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Abstract

Aerial-Ground Person Re-Identification (AG-ReID) is a
practical yet challenging task that involves cross-platform
matching between aerial and ground cameras. Existing
person Re-Identification (Re-ID) methods are primarily de-
signed for homogeneous camera settings, such as ground-
to-ground or aerial-to-aerial matching. Therefore, these
conventional Re-ID approaches underperform due to the
significant viewpoint discrepancies introduced by cross-
platform cameras in the AG-ReID task. To address this lim-
itation, we propose a novel and efficient approach, termed
View-Invariant Feature Learning for Aerial-Ground Per-
son Re-Identification (VIF-AGReID), which explores view-
invariant features without leveraging any auxiliary infor-
mation. Our approach introduces two key components:
(1) Patch-Level RotateMix (PLRM), an augmentation strat-
egy that enhances rotational diversity within local regions
of training samples, enabling the model to capture fine-
grained view-invariant features, and (2) View-Invariant An-
gular Loss (VIAL), which mitigates the impact of perspec-
tive variations by imposing angular constraints that expo-
nentially penalize large angular deviations, optimizing the
similarity of positive pairs while enhancing dissimilarity
for hard negatives. These components interact synergisti-
cally to drive view-invariant feature learning, enhancing ro-
bustness across diverse viewpoints. Extensive experiments
on the CARGO, AG-ReIDv1, and AG-ReIDv2 benchmarks
demonstrate the effectiveness of our method in addressing
the AG-ReID task.

1. Introduction
Person Re-Identification (Re-ID) aims to identify a target
person across multiple non overlapping surveillance cam-
eras, serving as a cornerstone in intelligent security sys-
tems and public safety applications [32, 39, 45]. Driven
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Figure 1. Illustration of the aerial-ground camera network: (a)
the ground camera (CCTV) captures frontal or backward views of
individuals, while (b) the aerial camera (drone) captures top-to-
bottom perspective images. The contrasting viewpoints of these
cameras highlight the challenges posed by perspective variations
in the AG-ReID task.

by deep learning advancements, Re-ID methods have made
significant progress, effectively addressing various chal-
lenges such as illumination variations [15, 40], occlusions
[13, 27], low image resolutions [8, 38], background bias
[14, 36], misalignment [23, 34], and clothing changes [9,
18]. However, these traditional Re-ID methods are mainly
designed for homogeneous camera settings, such as ground-
to-ground [25, 44, 46] or aerial-to-aerial [17, 30, 43] match-
ing. Ground cameras (CCTV), typically deployed in devel-
oped areas such as urban infrastructure and public stations,
whereas aerial cameras (UAV/drone), often utilized in un-
derdeveloped or remote regions like mountains and forests.
Due to their complementary nature, real-world surveillance
systems increasingly adopt cross-platform camera networks
to enhance monitoring capabilities in diverse environments.

The integration of cross-platform camera networks sig-
nificantly enhances the effectiveness of person Re-ID in
real-world scenarios. For instance, a suspect attempting
to evade CCTV surveillance may escape into rural areas
where ground-based cameras are unavailable. Similarly, in
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search-and-rescue missions, aerial cameras can provide cru-
cial coverage in dense forests where ground surveillance is
limited. Despite its advantages, cross-platform camera se-
tups introduce substantial variations in perspective and ori-
entation, as ground cameras primarily capture frontal or rear
views, while aerial cameras predominantly capture top-to-
down perspectives, as shown in Figure 1. However, exist-
ing Re-ID methods, which are primarily trained on homoge-
neous camera settings, struggle to address these significant
viewpoint discrepancies, resulting in degraded performance
in cross-platform scenarios.

In this paper, we address the practical challenge of
Aerial-Ground Person Re-Identification (AG-ReID), specif-
ically focusing on perspective variations in cross-platform
camera networks. To tackle this challenge, we propose
a new framework, View-Invariant Feature Learning for
Aerial-Ground Person Re-Identification (VIF-AGReID),
which leverages view-invariant features to mitigate the im-
pact of significant viewpoint variations that hinder aerial-
ground matching. Considering that current AG-ReID
datasets suffer from inadequate viewpoint diversity in their
training samples. For instance, the AG-ReIDv1 [28] dataset
employs only one ground and one aerial camera to capture
images, which is insufficient for training a robust Re-ID
model capable of handling perspective variations in AG-
ReID tasks. Building on patch-based augmentation strate-
gies [12, 16], we design a novel augmentation technique,
dubbed Patch-Level RotateMix (PLRM), which enhances
rotational diversity at the patch level during training. Un-
like existing patch-based methods, PLRM is specifically
tailored for AG-ReID, boosting fine-grained rotational di-
versity while preserving the original information, thereby
strengthening fine-grained, view-invariant feature learning.
Furthermore, to address substantial view discrepancies, we
introduce a View-Invariant Angular Loss (VIAL) that in-
corporates a view-invariant penalty, which exponentially
penalizes large angular deviations between positive pairs,
and a hard negative mining mechanism, which explicitly
penalizes hard negative pairs with high cosine similarity.
By leveraging cosine similarity and imposing angular con-
straints, the loss function dynamically adjusts penalties
based on viewpoint discrepancies, ensuring robust and con-
sistent feature learning across diverse perspectives.

The key contributions of this paper are as follows:

• We explore person Re-ID across cross-platform camera
networks, specifically addressing the challenges posed by
extreme perspective variations in the AG-ReID task. We
propose a simple yet efficient framework, called VIF-
AGReID, that learns view-invariant representations with-
out relying on auxiliary information or annotations.

• We introduce a new Patch-Level RotateMix (PLRM)
augmentation technique, which leverages a Multi-Patch-
Level Probability mechanism to probabilistically enrich

rotational diversity within local regions of training sam-
ples, while retaining the original information, enabling
the model to explore fine-grained view-invariant features.

• To mitigate significant viewpoint discrepancies, we de-
sign a View-Invariant Angular Loss (VIAL) that inte-
grates a view-invariant penalty and hard negative mining
to optimize similarity for positive pairs while maximizing
dissimilarity for hard negatives through angular relation-
ship modeling.

• Experimental results demonstrate that our method signif-
icantly outperforms state-of-the-art approaches on three
benchmark AG-ReID datasets, achieving superior perfor-
mance in AG-ReID task. Additionally, comprehensive
ablation studies validate the effectiveness of each pro-
posed component.

2. Related Work

2.1. Person Re-Identification
General person Re-ID methods primarily focus on target
image matching under homogeneous camera settings, such
as ground-only or aerial-only scenarios. In recent years,
ground-only person Re-ID has seen significant progress,
driven by the introduction of large-scale datasets such as
CUHK03 [22], Market1501 [45], and DukeMTMC-reID
[31]. This progress has spurred the development of vari-
ous deep learning-based approaches, including CNN-based
techniques [10, 26, 34, 35, 37, 48] and more advanced
transformer-based models [7, 11, 32]. In contrast, aerial-
only person Re-ID has received relatively less attention,
with only a few pioneering studies introducing relevant
datasets and methodologies [2, 21, 43]. However, conven-
tional Re-ID methods are primarily designed for homoge-
neous camera environments and heavily rely on identity
appearance cues under consistent viewpoints. As a result,
their effectiveness diminishes in heterogeneous camera se-
tups, where substantial viewpoint discrepancies exist be-
tween aerial and ground cameras.

2.2. Aerial-Ground Person Re-Identification
Person Re-ID becomes particularly challenging when target
images are captured under heterogeneous cameras, as sig-
nificant viewpoint discrepancies alter the visual structure,
complicating the identification process due to the varying
representations of the same identity from different perspec-
tives. To bridge the gap between aerial and ground plat-
forms, Nguyen et al. [28] introduced the first dataset, AG-
ReIDv1, which provides both identity and attribute anno-
tations for cross-platform person Re-ID tasks. Addition-
ally, they proposed an explainable model that leverages
attribute information to guide the network in addressing
cross-view challenges, and later extended it with a head cue
stream [29] to enhance local feature learning. Similarly,
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Figure 2. An overview of our proposed VIF-AGReID framework, featuring two key components: Patch-Level RotateMix (PLRM) augmen-
tation and View-Invariant Angular Loss (VIAL). PLRM probabilistically enhances rotational diversity in local regions of training samples,
while VIAL optimizes feature similarity and hard negative separation by imposing angular constraints to penalize perspective variations.
Together, these components promote robust view-invariant feature learning across diverse perspectives.

Zhang et al. [42] developed CARGO, a large-scale syn-
thetic dataset designed for AG-ReID. Furthermore, they in-
troduced a View-Decoupled Transformer (VDT) that disen-
tangles view-related and view-independent features by in-
corporating auxiliary view labels and a dedicated view clas-
sifier. However, acquiring such auxiliary information and
annotations remains costly and labor-intensive in real-world
applications.

This paper presents a simple yet effective VIF-AGReID
framework that enables view-invariant feature learning
without relying on auxiliary information or additional an-
notations. Our approach achieves view-invariance by en-
hancing rotational diversity within local regions of training
samples and applying angular constraints, making the VIF
approach more effective for the AG-ReID task.

2.3. Data Augmentation

Despite the impressive performance of deep learning mod-
els in computer vision tasks, overfitting remains a sig-
nificant challenge, particularly when training data is lim-
ited. Data augmentation has proven to be an effective solu-
tion, increasing diversity during training and improving the
model’s generalization ability. Data augmentation strate-
gies can be categorized into two types: Image-level and
Patch-level augmentation techniques. Image-level strate-
gies typically include random cropping, horizontal flipping,
and rotation, which involve resizing, flipping, and rotat-
ing the entire image. Recently, more advanced methods
based on image mixing and automated augmentation, such
as Mixup [41], Mixstyle [49], AutoAugment [3], and Ran-
dAugment [4], have demonstrated significant improvements

in model performance. On the other hand, Patch-level aug-
mentation focuses on manipulating local regions of the im-
age. Techniques such as random erasing [47], which re-
moves portions of the image, and Cutout [6], which masks
specific areas, aim to enhance model accuracy. To strike
a balance between accuracy and robustness, Patch Gaus-
sian [24] adds Gaussian noise to selected patches, while
PatchShuffle [16] randomly shuffles pixels within a local
patch.

In contrast, our PLRM augmentation probabilistically
enhances rotational diversity within local regions while pre-
serving original information by randomly rotating and mix-
ing patches with their counterparts. This makes it well-
suited for AG-ReID, enabling fine-grained, view-invariant
feature learning and effectively addressing challenges posed
by varying perspectives.

3. Proposed Work

3.1. VIF-AGReID Framework

The overview of our proposed VIF-AGReID method is il-
lustrated in Figure. 2, highlighting two key novel com-
ponents: the Patch-Level RotateMix (PLRM) augmenta-
tion strategy and the View-Invariant Angular Loss (VIAL).
Given a batch of identity images captured from both
ground and aerial cameras, PLRM partitions each image
into patches and probabilistically selects certain patches
for random rotation and blending with their corresponding
counterparts. This strategy maintains original information
while generating rotational diversity in local regions, effec-
tively enhancing fine-grained, rotation-robust model train-
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Figure 3. Comparison of Random Rotation and Patch-Level Ro-
tateMix augmentation strategies.

ing. Meanwhile, VIAL optimizes feature similarity and
hard negative separation by enforcing angular constraints to
mitigate perspective variations, ensuring robust and consis-
tent feature learning across diverse viewpoints. These two
proposed components complement each other, enabling ef-
fective view-invariant feature learning.

3.2. Patch-Level RotateMix Augmentation
Person Re-ID across aerial and ground cameras presents
significant challenges due to extreme viewpoint variations,
leading to discrepancies in feature representations. The lim-
ited perspective diversity in existing aerial-ground datasets
further constrains the performance of AG-ReID models.
Additionally, conventional random rotation augmentation
indiscriminately modifies entire images, failing to enhance
local diversity or capture the complex transformations re-
quired for robust, view-invariant feature learning, as high-
lighted in Figure 3. To address these issues, we introduce
the Patch-Level RotateMix (PLRM) augmentation method,
which divides each image into patches and employs a Multi-
Patch-Level Probability mechanism. This mechanism as-
signs patch-level probabilities that increase gradually from
the image edges toward the center, thereby prioritizing cen-
tral patches that are more likely to contain identity-related
information. The probabilistically selected patches are
then randomly rotated and blended with their correspond-
ing counterparts. Through patch-level rotation and blend-
ing operations, our approach introduces diverse fine-grained
rotational variations while preserving local structural infor-
mation. By synthesizing fine-grained rotational transforma-
tions within local regions, PLRM enhances feature robust-
ness against viewpoint variations.

Specifically, let B = {Xi}Ni=1 denote a batch of input im-
ages captured from both ground and aerial cameras, where
N is the batch size, and Xi ∈ RC×H×W represents an im-
age with C channels and spatial dimensions H × W . For
each image Xi, an image-level probability Pimg determines
whether it undergoes transformation, enabling the model to
learn from original images. Let r be a random variable fol-
lowing a Bernoulli distribution, r ∼ Bernoulli(Pimg), i.e.,

r = 1 with probability Pimg and r = 0 with probability
(1− Pimg). The resulting image X̃ is computed as:

X̃ = (1− r) ·X + r · T (X ), (1)

where T (·) represents the PLRM transformation.
The selected image X is divided into non-overlapping

patches of size n× n, defined as:

X = {xi,j}
H
n ,Wn
i=1,j=1, (2)

where xi,j ∈ RC×n×n is the patch at position (i, j).
A Multi-Patch-Level Probability mechanism is applied

to calculate the probability Pi,j for each patch, determining
whether the patch should undergo a RotateMix transforma-
tion. Patches closer to the center of the image, which are
typically more related to the identity, are assigned higher
probabilities. The patch-level probability is defined as:

Pi,j = Clip (P0 + Cweight×1−

√
(i− (H/n

2 ))2 + (j − (W/n
2 ))2√

(H/n
2 )2 + (W/n

2 )2

 , 0, 1

 , (3)

where P0 is the base probability for patch transformation,
and Cweight is the center weighting factor, which assigns
higher probabilities to patches near the image center. The
Clip(., 0, 1) function ensures that Pi,j remains within the
valid range [0, 1].

For probabilistically selected patches, a rotation angle
θi,j is sampled from a uniform distribution:

θi,j ∼ U(−θmax, θmax), θmax ∈ [0, 180] (4)

The patch xi,j is then rotated by the angle θi,j , result-
ing in the rotated patch xrot

i,j . The rotated patch is blended
with the corresponding original patch using a blending fac-
tor α ∈ [0, 1] to obtain the RotateMix patch xRotMix

i,j :

xRotMix
i,j = α · xrot

i,j + (1− α) · xi,j , (5)

where α controls the relative contribution of the original and
rotated patches.

Thus, PLRM enhances rotational diversity within local
regions while maintaining the structural integrity of the
image. By leveraging the Multi-Patch-Level Probability
mechanism, the transformation prioritizes rotational diver-
sity in identity-relevant patches. Consequently, PLRM en-
hances the robustness and performance of the Re-ID model
against perspective variations, compelling the model to fo-
cus on learning view-invariant features.
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3.3. View-Invariant Angular Loss
To further enhance the model’s ability to learn view-
invariant features for the aerial-ground matching task, we
introduce the View-Invariant Angular Loss (VIAL). This
loss function integrates a view-invariant penalty to mitigate
large angular deviations between positive pairs, effectively
handling viewpoint variations. Additionally, VIAL explic-
itly accounts for hard negative pairs, encouraging the model
to learn more discriminative features robust to perspective
and orientation changes.

Given a batch of feature embeddings F = {fi}Ni=1,
where fi ∈ RD represents the feature embedding of the ith

sample with D dimensions, the cosine similarity between a
pair of embeddings fi and fj is computed as:

cos(θij) =
fi · fj

∥fi∥∥fj∥
, (6)

where θij is the angle between the embeddings fi and fj .
The angular deviation between these embeddings is defined
as:

∆θij = 1− cos(θij), (7)

To effectively model viewpoint variations, we introduce
a view-invariant penalty, which dynamically scales the loss
using an exponential function based on the cosine similarity.
This ensures a balanced trade-off between view-invariance
and feature discriminability, preventing over-penalization
while enhancing robustness against viewpoint shifts. The
penalty term is formulated as:

Pview-invariant = 1 + λe−β cos(θij), (8)

where β and λ are hyper-parameters controlling the de-
cay rate and the strength of the penalty, respectively. This
penalty encourages the model to capture view-invariant rep-
resentations by adjusting the loss according to viewpoint-
induced feature variations. Thus, the VIAL loss function
for positive pairs is formulated as:

LVIAL =
∑

(i,j)∈pos

(1− cos(θij)) ·
(
1 + λe−β cos(θij)

)
, (9)

To further improve feature discriminability, particularly
for hard negative pairs (i.e., embeddings from different
identities that exhibit high cosine similarity in the feature
space), we integrate a Hard Negative Mining (HNM) strat-
egy [33]. This leads to the View-Invariant Angular Loss
with Hard Negative Mining (VIAL-HNM), formulated as:

LVIAL-HNM =
1

NT

 ∑
(i,j)∈pos

(1− cos(θij)) ·
(
1 + λe−β cos(θij)

)

+
∑

(i,j)∈hard neg

(cos(θij)− (1−M))

 , (10)

where M defines the margin threshold for identifying hard
negatives, and NT denotes the total number of positive and
hard negative pairs.

By leveraging both the view-invariant penalty and hard
negative mining, VIAL effectively addresses the challenges
posed by viewpoint variations in AG-ReID. It enhances fea-
ture similarity for positive pairs while enforcing better sep-
aration of hard negatives, ensuring the model learns more
robust and view-invariant representations.

3.4. Overall Optimization
The optimization objective of our framework is to learn
discriminative and view-invariant feature representations
for effectively distinguishing individuals across aerial and
ground views. To achieve this, we combine three key loss
functions: Identity loss, Triplet loss, and VIAL-HNM loss.

Identity loss ensures identity discrimination by minimiz-
ing classification error:

LIdentity = −
N∑
i=1

yi log(Pi), (11)

where yi is the ground truth and Pi is the predicted proba-
bility for the ith sample.

Triplet loss encourages intra-class compactness and
inter-class separation:

LTriplet =
∑
i,j,k

max
(
∥fi − fj∥2 − ∥fi − fk∥2 +m, 0

)
,

(12)
where fi, fj , and fk are feature embeddings of the anchor,
positive, and negative samples, respectively, and m is the
margin.

The total objective is formulated as:

LTotal = LIdentity + γLTriplet + δLVIAL-HNM, (13)

where γ and δ are hyper-parameters that balance objectives.

4. Experiments
Important: For performance evaluation on the AG-ReIDv2
[29] dataset, analysis of PLRM and balancing hyper-
parameters, effectiveness of the Multi-Patch-Level Proba-
bility mechanism, cross-domain evaluation, and retrieval vi-
sualizations, please refer to the supplementary material.

4.1. Datasets and Evaluation Protocol
AG-ReIDv1 [28] dataset contains 21,983 images of 388
identities, captured using one ground camera and one aerial
camera. The aerial camera captures images from altitudes
ranging between 15 and 45 meters.
CARGO [42] dataset is a synthetic dataset containing
108,563 images of 5,000 identities, captured by 8 ground
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Table 1. Comparison with state-of-the-art methods on the CARGO dataset under four evaluation protocols (“ALL”, “G↔G”, “A↔A”,
“A↔G”), as described in Section 4.1. Rank1, mAP, and mINP are reported in (%) with the best results highlighted in bold.

Methods Protocol 1: ALL Protocol 2: G↔G Protocol 3: A↔A Protocol 4: A↔G
Rank1 mAP mINP Rank1 mAP mINP Rank1 mAP mINP Rank1 mAP mINP

SBS[10] 50.32 43.09 29.76 72.31 62.99 48.24 67.50 49.73 29.32 31.25 29.00 18.71
PCB[35] 51.00 44.50 32.20 74.10 67.60 55.10 55.00 44.60 27.00 34.40 30.40 20.10
BoT[26] 54.81 46.49 32.40 77.68 66.47 51.34 65.00 49.79 29.82 36.25 32.56 21.46

MGN[37] 54.81 49.08 36.52 83.93 71.05 55.20 65.00 52.96 36.78 31.87 33.47 24.64
VV[19, 20] 45.83 38.84 39.57 72.31 62.99 48.24 67.50 49.73 29.32 31.25 29.00 18.71
AGW[39] 60.26 53.44 40.22 81.25 71.66 58.09 67.50 56.48 40.40 43.57 40.90 29.39

ViT[7] 61.54 53.54 39.62 82.14 71.34 57.55 80.00 64.47 47.07 43.13 40.11 28.20
VDT[42] 64.10 55.20 41.13 82.14 71.59 58.39 82.50 66.83 50.22 48.12 42.76 29.95

VIF (Ours) 65.71 57.46 44.12 83.93 74.19 62.30 82.50 66.98 51.44 51.25 44.55 31.20

Table 2. Comparison with state-of-the-art methods on the
AG-ReIDv1 dataset under two evaluation protocols (“A→G”,
“G→A”), as described in Section 4.1. Rank1, mAP, and mINP
are reported in (%) with the best results highlighted in bold.

Methods Protocol 1: A→G Protocol 2: G→A
Rank1 mAP mINP Rank1 mAP mINP

SBS[10] 73.54 59.77 - 73.70 62.27 -
BoT[26] 70.01 55.47 - 71.20 58.83 -

OSNet[48] 72.59 58.32 - 74.22 60.99 -
VV[19, 20] 77.22 67.23 41.43 79.73 69.83 42.37

ViT[7] 81.28 72.38 - 82.64 73.35 -
Explain[28] 81.47 72.61 - 82.85 73.39 -

VDT[42] 82.91 74.44 51.06 86.59 78.57 52.87
VIF (Ours) 83.75 75.22 51.57 87.32 79.19 52.98

cameras and 5 aerial cameras. The ground cameras capture
images at a minimum height of 5 meters, while the aerial
cameras capture images at altitudes up to 75 meters.
Evaluation Protocol: We adopt Cumulative Matching
Characteristics at Rank1 (CMC), mean Average Precision
(mAP), and mean Inverse Negative Penalty (mINP) [39] as
the evaluation metrics. To ensure a fair comparison [42],
the performance is evaluated on the CARGO dataset under
four distinct protocols:
1. ALL Protocol: This protocol evaluates the model’s com-

prehensive retrieval performance.
2. G↔G Protocol: This protocol focuses on images cap-

tured by the ground camera in the test set.
3. A↔A Protocol: Only images captured by the aerial cam-

era are included in the test set for evaluation.
4. A↔G Protocol: This protocol splits the test set into

aerial and ground subsets for cross-platform evaluation.
Following [28], the AG-ReIDv1 dataset is evaluated under
two distinct protocols:
1. A→G Protocol: In this protocol, aerial images are used

as queries, and ground images are used as the gallery set.
2. G→A Protocol: In this protocol, ground images are used

as queries, and aerial images serve as the gallery set.

4.2. Implementation Details

We implemented our approach using the PyTorch frame-
work, and all experiments conducted on a single NVIDIA
TITAN Xp GPU. For a fair comparison, following the AG-
ReID methods [28, 42], we adopted the ViT-base [7] model,
pre-trained on the ImageNet [5] dataset, as the feature ex-
traction network. The patch size and stride are both set to
16×16, and the input images are resized to 256×128 pixels.
During training, we applied several common data augmen-
tation strategies, such as random cropping, padding (with
10 pixels), and random erasing, along with our Patch-Level
RotateMix (PLRM) approach. To avoid manually select-
ing the margin m in the triplet loss, we used a soft version
of the triplet loss [39]. The training batch size consists of
128, with 32 identities, each having 4 images. The model
trained for 120 epochs using the Stochastic Gradient De-
scent (SGD) optimizer [1]. A cosine learning rate decay
is applied to reduce the learning rate from an initial value
of 8 × 10−3 to a final value of 1.6 × 10−6. In the PLRM
augmentation, we set the hyper-parameters empirically as
follows: Pimg = 0.5, P0 = 0.3, n = 16, Cweight = 0.8,
θmax = 45◦, and α = 0.5. For VIAL, the hyper-parameters
are set to λ = 0.5, β = 5, and M = 0.5.

4.3. Comparison with State-of-the-art Methods

We compare our proposed VIF method with state-of-the-art
approaches on the CARGO dataset, including general Re-
ID methods (SBS [10], PCB [35], BoT [26], MGN [37],
VV [19, 20], AGW [39], ViT [7]), as well as the AG-ReID
method (VDT [42]), as shown in Table 1. Similarly, ex-
perimental results on the AG-ReIDv1 dataset are presented
in Table 2, where we compare our method with AG-ReID
approaches (Explain [28], VDT [42]) and other general Re-
ID methods. Our method demonstrates state-of-the-art per-
formance across these two aerial-ground datasets under all
evaluation protocols. Based on the results, the following
key findings emerge:
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Table 3. Ablation study of the VIF components on the CARGO
dataset under “ALL” and “A↔G” protocols. The best results are
highlighted in bold.

Methods Protocol 1: ALL Protocol 4: A↔G
Rank1 mAP mINP Rank1 mAP mINP

Baseline 61.54 53.54 39.62 43.13 40.11 28.20
+PLRM 63.14 54.74 40.90 48.12 42.95 30.09
+VIAL 65.38 56.96 43.27 50.63 43.72 30.33
+PLRM+VIAL 65.71 57.46 44.12 51.25 44.55 31.20

1) The performance of general Re-ID methods signifi-
cantly degrades across AG-ReID datasets, particularly un-
der the aerial-ground matching protocol. This degradation
highlights that viewpoint variations lead to inconsistencies
and misalignment in identity features across different per-
spectives. However, existing methods do not adequately
address this challenge.

2) In comparison to the baseline, our VIF approach
shows clear improvements, specifically achieving an
8.12%/4.44%/3.0% improvement in Rank1/mAP/mINP ac-
curacy under the A↔G protocol on the CARGO dataset.
Similarly, VIF outperforms the baseline by 4.68%/5.84% in
Rank1/mAP accuracy under the G→A protocol on the AG-
ReIDv1 dataset. These results demonstrate that our method
effectively learns view-invariant representations, overcom-
ing viewpoint variations and maintaining robust identity
features in both homogeneous and heterogeneous matching
scenarios.

3) Compared to the Explain [28] approach, which ex-
ploits attribute information to address the aerial-ground
challenge, our VIF method outperforms it by 4.47%/5.8%
in Rank1/mAP accuracy under the G→A protocol on
the AG-ReIDv1 dataset. Similarly, our method sur-
passes VDT [42], the state-of-the-art AG-ReID method, by
3.13%/1.79%/1.25% in Rank1/mAP/mINP accuracy under
the A↔G protocol on the CARGO dataset. Unlike VDT
[42], which relies on view labels (aerial or ground) to de-
couple view-irrelevant features, our VIF method achieves
superior performance without requiring any auxiliary infor-
mation, such as view annotations or attribute labels. Our
proposed VIF method enables view invariance by promot-
ing rotational diversity within local regions of training sam-
ples and imposing angular constraints, making it a simple
yet effective solution for the AG-ReID task.

5. Ablation Studies

We conduct ablation studies to evaluate the effectiveness
of our proposed VIF framework on the large aerial-ground
CARGO [42] dataset. Specifically, we analyze the contri-
butions of the proposed components, including the PLRM
augmentation strategy and the VIAL loss function, and per-
form a hyper-parameter analysis.

Table 4. Ablation study evaluating the effectiveness of PLRM aug-
mentation on the CARGO dataset under “ALL” and “A↔G” pro-
tocols. The best results are highlighted in bold.

Methods Protocol 1: ALL Protocol 4: A↔G
Rank1 mAP mINP Rank1 mAP mINP

Baseline 61.54 53.54 39.62 43.13 40.11 28.20
+Random Rotation 62.50 54.53 40.83 46.25 41.40 28.66
+PatchShuffle[16] 62.82 54.59 40.58 46.88 41.76 28.81
+PLRM 63.14 54.74 40.90 48.12 42.95 30.09

Table 5. Ablation study of the VIAL with and without HNM on
the CARGO dataset under “ALL” and “A↔G” protocols. The best
results are highlighted in bold.

Methods Protocol 1: ALL Protocol 4: A↔G
Rank1 mAP mINP Rank1 mAP mINP

Baseline 61.54 53.54 39.62 43.13 40.11 28.20
+Angular Loss 62.50 55.10 42.25 46.88 41.76 29.58
+VIAL w/o HNM 64.74 55.86 41.94 49.38 43.61 29.91
+VIAL with HNM 65.38 56.96 43.27 50.63 43.72 30.33

5.1. Component Analysis

To evaluate the effectiveness of each component in the
proposed VIF method, we conducted an ablation study,
as shown in Table 3. Introducing the PLRM augmenta-
tion technique to the baseline improves performance by
4.99%/2.84%/1.89% in Rank1/mAP/mINP accuracy under
the A↔G protocol on the CARGO dataset. These improve-
ments demonstrate the capability of PLRM to diversify
complex rotational transformations in local regions during
training, forcing the model to explore fine-grained, view-
irrelevant features. By applying the VIAL loss function to
the baseline, performance improves by 7.5%/3.61%/2.13%
in Rank1/mAP/ mINP accuracy under the A↔G protocol
on the CARGO dataset. This indicates that VIAL effec-
tively enhances view-invariant feature learning across di-
verse viewpoints by imposing angular constraints that pe-
nalize large perspective discrepancies. When combining
both PLRM and VIAL, the model achieves peak perfor-
mance, reflecting the synergistic effect of these components
in enhancing the model’s robustness in handling perspective
variations in cross-platform scenarios.

5.2. The effectiveness of PLRM

To further analyze the effectiveness of the proposed PLRM
augmentation strategy, we conducted an ablation study
comparing it with competitive augmentation approaches,
as outlined in Table 4. Our PLRM technique outper-
forms the random rotation strategy by 1.87%/1.55%/1.43%
in Rank1/mAP/mINP accuracy under the A↔G protocol
on the CARGO dataset. This improvement can be at-
tributed to the fact that random rotation rotates the en-
tire image, which may lead to information loss and fail
to capture complex transformations. In contrast, our ap-
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Figure 4. Analysis of hyper-parameters under “ALL” protocol on the CARGO dataset. (a) β regulates the decay rate of the view-invariant
penalty. (b) λ controls the overall weight of the view-invariant penalty. (c) M is the margin that determines the hard negatives.

proach enhances local complex rotational transformation
diversity while preserving the original information through
the mix operation, making it more effective for the AG-
ReID task. Compared to PatchShuffle [16], PLRM achieves
a 1.24%1.19%/1.28% improvement in Rank1/mAP/mINP
accuracy under the A↔G protocol on the CARGO dataset.
While PatchShuffle randomly shuffles pixels within patches
without a specific pattern, PLRM introduces rotational di-
versity, making it more suitable for the AG-ReID task.

5.3. The effectiveness of VIAL
We conducted an ablation study to assess the effective-
ness of the proposed VIAL loss, focusing on the view-
invariant penalty and the Hard Negative Mining (HNM)
strategy, as shown in Table 5. By introducing the Angu-
lar Loss improves the baseline by 3.75%/1.65%/1.38% in
Rank1/mAP/mINP accuracy under the A↔G protocol on
the CARGO dataset. This suggests that angular constraints
help in refining the feature learning process. Next, we ap-
ply the view-invariant penalty (VIAL without HNM) to mit-
igate large angular deviations, resulting in a further perfor-
mance boost of 2.5%/1.85%/0.33% in Rank1/mAP/mINP
accuracy. This indicates the effectiveness of the view-
invariant penalty in addressing viewpoint discrepancies.
The inclusion of HNM strategy yields the highest perfor-
mance, with an additional 1.25%/0.11%/0.42% improve-
ment in Rank1/mAP/mINP accuracy. These results demon-
strate the effectiveness of both the view-invariant penalty
and HNM in enhancing the model’s robustness to viewpoint
variations in AG-ReID tasks.

5.4. Hyper-parameter Analysis
To delve deeper into the robustness of the VIAL loss func-
tion, we analyze the impact of the key hyper-parameters, β,
λ, and M in Eq. (10) under “ALL” protocol on the CARGO
dataset, as depicted in Figure 4. The hyper-parameter β
controls the decay rate of the view-invariant penalty term,
which modulates the influence of view discrepancy on the
loss function. By varying β from 5 to 25 in increments of
5, we observe that the model achieves optimal performance

when β is set to 5. This suggests that a lower decay rate
effectively balances the trade-off between enforcing view
invariance and preserving feature discriminability. Simi-
larly, the hyper-parameter λ governs the overall weight of
the view-invariant penalty in the loss function. We evaluate
λ over the range [0.1, 0.9] in increments of 0.2, finding that
the best performance is achieved at λ = 0.5. This indicates
that an intermediate weighting effectively enhances fea-
ture alignment across diverse viewpoints. Lastly, the mar-
gin M defines the separation of hard negatives. By vary-
ing M from 0.1 to 0.5, we find that performance peaks at
M = 0.5, underscoring the significance of a well-calibrated
margin for improving identity discrimination.

6. Conclusion and Future Work

This paper addresses the realistic challenge of AG-ReID.
To enhance view-invariant feature learning without relying
on auxiliary information, we propose a novel framework,
VIF-AGReID, for cross-platform Re-ID. Our approach in-
troduces the PLRM augmentation strategy that probabilis-
tically synthesizes fine-grained rotational transformations
within local regions of training samples while preserving
the structural integrity of the image, effectively enhanc-
ing fine-grained, rotation-invariant feature learning. Addi-
tionally, we propose the VIAL loss, which enhances fea-
ture similarity for positive pairs while improving hard neg-
ative separation by imposing angular constraints that adap-
tively penalize large perspective variations. These compo-
nents jointly promote local and global view-invariant fea-
ture learning across diverse viewpoints. Extensive experi-
ments on three benchmark AG-ReID datasets validate the
effectiveness and superiority of our proposed method.

While our work addresses the critical challenge of view
discrepancies in AG-ReID, several challenging factors re-
main for future research. One key factor is the scalability
challenge in AG-ReID, particularly due to altitude differ-
ences between aerial and ground cameras. Exploring this
aspect presents an important avenue for further investiga-
tion.
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