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ABSTRACT

In this paper, we introduce Writing in the Margins (WiM), a new inference pattern
for Large Language Models designed to optimize the handling of long input se-
quences in retrieval-oriented tasks. This approach leverages the chunked prefill of
the key-value cache to perform segment-wise inference, which enables efficient
processing of extensive contexts along with the generation and classification of
intermediate information (“margins”) that guide the model towards specific tasks.
This method increases computational overhead marginally while significantly en-
hancing the performance of off-the-shelf models without the need for fine-tuning.
Specifically, we observe that WiM provides an average enhancement of 7.5% in
accuracy for reasoning skills (HotpotQA, MultiHop-RAG) and a 30.0% increase
in the F1-score for aggregation tasks (CWE). Additionally, we show how the pro-
posed pattern fits into an interactive retrieval design that provides end-users with
ongoing updates about the progress of context processing, and pinpoints the inte-
gration of relevant information into the final response. We release our implemen-
tation of WiM using Hugging Face Transformers library at <anonymised URL>.

1 INTRODUCTION

The performance of Large Language Models (LLMs) tends to deteriorate when processing extensive
inputs, a limitation linked directly to their fixed context window and attention mechanisms (Li et al.,
2024; Liu et al., 2024). In particular, LLMs struggle with tasks involving long contexts, especially
when the relevant information is embedded in larger volumes of text (Bai et al., 2024; Shaham et al.,
2023). Recent research thus highlights the importance of improving model capabilities to handle
more extensive datasets without losing accuracy or requiring exponential increases in computational
resources.

There have been various attempts to extend the usable context window of LLMs, such as sparse
attention (Tworkowski et al., 2023; Chen et al., 2024; Mohtashami & Jaggi, 2023), length extrap-
olation (Dai et al., 2019; Su et al., 2023; Peng et al., 2024), and context compression (Ge et al.,
2024; Mu et al., 2023). Concurrently, the field has witnessed the rise of sophisticated prompting
strategies like Chain of Thought (CoT) and related structured reasoning methods (Wei et al., 2022;
Yao et al., 2023; Besta et al., 2024). These approaches have significantly enhanced LLMs’ ability to
tackle complex tasks by systematically guiding the reasoning process through predefined structural
patterns.

Our work bridges the gap between efficient transformers architecture research and development of
new prompting strategies. Specifically, we identify a novel key-value (KV) cache aware reasoning
pattern for existing off-the-shelf long context window LLMs in scenarios typical of retrieval-oriented
tasks, where the context is substantial and the instructional prompt is comparatively short. We begin
by recognizing that long-context prompts are commonly prefilled in the KV cache segment-wise
in a process known as chunked prefill. From this insight, we introduce an inference pattern called
Writing in the Margins (WiM), which concurrently generates query-based extractive summaries at
each step of the prefill that are subsequently reintegrated at the end of the computation. We term
these intermediate outputs “margins”, drawing inspiration from the practice of making margin notes
for improved comprehension of long contexts in human reading. Using methodologies similar to
“scratchpad” techniques, which meticulously record step-by-step calculations, we incorporate mar-
gin notes into the final segment predictions. We show that this technique, which adds only minimal
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Writing in the Margins Example

KV Cache Margins

Extract relevant text to query: 
Is Ethan Washington in a 
marble-floored room?

Extract relevant text to query: 
Is Ethan Washington in a 
marble-floored room?

Extract relevant text to query: 
Is Ethan Washington in a 
marble-floored room?

John’s living room is 
marbled-floored

Ethan Washington is in 
John’s living room

No relevant information

John's living room is marble-
floored, a reality that is as 
intrinsic to the building as its 
very foundations.(...)

The truth that Ethan 
Washington is in John's living 
room is so well-established 
that it is almost redundant to 
mention it (...)

(...) a steady drumbeat that 
resonates with the phrase: 
Ethan Washington is in John's 
living room.

John's living room is marble-
floored. 
Ethan Washington is in John's 
living room.

. . . . . . . . .

Is Ethan Washington in a 
marble-floored room?

Figure 1: Writing in the Margins inference pattern. Prefilling KV cache by segments allows to
both process the context segment by segment and generate intermediate extractive summaries which
can improve the final prediction.

additional computation, significantly enhances long context comprehension. The WiM pattern can
also provide end-users with real-time insights into computational progress through streamed margin
notes, which ultimately help make AI decisions more transparent and explainable. This can enable
users to (1) pinpoint the location of essential information and (2) reduce computational load by
exiting early if the provided information satisfactorily addresses the query.

In Figure 1, we provide an illustrative example of WiM inference, which we encourage readers to
reference as a practical demonstration to complement the formal algorithm description that will be
presented in the following sections.

Our main contributions are as follows:

• We introduce a new inference pattern, Writing in the Margins (WiM), which achieves bet-
ter performance on long-context window tasks with a relatively minor increase in compu-
tational cost.

• We demonstrate the application of WiM within an interactive long context retrieval setup,
effectively increasing the transparency of the process and reducing the first response la-
tency.

• We provide an implementation of this inference pattern using the Hugging Face Transform-
ers library.

2 WRITING IN THE MARGINS

2.1 CHUNKED PREFILL

Typically, the process of inference for generative LLMs consists of two principal phases: the prefill
phase and the decoding phase. When an LLM is requested to prefill a substantial prompt—in the
range of hundreds of thousands of tokens—it is common practice to prefill the KV cache in chunks
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Table 1: Chunked Prefill. Example of how the attention mask is set across different chunks during
prefill iterations (first chunk on the left, second chunk on the right). Each new chunk needs to retain
causality while attending to all previous chunks. Chunked prefill is mathematically equivalent to
prefill without chunking.

K0 K1 K2 K3 K0 K1 K2 K3 K4 K5 K6 K7
Q0 1 0 0 0 Q4 1 1 1 1 1 0 0 0
Q1 1 1 0 0 Q5 1 1 1 1 1 1 0 0
Q2 1 1 1 0 Q6 1 1 1 1 1 1 1 0
Q3 1 1 1 1 Q7 1 1 1 1 1 1 1 1

(Agrawal et al., 2024). This method is known as chunked prefill and is supported by many inference
frameworks, including vLLM (vLLM, 2024).

Chunked prefill divides the prompt into fixed-size chunks to populate the KV cache at each layer of
the Transformer model (Vaswani et al., 2017). The rationale for chunked prefill is to reduce overall
memory usage, as the quadratic memory complexity of the attention mechanism during prefilling
can be prohibitive for larger prompts. By splitting a prompt of length L into N chunks, each of
size K, where N = L/K, the overall memory complexity of prefilling is reduced from O(L2) to
O(LK). The attention mask must be adjusted to allow each new chunk to attend to all tokens in
the previous chunks while maintaining the causal structure only for the new chunk, as illustrated in
Table 1.

Our work exploits the chunked prefill mechanism to generate intermediate “margins” that can then
be appended to the prompt to better guide the model toward performing a specific task.

2.2 WRITING IN THE MARGINS

Consider a prompt P , composed of a context C, and an instruction I . Prefilling a decoder-only
transformer model T directly with the entire prompt T (P ) is computationally inefficient when the
prompt is long. Moreover, as shown in Liu et al. (2024), processing the entire prompt in one go can
lead to mid-sequence forgetting.

To make this process more efficient, we implement the prefill technique described in the previous
paragraph, where the context C is divided into N segments; i.e., C = c1 + c2 + ... + cN . For
the first segment, the model T operates on chunk c1, resulting in output that includes past key
values pkv1. The model continues onto the second segment with the pkv1 cached, i.e., T (pkv1, c2),
effectively emulating the scenario of processing T (c1+c2) in one step. As the procedure progresses,
each sequential chunk, ck, is processed with prefilled past key values, noted as T (pkv[1..k−1], ck),
mimicking an uninterrupted run of T on C.

The Writing in the Margins (WiM) strategy addresses potential mid-sequence forgetting issues by
appending an extractive instruction IA to each chunk, enhancing chunk-specific outputs. It trans-
forms each step into T (pkv[1..k−1], ck + IA), where the instruction IA is embedded alongside each
context chunk, then dropped from the KV cache before the next chunk prefilling. The instruction IA
is closely related to I - the model is asked to copy over all relevant to I information.

Intermediate outputs from each chunk are referred to as margin notes Mi, cumulatively forming
N notes, described as M = M[1..N ]. Unhelpful notes, perhaps irrelevant to the instruction, are
discarded, enhancing the final contextual construct to C+M+ I, positioned advantageously towards
the end to minimize mid-sequence memory loss. Intuitively, the model is allowed to use relevant
intermediate predictions while answering the final query.

To summarize, we modify the chunked prefill algorithm by adding extra decoding steps (green in
Table 2). Most of these steps can be efficiently batched with the original prefill steps. The query-
relevant information extracted from these steps is then added at the end of the context but before the
instruction (see Appendix A for a pseudocode example).
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Table 2: Batching Chunked Prefill Steps with WiM margin generation. The inference for
generative LLMs consists of two principal phases: the prefill phase (†) and the decoding phase
(‡). The WiM algorithm adds extra decoding steps that mostly can be batched with chunked prefill
steps. We keep margin notes Mi produced in extra steps (green) as plain text. We then prefill the
model T with all relevant notes M[1..N ] before the final instruction I .

step Chunked Prefill WiM keep

1 T (∅, c1)† T (∅, c1)† pkv[1]

2 T (pkv[1], c2)
† T (pkv[1], c2)

† pkv[1..2]

T (pkv[1], IA)
†‡ M1

...
...

...
...

N T (pkv[1..N−1], cN )† T (pkv[1..N−1], cN )† pkv[1..N ]

T (pkv[1..N−1], IA)
†‡ MN−1

N + 1 T (pkv[1..N ], IA)
†‡ MN

N + 2 T (pkv[1..N ], I)
†‡ T (pkv[1..N ],M[1..N ] + I)†‡

Table 3: Datasets We curated four datasets to evaluate long context window LLMs. Each set
consists of 100 examples, generated either using RULER code (†) or by subsampling the longest
examples from the original benchmark data (♣).

skill benchmark context length #
type name (tokens) examples

I MultiHop-RAG ♣ (Tang & Yang, 2024) 13-32k 100
I HotpotQA † (Yang et al., 2018) 16k/ 32k /64k 100/ 100/ 100
II SQuAD † (Rajpurkar et al., 2018) 16k/ 32k/ 64k 100/ 100/ 100
III CWE † (Hsieh et al., 2024) 64k 100

3 EXPERIMENTAL SETUP

3.1 DATASETS

Following the RULER task categories (Hsieh et al., 2024), we measure the performance of an infer-
ence pattern on three types of skills: (I) Multi-Hop Reasoning, (II) Needle Retrieval/ Single-Hop
Reasoning, and (III) Aggregation. Table 3 presents the curated long context datasets used to bench-
mark all LLMs:

In the following paragraph, we briefly introduce the benchmarks used in each category and describe
our curating rationale.

I. Multi-Hop QA The task aims to check the behavior of tracing entities with multi-hop
connections based on the HotPotQA and MultiHop-RAG benchmarks (Tang & Yang,
2024; Yang et al., 2018). We used the RULER codebase1 to generate a subset of 100
examples based on HotPotQA - a multi-hop queries sourced from Wikipedia articles.
Following RULER, we simulated long context retrieval scenarios by generating examples
in three length variants: 16k, 32k, 64k. We also selected the 100 longest examples in the
range of 13k-33k tokens from MultiHop-RAG - a large collection of multi-hop queries
based on English news articles.

1https://github.com/hsiehjackson/RULER

4

https://github.com/hsiehjackson/RULER


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Long context LLM RAG

Writing in the Margins

Context Relevant contextIrrelevant contextInstruction

Figure 2: Design Comparison. Design Comparison. Three inference designs for long contexts:
(Top Left) Long Context LLM: Feeds entire context to the model without segmentation. (Top Right)
Retrieval-Augmented Generation (RAG): Uses a retrieval method (e.g., cosine similarity) to select
segments, which are then concatenated with task instructions for the model. (Bottom) Writing in
the Margins (WiM): Divides and processes context by segments, prompting the model to generate
auxiliary information from each, which is classified and potentially incorporated before the task
description.

II. Needle Retrieval/ Single-Hop Reasoning In the context of a long context window, the
Needle Retrieval and Single-Hop QA task can be jointly seen as a kind of filter benchmark,
where the task is to filter irrelevant content and either copy or transform the relevant
information. We used the RULER code to generate examples based on SQuAD (Rajpurkar
et al., 2018) in three context length variants: 16k, 32k and 64k, collecting 100 datapoints
in each variant.

III. Aggregation This task evaluates a model’s ability to aggregate relevant information across
a long-range context, using the Common Words Extraction (CWE) benchmark (Hsieh
et al., 2024). In this benchmark, word distribution numbers are fixed with the sequence
length, using 100 examples averaging 64k tokens each. Common words appear 500 times,
while uncommon words appear no more than 50 times. Task instructions were adapted to
include word occurrence counts to facilitate segment aggregation.

3.2 LONG CONTEXT WINDOW LLMS

We selected seven off-the-shelf models that officially support context windows up to 128k tokens:
Phi-3-small-128k-instruct (Abdin et al., 2024), Qwen2-7B-Instruct (Yang et al., 2024), Meta-Llama-
3.1-8B-Instruct Dubey et al. (2024), Phi-3-medium-128k-Instruct (Abdin et al., 2024), Palmyra-4-
Chat-128K (Writer’s proprietary model), Meta-Llama-3.1-70B-Instruct Dubey et al. (2024), Qwen2-
72B-Instruct (Yang et al., 2024).

In all experiments, we used half precision models with identical sampling parameters — specifi-
cally, a temperature setting of 0.0 and 2k maximum new tokens. We used 0-shot prompts for all
benchmarks. In MultiHop-RAG, HotPotQA and SQuAD experiments, we applied the same model-
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independent prepossessing step: we used nltk (Bird et al., 2009) to split the context into sentences,
then grouped them in segments no longer than 4096 tokens. This resulted in 4 − 16 margin notes
per datapoint. In CWE, where the datapoints contain only numbered words, we exchanged nltk for
naive words split by space and used 8192 segment length, which gave on average 8 margins per
sample. We chose to count tokens using GPT-4 tiktoken tokenizer2 since this choice does not favour
any of the evaluated models’ tokenizers.

In each case, we measured the relative differences of WiM pattern scores with respect to the follow-
ing two baselines:

• Long Context LLM (LLM) - all context without segmentation is fed to the LLM.
• Retrieval Augmented Generation (RAG) - segments are selected based on a retriever

(ex. cosine similarity between vector representations of the query and the segment), then
all selected segments and the task instruction are concatenated and fed to an LLM.

In order to make the results more comparable, we replaced the retriever in RAG with the classifier
used in WiM. We expect the RAG results to be lower in the real RAG systems (especially for longer
segment lengths), as vectorization is a form of lossy compression. All three inference patterns,
including WiM, are presented in Figure 2.

3.3 EVALUATION

3.3.1 PREDICTION

In the margin accumulation step, in order to distinguish the content of the margins from the original
context, and to maintain the document’s logic and structure, we explicitly named the writing-in-the-
margins strategy by reformatting the margins the following way:

I asked my assistant to read and analyse the above content page by page
↪→ to help you complete this task. Those are margin notes left on each
↪→ page:

‘‘‘text
Page 0:
QUERY: {query}
ANSWER: {M_i}
Page 1:
QUERY: {query}
ANSWER: {M_j}
...
‘‘‘

The output is appended at the end of the final prompt. Full prompts are shown in Appendix C.

3.3.2 SCORING

We used the same 3-shot prompt with GPT-4-turbo (OpenAI, 2023) and greedy sampling to evaluate
models’ accuracy in HotpotQA, MultiHop-RAG and SQuAD benchmarks. For the CWE benchmark
we adjusted the prompt and examples to calculate precision (P), recall (R) and F1-score. Both
prompts are shown in Appendix C.

4 RESULTS

4.1 MULTI-HOP REASONING

Detailed results for all experiments are presented in Table 4. Notably, for almost all evaluated
models, WiM improves multi-hop reasoning abilities, on average giving a 7.5% boost with respect
to the Long Context LLM inference and 9% with respect to RAG. The most significant performance
boost is observed in smaller models — replacing a vanilla Phi-3-small-128k-instruct inference with
WiM leads to 19% improvement in MultiHop-RAG benchmark and 12% in HotpotQA.

2https://github.com/openai/tiktoken
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Table 4: Main Results We show results for seven models and four benchmarks, using accuracy for
all but CWE, where precision, recall, and F1-score were used. Aggregated results indicate WiM
excels in multi-hop reasoning and summarization tasks (HoppotQA, Multihop-RAG, CWE), while
performance in single-hop reasoning (SQuAD) varies by model.

HotpotQA MultiHop
RAG

SQuAD CWE Average

Context: 16k 32k 64k 13-32k 16k 32k 64k 64k Excl.
CWE

Model Pattern Acc. Acc. Acc. Acc. Acc. Acc. Acc. P R F1 Acc.
Phi-3-small-128k-instruct LLM 0.47 0.55 0.48 0.58 0.81 0.75 0.79 0.77 0.77 0.77 0.52

RAG 0.55 0.56 0.50 0.70 0.81 0.78 0.79 0.65 0.64 0.65 0.58
WiM 0.66 0.64 0.56 0.77 0.65 0.74 0.64 0.70 0.69 0.69 0.66

Qwen2-7B-Instruct LLM 0.62 0.59 0.39 0.83 0.81 0.71 0.57 0.46 0.46 0.46 0.61
RAG 0.54 0.55 0.56 0.77 0.87 0.84 0.86 0.49 0.49 0.49 0.61
WiM 0.69 0.66 0.56 0.92 0.83 0.80 0.74 0.69 0.67 0.68 0.71

Meta-Llama-3.1-8B-Instruct LLM 0.65 0.64 0.60 0.85 0.90 0.92 0.87 0.22 0.21 0.22 0.69
RAG 0.67 0.65 0.59 0.77 0.87 0.91 0.91 0.47 0.47 0.47 0.67
WiM 0.77 0.71 0.73 0.86 0.88 0.85 0.82 0.94 0.93 0.93 0.77

Phi-3-medium-128k-instruct LLM 0.57 0.53 0.48 0.80 0.84 0.72 0.70 0.91 0.91 0.91 0.60
RAG 0.50 0.55 0.51 0.78 0.86 0.82 0.83 0.91 0.91 0.91 0.59
WiM 0.63 0.67 0.57 0.93 0.81 0.80 0.77 0.90 0.90 0.90 0.70

Palmyra-4-Chat-128K LLM 0.70 0.60 0.57 0.85 0.84 0.76 0.73 0.76 0.77 0.76 0.68
RAG 0.59 0.54 0.55 0.78 0.74 0.70 0.69 0.80 0.80 0.80 0.62
WiM 0.69 0.63 0.66 0.86 0.78 0.77 0.74 0.77 0.77 0.77 0.71

Meta-Llama-3.1-70B-Instruct LLM 0.80 0.74 0.70 0.91 0.93 0.85 0.87 0.37 0.36 0.36 0.79
RAG 0.73 0.72 0.63 0.80 0.90 0.92 0.95 0.66 0.65 0.66 0.72
WiM 0.79 0.76 0.71 0.89 0.90 0.90 0.82 1.00 1.00 1.00 0.79

Qwen2-72B-Instruct LLM 0.75 0.72 0.57 0.88 0.91 0.78 0.76 0.42 0.36 0.39 0.73
RAG 0.70 0.66 0.70 0.80 0.92 0.87 0.91 0.75 0.75 0.75 0.72
WiM 0.80 0.79 0.70 0.88 0.88 0.88 0.87 0.98 0.98 0.98 0.79

Average LLM 0.65 0.62 0.54 0.81 0.86 0.78 0.76 0.56 0.55 0.55 0.66
RAG 0.61 0.60 0.58 0.77 0.85 0.83 0.85 0.68 0.67 0.68 0.64
WiM 0.72 0.69 0.64 0.87 0.82 0.82 0.77 0.85 0.85 0.85 0.73

By looking at different length variants of HotpotQA (16k, 32k, 64k) we see that all patterns lose
accuracy as we add more context (LLM: from 0.65 to 0.54, RAG: from 0.61 to 0.58, WiM: from
0.72 to 0.64). This observation aligns with the notion that extending the context length in models
degrades the performance of complex reasoning tasks. However, using WiM allows us to maintain
almost the same accuracy for 64k as the LLM achieves on 16k.

4.2 NEEDLE RETRIEVAL AND SINGLE-HOP QUESTION ANSWERING

Analysis of the SQuAD benchmark results shows that all scores are distributed across similar values
with a slight preference for RAG. WiM prompting increase verbosity of LLMs, which is distracting
for SQuAD expecting short answers. Nevertheless, we see that replacing an LLM with the WiM
pattern consistently improves accuracy in SQuAD by 2% − 17% for Qwen2-7B-Instruct, whereas
LLM is a preferred inference pattern for 16k context window for 4 out of 7 tested models.

Unsurprisingly, RAG emerges as the most optimal pattern for six out of seven evaluated models
when extending the context length to 64k tokens in SQuAD. Indeed, for single-hop reasoning tasks,
if the filtering process is successful (here we approximate the retriever by an LLM classifier), the
challenge is reduced to a trivial task of retrieving a needle from a context window of 4096 tokens.
However, this assumption in the RAG setup is overly optimistic because the LLMs used in our
experiment are at least 7B in model parameters, and such large models are not typically used as
retrievers. In practical scenarios, one might expect the results to be even more favorable for both
LLM and WiM compared to RAG.

4.3 AGGREGATION

The pattern across the data indicates that WiM either matches or substantially boosts the aggregation
skills of off-the-shelf models, giving an LLM on average a 30% increase in F1-score for the CWE
benchmark, and outperforming RAG by 17%.
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Table 5: Ablation: Filtering Margins and Content Compression Removing irrelevant margins
improves results for most models across HotpotQA, Multihop-RAG, and SQuAD benchmarks.
Using both margins and full context generally boosts scores, despite performance drops in models
with longer inputs. Results aggregated over HotpotQA, Multihop-RAG, and SQuAD benchmarks.

Margin Filter Content Compression

Model Unfiltered Filtered
(WiM)

Only
Margins

Only
Context

Both
(WiM)

Phi-3-small-128k-instruct 0.54 0.58 0.60 0.55 0.58
Qwen2-7B-Instruct 0.63 0.65 0.62 0.56 0.65
Meta-Llama-3.1-8B-Instruct 0.70 0.70 0.68 0.68 0.70
Phi-3-medium-128k-instruct 0.64 0.65 0.57 0.58 0.65
Palmyra-4-Chat-128K 0.55 0.64 0.53 0.63 0.64
Meta-Llama-3.1-70B-Instruct 0.73 0.72 0.72 0.72 0.72
Qwen2-72B-Instruct 0.71 0.72 0.72 0.67 0.72

We observe that CWE results can be grouped into four classes, which surprisingly tend to align more
with the model families than with the model sizes. Models like Meta-Llama-3.1-8B-Instruct and
Meta-Llama-3.1-70B-Instruct achieve a remarkably significant boost in F1-score when using WiM
across all context lengths, reaching up to 72% compared to the LLM baseline. Conversely, models
like Phi-3-small-128k-instruct and Phi-3-medium-128k-instruct consistently prefer the vanilla LLM
inference. Meanwhile, Qwen2-7B-Instruct and Qwen2-72B-Instruct point to WiM as the most op-
timal pattern, showing a moderate improvement ranging from 22% to 59%. RAG is preferred only
by Palmyra-4-Chat-128K, which outperforms the rest by 3%− 4%.

After reviewing all comments provided by GPT-4-turbo during the evaluation of each data point, we
observe that models often resort to writing Python code to solve the problem (18.5% of all answers),
leading to incorrect or generic answers (resulting in on average 20% drop in F1-score).

5 ABLATION STUDY

5.1 NO MARGINS FILTERING

In this experiment, we excluded the margins classifier from the WiM pipeline, which resulted in all
extractive summaries being appended directly to the context.

Table 5 presents the accuracy scores aggregated over three benchmarks: HotpotQA, MultiHop-
RAG, SQuAD. Including all margins in the context decreases the accuracy by up to 8% compared
to the original WiM pipeline. This effect is analogous to negative instruction manipulation, akin
to telling the model to “forget all previous instructions”. Ultimately, filtering margins—especially
when combined with the margin generation step—not only saves computation by allowing irrelevant
margins to be dropped, but also improves the overall performance.

5.2 REPLACING THE CONTENT BY MARGINS

An effective approach to reduce computational demands is to eliminate the KV cache in the final
step, relying only on extracted positive margins. This method compresses the long context document
based on the query. Although retaining the full context may capture answers better, increased input
length has been shown to reduce model performance.

Table 5 also presents aggregated results for HotpotQA, MultiHop-RAG and SQuAD, demonstrat-
ing that incorporating both margins and the complete document consistently maximized the perfor-
mance for almost all evaluated models, except for Meta-Phi-3-small-128k-instruct. Employing a
query-based extractive summary—specifically, using only the content from margins—gave mixed
results across all models; e.g., Meta-Llama-3.1-70B-Instruct scores were consistent across all met-
rics (0.72), while Palmyra-4-Chat-128K scores saw a decrease from 0.64 to 0.53. On the other hand,
the model Phi-3-small-128k-instruct experienced an increase from 0.58 to 0.6. We hypothesize that
these outcomes might vary depending on the specific task at hand. It is plausible that for tasks such
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Chat view Document view

How to get to Sesame Street?

User

Assistant

Take the 1, 2, A, or B subway lines in New York 
City, which are indicated on the Sesame 
Street set, though there's no actual station 
where all these lines connect.

Source: Page 1

Visit Sesamestreet.org's Interactive Set Map for 
directions: Start from Times Square, Manhattan, 
catch the R train locally, and head east to Queens, 
leading you to Kaufman Astoria Studios, Sesame 
Street’s taping location since 1993.


Source: Page 4

67%

67%

processed

Stop

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Figure 3: WiM interactive retrieval design. The right side displays the document view, showing
processed segments, which can be labeled for relevance by the LLM classifier. The left side features
a chat view with a progress bar for segment processing. Users can interact by approving or rejecting
margins, and these interactions influence the final response. Each margin corresponds to a specific
document segment.

as filtering and improving recall (i.e., when models are fine-tuned for margin generation and clas-
sification tasks), using margins could prove beneficial as the filtered-out content would be entirely
irrelevant.

6 INTERACTIVE RETRIEVAL
Explainability The design principles behind WiM focus not just on enhancing final benchmark
performance, but also on improving the user experience. By presenting intermediate computation
steps, WiM renders the decision-making process of LLMs transparent. This clarity in the model’s
reasoning process aids not only in debugging but also provides insights that are crucial for both
end-users and developers, ensuring outputs that are both understandable and reliable.

Latency Handling long documents can degrade user experience due to significant latency, as the
model becomes unresponsive during processing, which can take minutes without clear indications
of wait time. Our design addresses this by providing relevant information during processing and by
segment-wise processing that incorporates a progress bar, thus reducing the initial response latency.

Early exit WiM also offers an “early exit” option, allowing users to stop the computation if they
find a satisfactory answer within any of the displayed margins. For example, in single-hop question-
answering scenarios, once the answer is found in a particular section, there is no need to process
further.

Human in the Loop Users have the ability to improve the decision-making process by adding
labels to the margins displayed in WiM. In this design, the final answer considers both the full
context and the user-labeled margins. Users can evaluate and label the streamed margins (e.g., with
a thumbs up or down), and these inputs could be reintegrated into the final decision-making step.
The proposed design, including this feedback loop, is illustrated in Figure 3.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 RELATED WORK

External Memory and Retrieval Methods Memory augmentation in Large Language Models
(LLMs) involves integrating external memory banks, such as k-nearest neighbor (k-NN) models, to
use textual similarities for generating context-aware completions (Khandelwal et al., 2020). These
k-NN based LLMs excel in managing irregular patterns and factual data (Daelemans et al., 1999).
Additionally, approaches like Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) and “En-
tities as Experts” (Févry et al., 2020) link LLMs with external data sources—ranging from structured
knowledge graphs (Liu et al., 2022) to learned entity embeddings. Such methods allow LLMs to ac-
cess and utilize external information to enhance response accuracy and relevance.

Scratchpad Mechanisms A method for intermediate computation in LLMs involves the use of
“scratchpads” or CoT (Wei et al., 2022) as a method for improving handling of sustained multi-
step computations. Adopted from the findings of “Show Your Work: Scratchpads for Intermediate
Computation with Language Models” (Nye et al., 2022) this method enables LLMs to show their
logic step-by-step, similar to a human using paper to jot down interim calculations. By training
Transformers to sequentially output the results of intermediate steps rather than only final answers,
LLMs demonstrate enhanced performance on complex tasks that go beyond single-step reasoning,
such as long addition and program execution. This method not only helps the model maintain and
extend context dynamically but also aids in debugging and understanding model decisions (Austin
et al., 2021). Further studies into length generalization have demonstrated that traditional fine-tuning
techniques on tasks requiring such generalizations often encounter significant limitations (Anil et al.,
2022). By integrating scratchpad-like methodologies, these language models can achieve a notable
improvement in handling progressively longer text spans. This enhancement proves particularly
valuable for challenges such as theorem proving and extensive text synthesis. Here, the in-context
learning combined with the sequential output of computed steps substantially bolsters task accuracy
and model robustness (Chen et al., 2021; Wu et al., 2021).

Context Aggregation Efficiency in context aggregation for LLMs have evolved with methods like
Fusion-in-Decoder (FiD) and Map Reduce. FiD, used in models such as T5 and BART, consolidates
contextual embeddings via encoder and decoder components to ensure comprehensive information
integration (Ivgi et al., 2023; Izacard & Grave, 2021). Conversely, LangChain’s Map Reduce pro-
cesses segments in parallel to quickly synthesize responses into a refined final output (Chase, 2022).
Parallel Context Windows (PCW) and Naive Bayes Context Extension (NBCE) further enhance
handling of extended contexts by partitioning these into smaller segments for efficient parallel pro-
cessing, optimizing both processing speed and response relevance (Su et al., 2024; Ratner et al.,
2023).

8 CONCLUSION

In this paper, we have introduced a new inference pattern called Writing in the Margins (WiM),
which leverages chunked prefill to add only a marginal computational cost, emulating the human
behavior of making notes in the margins. We demonstrated that this inference pattern significantly
boosts the performance of off-the-shelf models across various long-context, retrieval-oriented tasks,
including multi-hop reasoning (by 7.5% in HotpotQA, MultiHop-RAG), and aggregation (by 30.0%
in CWE). Remarkably, this method does not require finetuning and is compatible with any trans-
former model.

Additionally, our approach enhances end-user experience by making context processing more trans-
parent. By streaming ”margins” that influence final predictions, our design supports early en-
gagement. WiM differs from traditional long-context methods by allowing immediate streaming
of relevant margins after segment processing, improving latency and reducing computational de-
mands through an early exit strategy. This feature facilitates human-in-the-loop involvement in
LLM decision-making, boosting interaction and intervention opportunities.

Our innovation decouples training and inference, building on ideas like CoT. By merging KV cache
management with targeted prompting strategies, our approach complements existing prompt-based
methods, aiming to initiate research into KV cache-aware prompting. This could improve LLM
reasoning abilities and add a layer of interpretability.
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Reproducibility Statement We have made the code for reproducing our results available through
the HuggingFace transformer library at an <anonymised URL>. The evaluation data can be ob-
tained from the HuggingFace Hub under MultiHop-RAG3, or it can be generated using the RULER
code4 for datasets such as SQuAD, HotpotQA, and CWE, with the specific parameters detailed in
our paper. Both sources are provided under a permissive license. Furthermore, we have also dis-
closed the inference parameters and prompts needed to replicate our results.
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Piotr Miłoś. Focused transformer: Contrastive training for context scaling. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=s1FjXzJ0jy.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

vLLM. Performance and tuning, 2024. URL https://docs.vllm.ai/en/latest/
models/performance.html#chunked-prefill.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_VjQlMeSB_J.

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Baker Grosse. {INT}: An inequality benchmark
for evaluating generalization in theorem proving. In International Conference on Learning Rep-
resentations, 2021. URL https://openreview.net/forum?id=O6LPudowNQm.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=5Xc1ecxO1h.

16

https://openreview.net/forum?id=s1FjXzJ0jy
https://openreview.net/forum?id=s1FjXzJ0jy
https://docs.vllm.ai/en/latest/models/performance.html#chunked-prefill
https://docs.vllm.ai/en/latest/models/performance.html#chunked-prefill
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=O6LPudowNQm
https://arxiv.org/abs/2407.10671
https://aclanthology.org/D18-1259
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPENDIX - PSEUDOCODE FOR CHUNKEDPREFILL AND WRITING IN THE
MARGINS ALGORITHMS

Algorithm 1: Inference with Chunked Prefill
Input : system message (string)

context (string)
instruction (string)
llm (object)

Output: output (string)
1 context← system message + context;
2 segments← split(context);
3 past key value← [];
4 for segment ∈ segments do

// add the segment to the KV cache
5 prefill(llm, past key value, segment);
6 end
7 output← generate(llm, past key value, instruction);
8 return output

Algorithm 2: Writing in the Margins
Input : system message (string)

context (string)
instruction (string)
extractive summary prompt (string)
classification prompt (string)
llm (object)

Output: output (string)
1 context← system message + context;
2 segments← split(context);
3 past key value← [];
4 positive margins← [];
5 for segment ∈ segments do

// add the segment to the KV cache
6 prefill(llm, past key value, segment);

// generate using the content of the KV cache and then
discard any

// tokens added to the KV cache by the prompt and the
generated tokens

7 margin← generate(llm, past key value, extractive summary prompt);
8 classification input← format(classification prompt, margin, instruction);
9 end
// do not use any past KV cache to classify

10 classification result← generate(llm, NULL, classification input);
11 if classification result = true then
12 append(positive margins, margin)
13 end
14 all positive margins← concatenate(positive margins);
15 prefill(llm, past key value, all positive margins);
16 output← generate(llm, past key value, instruction);
17 return output
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Figure 4: Sequence packing. Sequence packing allows to pack multiple unrelated documents in the
same sequence. By adjusting the attention mask, we can avoid cross-contamination. This speeds up
training time by reducing the number of padding tokens. A similar technique can also be used to
inference from multiple prompts using the same sequence.

B APPENDIX - DECOUPLING EXTRACTION AND CLASSIFICATION

Writing in the margins generates supplemental information by leveraging a partially prefilled KV
cache. Each subsequent segment c in the KV cache can be used to generate an annotation, known as
a “margin note”. To avoid providing the model with all the margins, we ask the model to generate the
first token corresponding to the margin classes: relevant vs. irrelevant. In this section, we explore the
possibility of decoupling the extraction and classification steps, which will allow for using separate
prompting strategies. This separation might further boost the performance of the WiM pattern. We
demonstrate that one can use the same instance of the model to perform both the computation of the
margins and their classification.

In a naive implementation of such overlapped computation, the user may treat the classification
request as an additional sequence and batch it with the prefilling request; this approach would require
a very large number of padding tokens to align the two sequences. A more computationally efficient
solution is to pack the classification request into the same sequence used to prefill the context and
adjust the attention mask accordingly. An example of such a mask is provided in Figure 4. This
technique is utilized during the pre-training of language models to reduce the number of padding
tokens.

The first request to the language model would only contain the first segment c1 and the additional
extractive instruction IA (the“extractive summary prompt”). The attention mask at this point is
provided in Figure 5 and Figure 6. This would generate the first margin M0. After generating M0,
the instruction prompt IA and all the subsequent tokens generated in M0 can be removed from the
KV cache, leaving the KV cache only with c1. In order to not grow or shrink a dynamically allocated
KV cache, it is possible to use a static KV cache, as the number of total tokens in each segment,

18
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Figure 5: Prefilling of the first segment c1 along with the extractive instruction IA. Padding
tokens are shown for clarity in case of a statically allocated KV cache, but they do not needed to be
attended to or used in the KV sequence when calculating the attention. The KV sequence should be
a slice of the KV tensor that includes only non-padding tokens.

Figure 6: Token generation using the prefilled KV cache. Each generated token replaces a padding
token in the KV cache.

extractive instruction and classification prompt is known in advance, so is the maximum number of
tokens for each margin Mi and classification result ω(I(Mi)).

Having generated the first margin M0, it is possible to add the second segment c2 to generate the
second margin M1 while at the same time classifying the previously generated margin M0. To do
so, the KV cache is prefilled with subsequent tokens c2, the extractive instruction IA and a number
of padding tokens to accommodate the generated tokens of margin M1. Moreover, the KV cache
is also expanded by adding the classification instruction I(M0) and a number of padding tokens to
accommodate the generated tokens for the classification result ω(I(M0)). The attention mask at this
point is provided in Figure 7.

Autoregressive token generation of the margin M1 and the classification result ω(I(M0)) can be
done in parallel by projecting the last token of each sub-sequence into logits. Each generated token
can then be added in place of a padding token in each subsequence to generate successive tokens.
Token generation at this stage is shown in Figure 8.

By using a statically allocated KV cache and by keeping track of how many tokens are used in it,
it is possible to use a partial view (also known as “tensor slicing”) of the KV tensor without any
computational overhead. It is also possible to use techniques like PagedAttention (Kwon et al.,
2023) to allocate the KV cache block by block, in order to optimize the memory consumption while
benefiting from a partial static allocation.
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Figure 7: Prefilling of the second segment c1 along with the extractive instruction IA. In this case
the padding tokens between IA and I(M0) must be included in the KV sequence when calculating
the attention to retain the memory continuity of the tensor, but the terminal padding tokens need
not to. Each token in the second segment c2 needs to attend all tokens in the first segment c1. The
classification prompt I(M0) be considered a completely separate document in the same sequence as
prefilling.

Figure 8: Parallel token generation of the margin M1 and the classification result ω(I(M0)).
Each generated token replaces a padding token in its specific subsequence.

C APPENDIX - PROMPTING

For all benchmarks, we respected their original formulation. In all cases, the prompt strategy for the
Long Context LLM baseline could be expressed as:

{system_message}
‘‘‘text
{context}
‘‘‘
{instruction}
{query}

Where system message and instruction were usually the task instructions split into two
parts and appended before and after the main context respectively.

In the RAG approach, we used the original prompt but replaced contextwith all relevant segments
concatenated by a newline sign.

In WiM inference, all constructed prompts shared the common prefix:

{system_message}
‘‘‘text
{context}
‘‘‘

This was necessary for the efficient reuse of the KV cache. To ensure that predictions were com-
parable, we manually identified a promising prompt for the margin generation and final prediction
steps for all evaluated models.

C.1 MARGIN GENERATION

For each intermediate context contexti = Σi
1ci and instruction I , we used the following extractive

summary prompt IA to generate a margin note Mi:
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I_A = """
{system_message}
‘‘‘text
{context_i}
‘‘‘
Copy over all context relevant to the query: {query}
Provide the answer in the format: <YES/NO>#<Relevant context>.
Here are rules:
- If you don’t know how to answer the query - start your answer with NO#
- If the text is not related to the query - start your answer with NO#
- If you can extract relevant information - start your answer with YES#
- If the text does not mention the person by name - start your answer

↪→ with NO#
Example answers:
- YES#Western philosophy originated in Ancient Greece in the 6th century

↪→ BCE with the pre-Socratics.
- NO#No relevant context.
"""

In our experiments, the margin generation step was combined with the classification step; the first
token generated was a class label. We conditioned the generation of a margin based on the first token;
i.e., we continued the generation only if the first token was YES. Additionally, the prompt included
an explanation designed to enforce specific formatting and to prevent the model from inserting
comments before delivering its judgment.

In Appendix B, we explore the possibility of decoupling margin generation and classification
prompts while using the same instance of the model.

C.2 FINAL WIM PROMPT WITH ACCUMULATED MARGINS

We used two variants of the prompt, depending on the number of retrieved margins.

C.2.1 SINGLE MARGIN

{system_message}
‘‘‘text
{context}
‘‘‘
I asked my assistant to read and analyse the above content page by page

↪→ to help you complete this task. This is a margin note left on the
↪→ last page:

‘‘‘text
QUERY: {query}
ANSWER: {M_i}
‘‘‘
Read again the note(s) and the provided content, take a deep breath and

↪→ answer the query.
{instruction}
{query}

C.2.2 MULTIPLE MARGINS

{system_message}
‘‘‘text
{context}
‘‘‘
I asked my assistant to read and analyse the above content page by page

↪→ to help you complete this task. Those are margin notes left on each
↪→ page:

‘‘‘text
Page 0:
QUERY: {query}
ANSWER: {M_i}
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Page 1:
QUERY: {query}
ANSWER: {M_j}
...
‘‘‘
Read again the note(s) and the provided content, take a deep breath and

↪→ answer the query.
{instruction}
{query}

We replaced the term “segment” with “page” to more closely replicate the human practice of writing
in the margins. In our experiments, there was no relationship between the order of the segments and
the page numbers; this is left as an optional implementation detail.

C.3 PROMPT USED WITH ACCURACY METRIC FOR SQUAD, HTOPOTQA AND
MULTIHOP-RAG

Evaluate the following exam answer. I will provide you with the query,
↪→ target answer(s) and the answer provided by the student.

The student’s answer does not need to preserve the casing of the target
↪→ answers, and slight variations in phrasing are acceptable, provided
↪→ the meaning remains correct.

Provide the answer in the format: <YES/NO>#<Explanation>.

Here are the rules:
- If the student’s answer is correct - start your answer with YES#
- If the student’s answer is wrong or it is missing - start your answer

↪→ with NO#

Example answers:

QUERY: As of 2016, about what percentage of adults aged 18 years or older
↪→ were overweight?

TARGET: 40%, forty percent
ANSWER: forty percent
YES#The student’s answer is correct.

QUERY: What is the value of p in 24 = 2p?
TARGET: 12, 12.0
ANSWER: five
NO#The student’s answer is wrong.

QUERY: What is the ’Lotus principle’?
TARGET: The so-called Lotus principle is that ’restrictions upon the

↪→ independence of States cannot therefore be presumed
ANSWER: The Lotus principle is a horticultural technique developed in

↪→ ancient Egypt for cross-pollinating lotus flowers with roses to
↪→ create fragrant, floating gardens.

NO#No, the student’s explanation is wrong.

QUERY: {query}
TARGET: {target}
ANSWER: {answer}

C.4 PROMPT USED WITH F1 METRIC FOR CWE

Evaluate the following exam answer. The student’s task was to identify
↪→ the most common words in text. I will provide you with the target
↪→ answer(s) - 10 words - and the student’s response.

The student’s answer does not need to preserve the casing of the target
↪→ words.

Provide your assessment in the format: <Positive>#<Negative>#<Explanation
↪→ >.
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Here are the rules:
- <Positive> denotes the number of common words that the student has

↪→ correctly identified (i.e., those included in the target list).
- <Negative> represents the number of words the student has identified as

↪→ common but are incorrect (i.e., not included in the target list).
- If the student’s answer is non-relevant, simply return: 0#10#The answer

↪→ is garbage.
- If the student’s answer includes Python code, mention "python" in your

↪→ explanation.
- If the student provides the full answer twice, consider only the first

↪→ submission.

Example answers:

TARGET: jealousy, access, chase, recess, head, animal, capon, hops,
↪→ unequaled, mozzarella

ANSWER: Based on the provided content and the margin notes, the 10 most
↪→ common words in the input are:\n\n1. chase (100 occurrences)\n2.
↪→ unequaled (99 occurrences)\n3. access (98 occurrences)\n4. hops (97
↪→ occurrences)\n5. animal (95 occurrences)\n6. jealousy (96
↪→ occurrences)\n7. mozzarella (94 occurrences)\n8. recess (93
↪→ occurrences)\n9. capon (91 occurrences)\n10. oxygen (91 occurrences
↪→ ),

9#1#The student’s answer contains 9 correct words out of 10 given.

TARGET: seeder, workout, wafer, chronograph, liability, hovercraft,
↪→ nestling, alloy, netball, addicted

ANSWER: To find the 10 most common words in the given input, we need to
↪→ count the occurrences of each word and then sort them in descending
↪→ order. Here are the 10 most common words and their counts:\n\n1.
↪→ \"floodplain\" - 25 occurrences\n2. \"acetate\" - 24 occurrences\n3
↪→ . \"nondisclosure\" - 23 occurrences\n4. \"caterpillar\" - 22
↪→ occurrences\n5. \"moai\" - 21 occurrences\n6. \"video\" - 20
↪→ occurrences\n7. \"bacterium\" - 19 occurrences\n8. \"frog\" - 19
↪→ occurrences\n9. \"carnivore\" - 18 occurrences\n10. \"cattle\" - 18
↪→ occurrences\n\nNote: The input provided is a long list of words,
↪→ and the above list is based on the most frequent words found in the
↪→ list. The actual list may vary depending on the specific input.

0#10#The student’s answer provides only a generic answer and fails to
↪→ solve the problem.

TARGET: jealousy, access, chase, recess, head, animal, capon, hops,
↪→ unequaled, mozzarella

ANSWER: To find the 10 most common words in the provided input, we can
↪→ use a Python script that reads the text, splits it into words,
↪→ counts the occurrences of each word, and then prints the top 10
↪→ most common words along with their counts. Here’s a Python script
↪→ that accomplishes this:\n\npython\nfrom collections import Counter\
↪→ n\n# Read the text from the input\nwith open(’input.txt’, ’r’) as
↪→ file:\n text = file.read()\n\n# Split the text into words\nwords =
↪→ text.split()\n\n# Count the occurrences of each word\nword_counts =
↪→ Counter(words)\n\n# Get the 10 most common words\
↪→ nmost_common_words = word_counts.most_common(10)\n\n# Print the 10
↪→ most common words and their counts\nfor word, count in
↪→ most_common_words:\n print(word, count) The provided text\ntext =
↪→ 1.jealousy 2. gauge 3. work 4. townhouse 5. ubiquitous 6. regulator
↪→ 7. oxygen 8. verdict 9. war 10. verdict 11. rag 12. rag

1#11#The student’s answer contains python code. One word is correct but
↪→ it contains also other 11 incorrect words.

TARGET: {target}
ANSWER: {answer}
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