
Information Processing Systems (NeurIPS), 2019.

[28] C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, and L. J. Guibas. Vector neu-
rons: A general framework for so (3)-equivariant networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 12200–12209, 2021.

[29] G. Cesa, L. Lang, and M. Weiler. A program to build E(N)-equivariant steerable CNNs. In
International Conference on Learning Representations, 2022. URL https://openreview.

net/forum?id=WE4qe9xlnQw.

[30] Y.-L. Liao and T. Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs. arXiv preprint arXiv:2206.11990, 2022.

10

https://openreview.net/forum?id=WE4qe9xlnQw
https://openreview.net/forum?id=WE4qe9xlnQw

[31] X. Zhu, D. Wang, O. Biza, G. Su, R. Walters, and R. Platt. Sample efficient grasp learning
using equivariant models. Proceedings of Robotics: Science and Systems (RSS), 2022.

[32] H. Huang, D. Wang, X. Zhu, R. Walters, and R. Platt. Edge grasp network: A graph-based se
(3)-invariant approach to grasp detection. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 3882–3888. IEEE, 2023.

[33] J. Yang, C. Deng, J. Wu, R. Antonova, L. Guibas, and J. Bohg. Equivact: Sim (3)-equivariant
visuomotor policies beyond rigid object manipulation. arXiv preprint arXiv:2310.16050, 2023.

[34] A. Simeonov, Y. Du, Y.-C. Lin, A. R. Garcia, L. P. Kaelbling, T. Lozano-Pérez, and P. Agrawal.
Se (3)-equivariant relational rearrangement with neural descriptor fields. In Conference on
Robot Learning, pages 835–846. PMLR, 2023.

[35] H. Huang, D. Wang, A. Tangri, R. Walters, and R. Platt. Leveraging symmetries in pick and
place. The International Journal of Robotics Research, page 02783649231225775, 2024.

[36] D. Wang, R. Walters, X. Zhu, and R. Platt. Equivariant q learning in spatial action spaces. In
Conference on Robot Learning, pages 1713–1723. PMLR, 2022.

[37] D. Wang, R. Walters, and R. Platt. SO(2)-equivariant reinforcement learning. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?

id=7F9cOhdvfk_.

[38] D. Wang, M. Jia, X. Zhu, R. Walters, and R. Platt. On-robot learning with equivariant mod-
els. In 6th Annual Conference on Robot Learning, 2022. URL https://openreview.net/

forum?id=K8W6ObPZQyh.

[39] D. Wang, J. Y. Park, N. Sortur, L. L. Wong, R. Walters, and R. Platt. The surprising ef-
fectiveness of equivariant models in domains with latent symmetry. In International Con-
ference on Learning Representations, 2023. URL https://openreview.net/forum?id=

P4MUGRM4Acu.

[40] O. Sorkine-Hornung and M. Rabinovich. Least-squares rigid motion using svd. Computing, 1
(1):1–5, 2017.

[41] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[42] Z. Liu, H. Tang, Y. Lin, and S. Han. Point-voxel cnn for efficient 3d deep learning. Advances
in neural information processing systems, 32, 2019.

[43] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran,
A. Brock, E. Shelhamer, et al. Perceiver io: A general architecture for structured inputs &
outputs. arXiv preprint arXiv:2107.14795, 2021.

[44] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4015–4026, 2023.

[45] L. Ke, M. Ye, M. Danelljan, Y.-W. Tai, C.-K. Tang, F. Yu, et al. Segment anything in high
quality. Advances in Neural Information Processing Systems, 36, 2024.

[46] E. Luhman and T. Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

[47] T. Salimans and J. Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

11

https://openreview.net/forum?id=7F9cOhdvfk_
https://openreview.net/forum?id=7F9cOhdvfk_
https://openreview.net/forum?id=K8W6ObPZQyh
https://openreview.net/forum?id=K8W6ObPZQyh
https://openreview.net/forum?id=P4MUGRM4Acu
https://openreview.net/forum?id=P4MUGRM4Acu

[48] X. Liu, X. Zhang, J. Ma, J. Peng, et al. Instaflow: One step is enough for high-quality diffusion-
based text-to-image generation. In The Twelfth International Conference on Learning Repre-
sentations, 2023.

[49] H. Zheng, W. Nie, A. Vahdat, K. Azizzadenesheli, and A. Anandkumar. Fast sampling of
diffusion models via operator learning. In International Conference on Machine Learning,
pages 42390–42402. PMLR, 2023.

[50] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

[51] S. Luo, Y. Tan, L. Huang, J. Li, and H. Zhao. Latent consistency models: Synthesizing high-
resolution images with few-step inference. arXiv preprint arXiv:2310.04378, 2023.

[52] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object and
model set: Towards common benchmarks for manipulation research. In 2015 international
conference on advanced robotics (ICAR), pages 510–517. IEEE, 2015.

[53] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. 2016.

[54] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 652–660, 2017.

[55] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep
representation for volumetric shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912–1920, 2015.

12

6 Appendix

(a) banana crown (b) mug handle (c) spoon neck (d) fork handle (e) banana body (f) mug body (g) spoon tail (h) fork head

Figure 7. Visualization of pick generation and place generation. Top row: multimodal pick-part training labels for different objects. Mid row:
single generation for pick . Bottom row: pair generation for place. The generated point cloud is colored in orange. Note the model takes the
randomly rotated and downsampled point cloud as input.

Pick/Single Generation Place/Pair Generation

max ||| mean ||| min rot error (◦) trans error (cm) rot error (◦) trans error (cm)

Imagination Policy 0.16 2.02 4.82 0.43 0.94 1.72 0.36 2.34 7.12 0.55 1.05 1.76
w/o downsample 0.47 7.77 39.55 0.43 0.96 1.77 0.29 9.28 28.94 0.65 1.19 1.85
w/o color 0.76 4.41 16.18 0.18 0.87 2.41 0.39 5.05 21.22 0.40 0.97 1.76
w/o augmentation 17.45 125.26 179.27 0.44 1.50 6.53 49.24 130.60 178.59 1.31 14.46 30.80

PointNet Encoder 0.42 3.30 10.09 0.26 0.88 1.56 0.96 4.82 14.31 0.33 0.98 1.74
Pretrained VN Encoder 0.75 5.24 34.06 0.26 0.80 1.56 0.92 6.01 20.68 0.44 1.04 2.13

Table 3. Ablation Results. We report the minimum, mean, and maximum error for single generation and pair generation over 100 runs with
randomly rotated and sampled input.

6.1 Ablation Study

Multimodal Pick-part Dataset. To quantitatively measure the point cloud generation results and
the equivariance of IMAGINATION POLICY, we create a small pick-part dataset using four YCB
objects [52] (banana, mug, spoon and fork). We load each object in the Pybullet simulator [53] and
use three cameras to get the RGB-D images to extract the point cloud. Each object is assigned with
two different expert grasps with corresponding language instructions, e.g., “grasp the mug by the
handle”, “grasp the mug by its body”, as shown in Figure 7.

Training and Metrics. We trained a single pick generation model to generate all the objects con-
ditioned on the canonicalized gripper points and language descriptions. We also train a place gen-
eration model to generate both the gripper point cloud and the object point cloud. To evaluate the
pick generation results, we randomly rotate and randomly downsample the object point cloud (Pb)
to make a starting pose unseen during training. We calculate the translation error and rotation error
between the estimated grasp pose and the ground truth grasp pose. Note that rotating Pb results in a
change of the ground truth pick pose. To evaluate the place generation results, we randomly rotate
and downsample the gripper (Pa) as well as the object (Pb) to make a scene unseen during training
and calculate the translation error and rotation error between estimated transformation T̂−1

a T̂b and
the ground truth pose. Note that rotating either Pa or Pb changes the relative ground truth transfor-
mation. We report the minimum, mean and maximum error over 100 runs in Table 3. We also show
visualizations of the generated point clouds in orange in Figure 7.

Results. Table 3 includes 6 variations of our proposed methods. Several findings can be concluded
from Table 3: (1) As shown in the first row, IMAGINATION POLICY can learn the multimodal dis-
tribution and is equivariant. It realizes around 2

◦ ∼ 3
◦

average rotation error and 1cm translation
error with different configurations of Pa and Pb; (2) Without downsampling or color information,
the rotation error slightly increases; (3) Without data augmentation in training, the performance de-
creases dramatically since the model cannot learn rotation-invariant features. (4) Compared with

13

the results in the last two rows, the PVCNN-based point cloud encoder outperforms PointNet [54]
and the pre-trained equivariant point cloud encoder from NDF [23]. Note that the pre-trained point
cloud encoder consumes enormous 3D point clouds from ShapeNet [55] and makes use of Vector
Neuron [28] which is guaranteed to output the rotation invariant feature. We hypothesize that the
architecture of Vector Neuron [28] and the standard representation limit its expressivity.

6.2 Task with Longer Horizon

Figure 8. Illustration of Stack-three-Chairs. From left to right: (a). initial observation, (b). pick the green chair, (c). place the green chair, (d).
pick the blue chair, (e). place the blue chair, (f). complete state.

Task # demos first pick-place success rate second pick-place success rate overall success rate oracle performance
Stack-Three-Chairs 10 70.66% ± 2.61% 68.00%±4.52% 48.05% ± 3.71% 88.0%± 4.52%

Table 4. Performance on Stack-Three-Chairs. Success rate (%) on 25 tests using 10 demonstration episodes for training. Results are averaged
over 3 runs. For each test, the poses of the three chairs are randomly sampled with a different seed from the training data.

Many challenging robotic manipulation problems can be viewed through the lens of a single pick
and place operation. We test IMAGINATION POLICY on the task with a longer horizon. Stack-three-
Chairs requires picking the other two chairs and stacking them on top of the base (red) chairs follow-
ing the RGB order. This is a high-precision task requiring the agent to correctly manage a sequence
of pick and place. Even trained with 10 demos, our method can achieve 70.66% success rates in the
first pick-place execution and maintain a similar performance (68.00%) for the second pick-place
execution. Detailed results are reported in Table 4. It demonstrates that IMAGINATION POLICY can
address long-horizon tasks.

6.3 Task with Articulated Object

Figure 9. Illustration of Open-Microwave. From left to right: (a). initial observation, (b). pick the handle of the microwave, (c). open the door
of the microwave, (d). final complete state, (e). segmentations of the door with handle (black color) and frame (red color).

Task # demos for training success rate oracle performance
Open-Microwave 10 69.33 %± 5.22% 90.66% ±% 2.61%

Table 5. Performance on Open-Microwave. Success rate (%) on 25 tests using 10 demonstration episodes for training. Results are averaged
over 3 runs. For each test, the pose of the microwave is randomly sampled with a different seed from the training data.

Articulated objects are special cases in manipulation since they are linked with several movable
parts. We test IMAGINATION POLICY on Open-Microwave task to illustrate the potential of our
method of addressing articulated object manipulation. Specifically, we segment the two movable
parts of the microwave, as shown in Figure 9e, the door with the handle (black color) and the frame

14

(red color). The task consists of grasping the handle of the microwave and opening the door. In our
settings, the grasping is to infer the relative pose between the gripper and the door; the opening is
to predict the relative pose between the door and the frame. Even trained with 10 demonstrations,
our method can achieve 69.33% success rate, as reported in Table 5. We found that most failure
cases are due to the motion planning error and the collision between the door and the gripper when
the gripper is closing. More complex articulated objects can also be manipulated by predicting
the relative poses between links and we leave it as the future work. Overall, it demonstrates that
IMAGINATION POLICY can address articulated object manipulation.

6.4 Baseline Details

The closest standard methods evaluated on RLBench [7] are PerAct [1], RVT [2], and 3D Diffuser
Actor [3]. These are multi-task key-frame methods that address a problem setting very similar to
ours. PerAct, RVT, and 3D Diffuser all create point clouds using RGBD data captured from four
different camera views. This is exactly the pipeline in our method as well. Specifically, PerAct
transforms the raw RGBD input into a point cloud and then into a voxel map. RVT constructs the
point cloud and then re-projects it onto orthographic images. 3D Diffuser Actor is also conditioned
on the entire point cloud. The only difference concerning the input data between our method and
these baselines is that we use per-object segmentation masks.

RPDiff [4] is the baseline that consumed the same segmented point cloud (Pa and Pb) as ours. It
iteratively denoises the randomly sampled relative transformation poses conditioned on the current
configuration of Pa and Pb. However, it can only solve the single-step place problem trained as a
single-task policy. To make a fair comparison, we adapted it to a multi-task key-frame prediction
model. Similar to our settings, we consider the pick problem as inferring the relative pose between
the gripper (Pa) and the object to grasp (Pb). The preplace action prediction can also be viewed
as calculating the relative pose between the object (Pb) and the placement (Pb). We train the pick
model and the place model separately, which is similar to ours. Since the original RPDiff learns a
single-task single-step policy f : (Pa, Pb) 7→ Tab, it requires training 18 different models to solve
the six tasks in Table 1. We adapt it to learning a multi-task policy conditioned on the language
embedding f : (Pa, Pb, fℓ) 7→ Tab. Specifically, we used the same language embedding generated
from CLIP [41]. To make RPDiff consume the language embedding, we map it to a 128-dimension
feature via a linear layer and concatenate it to a 130-dimension time step embedding (the diffusion
step). The model was trained and evaluated with the same settings in [4].

Figure 10. Action inference on Mug-Tree with real-sensor data: (a) the observed real-sensor point cloud and the inferred pick, preplace and
place action from IMAGINATION POLICY, (b) pick generation, (c) preplace generation, and (d) place generation. The top row shows the
generated points with orange color and the bottom row demonstrates the configurations of pick, preplace, and place with the calculated rigid
transformations. Please note that we used the point cloud from Franka-Emika Panda gripper to train the model and evaluated it with the
Robotiq-85 gripper.

15

6.5 Real-robot Experiments Pipeline

Figure 10 illustrates our pipeline of key-frame action inference on Mug-Tree task with real-sensor
data. The observed point cloud is shown in the first row of Figure 10a. The predicted pick, preplace
and place action from IMAGINATION POLICY are plotted with RGB frames in the second row of
Figure 10a. Specifically, Figure 10bcd illustrate the pick generation, preplace generation, and place
generation respectively.

For execution on a robot, it requires a collision-free pick-and-place trajectory that connects the key-
frame action. We use RRT-star as our motion planner and add the configuration of obstacles (the
table, the mounting, and the cameras) to the planner to generate the trajectory.

6.6 Detailed Results on RLbench task

We report the results of our method and baselines on RLbench tasks with ±1.98 std error in Table 6.

Model # demos phone-on-base stack-wine put-plate put-roll plug-charger insert-knife

IMAGINATION POLICY (ours) 1 4.00 ± 4.52 2.67 ± 2.61 1.33 ± 2.61 2.78 ± 2.72 0 0
IMAGINATION POLICY (ours) 5 78.67 ± 10.45 97.33 ± 2.61 0 1.39 ± 2.71 24.00 ± 1.57 38.67 ± 2.61

IMAGINATION POLICY (ours) 10 90.67 ± 2.61 97.33 ± 2.61 34.67 ± 10.45 23.61 ± 5.44 26.67 ± 13.82 42.67 ± 9.42
RVT [2] 10 56.00 ± 4.52 18.67 ± 2.61 53.33 ± 6.91 0 0 8.00 ± 4.52

PerAct [1] 10 66.67 ± 11.39 5.33 ± 2.62 12.00 ± 4.52 0 0 0
Diffusor 3D [3] 10 29.33 ± 5.22 26.67 ± 14.55 12.00 ± 0 0 0 0

RPDiff [4] 10 62.67 ± 5.22 32.00 ± 4.52 5.33 ± 5.22 0 0 2.67 ± 2.61

Discrete Expert 98.67 100 74.6 56 72 90.6
Table 6. Detailed performance comparisons on RL benchmark. Success rate (%) on 25 tests v.s. the number of demonstration episodes (1, 5,
10) used in training. Results are averaged over 3 runs. Even with only 5 demos, our method can outperform existing baselines by a significant
margin.

16

	Introduction
	Related Work
	Method
	Pair Generation for Place
	Single Generation for Pick

	Experiments
	3D Key-frame Pick and Place
	Real Robot Experiment

	Conclusion
	Appendix
	Ablation Study
	Task with Longer Horizon
	Task with Articulated Object
	Baseline Details
	 Real-robot Experiments Pipeline
	Detailed Results on RLbench task

