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Abstract

We present DisCo, a learning paradigm for improving compositional generalization of visual
reasoning models by leveraging unlabeled, out-of-distribution images. DisCo has two compo-
nents. The first is an iterative pseudo-labeling framework with an entropy measure, which
effectively labels images of novel attribute compositions paired with randomly sampled ques-
tions. The second is a distribution coverage metric, serving as a model selection strategy
that approximates generalization capability to out-of-distribution test examples, without
the use of labeled data from the test distribution. Both components are built on strong
empirical evidence of the correlation between the chosen metric and model generalization,
and improve distribution coverage on unlabeled images. We apply DisCo to visual question
answering, with three backbone networks (FiLM, ThD-net, and the Neuro-Symbolic Con-
cept Learner), and demonstrate that it consistently enhances performance on a variety of
compositional generalization tasks with varying levels of train data bias.

1 Introduction

A long-standing goal of visual reasoning is to build

machines that can respond to queries about images in

a flexible and general way as humans do. To achieve  Labeled train data
this, machines must contend with the combinatorial
complexity of natural images and queries: a scene has
multiple objects, each object has a collection of at-
tributes, and objects form various spatial and func-  Unlabeled data

Compositional generalization

Prediction from
base model: blue

tional relationships. The combinatorial explosion of
image spaces, together with practical data limitation ..l. DisCo
in downstream tasks, makes many learning problems ) —

ill-posed (Bienenstock et al.| [1996; [Lake et al., |2017)). Prediction from
In this paper, we focus on the compositional gener- DisCo: red

alization to novel combinations of object attributes,

generalizing from the reasoning of blue cubes and red

cylinders to that of red cubes. This is an important Figure 1: The base VQA model in its original train-
desideratum for machine learning systems: it is im- ing paradigm is trained on labeled data, while DisCo
possible for any dataset to include all possible combi- leverages unlabeled, out-of-distribution images to im-
nations of object attributes for model training. prove compositional generalization performance.

We address this problem by introducing DisCo, a

learning paradigm that leverages unlabeled, out-of-distribution images to help visual reasoning systems bet-
ter generalize compositionally (See Figure . Concretely, we focus on the task of visual question answering
(VQA), though our framework is model-agnostic and can be used for a variety of vision domains that have
combinatorial structures. Given a labeled train set of image, question, and answer triplets, and unlabeled
images from the test distribution that contains novel attribute combinations, DisCo bootstraps a visual
reasoning model by iteratively mining data instances derived from the unlabeled dataset. Starting from a
base VQA model trained on a labeled, possibly biased dataset, our framework couples unlabeled images that
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are out-of-distribution with randomly sampled questions, and discovers pairs that are answerable. These
newly-created data points are trained with equal weighting as the original labeled data points, and boot-
strap learning: the model gradually labels more and more new image-question pairs, increasing distribution
coverage on out-of-distribution image sets that contain novel attribute compositions.

Pseudo-labeling is particularly difficult in the visual question answering setting, as given an unlabeled
question-image pair, 1) there is a high probability of presupposition adherence failure (e.g., the question
asks about the color of the cube in the image, but there is no cube), and 2) the current model may not
have the capability to reason about the out-of-distribution image correctly. These two failure cases make
pseudo-labeling images from the test distribution especially noisy. The effectiveness of our iterative learn-
ing paradigm is hence based on the empirical insight that, for a pretrained visual reasoning model, the
entropy of its predicted answer distribution correlates strongly with its accuracy on out-of-distribution im-
ages with novel attribute compositions. This entropy metric approximates both presupposition adherence
as well as compositional generalization accuracy, thus is crucial to DisCo choosing unlabeled samples to be
pseudo-labeled.

Moreover, in the compositional generalization setting, model tuning and model selection are challenging, as
there is limited access to labeled data in the test distribution. Validation sets are in the same distribution
as the train set, and hence unable to approximate test set performance, leaving methods unable to select
for model checkpoints that best generalize to unseen data. To address this issue, we propose a distribution
coverage metric, which computes the percentage of out-of-distribution images that can be answered confi-
dently by the current VQA model. This distribution coverage measure well approximates model accuracy
on generalization test splits with unseen attribute compositions, allowing us to effectively tune and select
models without labeled data points from the test distribution.

We validate the effectiveness of our approach on biased versions of the CLEVR dataset (Johnson et al., [2017)
created for compositional generalization in visual reasoning. Specifically, in addition to the original CLEVR
CoGen dataset, we also construct datasets that contain questions with referred objects as well as one-hop
relational questions, and demonstrate generalization improvement with DisCo compared to base VQA models
with their original training paradigm. We demonstrate that DisCo consistently helps three VQA models,
FiLM ([Perez et al., [2018), TbD-net (Mascharka et al.,[2018)), and the Neuro-Symbolic Concept Learner (NS-
CL) (Mao et al., [2019)), perform better on an out-of-distribution test set. We also show that our framework
outperforms other methods that leverage unlabeled data, including generative modeling and contrastive
learning, on different levels of biases in training data. Our model exhibits an advantage in generalization
to novel attribute combinations, and is a step towards contending with the combinatorial complexity of the
visual world.

2 Related work

Compositional generalization. Prior work on improving the compositional generalization of visual rea-
soning systems generally falls into two groups. The first line of research leverages explicit structures of
compositional concepts, such as visual grammars (Zhu & Mumford, |2007; |Chen et al., 2007, compositional
embeddings (Misra et al., [2017)), neural operators (Nagarajan & Grauman) 2018), neural module networks
(Purushwalkam et al., 2019)), and causal graphs (Niu et al., 2021} |Yang et al., 2021b|). The second line of
research introduces additional supervision, such as the taxonomy of concepts to improve model generaliza-
tion (Han et al.; 2019). We present a novel perspective on compositional generalization, which is to leverage
unlabeled, out-of-distribution data.

Self-supervised learning for visual reasoning. Our iterative pseudo-labeling framework is also related
to prior work on self-supervised learning for visual reasoning. Specifically, [Kim et al.| (2021) and Lin &
Parikhl (2017) use active learning to select image and question pairs to be labeled. |Askarian et al.| (2021)
and |Li et al.[(2020) use curriculum learning to prioritize training data for visual reasoning models. Methods
such as [Kim et al.| (2019)); |Zhu et al| (2020); |Liu et al| (2018) apply adversarial self-supervised learning
to overcome language priors in vision-language models. Although some earlier work has explored similar
entropy-based measures as ours, our work differs from them in two key aspects. First, our method studies a
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different setting, where no additional labels will be requested on the unlabeled dataset. Second, in contrast
to data efficiency or task performance, our work shows that an entropy-based measure is especially beneficial
for the compositional generalization capability of models in out-of-distribution data.

Semi-supervised learning. DisCo generally falls into the category of semi-supervised learning, whose
idea is to leverage unlabeled data to improve model performance. Specifically, early work on pseudo-labeling
(Nigam & Ghani, [2000; |Grandvalet & Bengiol 2004) has drawn important theoretical connections between
entropy-based self-training and expectation maximization algorithms. Prior work has also used signals such
as high values in density-based clustering (Choi et all |2019)) and label propagation (Iscen et al., |2019)) to
choose and infer pseudo-labeled examples, and introduced regularization techniques to learn better between-
class separability (Shi et al. |2018]). A related work, [Rizve et al.| (2021), proposes choosing pseudo-labels
based on confidence and uncertainty of network predictions for classification, while DisCo tackles the complex
VQA task with out-of-distribution images that contain unseen attribute combinations. We refer readers to
Van Engelen & Hoos| (2020) and [Yang et al.| (2021al) as two recent comprehensive surveys. Our paper uses a
similar broader framework and focuses on the empirical evidence in visual reasoning domains to use unlabeled
images to generalize in combinatorially complex settings.

3 Methods

We present DisCo as a method to leverage unlabeled, out-of-distribution image data for compositional gen-
eralization. At a high level, DisCo is a pseudo-labeling framework applied to VQA models, that iteratively
learns to label images farther from the train data distribution. Intuitively, DisCo chooses unlabeled images
from a test distribution of novel attribute compositions that the current reasoning model can effectively an-
swer. As training progresses, DisCo selects more “difficult” question-image pairs, which increases distribution
coverage on the unlabeled image set. After training, models can reason about objects with new attribute
compositions, not seen with labels during training.

In this section, we first describe our problem formulation (Section and broader learning paradigm with
unlabeled images (Section . We then discuss critical components in the framework. We describe image
proposal methods for efficiently generating answerable images in DisCo (Section . Then, we propose an
entropy-based threshold as a measure for accurate pseudo-labeling of out-of-distribution images (Section.
Finally, we present a distribution coverage measure as an effective model selection strategy for compositional
generalization (Section .

3.1 Problem formulation

In this paper, we focus on improving the object-level compositional generalization of visual reasoning models.
Intuitively, objects in images are associated with many concepts, such as color, shape, and material. During
training, the model may only see a finite number of possible concept combinations for objects. The goal of
object-level compositional generalization is to let the model trained with limited labeled data generalize to
novel object concept compositions. Our proposal is to leverage unlabeled, out-of-distribution images, which
are significantly more available than human-annotated data, to improve the performance of visual reasoning
models in combinatorially complex domains.

DisCo is trained on a labeled dataset of VQA triplets, with each data point containing a visual scene,
question, and answer; we denote this as (v4, ¢4, a4+) € Diain. The training dataset only contains a subset
of attribute combinations of colors and shapes (e.g., blue cubes but not red cubes), while the test dataset
contains objects of different color-shape combinations. Our training objective is thus to bootstrap from a
VQA model to iteratively improve the distribution coverage of out-of-distribution test examples.

3.2 lterative pseudo-labeling

Our learning paradigm has three steps. First, we assume a base visual question answering model M (v, g; 9),
and train M to convergence on Di;,in, without modifications to the original training procedure. Second,
we bootstrap the model on unlabeled, out-of-distribution data with a proposed pseudo-labeling framework.
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Algorithm 1 The DisCo framework described in Section [3.2

Input: Dirain: the labeled train dataset; f: image proposal function derived from the unlabeled test dataset Dyest;
M(v, q;0): visual question answering model; n: entropy threshold.
Output: 6: M(v,q;6).
1: Pretrain M with Dyyain.
2: Track distribution coverage in c.
3: for i < 0 do

4: (’U+, q+, a+) ~ Dirain

5: v— « f() > Image proposal function Diest.sample() or GAN .generate(), see Section
6: p+ +— M(vy,qy;0) > Retrieve predictions from pretrained M.
7 p— +— M(v_,q+;0)

8: if entropy(p—) < n then > Entropy measure to select for pseudo-label targets, see Section
9: Update ¢ with distribution coverage.

10: Update M with zent(p+,a+).

11: Update M with zent(p—, arg max(p—_)). > Update M with equal weighting of 4+ and —.
12: else

13: Reject sample.

14: end if

15: end for

16: Choose checkpoint of M through c. > Coverage used for model selection, see Section [3.5]

Lastly, with the distribution coverage produced by DisCo, we perform model selection for a checkpoint of
M that generalizes best to novel attribute compositions. We describe this paradigm in Alg|[l]and show the
overview in Figure [2]

DisCo utilizes unlabeled images in Diegt through an image proposal function f derived from Dyest (Alg
L5). The proposal function can be a random sampler of unlabeled images in Dy, or a learned generative
model, such as a generative adversarial network (GAN) (Goodfellow et al. [2014]), trained on the unlabeled
images in Diegt. Either f yields unlabeled images v_ from the test distribution to be used in our framework.

In the iterative pseudo-labeling process, DisCo couples images v_ with randomly sampled questions ¢4
from the labeled train set (Alg |1} L7); let p_ denote the answer distribution produced by M, i.e., p_ =
M(v_,q4+;0). We use an entropy measure to select confident predictions such that question-image pairs
satisfy presuppositions and are answerable (Alg L8). The (v_,qy) pair will be pseudo-labeled with
argmax(p_), its own sharpened predictions (Alg Lll). During training, we keep track of the percentage
of pairs (v_, v4) that can be confidently answered by the model (Alg[l} L9). This distribution coverage metric
will be used for model tuning and checkpoint selection (Alg [l L16). At each pseudo-labeling step, given
a pseudo-labeled triplet (v_,q4,argmax(p_)) that satisfies the entropy metric, a labeled training triplet
(v4,¢4,a4) will also be sampled to be trained with equal weighting (Alg |1} L10). This weight balancing
allows the model to learn from both image distributions, and acts as a model correctness regularization.

3.3 Image proposals

DisCo is compatible with various kinds of unlabeled image distributions. In this paper, we focus on two
prevalent choices for f: 1) direct sampling from unlabeled images in Diegt, and 2) generation from a generative
adversarial network (GAN) trained on unlabeled images in Diest.

We can directly sample unlabeled images from Dyt and propose each image as a potential pseudo-label
target. We show in experiments that this method achieves strong performance on Djest, as well as on an
unseen dataset that has the same distribution as Diesy—both of which are out-of-distribution compared to
the labeled set Diain. A potential approach to better cover test image distribution is to use generative
models. We first train a GAN on unlabeled test images and make inferences of the trained model for image
proposals, which essentially acts as a data augmentation. In this work, we train an unconditional StyleGAN
v2 (Karras et al.; |2020)) on images from Diegt.
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Figure 2: Overview of the DisCo framework. At each pseudo-labeling step, labeled VQA triplets from the
train distribution are used in an equal weighting to pseudo-labeled VQA triplets, which contain images from
the test distribution of novel attribute compositions.

3.4 Entropy threshold

Pseudo-labeling out-of-distribution test examples in visual reasoning is especially noisy and challenging. This
is not only because unlabeled images contain novel attribute compositions correlated with visual challenges
such as occlusion, but also because randomly-sampled questions may contain presuppositions that the images
must satisfy. That is, the referred objects in the question may not exist in the image. When the vocabulary
of concepts is large, most randomly sampled images and question pairs will be unanswerable. Without an
effective measure for filtering the pseudo-labeled training data, the model will be corrupted with a high
percentage of inaccurate labels that gives a poor signal in generalization.

Recall that there are two types of errors we want to filter out. The first is presupposition failure, where the
referred object in ¢y does not exist in v_. For example, the question asks “what size is the cylinder”, but
there is no cylinder in the image. The second is questions that are difficult to answer due to limited training
data or other visual challenges. For example, questions regarding a novel color-shape combination of a gray
cylinder may be difficult to answer given the partial obstruction of the object. Below, we introduce and
validate an entropy-based measure, which effectively filters both types of errors.

In this work, we leverage a strong correlation between the entropy of p «+— M(v_,q+;0), and compositional
generalization accuracy. We demonstrate that this metric is an effective measure for pseudo-labeling out-
of-distribution images with unseen attribute compositions. The entropy is calculated from the softmax of
model logits. Let k denote the number of elements in the output vocabulary, the entropy is computed as

H(X) = — 0 p(x:) log pl;).

In Figure [3] we empirically verify this relationship between entropy and question-answering accuracy on
images with novel attribute combinations. The left graph (2a) shows a cumulative entropy to accuracy
plot on a log scale, with presupposition adherence accuracy, prediction accuracy, and prediction accuracy
given presupposition adherence. Presupposition adherence accuracy (blue), is the percentage of question-
image pairs whose unlabeled image satisfies the sampled question’s presupposition (i.e., the referred-to object
exists). Prediction accuracy (red) is calculated such that the presupposition is satisfied and the predicted
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answer is correct. Prediction accuracy given presupposition adherence (purple), is the prediction accuracy
of only pairs that adhere to presupposition. The right graph (2b) depicts a cumulative entropy histogram.

Interestingly, we find that while prediction accuracy for images that satisfy presuppositions (purple) does not
decrease significantly with entropy increase, the percentage of question-image pairs that violate presupposi-
tions (blue) does decrease significantly. This suggests that our entropy measure well captures presupposition
failure, and is hence effective and necessary for this learning paradigm. The black line on both graphs indi-
cates an approximately 30-th percentile entropy threshold, based on the histogram of entropies, which yields
a 0.8207 prediction accuracy on out-of-distribution images and a 0.8506 presupposition adherence accuracy.
Given images that passed the question presupposition at this threshold, 0.9648 were accurate.

2a
) Cumulative entropy to accuracy plot (log scale) 2b) Cumulative entropy histogram (log scale)
1.0
S ——
0.9 ﬁ 3000
> &— 0.8506
§ 08 0.8207 —> =
8 g 2000
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107 10> 10™* 1073 1072 107! 10°

Entropy Entropy

Figure 3: Relationship between entropy and compositional generalization accuracy and count. The base
VQA model is trained on a biased train dataset; entropy and prediction accuracy is evaluated on unlabeled
images sampled from the test dataset paired with questions from the train set.

3.5 Model selection

For compositional generalization tasks, because we do not have access to the ground-truth labels for images
from the test distribution, there is no natural criterion for model tuning and model selection. A common
practice of previous methods for model selection is through the maximization of validation set accuracy;
however, the validation set has the same data distribution as the train set, and thus is biased and not a
good measure for test distributions. In this work, we propose a more effective measure by leveraging the
unlabeled image set for model tuning and model selection.

Specifically, DisCo employs a distribution-coverage-based metric, which does not require any labeled examples
from the test distribution. The high-level idea is to maximize the distribution coverage on the unlabeled
dataset. Formally, recall that during training, the sampler produces a pair (v_,qy) for pseudo-labeling,
where v_ is from the unlabeled distribution and ¢4 is from the train set. Our algorithm keeps track of the
percentage of pairs (v_, g4 ) that are rejected from the entropy thresholding for each model (checkpoint).
After training, we select the model with the maximum coverage of the test set, i.e., the model that rejects
the least number of pseudo-labeling pairs (v_, g4 ).

Empirically, we validate that distribution coverage from our framework well approximates compositional
generalization accuracy in the test set, while the standard validation set accuracy does not. In Figure [ the
left plot (3a) depicts the correlation between test set accuracy and validation set accuracy from model check-
points, while the right plot (3b) depicts the correlation with distribution coverage. The Pearson correlation
coefficient between validation and test set accuracy is —0.0584, indicating a slight negative correlation. In
this experiment, we can see that validation set accuracies are mostly close to 1.0, while test set accuracies
range from 0.90 to 0.98. In comparison, the distribution coverage value has a strong correlation with the
test performance: the Pearson correlation coefficient is 0.6066, and thus is a more effective metric for model
selection.
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Figure 4: Correlation between test set and validation set accuracy (left, with Pearson correlation coefficient
of —0.0584) as well as between test set accuracy and our distribution coverage metric (right, with a coefficient
of 0.6066).

4 Experiments

We evaluate DisCo on a set of CLEVR datasets and three visual question-answering models—FiLM (Perez
et al.,[2018), a representative end-to-end attention-based approach, ThD-net (Mascharka et al.,|2018)), a state-
of-the-art neural module network-based approach, and NS-CL, a neuro-symbolic and object-centric approach.
DisCo considerably improves the compositional generalization performance of base models compared to
their original training paradigm or other semi-supervised learning approaches. Specifically, we compare our
framework against two baselines that leverage unlabeled data: variational autoencoders (VAEs; Kingma &
Welling, [2013) and SimCLR (Chen et al., |2020). For both baselines, we first train a VAE or a SimCLR
model, and use their encoding networks to initialize the feature extractor of the visual reasoning model.
Both baselines use the same amount and exact set of unlabeled data as DisCo. We describe our datasets
and implementation details in Section [I.I] compare our work against prior work in Section [£:2} and provide
more ablation studies in Section [£:3] and more analyses in Section [4.4]

4.1 Datasets & implementation details

In addition to the original CLEVR compositional generalization (CoGen) dataset (Johnson et al., [2017)
(released under the CC BY 4.0 license), we also report results on multiple CoGen datasets based on CLEVR.
Specifically, we generate images with two to three objects per image, with a CoGen split following that of
the original CLEVR dataset. In this setup, there are two sets of colors, with the first as [gray, blue, brown,
yellow], and the second as [red, green, purple, cyan]. CoGen split A contains cubes in the first set of colors,
and cylinders in the second. CoGen split B is reversed in the attribute combinations. Both CoGen split A
and B contain spheres of all eight colors. We study a biased setup, where Dy, consists of images in CoGen
split A with either zero or only a small percentage p of objects from CoGen split B. We show performance
with train datasets of p € {0.0,0.001,0.005}, evaluated on a full CoGen split B test set.

Based on the aforementioned image setup, we generate two additional datasets with different types of ques-
tions. The first is the referred object dataset (Ref), with questions of the form, "What [attribute] is the
[referred object]?" (e.g., “What material is the red object?”). Although this question template is simple, it
reflects one of the most important problems in pseudo-labeling for VQA: the satisfaction of question presup-
positions. The second dataset consists of “one—hop’ﬂ questions from the CLEVR dataset (OneHop), which
consists of more complex relational questions, such as "How many red objects are to the left of the sphere?"
or "There is a large object to the right of the metal thing; what is its color?". We also evaluate the models
on the CLEVR CoGenT dataset (CoGenT) with the full set of complex objects and questions.

We use the official implementations of FiLM, ThD-net, and NS-CL along with their original hyperparameters
in our framework. The GAN image proposal function is the unconditional StyleGAN2 (Karras et al., [2020)),

1In one-hop questions, the target objects are referred to by relating to another unique object.
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Table 1: DisCo performance compared to the original training paradigm and baselines, where 0.5% Ref
(unseen) is performance on an unseen test set not exposed during training

0.0% 0.1% 0.5% 0.5% 0.5% 0.5%

REF REF REF REF (UNSEEN) ONEHOP COGENT
FILM 0.7589  0.7931 0.9265 0.9251 0.9270 0.7859
FILM + VAE 0.7500  0.7993  0.9387 0.9362 0.9228 0.7868
FILM + SIMCLR 0.7520  0.8036  0.9288  0.9257 0.9261 0.7926
FiLM 4 DisCo-S 0.7582 0.8363 0.9621 0.9616 0.9469 0.8004
FiLM + DisCo-G 0.7760 0.8191 0.9545 0.9510 0.9311 0.7979

Table 2: Comparison of DisCo with baselines on the Table 3: Comparison of DisCo with baselines on the

TbD-net model. Performance reported on the orig- NS-CL model. Performance reported on the original
inal and an unseen test set of 0.5% Ref. and an unseen test set of 0.5% Ref.
0.5% 0.5% 0.5% 0.5%
REF REF (UNSEEN) REF REF (UNSEEN)
TBD 0.8993  0.9027 NS-CL 0.7622  0.7633
TBD + VAE 0.9018  0.9025 NS-CL + VAE 0.7572  0.7589
TBD + SIMCLR 0.9073  0.9077 NS-CL + SIMCLR 0.7739  0.7758
TbD + DisCo-S 0.9206 0.9197 NS-CL + DisCo-S 0.8024 0.8027
TbD + DisCo-G 0.9189 0.9145 NS-CL + DisCo-G 0.7820 0.7793

trained with the Adam optimizer of learning rate 0.002. We set our entropy threshold n to be at the 30th
percentile. Empirically, we find this threshold value to be robust to differences of around 10 percentile
increase or decrease. For the more complex CoGenT dataset, we lowered the entropy threshold to be at the
10th percentile to account for the naturally lower percentage of presupposition adherence. All models are
trained on a single Titan RTX GPU.

4.2 Results

We train DisCo with FiLM on five datasets—three Ref datasets with
varying bias levels, from 0.0% (fully biased), to 0.1% biased, to 0.5%
biased, as well as the 0.5% biased OneHop dataset and 0.5% biased Co- Table 4: Ablation of DisCo with di-
GenT dataset. We show the results of our framework with both image rect sampler, trained on the 0.5%
proposal functions (DisCo-S as direct sampling and DisCo-G as GAN bias Ref. (PL = pseudo-labeling,
generation). Note that for VAE, SimCLR, and our framework DisCo, EM = entropy measure, CS = cov-
the VQA models see unlabeled test set images during pretraining or erage selection).

pseudo-labeling. Thus, for a fair comparison, we additionally report

accuracy on a larger, test set that contains unseen images following FiLM

the same distribution as the original test set, for 0.5% biased Ref. BASE 0.9265
Table [1] shows our results; DisCo outperforms the original training BASE+PL 0.6749
paradigm and both baselines. In addition, our framework, with both BASE+PL+EM 0.9605
image proposal functions, is robust to unseen images in the test dis- BASE+PL+EM+CS  0.9621

tribution. By comparing the two image proposal approaches across

experiments, DisCo-S achieves better performance than DisCo-G. We

conjecture that this is because, in the sampler method, the model is trained with the exact set of real,
unlabeled test images that we evaluate with. Moreover, in the fully biased Ref experiments, the GAN image
proposal function outperforms the direct sampler. We attribute this to the GAN’s generation of more diverse
unlabeled images, which can better cover the image space of possible camera angles and lighting conditions,
allowing DisCo to improve model performance when there are few signals from the labeled VQA dataset.
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Integration with TbD-net and NS-CL. DisCo can be integrated with other visual reasoning models,
too. In this paper, we implement TbD-net and NS-CL with DisCo, to showcase flexibility. The results on
TbD-net are presented on the 0.5% Ref split in Table [2] and results on NS-CL in Table 3| The observations
are consistent with the FiLM-based experiments. DisCo similarly outperforms the original training paradigm
and baselines by a noticeable margin.

4.3 Ablations

In Table [ we present ablation studies of our framework with a direct sampler as the image proposal
function. First, we see that directly adding the pseudo-labeling (PL) module (i.e., pseudo-label all images in
the test set with the pretrained FiLM model without any thresholding) significantly degrades model accuracy.
Second, adding our entropy measure (EM) improves compositional generalization performance. This finding
is consistent with our visualizations of the correlation between entropy and accuracy in Fig. Moreover,
adding coverage-based selection (CS) further improves test accuracy.

Table[5]zooms in into the candidate model selection methods. Specifically, we compare test accuracy from our
coverage-based selection strategy (Coverage) with test accuracy from the standard, validation accuracy-based
selection strategy (Val acc). Our framework shows consistent advantage across FiLM, TbD-net, and NS-CL
VQA models. Note that the distribution coverage metric is not directly applicable to pretraining-based
baselines (VAE and SimCLR) because they do not compute pseudo-labels for test images.

Table 5: Comparison of test accuracy with baselines on model selection strategy, trained on 0.5% Ref.

FILM TBD-NET NS-CL
VAL AcC COVERAGE VAL AcC COVERAGE VAL AcC COVERAGE

BAsE 0.9265 N/A 0.8993 N/A 0.7622 N/A
BASE + VAE 0.9387 N/A 0.9018  N/A 0.7572 N/A
BASE + SIMCLR 0.9288 N/A 0.9073 N/A 0.7739 N/A

Base 4+ DisCo-S 0.9605 0.9621 0.9000 0.9206 0.7887 0.8024
Base 4 DisCo-G 0.9508 0.9545 0.9020 0.9189 0.7780 0.7820

4.4 Analyses

Qualitative examples We qualitatively analyze the performance gain brought by our framework. Figure
(top row) shows two example images in the CoGen split B test set. We apply the base FiLM model, the
FiLM model trained with DisCo-S (direct sampling), and the FiLM model trained with DisCo-G (GAN) on
the fully biased Ref dataset and retrieve their predictions.

In the top left example, the test set question asks “What color is the cylinder?” of the brown cylinder in the
image. Brown cylinders are never seen in the fully biased train set, hence the FiLM model answers incorrectly
with red, unable to identify the referred object. DisCo with direct sampling also produces a wrong answer,
likely due to a lack of signal from the labeled image set to bootstrap visual reasoning. In this case, we see
that DisCo with GAN is able to answer correctly with brown and show better compositional generalization.
We conjecture that this is due to the GAN covering a denser image distribution. In the bottom row of
Figure 5] we see two similar images— the left image taken from the train set with a brown cube and cyan
cylinder, and the right image generated by our GAN with a brown cylinder in a closely aligned scene. We
hypothesize that it is diverse image proposals like this that enable visual reasoning models to better learn
the concept of a brown cylinder.

In the top right example of Figure [f] similarly, purple cubes are never seen in the fully biased train set, thus
the FiLM model answers a completely incorrect color, while DisCo with both image proposal functions is
able to generalize to this novel attribute combination.
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Limitations DisCo provides a framework for bootstrapping
visual reasoning; however, it relies on the inductive bias of
convolutional networks to compositionally generalize. Without
priors on visual attributes, given a red cube (a novel color-
shape combination not seen in the train set), the model could
learn that the object is neither red nor a cube—as red could
be learned as a color only existing on cylinders and spheres,
while cube could be learned as a shape that is only paired with
colors that are gray, blue, brown, or yellow, as seen from the
labeled train set. Assumptions about inductive biases of visual
attributes in convolutional networks allow our framework to
learn generalization, and hence DisCo is limited to, and also
especially powerful, in the vision domain.

5 Conclusion

We have presented DisCo, a framework for improving com-
positional generalization by leveraging wunlabeled, out-of-
distribution images through iterative pseudo-labeling. We
studied and proposed the entropy measure as an effective sig-
nal for presupposition adherence and pseudo-label accuracy in
out-of-distribution test examples, and also introduced the dis-
tribution coverage model selection strategy, which well approx-
imates test performance on novel attribute combinations while
only requiring unlabeled data. We demonstrated our frame-
work’s ability to improve compositional generalization perfor-

What color is the cylinder? What color is the cube?

Ground truth: brown Ground truth: purple

FiLM: red FiLM: blue

FiLM + DisCo-S: red FiLM + DisCo-S: purple

FiLM + DisCo-G: brown FiLM + DisCo-G: purple
|

[ |

Image from train set GAN image proposal

Figure 5: Top row: two prediction exam-
ples from FiLM, DisCo-S, and DisCo-G on
fully biased Ref. Bottom row: two closely
aligned images from the train set and from
the GAN proposal function.

mance, and showed potential for future work to leverage un-
labeled images to achieve generalization in evaluation regimes
with combinatorial complexity.

Broader Impact Statement

Our work shows the importance of learning unbiased concepts from datasets with better distribution coverage.
We expect minimal negative societal impact, however, when using our framework, it’s important to ensure
that the unlabeled dataset itself has enough distribution coverage to minimize dataset bias. Our goal is for
DisCo to help models perform well in data-limited environments for good.
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A Appendix

The supplementary material is organized as the following. First, in Section[AT] we provide anonymized code,
and in Section[A2] we describe our dataset construction. Section[A3]shows results from our image proposal
functions, while Section [A-4] and Section [A'5| demonstrate ablations on entropy thresholds and robustness of
the distribution coverage metric. In Section [A.6] we provide details on baseline implementations. Last, in
Section and Section we report quantitative analyses of our model performance as well as qualitative
examples.

A.1 Code release

Code for DisCo with the FiLM model can be found: https://anonymous.4open.science/r/disco-72F5/
README.md, based on the FiLM codebase (https://github.com/ethanjperez/film). We want to highlight
that when using DisCo, it is important to ensure that the unlabeled dataset itself has enough distribution
coverage to minimize dataset bias.

A.2 Dataset

We generate additional CLEVR datasets of two to three objects based on the CoGen (compositional general-
ization) split introduced in|Johnson et al. (2017)). As a recap, in this setup, there are two sets of colors, with
the first as [gray, blue, brown, yellow], and the second as [red, green, purple, cyan]. CoGen split A contains
cubes in the first set of colors, and cylinders in the second. CoGen split B is reversed in the attribute
combinations. Both CoGen split A and B contain spheres of all eight colors. In our construction, the train
set of CoGen split A consists of 8,000 images, and the validation set of CoGen split A and the test set of
CoGen split B consist of 2,000 images each. The larger, unseen test set consists of 8,000 images. The Ref
datasets include questions of the form “What [attribute] is the [referred object]?”, while the OneHop dataset
includes one-hop relation questions as defined in |[Johnson et al.| (2017)).

A.3 Image proposal examples

In Figure [f] we provide examples of image proposals from our two functions—direct sampling and GAN
generation. Both capture a range of novel attribute combinations not in the labeled train set images.
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Direct sampling image proposals GAN generated image proposals

Figure 6: Image proposals from direct sampling and GAN generation, used as unlabeled image input in
DisCo.

A.4 Entropy thresholds

In this ablation study, we validate the robustness of DisCo with respect to different entropy thresholds. We
show that DisCo yields strong results at different values of the hyperparameter. See Table [f] for results of
FiLM with DisCo-S on entropy thresholds at varying percentiles. In addition, we present test accuracy curves
for each run, compared to the base FILM model in Figure [7] The black line indicates where DisCo begins
pseudo-labeling from the pretrained FiLM model. We observe that DisCo considerably improves upon the
base VQA model. These results also show the robustness of our method against different random seeds. For
each run shown, the network weights, as well as the data samples, are generated based on different random
seeds, but the improvements are consistent.

Table 6: Comparison of different percentiles of entropy thresholds on the 0.5% biased Ref dataset.

30TH 35TH 40TH 45TH

FILM + DisCo-S 0.9612 0.9616 0.9667 0.9643

Test accuracy plot

0.96

0.94

0.92

Test accuracy

0.90

0 5 10 15 20 25 30 35
Ten thousand steps

Figure 7: Test accuracy curves of the base FiLM model (red), and DisCo-S at different percentiles of entropy
thresholds.
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A.5 Distribution coverage

We demonstrate that our distribution coverage measure well approximates test accuracy, even when the VQA
model is decreasing in performance. In Figure[§] we report the test accuracy and distribution coverage curves
of a FiLM + DisCo-S experiment at too high an entropy threshold, where performance quickly degrades.
In Figure [9] we present the curves of a FILM + DisCo-G experiment that slightly degrades in performance
before recovering. The Pearson correlation coefficient between test accuracy and distribution coverage for
these experiments are 0.6585 and 0.7987, respectively, both showing highly correlated values allowing for
effective model selection.

Test accuracy plot Distribution coverage plot
0.96 0.98
0.96
0.94 ©
20.94
> 0.92 5
& 2 0.92
=
8 0.90 ;
8 § 0%
8
 0.88 5 0.88
& 5
0.86 “5 0.86
A
0.84 0.84
0.82
0.82
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Thousand Steps Thousand Steps

Figure 8: Test accuracy and distribution coverage curves of an experiment with large decrease in model
performance, with Pearson correlation coefficient of 0.6585.
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Figure 9: Test accuracy and distribution coverage curves of an experiment with a slight decrease in model
performance, with Pearson correlation coefficient of 0.7987.

We see that DisCo does not tend to oversample or propagate errors; instead, it lowers the number of samples
chosen when compositional generalization performance decreases. We conjecture that this is due to our model
correctness regularization of training on labeled triplets, which contain different combinations of attributes.
When the base VQA model is trained on corrupted pseudo-labels, the model is no longer confident in its
predictions given conflicting signals from labeled and pseudo-labeled triplets, and hence fewer samples are
chosen, as intended in our framework.
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A.6 Baseline implementation

We implemented two pretraining approaches that leverage unlabeled images. Specifically, we first train
a variational autoencoder (VAE; Kingma & Welling} 2013) and SimCLR (Chen et all 2020) model and
use their encoding networks to initialize the feature extractor of the visual reasoning model. The VAE
implementation is based on https://github.com/AntixK /PyTorch-VAE, and the SimCLR implementation on
https://github.com/Spijkervet /SIimCLR. For both methods, we use retrieved image features from ResNet101
as input to the VAE and SimCLR model. We add in encoding layers of [Conv2d, BatchNorm2d, and
LeakyReLU] to both networks, and use feature-level reconstruction and contrastive loss to supervise learning.
After pretraining, we use the newly added layers as the additional encoding for our VQA models.

A.7 Quantitative analyses

In Table[7] we examine the test set accuracy per color-shape combination of referred objects in the fully biased
Ref dataset. We compare FiLM with DisCo-S and DisCo-G, and report metrics on attribute combinations
not seen in the labeled train set.

Interestingly, the best-performing model with GAN-generated image proposals performs significantly better
on cubes, with a decrease in accuracy on some cylinders in comparison to FiLM and direct sampling. We
might instead expect uniformly increased performance on all color-shape combinations, but empirical results
reveal that models that compositionally generalize may learn to do so better on some set of novel attribute
combinations.

Table 7: Comparison of test accuracy per color-shape combination of the referred object, trained on the fully
biased Ref dataset.

FiILM FILM + DisCo-S FILM + DisCo-G

RED CUBE 0.6794 0.6589 0.7658
GREEN CUBE 0.6399 0.638 0.7173
PURPLE CUBE 0.6478 0.6478 0.7676
CYAN CUBE 0.6313 0.6313 0.6774
GRAY CYLINDER 0.6481 0.6490 0.6292
BLUE CYLINDER 0.6431 0.6450 0.5752
BROWN CYLINDER 0.6654 0.6774 0.6719
YELLOW CYLINDER 0.6385 0.6459 0.6106
RED SPHERE 1.0 0.994 0.9859
GREEN SPHERE 1.0 0.9937 0.9958
PURPLE SPHERE 0.9958 0.9958 0.9917
CYAN SPHERE 1.0 1.0 0.9981
GRAY SPHERE 0.9948 0.9923 0.9794
BLUE SPHERE 1.0 1.0 0.9961
BROWN SPHERE 1.0 1.0 0.9981
YELLOW SPHERE 1.0 0.9980 0.9940

A.8 Qualitative examples

In Figure [I0] we show examples of VQA pairs at different values of entropy output by the model. We see
that low entropy examples both satisfy presuppositions and correctness, while at a higher entropy value,
only presuppositions are satisfied but the answer predicted by the model for out-of-distribution objects is
incorrect, and at the highest values of entropy there exists presupposition failure. In this way, DisCo is able
to choose suitable pairs to be added to training.
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We also present additional qualitative examples of predictions from FiLLM, DisCo-S, and DisCo-G. In Fig-
ure we see examples where DisCo-S and DisCo-G outperform FiLM (first row) and examples where
DisCo-G outperforms DisCo-S and FiLM (second row), on the fully biased Ref dataset.

What size is the cyan thing? ~ What shape is the rubber thing? What shape is the small thing? What material is the cylinder? What color is the sphere?

Entropy: 0.0000000009 Entropy: 0 0000042114 Entropy: 0.0001019438 Entropy: 0.0019916531 Entropy: 0.6848732829
Presupposition: v Presupposmon Presupposition: v Presupposition: v Presupposition: ¥
Correct: V Correct: V/ Correct: X Correct: X Correct: X

Ground truth: small Ground truth: cube Ground truth: cylinder Ground truth: metal Ground truth: DNE
DisCo-S: small DisCo-S: cube DisCo-S: cube DisCo-S: rubber DisCo-S: green

Figure 10: Qualitative examples VQA pairs at different levels of entropy.

‘What material is the cube? What color is the large thing? What size is the cylinder? ‘What material is brown thing? ~ What color is the cylinder?
Ground truth: rubber Ground truth: red Ground truth: large Ground truth: metal Ground truth: gray

FiLM: metal FiLM: brown FiLM: small FiLM: rubber FiLM: cyan

FiLM + DisCo-S: rubber FiLM + DisCo-S: red FiLM + DisCo-S: large FiLM + DisCo-S: metal FiLM + DisCo-S: gray

FiLM + DisCo-G: rubber FiLM + DisCo-G: red FiLM + DisCo-G: large FiLM + DisCo-G: metal FiLM + DisCo-G: gray

What shape is the purple thing? What color is the cube? What color is the cylinder? What size is cube? What material is the small thing?
Ground truth: cube Ground truth: red Ground truth: yellow ' Ground truth: large Ground truth: metal

FiLM: cylinder FiLM: gray FiLM: purple FiLM: small FiLM: rubber

FiLM + DisCo-S: cylinder FiLM + DisCo-S: gray FiLM + DisCo-S: purple FiLM + DisCo-S: small FiLM + DisCo-S: rubber

FiLM + DisCo-G: cube FiLM + DisCo-G: red FiLM + DisCo-G: yellow FiLM + DisCo-G: large FiLM + DisCo-G: metal

Figure 11: Qualitative examples of FiLM, DisCo-S, and DisCo-G on the fully biased Ref dataset.
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