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Abstract

In recent years, multicalibration has emerged as a desirable learning objective
for ensuring that a predictor is calibrated across a rich collection of overlapping
subpopulations. Existing approaches typically achieve multicalibration by dis-
cretizing the predictor’s output space and iteratively adjusting its output values.
However, this discretization approach departs from the standard empirical risk
minimization (ERM) pipeline, introduces rounding error and an additional sensi-
tive hyperparameter, and may distort the predictor’s outputs in ways that hinder
downstream decision-making.
In this work, we propose a discretization-free multicalibration method that di-
rectly optimizes an empirical risk objective over an ensemble of depth-two deci-
sion trees. Our ERM approach can be implemented using off-the-shelf tree en-
semble learning methods such as LightGBM. Our algorithm provably achieves
multicalibration, provided that the data distribution satisfies a technical condition
we term as loss saturation. Across multiple datasets, our empirical evaluation
shows that this condition is always met in practice. Our discretization-free algo-
rithm consistently matches or outperforms existing multicalibration approaches—
even when evaluated using a discretization-based multicalibration metric that
shares its discretization granularity with the baselines. Code to replicate the
results in this work is available at https://github.com/hjenryin/
Discretization-free-MC.

1 Introduction

In many applications, machine learning predictors are at the heart of the decision-making process,
from finance (Fuster et al., 2022) to healthcare diagnostics (Rajkomar et al., 2018). Despite its
ubiquity, there is growing concern that these predictors might discriminate against individuals in
protected groups. In recent years, multicalibration (Hebert-Johnson et al., 2018) has emerged from
the algorithmic fairness literature as a learning objective to mitigate the risk of algorithmic discrim-
ination. Informally, multicalibration requires a predictor to be calibrated on average over a family
of groups G: for all groups g ∈ G and for all v in the range of f ,

E[(y − f(x)) · g(x)|f(x) = v] = 0

where g : X → {0, 1} is a group indicator function.
∗Part of the work was done at CMU.
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Typically, multicalibration algorithms discretize the output space of the predictor so that the range
of f , R(f), is a finite set. Existing work in the multicalibration literature (Hebert-Johnson et al.,
2018; Globus-Harris et al., 2023; Haghtalab et al., 2023) heavily relies on the discretized output
space or level sets, and all existing algorithms use calibration data to iteratively remap the output of
a predictor f within these level sets to reduce the multicalibration error at each iteration. However,
discretization can be undesirable in practice for several reasons. First, it introduces rounding error
that can distort predictions and degrade accuracy. Second, it adds a sensitive hyperparameter—
the discretization granularity—that must be carefully tuned. As noted by Nixon et al. (2019), this
induces a bias-variance tradeoff: finer discretization improves resolution but requires more data per
bin, while coarser discretization sacrifices precision. Błasiok & Nakkiran (2023) observe that the
calibration error metric can be unstable under different discretization parameters. Finally, when there
are multiple downstream decision makers with heterogeneous utility functions, fixed discretization
may fail to provide the precision necessary for them to make optimal decisions. (Zhao et al., 2021)

Our results and contributions. In a nutshell, we develop a simple, practical, and performant
discretization-free algorithm for multicalibration. In more details:

• Given a black-box predictor, our discretization-free algorithm post-processes its outputs
by solving a square-loss empirical risk minimization (ERM) problem over an ensemble of
depth-two decision trees. Each tree splits on features derived from the predictor’s output
or group membership. This ERM step can be efficiently implemented using standard tree
ensemble methods such as LightGBM (Ke et al., 2017).

• We prove theoretically that our algorithm outputs a multicalibrated predictor, given the
assumption that decision tree ensembles saturate in loss improvement after optimization–
that is, the square loss cannot be further reduced through another round of tree-ensemble
post-processing. Empirically, we observe that this saturation condition consistently holds
across multiple real-world datasets.

• We evaluate our discretization-free approach across a diverse set of tabular, image, and text
datasets. Compared to existing multicalibration methods, our algorithm delivers competi-
tive and often lower multicalibration error—even when baselines are tuned using the same
discretization scheme used for evaluation.

2 Related works

Multicalibration Multicalibration was first introduced by Hebert-Johnson et al. (2018) as a no-
tion of multi-group fairness. This growing line of research is then extended in several directions,
including generalizing or relaxing the notion of multicalibration (Gopalan et al., 2022; Zhang et al.,
2024; Wu et al., 2024; Deng et al., 2023), applying multicalibration to conformal prediction (Jung
et al., 2022), as well as exploring mathematical implications of multicalibration (Jung et al., 2022;
Gopalan et al., 2021; Globus-Harris et al., 2023; Wu et al., 2024; Kim et al., 2022).

Algorithms for multicalibration. All existing multicalibration algorithms are discretization-
based and operate across level sets of the predictor. Hebert-Johnson et al. (2018); Globus-Harris
et al. (2023) audit multicalibration error of the predictor within the level sets in each iteration and
patch identified bias until convergence. Haghtalab et al. (2023) views multicalibration as a multi-
objective optimization problem solved using game dynamics, where the groups and the level sets
are generalized to distributions and loss functions in general.

Multicalibration and Loss Minimization. A key appeal of multicalibration is its alignment with
loss minimization: existing multicalibration algorithms iteratively update the predictor with each
update reducing the square loss. This naturally raises the question—can multicalibration be achieved
directly via a single loss minimization step? Błasiok et al. (2023) show that minimizing population
loss over a class of neural networks of certain size yields multicalibration for groups defined by
smaller networks. However, their result is non-constructive and assumes optimization oracle over
an intractable function class. In contrast, our approach solves a one-shot ERM over a simple class
of tree ensembles, implementable via standard tools. Relatedly, Hansen et al. (2024) ask whether
ERM alone suffices. Our experiments show that it often does not—but our post-processing reliably
recovers multicalibration.
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3 Preliminaries

We consider prediction tasks over a domain Z = X × Y , where X represents the feature domain
and Y represents the label domain. We require the labels to be real values in [0, 1] – that is, the label
can either be a binary outcome for classification with Y = {0, 1} or a real value for regression with
Y = [0, 1]. For a domain Z , we write D ∈ ∆(Z) to denote the true distribution over the labeled
samples.

A predictor f is a map f : X → [0, 1]. We write R(f) to denote the range of a predictor f . We are
interested in the squared error of a predictor f with respect to the underlying distribution D.
Definition 3.1 (Squared loss). The squared loss of a predictor f on distribution D is

ℓ(f,D) = E(x,y)∼D[(f(x)− y)2] (1)

We omit the distributions D from the notation when it is clear from context.

Note that when Y = [0, 1], the squared loss is the familiar MSE loss function, whose application in
multicalibration has been discussed in Globus-Harris et al. (2023). When Y = {0, 1}, the squared
loss is the Brier score, which is commonly used for multicalibration algorithms (Hansen et al., 2024;
Błasiok et al., 2023).

We formally specify the multicalibration notion used in this work. Given the underlying distribution
D and a set of groups G ⊂ 2X , we write g : X → {0, 1}|G| as the high-dimensional group indicator
function, where gi(x) = 1 indicates that the datapoint x ∈ X belongs to the i-th group. To measure
the multicalibration error, we use the following ℓ1 definition (Hansen et al., 2024). Note that the
ℓ1 version of multicalibration is more interpretable than the ℓ2 version, and different versions of
multicalibration can be bounded by each other (Globus-Harris et al., 2023).
Definition 3.2 (Multicalibration Error). Fix a distribution D ∈ ∆(Z) and a predictor f : X →
[0, 1]. We define the multicalibration error of f with respect to D and G as:

max
i∈[|G|]

∑
v∈R(f)

Pr
(x,y)∼D

[f(x) = v, gi(x) = 1] ·
∣∣E(x,y)∼D [f(x)− y | f(x) = v, gi(x) = 1]

∣∣ (2)

We say that a predictor f is α-multicalibrated if its multicalibration error is at most α. Note that our
definitions here and analysis in the next section are population-based, and we leave the finite-sample
analysis to Appendix F.

4 DFMC: A Discretization-Free Algorithm for Multicalibration

In this section, we describe our proposed algorithm for multicalibration. At a high level, we train a
decision tree ensemble of depth 2, using the output of a base predictor f0 and the group membership
as input features, to minimize the squared loss ℓ on the true distribution D.

More formally, consider the following subsets of X used as the splitting criterion for the decision
trees:

S1(f0) =
{
{x ∈ X : f0(x) ≥ v} : v ∈ R(f0) ∪ {0}

}
,

S2(G) =
{
{x ∈ X : gi(x) = 1} : i ∈ [|G|]

}
,

(3)

Each decision tree of depth 2 in the ensemble assigns a real value ci : i ∈ [4] to each of its 4 leaves.
Formally, the set of decision trees is written as T (f0,G), where:

T (f0,G) =
{
c1 · I{x ∈ s1 ∧ x ∈ s2}+ c2 · I{x ∈ s1 ∧ x /∈ s2}+ c3 · I{x /∈ s1 ∧ x ∈ s2}

+ c4 · I{x /∈ s1 ∧ x /∈ s2} : c1, c2, c3, c4 ∈ R, s1 ∈ S1(f0), s2 ∈ S2(G)
} (4)

To find the optimal set of decision trees T ⊆ T (f,G), we use a solver to minimizes the squared loss
and obtain our post-processed predictor:

pG(f0) = argmin
T⊆T (f0,G)

ℓ

(
f0 +

∑
t∈T

t,D

)
(5)
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In practice, the implementation of most solvers does not enforce this exact structure of choosing
splitting criterion. For simplicity, we present our algorithm as in Equation (4), and we explain in
Appendix C why our analysis still holds for them despite such slight differences.

f0(x) ≥ 0.3?

g2(x)?

+0.3

Yes

-0.13

No

Yes

g2(x)?

-0.2

Yes

+0.12

No

No

Tree 1

f0(x)+ + Tree 2 + · · ·

Figure 1: Illustration of the tree ensemble.

Algorithm 1 Discretization-free Multicalibration
(DFMC)
Require: Calibration set D = (X ,Y),

Group indicator function g : X → {0, 1}|G|,
Uncalibrated base model f0 : X → R,
Ensemble solver SOLVEENSEMBLE

1: Set the (|G| + 1)-dimensional input features
X ′ = (f0(X ), g(X ))

2: Set the output features Y ′ = Y − f0(X )
3: return f0(X )+SOLVEENSEMBLE(X ′,Y ′)

An illustration of Equation (5) can be found in Figure 1. Being discretization-free enables our
algorithm to avoid the complexity with discretization, makes it simpler and provides more flexibil-
ity than existing ones. Algorithm 1 outlines how we can optimize for Equation (5) using on-the-
shelf solvers like LightGBM (Ke et al., 2017) or XGBoost (Chen & Guestrin, 2016) with simple
features. Also, although the evaluation of Definition 3.2 still requires discretized predictions, our
discretization-free predictor can be evaluated under flexible discretization scheme with consistently
strong performance. We formalize this flexibility in Definition 4.1.

Definition 4.1 (Discretization Operation). A function f̃m is an m-discretized version of a predictor
f if it maps the continuous output of f to a finite set of m values, with the property that f̃m(x1) ≥
f̃m(x2) whenever f(x1) ≥ f(x2) for any x1, x2 ∈ X . We write the discretization error ϵround as

ϵround = ℓ(f̃ cal
m ,D)− ℓ(f cal,D), (6)

Note that we do not restrict ourselves to a specific discretization function for this evaluation. Round-
ing to the nearest value on a predefined grid, which is commonly used in existing multicalibration
algorithms, is among the possible discretization methods we allow. As we will show shortly, unlike
algorithms that incorporate discretization as an intrinsic component, our discretization-free predictor
performs well under various discretization schemes used solely for evaluation purposes.

Through the following lemmas, we associate the continuous optimization for the squared loss with
the discretized metric of multicalibration.

Lemma 4.2. Consider the post-processing step pG in Equation (5). For all f ∈ [0, 1] and m ∈ N,
and for any m-discretized version f̃m of f , we have

ℓ(pG(f),D) ≤ ℓ(pG(f̃m),D)

The proof follows by constructing a set of trees T ∈ T (f,G) such that f +
∑

t∈T t approximates
pG(f̃m) well.

Lemma 4.3. Given a predictor f whose range is of size m, training an ensemble of decision trees
on f as in the post-processing step in Equation (5) encompasses adding a linear function of the
groups on each output level set of f . That is, f +

m∑
j=1

I{f(x) = vj}

(
cj +

∑
i

cjigi

) ∣∣∣∣∣∣ cji ∈ R

 ⊆
{

f +
∑
t∈T

t

∣∣∣∣∣ T ⊆ T (f,G)
}

(7)

where v1, · · · vm ∈ R(f), v1 < v2 < · · · < vm.

The proof follows by rewriting I{f(x) = vj} as thresholding functions.
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Lemma 4.4. If a predictor f withR(f) = {v1, · · · , vm} has a multicalibration error w.r.t. G larger
than α, then there exists linear functions hj =

∑
i c

j
igi, such that

ℓ(f,D) > ℓ

f +

m∑
j=1

I{f = vj}hj ,D

+ α2. (8)

The proof follows by picking the worst group gk from the definition of multicalibration for each vj
and constructing the linear functions hj = cjkgk.

Before the main theorem, we introduce the following necessary assumption.
Assumption 4.5 (Loss Saturation of Algorithm 1). Given an uncalibrated predictor f0, let f cal =
pG(f0) be our proposed predictor calibrated with Algorithm 1. We assume that the squared loss of
f cal is ϵ-saturated w.r.t pG with a small marginal improvement ϵloss ≪ 1:

ℓ(f cal,D) ≤ ℓ(pG(f
cal),D) + ϵloss (9)

that is, running Algorithm 1 on f cal again gives a small marginal improvement of at most ϵloss.

This is a reasonable assumption because our formulation is essentially a supervised learning problem
with simple features, where the objective is to minimize the squared loss. Decision tree ensembles
are a well-established and widely used method in general for this setting, with mature solvers and
have stood the test of time. Consequently, the loss achieved by our method should already be low,
leaving little room for further improvement. We also provide a numerical simulation in Table 1 on
the datasets to empirically support this assumption.
Theorem 4.6 (Algorithm 1 Yields Small Multicalibration Error Given Assumption 4.5). Let f cal

be the predictor obtained by Algorithm 1, and f̃ cal
m be its m-discretized version. If the discretization

error of f̃ cal
m is ϵround, and the loss of f cal is ϵloss-saturated with respect to pG as in Assumption 4.5,

then the multicalibration error of f̃ cal
m with respect to G is at most

√
ϵloss + ϵround.

Proof. If f̃ cal
m has a multicalibration error larger than α, then post-processing it with pG can reduce

the loss:

ℓ(f̃ cal
m ,D)− ℓ

(
pG(f̃

cal
m ),D

)
=ℓ(f̃ cal

m ,D)− min
T⊆T (f̃cal

m ,G)
ℓ

(
f̃ cal
m +

∑
t∈T

t,D

)
(Equation (5))

≥ℓ(f̃ cal
m ,D)−min

hj

ℓ

f̃ cal
m +

m∑
j=1

I{f̃ cal
m = vj}hj ,D


(Lemma 4.3)

>α2 (Lemma 4.4)

On the other hand, the reduction of loss should be small:

ℓ(f̃ cal
m ,D)− ℓ

(
pG(f̃

cal
m ),D

)
≤ℓ(f cal,D) + ϵround − ℓ

(
pG(f̃

cal
m ),D

)
(Equation (6))

≤ℓ(f cal,D) + ϵround − ℓ
(
pG(f

cal),D
)

(Lemma 4.2)

≤ϵloss + ϵround (Assumption 4.5)

This implies that the multicalibration error of f̃ cal
m is at most

√
ϵloss + ϵround.

Remark 4.7. To wrap up the analysis, we provide a high level comparison of our algorithm with
relevant prior works. The theoretical algorithm proposed in Błasiok et al. (2023) is the most similar
one to ours in that both theoretically achieve discretization-free multicalibration through loss mini-
mization. While they theoretically proved loss saturation for an intractable class of neural networks
by adding more nodes without practical implementation, we empirically verify this assumption for
tree ensembles and provide an efficient algorithm.
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On the other hand, the construction of a tree ensemble is highly relevant to the algorithm presented
in Globus-Harris et al. (2023). Unlike their approach, ours uses the continuous output as a feature
in the ensemble, thereby avoiding discretization. Apart from that, our algorithm is quite similar to
the first iteration of theirs via the relationship shown in Lemma 4.3, with Assumption 4.5 indicating
convergence after this single iteration.

5 Experiments

5.1 Dataset Setup

In this section, we describe the dataset we use and the experiment pipeline.

A common dataset to consider in fairness and multicalibration literature is the ACS dataset, obtained
through the Folktables (Ding et al., 2021) package. The Folktables package defines a rich set of
tasks, and we consider three tasks derived from the dataset: income regression and travel time
regression predicts the person’s income and commute time, and income classification predicts
whether a person’s income is higher than $50,000. On each of these tasks, we define around 50
groups based on the data attributes.

The prior work of Hansen et al. (2024) has pointed out that multicalibration post-processing has
limited effect on tabular data, so we also evaluate our algorithm on various text and image datasets.
Zhang et al. (2017) introduced the UTKFace dataset, with a person’s face image associated with
their age, gender and race. We consider the task of predicting the age of the person given the face,
and use individual’s attribute as the group. ISIC challenge dataset is an image dataset related to
skin lesion, and we considered the task introduced in the ISIC Challenge 2019 (Tschandl et al.,
2018; Codella et al., 2017; Combalia et al., 2019) to predict whether the skin lesion is a melanocytic
nevus or not. The dataset provide metadata including the age, gender or anatomic site of the patient,
and we use these as the group. Finally, we consider the Comment Toxicity Classification dataset
(Borkan et al., 2019) from the WILDS dataset (Koh et al., 2021), which is a text classification task to
predict whether a comment is toxic or not. The WILDS dataset already defines eight groups based
on the identities mentioned in the comment, and we use them as the group.

Detailed description of the dataset, including dataset partitioning and the specific groups, is left to
Appendix D.

5.2 Our algorithms and the baselines

In this section we describe the algorithms evaluated in these experiments, which includes two
discretization-free baselines with no multicalibration guarantee, two existing multicalibration algo-
rithms, and our algorithm. The uncalibrated baseline depends largely on the task: We used linear
models for tabular data, ResNet for image data, and DistilBERT for text data. Due to its dependency
on the specific dataset, further details are left to Appendix D. Another baseline algorithm that we
might be interested in is the multiaccurate predictor (Hebert-Johnson et al., 2018; Roth, 2022),
which guarantees that the predicted mean on each subgroup is close to the true mean on that group.
Although it’s a far weaker notion than multicalibration, it’s an extremely simple method promoting
fairness across subgroups that can be implemented with a single linear model.

The multicalibration algorithms that we compare with are MCBoost and LSBoost. Both require
discretizing the output space in advance and work in an iterative manner by correcting the prediction
on each level set until convergence. MCBoost (Roth, 2022) enumerates over {x : gi(x) = 1, f(x) =
v} for all i ∈ [|G|] and v ∈ R(f) in every single iteration and fixes the subset with the largest
deviation from the true mean by setting the predicted value on that subset to the true mean. LSBoost
(Globus-Harris et al., 2023), on the other hand, considers the groups as a whole. In each iteration,
the whole calibration set is partitioned into multiple level sets based on the current predicted value,
and a weak learner is fit with the group information for each level set using data points in that set.
The predicted value of the weak learner will assign the data points to a new level set for the next
iteration. Finally, we implement our algorithm described in Algorithm 1 with the LightGBM (Ke
et al., 2017) solver.

MCBoost and LSBoost require discretization before calibration, so for each selection of discretiza-
tion, we find the hyperparameters that minimize the multicalibration error on the validation set. As
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Table 1: The empirical marginal improvement of running Algorithm 1 the second time. The im-
provement is minimal, validating Assumption 4.5.

Task ℓ(f0) ℓ(f cal) ℓ(pG(f
cal)) ϵ̂loss = ℓ(f cal)− ℓ(pG(f

cal))

Skin Lesion Classification 0.2262 0.1475 0.1492 −2× 10−3

Income Classification 0.1831 0.1432 0.1431 1× 10−4

Comment Toxicity Classification 0.0589 0.0516 0.0517 −2× 10−5

Age Regression 0.0051 0.0011 0.0011 7× 10−6

Income Regression 0.0414 0.0361 0.0361 6× 10−7

Travel Time Regression 0.0302 0.0298 0.0298 2× 10−6

for the other three algorithms, we just directly minimize the squared error. Further details, includ-
ing training specifications and hyperparameters, are left to Appendix E. For all experiments, we
fix the training set for the uncalibrated baseline and the test set for evaluation. The calibration and
validation set are partitioned 10 times, with the standard deviation indicated in the plots and the
tables.

5.3 Experiment Results

5.3.1 Empirical validation of Assumption 4.5

We first validate Assumption 4.5 empirically: Running Algorithm 1 a second time gives small
marginal improvement. Note that due to the imperfection of optimization, we would not be able
to obtain the true minimizer of the test set. Instead, we run the optimization on the calibration
set with early stopping and present the empirical loss improvement ϵ̂loss = ℓ(p̂G(f)) − ℓ(f) on
the test set. The true ϵloss would contain an additional optimization error term ϵopt, satisfying
ϵloss = ϵ̂loss + ϵopt. We present ϵ̂loss in Table 1 and summarize our first observation:
Observation 1. Across all different datasets and tasks evaluated, the marginal improvement of
running Equation (5) a second time is small, validating the loss saturation assumption in Assump-
tion 4.5.

5.3.2 Threshold-robust evaluation of multicalibration error

In this section, we empirically validate Theorem 4.6 and compared our discretization-free algorithm
with other multicalibration algorithms. Recall that for the evaluation of multicalibration error, the
predictor needs to have a finite range, so we would need to derive a discretized version of a con-
tinuous predictor for evaluation. We ensure a fair comparison across different algorithms by using
the same discretization regime. In particular, we use the grid discretization regime and restrict the
codomain to LS = { 1

2m , 3
2m , · · · , 2m−1

2m }, where m is the number of element in the level set. We
vary m ∈ {10, 20, 30, 50, 75, 100}. While a separate predictor is trained for each m for MCBoost
and LSBoost, we only train a single predictor for our algorithm and then evaluate the multicalibra-
tion error of its m-discretized version with varying m.

We present the multicalibration error versus the number of non-empty level sets in Figure 2.
Observation 2. Although empirical baseline algorithms can obtain a low multicalibration error in
certain cases, post-processing can further decrease the error in general.

A direct observation is that Travel Time Regression is an outlier among the six subplots in Figure 2.
Although in all other datasets evaluated, the uncalibrated baseline has a higher multicalibration error,
compared to other algorithms, such a difference in the error is not observed in this dataset. The
uncalibrated baseline algorithm already obtained low multicalibration error, leaving little room for
improvement for other post-processing methods. This partially echoes the observations in Hansen
et al. (2024) that ERM on certain function classes can already achieve a low multicalibration error
on tabular data; yet it also highlights that post-processing is indeed necessary in general to obtain a
multicalibrated predictor.
Observation 3. Our algorithm achieves multicalibration error that matches and often improves
upon existing methods. This performance advantage persists even when competing algorithms are
specifically tuned using the same discretization scheme used in evaluation.
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Figure 2: Multicalibration error on different datasets. The y-axis is the multicalibration error, and
the x-axis is the size of range, which may not equal m, the size of the codomain, and the error band
displays the standard deviation. The graph shows that, a predictor trained using our algorithm can
be discretized arbitrarily, and its m-discretized version has matching or lower multicalibration error
than the predictor calibrated with other multicalibration algorithm using that specific discretization.

We compare the algorithms at the same range size to minimize the effect of discretization error.
Our discretization-free algorithm was only calibrated once to minimize the squared loss, and in
most cases its m-discretized version has matching or better multicalibration error than the other
multicalibration algorithms, even though these algorithms go through a separate hyperparameter
tuning and calibration process for each discretization m. This observation validates our theoretical
analysis in Theorem 4.6 and demonstrates the benefit of our discretization-free algorithm of being
flexible to down-stream discretization.

5.3.3 Discretization-free fairness through worst-group Smooth ECE

We would also like to evaluate our algorithm with another metric, worst-group smooth expected
calibration error (worst-group smECE), which has also been used as a heuristic metric in Hansen
et al. (2024). smECE was introduced by Błasiok & Nakkiran (2023) as a continuous metric of cali-
bration, and thus we feel it can be suitable for our evaluation. In the context of multi-group fairness,
we could evaluate smECE on all groups that we’re interested in and take the worst group as the final
metric, although it is not directly related to multicalibration. This would also serve as a comple-
ment to the metric of multicalibration, which can be viewed as the group-size-weighted worst-group
binned ECE. The result presented in Table 2 can be summarized by the following observation.

Observation 4. Our discretization-free algorithm achieves better calibration on the worst groups
than other multicalibration algorithms.
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Table 2: The worst-group smECE of the evaluated algorithms, along with their standard deviation.
The values have been multiplied by 1000 for readability. Results show that our discretization-free
algorithm is more calibrated among the worst groups than other multicalibration algorithms.

Method Discretization
Skin

Lesion
Class.

Income
Class.

Comment
Toxicity
Class.

Age
Reg.

Income
Reg.

Travel
Time
Reg.

Uncalibrated Baseline / 290.77 281.81 119.28 111.04 155.13 72.38

Multiaccurate Baseline / 169.28
±6.24

94.05
±5.71

71.38
±6.89

47.54
±0.71

56.61
±0.29

34.94
±5.72

LSBoost

10 146.68
±27.44

102.06
±11.17

41.04
±10.34

41.51
±9.73

72.29
±13.41

58.73
±3.59

20 159.31
±29.24

102.57
±17.25

39.39
±12.74

23.29
±7.00

73.82
±9.76

54.96
±14.69

30 160.80
±36.54

90.17
±6.59

36.61
±9.77

20.25
±4.71

80.03
±13.36

60.88
±13.63

50 147.87
±30.32

102.08
±12.13

38.42
±5.12

25.49
±8.76

82.78
±7.35

55.20
±11.82

75 144.05
±22.57

108.26
±14.03

45.66
±6.55

34.16
±7.26

81.47
±3.62

59.07
±8.73

100 149.77
±26.00

124.94
±20.48

44.28
±7.77

51.13
±11.13

76.83
±3.39

66.59
±5.34

MCBoost

10 278.75
±17.81

259.83
±5.00

78.30
±15.59

106.73
±0.00

154.28
±5.12

59.42
±0.00

20 263.71
±18.93

212.19
±33.65

65.17
±20.58

108.20
±0.00

138.96
±6.81

72.01
±0.00

30 261.02
±26.77

186.57
±41.96

90.66
±17.87

106.34
±0.00

125.01
±16.07

73.96
±0.00

50 252.76
±17.20

182.07
±45.79

86.74
±21.29

112.37
±0.00

141.07
±5.60

69.69
±6.83

75 239.26
±22.52

193.78
±47.80

81.74
±6.30

111.00
±3.72

130.15
±16.26

68.79
±2.25

100 259.49
±21.55

198.78
±31.04

85.24
±9.86

109.82
±3.79

131.43
±11.99

67.30
±10.89

Ours / 89.26
±15.63

87.30
±25.94

24.57
±4.76

20.87
±3.14

44.41
±5.44

31.85
±7.26

5.3.4 Evaluation of loss and accuracy

Apart from multicalibration, some standard metrics might be of interest when evaluating an algo-
rithm. We present accuracy for classification tasks and MSE error for regression tasks. The results
presented in Table 3 yields the following observation:
Observation 5. Our algorithm does not sacrifice standard evaluation metrics like MSE error or
accuracy.

Such results are anticipated, as our algorithm is simply minimizing the loss (namely the MSE error
for regression tasks or the Brier score for classification tasks) based on a set of selected features.

6 Conclusion

In this work, we provide a discretization-free algorithm for multicalibration by solving an ERM
problem with simple features using decision tree ensembles, thereby avoiding the nuisance of dis-
cretization. We prove theoretically that our algorithm outputs a multicalibrated predictor, given
the assumption of loss saturation in tree ensembles, which is consistently validated across multiple
real-world datasets. Our experiments also confirm our algorithm’s strong performance compared to
existing ones.

We believe our work has impact on societal aspects of machine learning. Our algorithm can be ap-
plied to high-stakes decision-making systems in domains such as finance, healthcare, and employ-
ment. The discretization-free nature allows our predictor to serve as a drop-in replacement for an un-
calibrated regressor or binary classifier suitable for different downstream applications; and by fram-
ing multicalibration into a typical loss minimization problem, we provide a simple library-calling
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Table 3: The accuracy (%) of the evaluated algorithms, along with their standard deviation. Results
show that our discretization-free algorithm does not interfere with the standard MSE error of regres-
sion problems.

Method Discretization

Class. Accuracy (%) Reg. MSE Error (×10−3)
Skin

Lesion
Class.

Income
Class.

Comment
Toxicity
Class.

Age
Reg.

Income
Reg.

Travel
Time
Reg.

Uncalibrated Baseline / 70.21 76.71 92.88 5.11 41.39 30.19

Multiaccurate Baseline / 73.19
±0.31

78.97
±0.06

92.89
±0.00

3.51
±0.02

37.92
±0.02

29.76
±0.02

LSBoost

10 77.22
±1.00

77.96
±0.25

92.81
±0.08

2.01
±0.24

39.66
±0.35

31.06
±0.07

20 76.55
±0.95

78.09
±0.33

92.78
±0.06

1.42
±0.16

38.98
±0.31

30.29
±0.09

30 76.86
±0.46

78.16
±0.21

92.78
±0.06

1.36
±0.13

39.03
±0.23

30.25
±0.04

50 77.06
±0.52

78.11
±0.20

92.71
±0.07

1.52
±0.17

39.51
±0.22

30.16
±0.03

75 76.52
±0.72

77.81
±0.27

92.65
±0.04

1.53
±0.19

38.83
±0.19

30.13
±0.03

100 76.12
±0.50

77.60
±0.30

92.81
±0.05

1.72
±0.20

38.80
±0.20

30.17
±0.03

MCBoost

10 71.00
±1.01

76.71
±0.00

92.88
±0.00

5.08
±0.25

42.18
±0.01

31.23
±0.00

20 72.15
±1.63

77.10
±0.34

92.88
±0.00

4.69
±0.30

41.10
±0.23

30.42
±0.00

30 73.54
±1.24

77.23
±0.20

92.88
±0.00

4.92
±0.17

40.70
±0.26

30.31
±0.00

50 72.07
±1.01

77.20
±0.40

92.88
±0.00

4.40
±0.38

40.93
±0.27

30.22
±0.00

75 73.12
±1.00

76.89
±0.17

92.88
±0.00

3.81
±0.36

40.72
±0.32

30.22
±0.01

100 72.29
±1.08

76.70
±0.22

92.87
±0.01

3.88
±0.41

40.95
±0.29

30.18
±0.03

Ours / 78.90
±0.17

79.27
±0.07

92.93
±0.01

1.08
±0.02

36.11
±0.11

29.80
±0.04

implementation that lowers the technical barrier for practitioners to incorporate fairness-aware tech-
niques into their workflows. We believe this work can enhance the adoption of multicalibration
techniques within the machine learning community.

A limitation of this work is that Assumption 4.5 is a heuristic assumption that holds under realistic
settings, but has unrealistic counterexamples described in Appendix B where f0 contains no infor-
mation. From this construction, it seems that the additional improvement ϵloss may depend on the
uncalibrated predictor we start with, namely f0. For future work, it would be interesting to formalize
such dependency and bound the error.

Additionally, the scope of this work primarily focuses on group fairness, requiring binary group
indicators to be explicitly provided as the input to the proposed algorithm, which is a common
setting in group fairness research. (Caton & Haas, 2024) The algorithm does have the potential to
extend to implicit groups, such as groups defined from continuous features, or intersections of the
explicitly provided ones. Continuous features like age could be directly handled by tree-ensemble
solvers. Besides, intersections of the input features could be captured by deeper tree structures. We
designate the empirical performance and theoretical claims of these extensions for future research.
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A Omitted Proofs in Section 4

We would first provide a formal definition of the discretization operation.

Definition A.1 (Discretization Operation). A function f̃m is an m-discretized version of a predictor
f if

• there exists a monotonic non-decreasing function d on [0, 1] such that d(f(x)) = f̃m(x);

• d is right-continuous on [0, 1], that is

lim
x→c+

d(x) = d(c), c ∈ [0, 1);

• |R(f̃m)| = m, i.e., the range of f̃m is of size m.

The additional requirement on right-continuity has minimal effect on the algorithm, but is only
helpful for the proof of the following lemma.
Lemma 4.2. Consider the post-processing step pG in Equation (5). For all f ∈ [0, 1] and m ∈ N,
and for any m-discretized version f̃m of f , we have

ℓ(pG(f),D) ≤ ℓ(pG(f̃m),D)

Proof of Lemma 4.2. Since

ℓ(pG(f),D) = min
T⊆T (f,G)

ℓ

(
f +

∑
t∈T

t,D

)
,

we show that ∀ϵ > 0, there exists T ⊆ T (f,G) such that

ℓ

(
f +

∑
t∈T

t,D

)
≤ ℓ

(
pG

(
f̃m

)
,D
)
+ ϵ.

ℓ

(
f +

∑
t∈T

t,D

)
− ℓ

(
pG

(
f̃m

)
,D
)

=ED

(f +
∑
t∈T

t− y

)2
− ED

[(
pG

(
f̃m

)
− y
)2]

=ED

[(
f +

∑
t∈T

t− pG(f̃m)

)(
f +

∑
t∈T

t+ pG(f̃m)− 2y

)]

≤

√√√√√ED

∣∣∣∣∣f +
∑
t∈T

t− pG(f̃m)

∣∣∣∣∣
2

√√√√√ED

(∣∣∣∣∣f +
∑
t∈T

t

∣∣∣∣∣+ ∣∣∣pG(f̃m)
∣∣∣+ 2|y|

)2


≤4

√√√√√ED

∣∣∣∣∣f +
∑
t∈T

t− pG(f̃m)

∣∣∣∣∣
2
.

Thus, it suffices to show that

∀ϵ > 0,∃T ⊆ T (f,G),

∣∣∣∣∣f +
∑
t∈T

t− pG(f̃m)

∣∣∣∣∣ ≤ ϵ/4 (10)

Since pG(f̃m) = f̃m +
∑

t∈T ′ t where T ′ ∈ T (f̃m,G), we write∣∣∣∣∣f +
∑
t∈T

t− pG(f̃m)

∣∣∣∣∣ ≤
∣∣∣∣∣f +

∑
t∈T1

t− f̃m

∣∣∣∣∣+
∣∣∣∣∣∑
t∈T2

t+
∑
t∈T ′

t

∣∣∣∣∣
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and try to construct T1, T2 ⊆ T (f,G) to bound the two terms.

We first show the second term can be zero by showing that T (f̃m,G) ⊆ T (f,G). By Equations (3)
and (4), it suffices to show that

S1
(
f̃m(x)

)
⊆ S1(f), (11)

that is,
∀v ∈ [0, 1],∃u ∈ [0, 1] s.t. {x ∈ X : f̃m(x) ≥ v} = {x ∈ X : f(x) ≥ u}

assuming {x ∈ X : f̃m(x) ≥ v} ≠ ∅.
Let

u = min{f(x) : f̃m(x) ≥ v} ∈ [0, 1].2

It follows directly that ∀x s.t. f̃m(x) ≥ v, f(x) ≥ u.

On the other hand, since f̃m = d(f) for some monotonically non-decreasing d, we have ∀x s.t.
f(x) ≥ u, f̃m(x) = d(f(x)) ≥ d(u). Since u ∈ {f(x) : f̃m(x) ≥ v} = {y : d(y) ≥ v}, we have
d(u) ≥ v. Then {x ∈ X : f̃m(x) ≥ v} = {x ∈ X : f(x) ≥ u} follows directly. This indicates we
can construct T2 = T ′.

It remains to show that

∀ϵ > 0,∃T1 ⊆ T (f,G) such that

∣∣∣∣∣f +
∑
t∈T1

t− f̃m

∣∣∣∣∣ ≤ ϵ/4. (12)

Let ui = min{f(x) : f̃m(x) ≥ vi} where v0 < · · · < vm−1 is the range of f̃m. We partition [0, 1]
into 2

ϵ intervals
[0, ϵ/2), [ϵ/2, 2ϵ/2), · · · , [1− ϵ/2, 1].

For each ui, we denote n(ui) as the largest integer such that n(ui) ·ϵ/2 ≤ ui. We further split the in-
terval containing ui into two intervals [n(ui)·ϵ/2, ui) and [ui, (n(ui)+1)·ϵ/2). In this way, we par-
tition [0, 1] into 2

ϵ+m−1 intervals such that each interval has size ϵ
2 , and that u1, · · · , um−1 can only

be at the boundaries of some intervals. We write the intervals as [l1, r1), · · · , [l2/ϵ+m−1, r2/ϵ+m−1]
where l1 = 0, r2/ϵ+m−1 = 1.

We then construct the following trees

ci = d(li)−
li + ri

2
, ti(x) = I{f(x) ≥ li} ·

ci −
i−1∑
j=1

cj

 , T1 = {ti}2/ϵ+m−1
i=1

Then ∀x, assume f(x) ∈ [lk, rk) for some k. Then∣∣∣∣∣f(x) +∑
t∈T

t(x)− f̃m(x)

∣∣∣∣∣
=

∣∣∣∣f(x) + d(lk)−
lk + rk

2
− d(lk)

∣∣∣∣
=

∣∣∣∣f(x)− lk + rk
2

∣∣∣∣ ≤ rk − lk
2

≤ ϵ

4
.

Therefore, we show that ∀ϵ > 0, ∃T1 ⊆ T (f,G) such that
∣∣∣f +

∑
t∈T1

t− f̃m

∣∣∣ ≤ ϵ/4.

2The minimum exists because the infimum belongs to the set: inf{f(x) : f̃m(x) ≥ v} ∈ {f(x) : f̃m(x) ≥
v}. Recall that there exists a monotonic non-decreasing d that’s right-continuous on [0, 1], s.t. f̃m(x) =

d(f(x)). It suffices to show that y0 ≜ inf{y : d(y) ≥ v} ∈ {y : d(y) ≥ v} ≜ S. By definition of
infimum, ∀n ∈ N∗, ∃yn ∈ S s.t. y0 ≤ yn < y0 + 1

n
. Then limn→∞ yn = y0. Since d is right-continuous,

limn→∞ d(yn) = d(y0). Since d(yn) ≥ v, we have d(y0) ≥ v. Thus, y0 ∈ S.
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Lemma 4.3. Given a predictor f whose range is of size m, training an ensemble of decision trees
on f as in the post-processing step in Equation (5) encompasses adding a linear function of the
groups on each output level set of f . That is, f +

m∑
j=1

I{f(x) = vj}

(
cj +

∑
i

cjigi

) ∣∣∣∣∣∣ cji ∈ R

 ⊆
{

f +
∑
t∈T

t

∣∣∣∣∣ T ⊆ T (f,G)
}

(7)

where v1, · · · vm ∈ R(f), v1 < v2 < · · · < vm.

Proof of Lemma 4.3. ∀h ∈
{

f +
∑m

j∈1 I{f(x) = vj}
(
cj +

∑
i c

j
igi

) ∣∣∣ cji ∈ R
}

, let hj = cj +∑
i c

j
igi. Then we can write h as

h = f +

m∑
j∈1

I{f(x) = vj}hj

= f +

m∑
j∈1

I{f(x) ≥ vj}

(
hj −

j−1∑
i=1

hi

)

≜ f +

m∑
j∈1

I{f(x) ≥ vj}h′
j ,

where h′
j is still a linear function of gi. Let h′

j = c′
j
+
∑

i c
′j
igi. By Equation (4),

∀i, j, I{f ≥ vj}c′
j
igi ∈ T (f,G)

because we can set

s1 = {x ∈ X : f(x) ≥ vj−1}, s2 = {x ∈ X : gi(x) = 1}, c1 = c′
j
i , c2 = c3 = c4 = 0.

And also,
∀j, I{f ≥ vj−1}c′

j ∈ T (f,G)
because we can set

s1 = {x ∈ X : f(x) ≥ vj−1}, s2 = {x ∈ X : g1(x) = 1}, c1 = c2 = c′
j
, c3 = c4 = 0.

Thus, ∀h ∈
{

f +
∑m

j∈1 I{f(x) = vj}
(
cj +

∑
i c

j
igi

) ∣∣∣ cji ∈ R
}

, we have

h ∈

{
f +

∑
t∈T

t

∣∣∣∣∣ T ⊆ T (f,G)
}
.

Lemma 4.4. If a predictor f withR(f) = {v1, · · · , vm} has a multicalibration error w.r.t. G larger
than α, then there exists linear functions hj =

∑
i c

j
igi, such that

ℓ(f,D) > ℓ

f +

m∑
j=1

I{f = vj}hj ,D

+ α2. (8)

Proof of Lemma 4.4. Assume f has the largest calibration error on the k-th group, namely

k = argmax
i∈[|G|]

∑
v∈R(f)

Pr
(x,y)∼D

[f(x) = v, gi(x) = 1] ·
∣∣E(x,y)∼D [f(x)− y | f(x) = v, gi(x) = 1]

∣∣
Then we let

cji =

{−E(x,y)∼D [f(x)− y | f(x) = vj , gi(x) = 1] , if i = k;

0, if i ̸= k.
(13)
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Let cjk = αj . Then hj = αjgk. Then,

ℓ(f,D)− ℓ

f +
∑

j∈[|R(f)|]

I{f = vj}hj ,D


=

m∑
j=1

Pr
(x,y)∼D

[f(x) = vj ]ED

[
(f(x)− y)

2 | f(x) = vj

]
−

m∑
j=1

Pr
(x,y)∼D

[f(x) = v]ED

[
(f(x) + hj(x)− y)

2 | f(x) = vj

]
=−

m∑
j=1

Pr
(x,y)∼D

[f(x) = vj ]ED
[
2hj(x)(f(x)− y) + h2

j (x) | f(x) = vj
]

=−
m∑
j=1

Pr
(x,y)∼D

[f(x) = vj ]ED
[
2αjgk(f(x)− y) + α2

jgk | f(x) = vj
]

=− Pr
(x,y)∼D

[gk(x) = 1]

m∑
j=1

Pr
(x,y)∼D

[f(x) = vj ]ED
[
2αj(f(x)− y) + α2

j | f(x) = vj , gk(x) = 1
]

= Pr
(x,y)∼D

[gk(x) = 1]

m∑
j=1

Pr
(x,y)∼D

[f(x) = vj ]α
2
j

The final equation is due to αj = −E(x,y)∼D [f(x)− y | f(x) = vj , gi(x) = 1]. By the definition
of multicalibration error, Equation (13) indicates that

m∑
j=1

Pr
(x,y)∼D

[f(x) = vj ]|αj | >
α

Pr(x,y)∼D[gk(x) = 1]
.

By Cauchy-Schwarz inequality, we have

ℓ(f,D)− ℓ

f +
∑

j∈[|R(f)|]

I{f = vj}hj ,D


= Pr

(x,y)∼D
[gk(x) = 1]

m∑
j=1

Pr
(x,y)∼D

[f(x) = vj ]α
2
j

≥ Pr
(x,y)∼D

[gk(x) = 1]

(∑m
j=1 Pr(x,y)∼D[f(x) = vj ]αj

)2
∑m

j=1 Pr(x,y)∼D[f(x) = vj ]

>
α2

Pr(x,y)∼D[gk(x) = 1]
≥ α2.

B Discussion on the applicability of the algorithm

Our algorithm consistently achieved low multicalibration error across all the datasets we exper-
imented with, demonstrating its effectiveness in realistic datasets. However, to the best of our
knowledge, we could not find a guarantee that our algorithm will always return a model with low
multicalibration error. The main difficulty is to obtain a guarantee that Assumption 4.5 holds.

On the other hand, it’s possible to construct an example where our algorithm fails to achieve low
multicalibration error. Unlike the above experiments where we post process upon a predictor, the
construction uses an unrealistic setting where the base predictor outputs a constant value. Assume
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the goal is to obtain multicalibration w.r.t. three binary groups, namely g(x) ∈ {0, 1}3, with gi(x) =
0 w.p. 0.5, and gi’s being independent. The ground truth y(x) is given by

y(x) =(1− γ)

(
1

2
g1(x) +

1

4
g2(x) +

1

8
g3(x)

)
+ γ(g1(x)⊕ g2(x)⊕ g3(x)),

where γ ∈ (0, 1) is a constant and ⊕ denotes the XOR operation. Note that the base predictor is a
constant, so a loss minimizer given by our algorithm is

f(x) = (1− γ)

(
1

2
g1(x) +

1

4
g2(x) +

1

8
g3(x)

)
+

γ

2
,

as an ensemble of decision trees of depth 2 will never be able to capture the XOR operation. The
first term makes sure that f(xi) ̸= f(xj) whenever g(xi) ̸= g(xj), leaving a multicalibration error∑

v∈R(f)

Pr
(x,y)∼D

[f(x) = v, gi(x) = 1]·

∣∣E(x,y)∼D [f(x)− y | f(x) = v, gi(x) = 1]
∣∣

=
∑

v∈R(f)

Pr
(x,y)∼D

[f(x) = v, gi(x) = 1] · γ
2
=

γ

4
.

In this example, ℓ(f,D) = γ2/4, and since f(x) outputs a different value for different value of g(x),
running our algorithm a second time gives a zero-error pG(f) = y(x), making ϵloss = γ2/4. This
large improvement is a violation of Assumption 4.5, which explains why the algorithm is not able
to achieve low multicalibration error in this case. This is mainly due to the lack of information in
the base predictor, rendering the ensemble less useful. Again, we emphasize that this is construction
is often unrealistic as we usually have a non-trivial base predictor that gives meaningful prediction
before we seek to calibrate it for fairness or robustness across distributions.

C Implementation of the trees in established tree-ensemble solvers

In Equation (4), we defined the set of trees T of our algorithm, where we require that each tree
splits on a single threshold and a single group. However, this might not be what solvers like Ke
et al. (2017) and Chen & Guestrin (2016) implement. In fact, with f0(x) and gi given as the input,
depth-2 trees in those solvers are given by

T ′(f0,G) =
{
c1 · I{x ∈ s1 ∧ x ∈ s2}+ c2 · I{x ∈ s1 ∧ x /∈ s2}+ c3 · I{x /∈ s1 ∧ x ∈ s3}

+ c4 · I{x /∈ s1 ∧ x /∈ s3} : c1, c2, c3, c4 ∈ R, s1, s2, s3 ∈ S1(f0) ∪ S2(G)
} (14)

where S1 and S2 are the same as Equation (3). We want to show that our arguments in Section 4
still hold for such implementation.

From Equation (14) we see that T ⊆ T ′. If T is substituted by T ′, Lemma 4.2 would still be
valid, as guaranteed by Equation (11) and Equation (12), which still hold for the expanded set T ′.
Lemma 4.3 would still be valid as well, as{

f +
∑
t∈T

t

∣∣∣∣∣ T ⊆ T (f,G)
}
⊆

{
f +

∑
t∈T

t

∣∣∣∣∣ T ⊆ T ′(f,G)

}
.

Lemma 4.4 does not involve the definition of T . Therefore, the analysis in Section 4 applies to these
established solvers.

D Description of Datasets

In this section we describe the datasets we use for evaluation the proposed method.
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Table 4: The number of groups defined for the ACS dataset.

Attribute
Number of groups defined on the attribute

Income Regression Income Classification Travel Time Regression
Race 5 5 5

Gender 2 2 2
Age 5 5 5

Education 6 6 6
Occupation 30 30 33

Total 48 48 51

D.1 ACS Dataset

The American Community Survey (ACS) dataset is a public dataset that contains demographic in-
formation about the US population, and can be accessed through the folktables package (Ding
et al., 2021). In this work we consider three tasks using data retrieved from this dataset, namely
Income Regression, Income Classification, and Travel Time Regression. We used the subset of the
2018 census data in California.

Data preprocess Folktables already defines the features associated with each task and pro-
vides a preprocessing filter that extracts a set of reasonably clean records. We used the provided
filter to preprocess the data. Additionally, for income regression task, since the income has a long
tail, scaling the income value to [0, 1] would lead to a large mass of data points around 0. As imple-
mented in Globus-Harris et al. (2023), we filter out the data points with income higher than 100,000
and scale the income to [0, 1]. Travel time regression does not have a similar long tail, so we directly
scale the travel time to [0, 1].

Dataset partition and the uncalibrated base predictors Given the features provided in
Folktables that does not contain nan features, we fit a linear regressor for regression tasks
and a linear SVM model for classification tasks using randomly sampled 50,000 data entries. Apart
from that, we set aside 12,000 data entries for the test set and 18,000 entries for the calibration and
validation set.

Groups In order to create a rich set of groups, we construct the binary groups using the five at-
tributes in the dataset: race, gender, age, education and occupation. We transformed the categorized
features into one-hot encoding. Specifically, we used age groups instead of the numerical age, and
we categorized the occupation by the first two digits of the occupation codes. For each category, as
long as it contains more than 1% of the data, we accept it as a group. In this way, we defined around
50 groups for each of the three tasks. (See Table 4)

D.2 CivilComments Dataset

This dataset came from the WILDS dataset(Koh et al., 2021; Borkan et al., 2019) which collected
447,998 comments labeled by crowd workers. The task is to predict whether a comment is consid-
ered toxic or not.

Dataset partition and the uncalibrated base predictor Koh et al. (2021) partitioned the dataset
into train set (60%), validation set (10%) and test set (30%), and provided a baseline predictor.
We set aside one-sixth of the training set and combine it withe validation set for calibration and
validation. As for the base predictor, we also followed the training of the baseline algorithm in
the original paper and trained a DistilBERT (Sanh et al., 2020) model using the same specified
hyperparameters and settings.

Groups Koh et al. (2021) provides eight predefined groups based on the identity terms mentioned
in the comments, namely male, female, LGBTQ, Christian, Muslim, other religions, black, and
white. We use these groups for the multicalibration evaluation.
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D.3 UTKFace Dataset

The UTKFace dataset (Zhang et al., 2017) consists of 23,707 face images with annotations of age,
gender and race, ranging from 1 to 120 years old. We use the dataset for the age regression task.

Dataset partition and the uncalibrated base predictor We used 40% of the data for training,
40% for calibration and validation, and 20% for testing. The base predictor was trained on the
training set with a ResNet-18 model for 30 epochs with early stopping enabled.

Groups We defined 16 groups (2 for gender, 5 for race, and 9 for age) on this dataset.

D.4 ISIC Dataset

The International Skin Imaging Collaboration (ISIC) dataset is a public dataset that contains images
of skin lesions together with patient metadata and diagnosis label. We use the data provided in the
ISIC 2019 challenge(Tschandl et al., 2018; Codella et al., 2017; Combalia et al., 2019). The original
task is to classify the skin lesion images into one of the seven categories, and we consider the derived
binary classification task for predicting the category NV, which accounts for 50.8% of the dataset.

Dataset partition and the uncalibrated base predictor Since the test labels are not made public,
we only use the 25,331 training images. The images in the dataset come from three sources: 49.0%
from BCN (Combalia et al., 2019), 39.5% from HAM (Tschandl et al., 2018), and 11.5% from
Codella et al. (2017) or other sources. We use the 12413 BCN images as the training set for the base
predictor, three-fourths of the HAM images (7511 images) as the calibration and validation set, and
the remaining 5407 images as the test set. The base predictor was trained on the training set with
a ResNet-18 multi-classification model for 20 epochs with early stopping enabled. The predicted
probability of the category NV was used as the base predictor output.

Groups The ISIC challenge provides metadata, which includes approximate age and gender of the
patients as well as the anatomy site. Just like in the ACS dataset, we consider a category as a group
if it has at least 1% of the data. In total 14 binary groups (2 for gender, 5 for anatomy site, and 7 for
age) were defined.

E Details of calibration algorithms

In our experiments, we fix the uncalibrated base predictor and the test set and introduce randomness
by partitioning the remaining part into an equal-sized calibration and validation set 10 times. After
finding the best hyperparameters on the 10 folds, we calibrate the base predictor using this specific
choice of hyperparameters and report the performance on the test set. For LSBoost and MCBoost,
since the number of level sets m needs to be determined at calibration time, we sweep over the
hyperparameters on the ten folds for all 6 level sets we evaluated, namely {10, 20, 30, 50, 75, 100},
and choose the best hyperparameters for each level set.

We now introduce the algorithms’ implementation detail and the hyperparameters involved:

Multiaccurate Baseline It’s been shown in Roth (2022) that a linear model with ℓ1 regularization
guarantees multiaccuracy. We use the binary groups as the feature and sweep over the regularization
strength λ in {0, 10−6, 10−5, · · · , 10−2}.

Ours Our algorithm works pretty much out-of-the-box by passing the uncalibrated prediction, the
groups and the ground truth to the LightGBM(Ke et al., 2017) solver. To avoid the complexity of
determining the optimal number of trees, we use early stopping with patience of 50 iterations and
set a high maximum limit of 5000 trees. 30% of the calibration set is set aside during calibration to
monitor if the loss continues to decrease, and this is different from the validation set, which is solely
used to tune the hyperparameters. In other words, given a set of hyperparameters, the calibration set
is the only data that is used, though internally, only 70% of the calibration set is used for learning
the parameters. The depth of each tree is two, as indicated in the main body. We vary the learning
rate across five exponentially spaced points from 0.01 to 1 and adjust the feature subsampling ratio
linearly across 10 points from 0.1 to 1.
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LSBoost LSBoost is introduced in Globus-Harris et al. (2023), and we used the implementation
provided by the authors, with minor modifications in the multiprocessing implementation and round-
ing the output to the 1/m grids. Unlike the algorithm described in the original paper, the authors also
implemented early stopping in their code base, and for better performance, this is also enabled in
our experiment with 30% of the calibration set as described in the previous paragraph. Considering
that our algorithm uses decision trees of depth 2 as the weak learners, we experimented with trees
of depth both 1 and 2 during hyperparameter sweep. Other hyperparameters include the learning
rate, which can be 0.1, 0.3, or 1, and the subsampling ratio for the weak learner, which is adjusted
linearly across 10 points from 0.1 to 1. In total, 2× 3× 10 = 60 hyperparameter combinations are
evaluated on all ten folds and all six calibration level sets.

MCBoost We implement the algorithm described in Roth (2022), which is a variant of the prim-
itive multicalibration algorithm proposed by Hebert-Johnson et al. (2018). This algorithm doesn’t
involve any hyperparameters, but it’s known that it can be prone to overfit, so we also set aside a
proportion of the calibration set for early stopping. We consider this proportion as a hyperparameter,
and swept over the values {0.1, 0.2, 0.3, 0.4, 0.5}. Like LSBoost, the hyperparameters are evaluated
on all ten folds and all six calibration level sets.

The uncalibrated predictors for the image or text task were trained on an A100 GPU or an RTX 4090
GPU. Other predictors, as well as the calibrators, were trained on an AMD 64-core CPU. Running
all the experiments takes approximately 6 hours.

F Statistical Learning Guarantees for Tree Ensemble Optimization

In Section 4, we established a theoretical framework that connects multicalibration error with loss,
demonstrating that when decision tree ensembles achieve effective loss minimization, the multical-
ibration error can be bounded. However, in the finite sample regime, there would be an additional
excess risk term due to the empirical (instead of distributional) loss minimization. This section
extends our analysis, examining how a finite sample affects these theoretical guarantees.

Recall that we constructed the trees in the ensemble using the splitting criteria defined in Equa-
tion (3)

S1(f0) =

 ⋃
v∈R(f0)∪{0}

{x ∈ X : f0(x) ≥ v}

 ,

S2(G) =

 ⋃
i∈[|G|]

{x ∈ X : gi(x) = 1}

 ,

Each tree in T (f0,G) can be formally written as

c1 · I{x ∈ s1 ∧ x ∈ s2}+ c2 · I{x ∈ s1 ∧ x /∈ s2}+ c3 · I{x /∈ s1 ∧ x ∈ s2}+ c4 · I{x /∈ s1 ∧ x /∈ s2}

where s1 ∈ S1(f0), and s2 ∈ S2(G). Here we can require c1, c2, c3, c4 ∈ [−1, 1], because the
ground truth label Y is in [0, 1].

As shown in equation 5, the post-processed predictor is obtained by solving

pG(f0) = argmin
T⊆T (f0,G)

ℓ

(
f0 +

∑
t∈T

t,D

)

With only a finite number of samples, the excess risk measures the discrepancy between the loss of
the empirical predictor p̂G(f0) and the optimal one on the distribution pG(f0)

ϵexcess = ℓ (p̂G(f0),D)− ℓ (pG(f0),D)

With this term, the multicalibration error α in Theorem 4.6 would change to be

α ≤
√
ϵloss + ϵround + ϵexcess
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ϵloss only depends on the distribution, and is assumed to be small according to Assumption 4.5. We
also do not focus on the case where the rounding error ϵround dominates neither. In this section, we
try to derive a bound on the excess risk ϵexcess by analyzing the convergence and the generalization
of loss minimization on our ensemble. We then try to provide an asymptotic analysis of how many
samples are required to achieve a target multicalibration error α by considering α = O(

√
ϵexcess).

F.1 Loss minimization in practice

Loss minimization is typically done through adding trees to the ensemble

pG(f0) = argmin
T⊆T (f0,G)

ℓ

(
f0 +

∑
t∈T

t,D

)

In practice, we typically limit the number of trees added, namely the size of subset T , by setting a
maximum limit or through early stopping. This keeps the running time of the algorithm reasonable,
and can balance optimization error reduction against model complexity. This motivates the intro-
duction of a parameter NT to represent the maximum number of trees in our ensemble. We define
the function class FNT

that we empirically optimize over as

FNT
=

{
f0 +

n∑
i=1

ti

∣∣∣∣∣n ≤ NT , ti ∈ T (f0,G)

}

F.2 Rademacher Complexity of FNT

The generalization error increases as NT increases and as the model becomes more complex. We
use the Rademacher complexity to quantify the complexity so as to bound the generalization error
using the number of samples, the number of trees, and the number of groups. We first recall the
definition of the Rademacher complexity of a class of functions
Definition F.1. For a hypothesis class H and a sample size n, the Rademacher complexity Rn(H)
is defined as

Rn(H) = Eσ,S [sup
h∈H

1

n

n∑
i=1

σih(xi)]

where S = {x1, x2, ..., xn} is a sample of n points drawn i.i.d. from distribution D, and σ =
{σ1, σ2, ..., σn} are independent Rademacher random variables (taking values +1 or−1 with equal
probability).

We now state several key lemmas that will be used in our analysis. These lemmas are standard
results in statistical learning theory and can be found in Mohri et al. (2018).
Lemma F.2 (Massart’s Lemma). Let A ⊆ Rm be a finite set, with r = maxx∈A ∥x∥2, then the
following holds

Eσ

[
1

m
sup
x∈A

m∑
i=1

σixi

]
≤

r
√

2 log |A|
m

where σis are independent uniform random variables taking values in {−1,+1} and x1, . . . , xm

are the components of vector x.

Lemma F.3 (Talagrand’s Contraction Lemma). Let H be a class of real-valued functions. If ϕ :
R→ R is a Lipschitz function with Lipschitz constant L, then

Eσ

[
sup
h∈H

1

n

n∑
i=1

σiϕ(h(xi))

]
≤ L · Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(xi)

]
Lemma F.4 (Sum Rule). For any two hypothesis setsH andH′ of functions mapping from X to R

Rm(H+H′) = Rm(H) +Rm(H′)

whereH+H′ = {h+ h′ : h ∈ H, h′ ∈ H′} is the sum class.

21



To analyze the Rademacher complexity of our tree ensemble function class FNT
, we begin by ana-

lyzing the components that make up our trees. We introduce the following auxiliary function classes

• F1 = {I{x ∈ s1}, I{x /∈ s1} | s1 ∈ S1(f0)}: the set of threshold indicator functions
I{x ∈ s1} = I{f0(x) ≥ v} for v ∈ R(f0) ∪ {0} and their complements I{x /∈ s1} =
I{f0(x) < v}

• F2 = {I{x ∈ s2}, I{x /∈ s2} | s2 ∈ S2(G)}: the set of group indicator functions I{x ∈
s2} = I{gi(x) = 1} for i ∈ [|G|] and their complements I{x /∈ s2} = I{gi(x) = 0}

We proceed through the following steps
Lemma F.5. For the threshold indicator function class F1 = {I{x ∈ s1}, I{x /∈ s1} | s1 ∈
S1(f0)}, the Rademacher complexity is

Rn(F1) = O(n−1/2)

Proof. Let S = {x1, . . . , xn} be a sample, and let σ1, . . . , σn be Rademacher random variables.
Consider the values f0(x1), . . . , f0(xn) and rearrange them in non-decreasing order as f0(x(1)) ≤
. . . ≤ f0(x(n)).

For any threshold v ∈ R(f0) ∪ {0}, there exists a k ∈ {0, 1, . . . , n} such that I{f0(x(i)) ≥ v} = 1
for i > k and I{f0(x(i)) ≥ v} = 0 for i ≤ k. Thus,

n∑
i=1

σiI{f0(xi) ≥ v} =
n∑

i=k+1

σ(i)

where σ(i) is the Rademacher variable corresponding to x(i).

Similarly, for the complement indicator
n∑

i=1

σiI{f0(xi) < v} =
k∑

i=1

σ(i)

Therefore

sup
f∈F1

n∑
i=1

σif(xi) = max

{
max

0≤k≤n

∣∣∣∣∣
k∑

i=1

σ(i)

∣∣∣∣∣ , max
0≤k≤n

∣∣∣∣∣
n∑

i=k+1

σ(i)

∣∣∣∣∣
}

Since the Rademacher variables are symmetric, both terms have the same distribution, and we have

Eσ

[
sup
f∈F1

1

n

n∑
i=1

σif(xi)

]
=

1

n
Eσ

[
max

0≤k≤n

∣∣∣∣∣
k∑

i=1

σi

∣∣∣∣∣
]

We now need to bound Eσ[max0≤k≤n |
∑k

i=1 σi|]. Let Sk =
∑k

i=1 σi. Using Doob’s martingale
inequality, for any λ > 0

P

(
max

0≤k≤n
|Sk| ≥ λ

)
≤ E[S2

n]

λ2
=

n

λ2

Using the formula for the expectation of a non-negative random variable

E
[
max

0≤k≤n
|Sk|

]
=

∫ ∞

0

P

(
max

0≤k≤n
|Sk| ≥ t

)
dt

≤
∫ ∞

0

min
(
1,

n

t2

)
dt

=

∫ √
n

0

1dt+

∫ ∞

√
n

n

t2
dt

=
√
n+

(
−n

t

) ∣∣∣∣∣
∞

√
n

=
√
n+
√
n = 2

√
n
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Therefore

Eσ

[
max

0≤k≤n

∣∣∣∣∣
k∑

i=1

σi

∣∣∣∣∣
]
≤ 2
√
n

And

Rn(F1) =
1

n
Eσ

[
max

0≤k≤n

∣∣∣∣∣
k∑

i=1

σi

∣∣∣∣∣
]
≤ 2
√
n

n
=

2√
n
= O(n−1/2)

Lemma F.6. For the group indicator function class F2 = {I{x ∈ s2}, I{x /∈ s2} | s2 ∈ S2(G)},
the Rademacher complexity is

Rn(F2) = O

(√
log(|G|)

n

)

Proof. We prove by applying Lemma F.2 (Massart’s Lemma). We first identify the set A and com-
pute the parameter r in the lemma.

Let S = {x1, . . . , xn} be a sample. For each function f ∈ F2, we can represent it as a vector
xf = (f(x1), . . . , f(xn)) ∈ {0, 1}n ⊂ Rn. Let A = {xf : f ∈ F2} be the set of all such vectors.

Note that |A| = |F2| ≤ 2|G|, since F2 consists of at most |G| group indicator functions and their
complements.

For xf ∈ A, since f(xi) ∈ {0, 1} for all i, we have

∥xf∥2 =

√√√√ n∑
i=1

f(xi)2 =

√√√√ n∑
i=1

f(xi) ≤
√
n

Therefore, r = maxx∈A ∥x∥2 ≤
√
n.

By Massart’s Lemma

Eσ

[
1

n
sup
x∈A

n∑
i=1

σixi

]
≤

r
√
2 log |A|
n

≤
√
n ·
√

2 log(2|G|)
n

=

√
2 log(2|G|)√

n

= O

(√
log(|G|)

n

)

By definition, this expectation is precisely the Rademacher complexity Rn(F2), thus completing the
proof.

Lemma F.7. For the product class consisting of all possible products of indicators from F1 and F2,
denoted as F1 ⊗F2 = {f1 · f2 | f1 ∈ F1, f2 ∈ F2}, the Rademacher complexity is

Rn(F1 ⊗F2) = O

(√
log(|G|)

n

)

Proof. For any f1 ∈ F1 and f2 ∈ F2, we have the identity

f1 · f2 =
1

2
[(f1 + f2)

2 − f2
1 − f2

2 ].
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Therefore, the product class F1 ⊗F2 is a subset of

1

2
[(F1 + F2)

2 + (−1) · F2
1 + (−1) · F2

2 ],

where F2 = {f2 : f ∈ F} and (F1 + F2)
2 = {(f1 + f2)

2 : f1 ∈ F1, f2 ∈ F2}.
Using the properties of Rademacher complexity, we can obtain

Rn(F1 ⊗F2) ≤
1

2
[Rn((F1 + F2)

2) +Rn(F2
1 ) +Rn(F2

2 )].

By Talagrand’s Contraction Lemma, for the squaring operation (which is Lipschitz with constant 2
when the norms of the function output are bounded by 1)

Rn((F1 + F2)
2) ≤ 2 ·Rn(F1 + F2) = 2 · [Rn(F1) +Rn(F2)]

Similarly,

Rn(F2
1 ) ≤ 2 ·Rn(F1), Rn(F2

2 ) ≤ 2 ·Rn(F2)

Substituting these bounds give

Rn(F1 ⊗F2) ≤
1

2
[2(Rn(F1) +Rn(F2)) + 2Rn(F1) + 2Rn(F2)] = 2Rn(F1) + 2Rn(F2)

Given that Rn(F1) = O(n−1/2) and Rn(F2) = O(
√
log(|G|)/n), when |G| > 1, the dominant

term is Rn(F2). Therefore,

Rn(F1 ⊗F2) = O

(√
log(|G|)

n

)
.

Proposition F.8. The Rademacher complexity of the tree ensemble function class FNT
is bounded

by

Rn(FNT
) = O

(
NT

√
log(|G|)

n

)

Proof. First, we consider the Rademacher complexity for the class of trees with 4 leaves, denoted
as T (f0,G). Each tree in T (f0,G) can be expressed as a linear combination of 4 indicator products,
corresponding to the 4 leaves

c1 · I{x ∈ s1 ∧ x ∈ s2}+ c2 · I{x ∈ s1 ∧ x /∈ s2}+ c3 · I{x /∈ s1 ∧ x ∈ s2}+ c4 · I{x /∈ s1 ∧ x /∈ s2}

Let H1 = {c1 · I{x ∈ s1 ∧ x ∈ s2} : s1 ∈ S1(f0), s2 ∈ S2(G), c1 ∈ [−1, 1]}, and similarly define
H2, H3, and H4 for the other terms. The indicator products like I{x ∈ s1 ∧ x ∈ s2} are elements
of F1 ⊗ F2. By Talagrand’s Contraction Lemma (Lemma F.3), since the coefficients ci ∈ [−1, 1],
they are bounded by Cmax = 1. The function ϕ(h) = c · h for a fixed c ∈ [−1, 1] is Lipschitz with
constant |c| ≤ 1. Therefore, for each term j ∈ {1, 2, 3, 4}

Rn(Hj) ≤ 1 ·Rn(F1 ⊗F2) = O

(√
log(|G|)

n

)
.

Since we can write

FNT
= { f0 }+

NT∑
i=1

(H1 +H2 +H3 +H4) ,

and the Rademacher complexity of a singleton set is 0, we can repeatedly apply Lemma F.4 to obtain

Rn(FNT
) ≤ NT ·O

(√
log(|G|)

n

)
= O

(
NT

√
log(|G|)

n

)
.

This completes the proof.

24



F.3 Optimizing over FNT
and its Convergence Rate

As NT grows larger, more trees are added, which enables a more accurate optimization of the loss.
We calculate the convergence of the tree ensemble as NT increases by analyzing the convergence
rate of the optimization algorithm used to construct the tree ensemble.

Although LightGBM is often a practical choice for minimizing the loss and is used for our experi-
ments, we do not restrict ourselves to any solver in Algorithm 1 in Section 4. For the purpose of this
convergence analysis, we will analyze an alternative algorithm, SquareLev.R, introduced by Duffy
and Helmbold Duffy & Helmbold (2002). All results and algorithm details in this subsection are
derived from their work.

Like LightGBM, the SquareLev.R algorithm is a boosting algorithm designed to iteratively reduce
the squared loss. It achieves this by minimizing the variance of the residuals at each step. The
residual for sample xi at the beginning of step k is defined as

r
(k−1)
i = yi − Fk−1(xi),

where Fk−1(xi) is the prediction of the ensemble after k − 1 base learners have been added. The
minimization of the variance of the residuals aligns with the purpose of loss minimization, as they
are equivalent up to a constant shift of the predictor.

Algorithm 2 SquareLev.R Algorithm Duffy & Helmbold (2002)

1: Input: A sample S = {(x1, y1), (x2, y2), . . . , (xm, ym)}, a base learning algorithm, and pa-
rameters ρ, Tmax

2: Set D(xi)← 1/m and t← 1
3: Initialize master function F1 to the zero function
4: for i = 1 to m do
5: ri ← yi − F1(xi) ▷ Initial residuals, effectively r(0)

6: end for
7: while ∥r − r̄∥22 ≥ mρ and t < Tmax do
8: t← t+ 1
9: for i = 1 to m do

10: ỹi ← ri − 1
m

∑
j rj

11: end for
12: S′ ← {(x1, ỹ1), . . . , (xm, ỹm)}
13: Call base learner with distribution D over S′, obtaining hypothesis f
14: ϵt ← ((r−r̄)·(f−f̄))

∥r−r̄∥2∥f−f̄∥2

15: αt ← ϵt∥r−r̄∥2

∥f−f̄∥2

16: Ft ← Ft−1 + αtf
17: for i = 1 to m do
18: ri ← yi − Ft(xi)
19: end for
20: end while
21: Output: Ft

The pseudocode for the SquareLev.R algorithm is presented in Algorithm 2. Based on Theorem 4.1
and 4.2 from Duffy & Helmbold (2002), we can characterize the convergence of the SquareLev.R
algorithm using the Pearson correlation (also referred to as the ”edge” in weak learning) between
the residuals and the base learner output, specifically the ϵt term.

Proposition F.9. The variance of the residuals is reduced by a factor of (1 − ϵ2k) during step k in
the SquareLev.R algorithm. If the edges of the weak hypotheses used by SquareLev.R are bounded
below by ϵmin > 0, then the variance of residuals after NT steps, then the variance of residuals is
bounded by

V ar(r(NT )) ≤ V ar(r(0))(1− ϵ2min)
NT .

Since the squared error of a shifted ensemble is equivalent to this variance of residuals, this implies
a similar exponential reduction in the empirical loss.
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F.4 Combined Analysis and Sample Complexity

We now combine the Rademacher complexity analysis with the convergence rate results to establish
the sample complexity for achieving a target multi-calibration error.
Theorem F.10. With n samples taken i.i.d. from the distribution D, the excess risk of minimizing
the loss on the ensemble SNT

by running the SquareLev.R algorithm for NT iterations is bounded
with probability 1− δ by

O
(
(1− ϵ2min)

NT
)
+O

(
NT

√
log(|G|)

n

)
+O

(√
log(1/δ)

n

)
.

This result follows from combining the optimization error (governed by the convergence rate of the
empirical loss) and the generalization error (governed by the Rademacher complexity).

Given that the multi-calibration error is bounded by the square root of the true expected loss ϵloss
(as stated in Theorem 4.6), to achieve a multi-calibration error bounded by α, we require that this
true expected loss be bounded by α2. This leads to the following corollary
Corollary F.11. If the number of trees NT and the sample size n should satisfy

NT = O
(
ϵ−2
min log(1/α)

)
and

n = Ω
(
α−4ϵ−4

min log(|G|) log
2(1/α) + α−4 log(1/δ)

)
,

minimizing the loss on ensembles defined in Equation (5) by running the SquareLev.R algorithm for
NT iterations using n samples taken i.i.d. from the distribution D gives a multi-calibration error
less than α with probability 1− δ when the discretization error is small and Assumption 4.5 holds.

Proof. For the multi-calibration error to be less than α, we need the empirical risk, as bounded by
Theorem F.10, to be ≤ α2. We aim for each of the three terms in the bound to be O(α2). For
simplicity in balancing, let’s set each term to be ≤ Kα2/3 for some constant K.

For the first term (empirical optimization error)

(1− ϵ2min)
NT ≤ Kα2

3
,

taking logarithms and using the approximation log(1− x) ≤ −x for x ≥ 0 gives

NT ≥
2 log(1/α)− log(K/3)

ϵ2min

= O
(
ϵ−2
min log(1/α)

)
For the second term

NT

√
log(|G|)

n
≤ Kα2

3
,

substituting NT = O(ϵ−2
min log(1/α)) gives

n = Ω
(
α−4ϵ−4

min log
2(1/α) log(|G|)

)
.

And for the third term √
log(1/δ)

n
≤ Kα2

3
,

solving for n gives
n = Ω

(
α−4 log(1/δ)

)
.

Combining these constraints on n, the overall sample size is determined by the sum of these require-
ments

n = Ω
(
α−4ϵ−4

min log(|G|) log
2(1/α) + α−4 log(1/δ)

)
.

This completes the proof.

Corollary F.11 provides clear guidance on the relationship between the desired multi-calibration
error α, the number of trees NT , and the required sample size n to ensure the true expected loss is
sufficiently small. This indicates that, even when we only have finite samples, the main conclusion
still holds.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
move the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No]
” provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list”,

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly outlined the contributions and the scope at the end of the
introduction and in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: See Appendix B for a discussion of Assumption 4.5. We validated the as-
sumption empirically across a wide range of datasets, and provided an unrealistic coun-
terexample.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See Section 4 for the assumption, and Appendix A for the complete proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We provided the experimental setup in Section 5 and detailed specifications
in Appendices D and E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. Releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We made public the code, the results and the instructions to reproduce them at
https://github.com/hjenryin/Discretization-free-MC. All packages
and dataset we use are publicly available, and the download link is provided in the link as
well.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided the detailed experiment specification in Appendices D and E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We repeated our experiments on 10 folds and reported the mean and standard
deviation either using error bands (in figures) or the values (in tables).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: We specified the compute resources at the end of Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not identify any harm in the research process and does not anticipate
harmful impact.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed broader impacts in our conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not provide novel datasets nor pretrained models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the datasets we use in Appendix D and the algorithms we
use in Appendix E.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: We have not released any new assets at this moment.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/
2025/LLM) for what should or should not be described.
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