
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WRITING IN THE MARGINS: BETTER INFERENCE
PATTERN FOR LONG-CONTEXT RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we introduce Writing in the Margins (WiM), a new inference pattern
for Large Language Models designed to optimize the handling of long input se-
quences in retrieval-oriented tasks. This approach leverages the chunked prefill of
the key-value cache to perform segment-wise inference, which enables efficient
processing of extensive contexts along with the generation and classification of
intermediate information (“margins”) that guide the model towards specific tasks.
This method increases computational overhead marginally while significantly en-
hancing the performance of off-the-shelf models without the need for fine-tuning.
Specifically, we observe that WiM provides an average enhancement of 7.5% in
accuracy for reasoning skills (HotpotQA, MultiHop-RAG) and a 30.0% increase
in the F1-score for aggregation tasks (CWE). Additionally, we show how the pro-
posed pattern fits into an interactive retrieval design that provides end-users with
ongoing updates about the progress of context processing, and pinpoints the inte-
gration of relevant information into the final response. We release our implemen-
tation of WiM using Hugging Face Transformers library at <anonymised URL>.

1 INTRODUCTION

The performance of Large Language Models (LLMs) tends to deteriorate when processing extensive
inputs, a limitation linked directly to their fixed context window and attention mechanisms (Li et al.,
2024; Liu et al., 2024). In particular, LLMs struggle with tasks involving long contexts, especially
when the relevant information is embedded in larger volumes of text (Bai et al., 2024; Shaham et al.,
2023). Recent research thus highlights the importance of improving model capabilities to handle
more extensive datasets without losing accuracy or requiring exponential increases in computational
resources.

There have been various attempts to extend the usable context window of LLMs, such as sparse
attention (Tworkowski et al., 2023; Chen et al., 2024; Mohtashami & Jaggi, 2023), length extrap-
olation (Dai et al., 2019; Su et al., 2023; Peng et al., 2024), and context compression (Ge et al.,
2024; Mu et al., 2023). Concurrently, the field has witnessed the rise of sophisticated prompting
strategies like Chain of Thought (CoT) and related structured reasoning methods (Wei et al., 2022;
Yao et al., 2023; Besta et al., 2024). These approaches have significantly enhanced LLMs’ ability to
tackle complex tasks by systematically guiding the reasoning process through predefined structural
patterns.

Our work bridges the gap between efficient transformers architecture research and development of
new prompting strategies. Specifically, we identify a novel key-value (KV) cache aware reasoning
pattern for existing off-the-shelf long context window LLMs in scenarios typical of retrieval-oriented
tasks, where the context is substantial and the instructional prompt is comparatively short. We begin
by recognizing that long-context prompts are commonly prefilled in the KV cache segment-wise
in a process known as chunked prefill. From this insight, we introduce an inference pattern called
Writing in the Margins (WiM), which concurrently generates query-based extractive summaries at
each step of the prefill that are subsequently reintegrated at the end of the computation. We term
these intermediate outputs “margins”, drawing inspiration from the practice of making margin notes
for improved comprehension of long contexts in human reading. Using methodologies similar to
“scratchpad” techniques, which meticulously record step-by-step calculations, we incorporate mar-
gin notes into the final segment predictions. We show that this technique, which adds only minimal

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Writing in the Margins Example

KV Cache Margins

Extract relevant text to query: 
Is Ethan Washington in a
marble-floored room?

Extract relevant text to query: 
Is Ethan Washington in a
marble-floored room?

Extract relevant text to query: 
Is Ethan Washington in a
marble-floored room?

John’s living room is 
marbled-floored

Ethan Washington is in
John’s living room

No relevant information

John's living room is marble-
floored, a reality that is as
intrinsic to the building as its
very foundations.(...)

The truth that Ethan
Washington is in John's living
room is so well-established
that it is almost redundant to
mention it (...)

(...) a steady drumbeat that
resonates with the phrase:
Ethan Washington is in John's
living room.

John's living room is marble-
floored. 
Ethan Washington is in John's
living room.

.

Is Ethan Washington in a
marble-floored room?

Figure 1: Writing in the Margins inference pattern. Prefilling KV cache by segments allows to
both process the context segment by segment and generate intermediate extractive summaries which
can improve the final prediction.

additional computation, significantly enhances long context comprehension. The WiM pattern can
also provide end-users with real-time insights into computational progress through streamed margin
notes, which ultimately help make AI decisions more transparent and explainable. This can enable
users to (1) pinpoint the location of essential information and (2) reduce computational load by
exiting early if the provided information satisfactorily addresses the query.

In Figure 1, we provide an illustrative example of WiM inference, which we encourage readers to
reference as a practical demonstration to complement the formal algorithm description that will be
presented in the following sections.

Our main contributions are as follows:

• We introduce a new inference pattern, Writing in the Margins (WiM), which achieves bet-
ter performance on long-context window tasks with a relatively minor increase in compu-
tational cost.

• We demonstrate the application of WiM within an interactive long context retrieval setup,
effectively increasing the transparency of the process and reducing the first response la-
tency.

• We provide an implementation of this inference pattern using the Hugging Face Transform-
ers library.

2 WRITING IN THE MARGINS

2.1 CHUNKED PREFILL

Typically, the process of inference for generative LLMs consists of two principal phases: the prefill
phase and the decoding phase. When an LLM is requested to prefill a substantial prompt—in the
range of hundreds of thousands of tokens—it is common practice to prefill the KV cache in chunks

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Chunked Prefill. Example of how the attention mask is set across different chunks during
prefill iterations (first chunk on the left, second chunk on the right). Each new chunk needs to retain
causality while attending to all previous chunks. Chunked prefill is mathematically equivalent to
prefill without chunking.

K0 K1 K2 K3 K0 K1 K2 K3 K4 K5 K6 K7
Q0 1 0 0 0 Q4 1 1 1 1 1 0 0 0
Q1 1 1 0 0 Q5 1 1 1 1 1 1 0 0
Q2 1 1 1 0 Q6 1 1 1 1 1 1 1 0
Q3 1 1 1 1 Q7 1 1 1 1 1 1 1 1

(Agrawal et al., 2024). This method is known as chunked prefill and is supported by many inference
frameworks, including vLLM (vLLM, 2024).

Chunked prefill divides the prompt into fixed-size chunks to populate the KV cache at each layer of
the Transformer model (Vaswani et al., 2017). The rationale for chunked prefill is to reduce overall
memory usage, as the quadratic memory complexity of the attention mechanism during prefilling
can be prohibitive for larger prompts. By splitting a prompt of length L into N chunks, each of
size K, where N = L/K, the overall memory complexity of prefilling is reduced from O(L2) to
O(LK). The attention mask must be adjusted to allow each new chunk to attend to all tokens in
the previous chunks while maintaining the causal structure only for the new chunk, as illustrated in
Table 1.

Our work exploits the chunked prefill mechanism to generate intermediate “margins” that can then
be appended to the prompt to better guide the model toward performing a specific task.

2.2 WRITING IN THE MARGINS

Consider a prompt P , composed of a context C, and an instruction I . Prefilling a decoder-only
transformer model T directly with the entire prompt T (P) is computationally inefficient when the
prompt is long. Moreover, as shown in Liu et al. (2024), processing the entire prompt in one go can
lead to mid-sequence forgetting.

To make this process more efficient, we implement the prefill technique described in the previous
paragraph, where the context C is divided into N segments; i.e., C = c1 + c2 + ... + cN . For
the first segment, the model T operates on chunk c1, resulting in output that includes past key
values pkv1. The model continues onto the second segment with the pkv1 cached, i.e., T (pkv1, c2),
effectively emulating the scenario of processing T (c1+c2) in one step. As the procedure progresses,
each sequential chunk, ck, is processed with prefilled past key values, noted as T (pkv[1..k−1], ck),
mimicking an uninterrupted run of T on C.

The Writing in the Margins (WiM) strategy addresses potential mid-sequence forgetting issues by
appending an extractive instruction IA to each chunk, enhancing chunk-specific outputs. It trans-
forms each step into T (pkv[1..k−1], ck + IA), where the instruction IA is embedded alongside each
context chunk, then dropped from the KV cache before the next chunk prefilling. The instruction IA
is closely related to I - the model is asked to copy over all relevant to I information.

Intermediate outputs from each chunk are referred to as margin notes Mi, cumulatively forming
N notes, described as M = M[1..N]. Unhelpful notes, perhaps irrelevant to the instruction, are
discarded, enhancing the final contextual construct to C+M+ I, positioned advantageously towards
the end to minimize mid-sequence memory loss. Intuitively, the model is allowed to use relevant
intermediate predictions while answering the final query.

To summarize, we modify the chunked prefill algorithm by adding extra decoding steps (green in
Table 2). Most of these steps can be efficiently batched with the original prefill steps. The query-
relevant information extracted from these steps is then added at the end of the context but before the
instruction (see Appendix A for a pseudocode example).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 2: Batching Chunked Prefill Steps with WiM margin generation. The inference for
generative LLMs consists of two principal phases: the prefill phase (†) and the decoding phase
(‡). The WiM algorithm adds extra decoding steps that mostly can be batched with chunked prefill
steps. We keep margin notes Mi produced in extra steps (green) as plain text. We then prefill the
model T with all relevant notes M[1..N] before the final instruction I .

step Chunked Prefill WiM keep

1 T (∅, c1)† T (∅, c1)† pkv[1]

2 T (pkv[1], c2)
† T (pkv[1], c2)

† pkv[1..2]

T (pkv[1], IA)
†‡ M1

...
...

...
...

N T (pkv[1..N−1], cN)† T (pkv[1..N−1], cN)† pkv[1..N]

T (pkv[1..N−1], IA)
†‡ MN−1

N + 1 T (pkv[1..N], IA)
†‡ MN

N + 2 T (pkv[1..N], I)
†‡ T (pkv[1..N],M[1..N] + I)†‡

Table 3: Datasets We curated four datasets to evaluate long context window LLMs. Each set
consists of 100 examples, generated either using RULER code (†) or by subsampling the longest
examples from the original benchmark data (♣).

skill benchmark context length #
type name (tokens) examples

I MultiHop-RAG ♣ (Tang & Yang, 2024) 13-32k 100
I HotpotQA † (Yang et al., 2018) 16k/ 32k /64k 100/ 100/ 100
II SQuAD † (Rajpurkar et al., 2018) 16k/ 32k/ 64k 100/ 100/ 100
III CWE † (Hsieh et al., 2024) 64k 100

3 EXPERIMENTAL SETUP

3.1 DATASETS

Following the RULER task categories (Hsieh et al., 2024), we measure the performance of an infer-
ence pattern on three types of skills: (I) Multi-Hop Reasoning, (II) Needle Retrieval/ Single-Hop
Reasoning, and (III) Aggregation. Table 3 presents the curated long context datasets used to bench-
mark all LLMs:

In the following paragraph, we briefly introduce the benchmarks used in each category and describe
our curating rationale.

I. Multi-Hop QA The task aims to check the behavior of tracing entities with multi-hop
connections based on the HotPotQA and MultiHop-RAG benchmarks (Tang & Yang,
2024; Yang et al., 2018). We used the RULER codebase1 to generate a subset of 100
examples based on HotPotQA - a multi-hop queries sourced from Wikipedia articles.
Following RULER, we simulated long context retrieval scenarios by generating examples
in three length variants: 16k, 32k, 64k. We also selected the 100 longest examples in the
range of 13k-33k tokens from MultiHop-RAG - a large collection of multi-hop queries
based on English news articles.

1https://github.com/hsiehjackson/RULER

4

https://github.com/hsiehjackson/RULER

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Long context LLM RAG

Writing in the Margins

Context Relevant contextIrrelevant contextInstruction

Figure 2: Design Comparison. Design Comparison. Three inference designs for long contexts:
(Top Left) Long Context LLM: Feeds entire context to the model without segmentation. (Top Right)
Retrieval-Augmented Generation (RAG): Uses a retrieval method (e.g., cosine similarity) to select
segments, which are then concatenated with task instructions for the model. (Bottom) Writing in
the Margins (WiM): Divides and processes context by segments, prompting the model to generate
auxiliary information from each, which is classified and potentially incorporated before the task
description.

II. Needle Retrieval/ Single-Hop Reasoning In the context of a long context window, the
Needle Retrieval and Single-Hop QA task can be jointly seen as a kind of filter benchmark,
where the task is to filter irrelevant content and either copy or transform the relevant
information. We used the RULER code to generate examples based on SQuAD (Rajpurkar
et al., 2018) in three context length variants: 16k, 32k and 64k, collecting 100 datapoints
in each variant.

III. Aggregation This task evaluates a model’s ability to aggregate relevant information across
a long-range context, using the Common Words Extraction (CWE) benchmark (Hsieh
et al., 2024). In this benchmark, word distribution numbers are fixed with the sequence
length, using 100 examples averaging 64k tokens each. Common words appear 500 times,
while uncommon words appear no more than 50 times. Task instructions were adapted to
include word occurrence counts to facilitate segment aggregation.

3.2 LONG CONTEXT WINDOW LLMS

We selected seven off-the-shelf models that officially support context windows up to 128k tokens:
Phi-3-small-128k-instruct (Abdin et al., 2024), Qwen2-7B-Instruct (Yang et al., 2024), Meta-Llama-
3.1-8B-Instruct Dubey et al. (2024), Phi-3-medium-128k-Instruct (Abdin et al., 2024), Palmyra-4-
Chat-128K (Writer’s proprietary model), Meta-Llama-3.1-70B-Instruct Dubey et al. (2024), Qwen2-
72B-Instruct (Yang et al., 2024).

In all experiments, we used half precision models with identical sampling parameters — specifi-
cally, a temperature setting of 0.0 and 2k maximum new tokens. We used 0-shot prompts for all
benchmarks. In MultiHop-RAG, HotPotQA and SQuAD experiments, we applied the same model-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

independent prepossessing step: we used nltk (Bird et al., 2009) to split the context into sentences,
then grouped them in segments no longer than 4096 tokens. This resulted in 4 − 16 margin notes
per datapoint. In CWE, where the datapoints contain only numbered words, we exchanged nltk for
naive words split by space and used 8192 segment length, which gave on average 8 margins per
sample. We chose to count tokens using GPT-4 tiktoken tokenizer2 since this choice does not favour
any of the evaluated models’ tokenizers.

In each case, we measured the relative differences of WiM pattern scores with respect to the follow-
ing two baselines:

• Long Context LLM (LLM) - all context without segmentation is fed to the LLM.
• Retrieval Augmented Generation (RAG) - segments are selected based on a retriever

(ex. cosine similarity between vector representations of the query and the segment), then
all selected segments and the task instruction are concatenated and fed to an LLM.

In order to make the results more comparable, we replaced the retriever in RAG with the classifier
used in WiM. We expect the RAG results to be lower in the real RAG systems (especially for longer
segment lengths), as vectorization is a form of lossy compression. All three inference patterns,
including WiM, are presented in Figure 2.

3.3 EVALUATION

3.3.1 PREDICTION

In the margin accumulation step, in order to distinguish the content of the margins from the original
context, and to maintain the document’s logic and structure, we explicitly named the writing-in-the-
margins strategy by reformatting the margins the following way:

I asked my assistant to read and analyse the above content page by page
↪→ to help you complete this task. Those are margin notes left on each
↪→ page:

‘‘‘text
Page 0:
QUERY: {query}
ANSWER: {M_i}
Page 1:
QUERY: {query}
ANSWER: {M_j}
...
‘‘‘

The output is appended at the end of the final prompt. Full prompts are shown in Appendix C.

3.3.2 SCORING

We used the same 3-shot prompt with GPT-4-turbo (OpenAI, 2023) and greedy sampling to evaluate
models’ accuracy in HotpotQA, MultiHop-RAG and SQuAD benchmarks. For the CWE benchmark
we adjusted the prompt and examples to calculate precision (P), recall (R) and F1-score. Both
prompts are shown in Appendix C.

4 RESULTS

4.1 MULTI-HOP REASONING

Detailed results for all experiments are presented in Table 4. Notably, for almost all evaluated
models, WiM improves multi-hop reasoning abilities, on average giving a 7.5% boost with respect
to the Long Context LLM inference and 9% with respect to RAG. The most significant performance
boost is observed in smaller models — replacing a vanilla Phi-3-small-128k-instruct inference with
WiM leads to 19% improvement in MultiHop-RAG benchmark and 12% in HotpotQA.

2https://github.com/openai/tiktoken

6

https://github.com/openai/tiktoken

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Main Results We show results for seven models and four benchmarks, using accuracy for
all but CWE, where precision, recall, and F1-score were used. Aggregated results indicate WiM
excels in multi-hop reasoning and summarization tasks (HoppotQA, Multihop-RAG, CWE), while
performance in single-hop reasoning (SQuAD) varies by model.

HotpotQA MultiHop
RAG

SQuAD CWE Average

Context: 16k 32k 64k 13-32k 16k 32k 64k 64k Excl.
CWE

Model Pattern Acc. Acc. Acc. Acc. Acc. Acc. Acc. P R F1 Acc.
Phi-3-small-128k-instruct LLM 0.47 0.55 0.48 0.58 0.81 0.75 0.79 0.77 0.77 0.77 0.52

RAG 0.55 0.56 0.50 0.70 0.81 0.78 0.79 0.65 0.64 0.65 0.58
WiM 0.66 0.64 0.56 0.77 0.65 0.74 0.64 0.70 0.69 0.69 0.66

Qwen2-7B-Instruct LLM 0.62 0.59 0.39 0.83 0.81 0.71 0.57 0.46 0.46 0.46 0.61
RAG 0.54 0.55 0.56 0.77 0.87 0.84 0.86 0.49 0.49 0.49 0.61
WiM 0.69 0.66 0.56 0.92 0.83 0.80 0.74 0.69 0.67 0.68 0.71

Meta-Llama-3.1-8B-Instruct LLM 0.65 0.64 0.60 0.85 0.90 0.92 0.87 0.22 0.21 0.22 0.69
RAG 0.67 0.65 0.59 0.77 0.87 0.91 0.91 0.47 0.47 0.47 0.67
WiM 0.77 0.71 0.73 0.86 0.88 0.85 0.82 0.94 0.93 0.93 0.77

Phi-3-medium-128k-instruct LLM 0.57 0.53 0.48 0.80 0.84 0.72 0.70 0.91 0.91 0.91 0.60
RAG 0.50 0.55 0.51 0.78 0.86 0.82 0.83 0.91 0.91 0.91 0.59
WiM 0.63 0.67 0.57 0.93 0.81 0.80 0.77 0.90 0.90 0.90 0.70

Palmyra-4-Chat-128K LLM 0.70 0.60 0.57 0.85 0.84 0.76 0.73 0.76 0.77 0.76 0.68
RAG 0.59 0.54 0.55 0.78 0.74 0.70 0.69 0.80 0.80 0.80 0.62
WiM 0.69 0.63 0.66 0.86 0.78 0.77 0.74 0.77 0.77 0.77 0.71

Meta-Llama-3.1-70B-Instruct LLM 0.80 0.74 0.70 0.91 0.93 0.85 0.87 0.37 0.36 0.36 0.79
RAG 0.73 0.72 0.63 0.80 0.90 0.92 0.95 0.66 0.65 0.66 0.72
WiM 0.79 0.76 0.71 0.89 0.90 0.90 0.82 1.00 1.00 1.00 0.79

Qwen2-72B-Instruct LLM 0.75 0.72 0.57 0.88 0.91 0.78 0.76 0.42 0.36 0.39 0.73
RAG 0.70 0.66 0.70 0.80 0.92 0.87 0.91 0.75 0.75 0.75 0.72
WiM 0.80 0.79 0.70 0.88 0.88 0.88 0.87 0.98 0.98 0.98 0.79

Average LLM 0.65 0.62 0.54 0.81 0.86 0.78 0.76 0.56 0.55 0.55 0.66
RAG 0.61 0.60 0.58 0.77 0.85 0.83 0.85 0.68 0.67 0.68 0.64
WiM 0.72 0.69 0.64 0.87 0.82 0.82 0.77 0.85 0.85 0.85 0.73

By looking at different length variants of HotpotQA (16k, 32k, 64k) we see that all patterns lose
accuracy as we add more context (LLM: from 0.65 to 0.54, RAG: from 0.61 to 0.58, WiM: from
0.72 to 0.64). This observation aligns with the notion that extending the context length in models
degrades the performance of complex reasoning tasks. However, using WiM allows us to maintain
almost the same accuracy for 64k as the LLM achieves on 16k.

4.2 NEEDLE RETRIEVAL AND SINGLE-HOP QUESTION ANSWERING

Analysis of the SQuAD benchmark results shows that all scores are distributed across similar values
with a slight preference for RAG. WiM prompting increase verbosity of LLMs, which is distracting
for SQuAD expecting short answers. Nevertheless, we see that replacing an LLM with the WiM
pattern consistently improves accuracy in SQuAD by 2% − 17% for Qwen2-7B-Instruct, whereas
LLM is a preferred inference pattern for 16k context window for 4 out of 7 tested models.

Unsurprisingly, RAG emerges as the most optimal pattern for six out of seven evaluated models
when extending the context length to 64k tokens in SQuAD. Indeed, for single-hop reasoning tasks,
if the filtering process is successful (here we approximate the retriever by an LLM classifier), the
challenge is reduced to a trivial task of retrieving a needle from a context window of 4096 tokens.
However, this assumption in the RAG setup is overly optimistic because the LLMs used in our
experiment are at least 7B in model parameters, and such large models are not typically used as
retrievers. In practical scenarios, one might expect the results to be even more favorable for both
LLM and WiM compared to RAG.

4.3 AGGREGATION

The pattern across the data indicates that WiM either matches or substantially boosts the aggregation
skills of off-the-shelf models, giving an LLM on average a 30% increase in F1-score for the CWE
benchmark, and outperforming RAG by 17%.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Ablation: Filtering Margins and Content Compression Removing irrelevant margins
improves results for most models across HotpotQA, Multihop-RAG, and SQuAD benchmarks.
Using both margins and full context generally boosts scores, despite performance drops in models
with longer inputs. Results aggregated over HotpotQA, Multihop-RAG, and SQuAD benchmarks.

Margin Filter Content Compression

Model Unfiltered Filtered
(WiM)

Only
Margins

Only
Context

Both
(WiM)

Phi-3-small-128k-instruct 0.54 0.58 0.60 0.55 0.58
Qwen2-7B-Instruct 0.63 0.65 0.62 0.56 0.65
Meta-Llama-3.1-8B-Instruct 0.70 0.70 0.68 0.68 0.70
Phi-3-medium-128k-instruct 0.64 0.65 0.57 0.58 0.65
Palmyra-4-Chat-128K 0.55 0.64 0.53 0.63 0.64
Meta-Llama-3.1-70B-Instruct 0.73 0.72 0.72 0.72 0.72
Qwen2-72B-Instruct 0.71 0.72 0.72 0.67 0.72

We observe that CWE results can be grouped into four classes, which surprisingly tend to align more
with the model families than with the model sizes. Models like Meta-Llama-3.1-8B-Instruct and
Meta-Llama-3.1-70B-Instruct achieve a remarkably significant boost in F1-score when using WiM
across all context lengths, reaching up to 72% compared to the LLM baseline. Conversely, models
like Phi-3-small-128k-instruct and Phi-3-medium-128k-instruct consistently prefer the vanilla LLM
inference. Meanwhile, Qwen2-7B-Instruct and Qwen2-72B-Instruct point to WiM as the most op-
timal pattern, showing a moderate improvement ranging from 22% to 59%. RAG is preferred only
by Palmyra-4-Chat-128K, which outperforms the rest by 3%− 4%.

After reviewing all comments provided by GPT-4-turbo during the evaluation of each data point, we
observe that models often resort to writing Python code to solve the problem (18.5% of all answers),
leading to incorrect or generic answers (resulting in on average 20% drop in F1-score).

5 ABLATION STUDY

5.1 NO MARGINS FILTERING

In this experiment, we excluded the margins classifier from the WiM pipeline, which resulted in all
extractive summaries being appended directly to the context.

Table 5 presents the accuracy scores aggregated over three benchmarks: HotpotQA, MultiHop-
RAG, SQuAD. Including all margins in the context decreases the accuracy by up to 8% compared
to the original WiM pipeline. This effect is analogous to negative instruction manipulation, akin
to telling the model to “forget all previous instructions”. Ultimately, filtering margins—especially
when combined with the margin generation step—not only saves computation by allowing irrelevant
margins to be dropped, but also improves the overall performance.

5.2 REPLACING THE CONTENT BY MARGINS

An effective approach to reduce computational demands is to eliminate the KV cache in the final
step, relying only on extracted positive margins. This method compresses the long context document
based on the query. Although retaining the full context may capture answers better, increased input
length has been shown to reduce model performance.

Table 5 also presents aggregated results for HotpotQA, MultiHop-RAG and SQuAD, demonstrat-
ing that incorporating both margins and the complete document consistently maximized the perfor-
mance for almost all evaluated models, except for Meta-Phi-3-small-128k-instruct. Employing a
query-based extractive summary—specifically, using only the content from margins—gave mixed
results across all models; e.g., Meta-Llama-3.1-70B-Instruct scores were consistent across all met-
rics (0.72), while Palmyra-4-Chat-128K scores saw a decrease from 0.64 to 0.53. On the other hand,
the model Phi-3-small-128k-instruct experienced an increase from 0.58 to 0.6. We hypothesize that
these outcomes might vary depending on the specific task at hand. It is plausible that for tasks such

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Chat view Document view

How to get to Sesame Street?

User

Assistant

Take the 1, 2, A, or B subway lines in New York
City, which are indicated on the Sesame
Street set, though there's no actual station
where all these lines connect.

Source: Page 1

Visit Sesamestreet.org's Interactive Set Map for
directions: Start from Times Square, Manhattan,
catch the R train locally, and head east to Queens,
leading you to Kaufman Astoria Studios, Sesame
Street’s taping location since 1993.

Source: Page 4

67%

67%

processed

Stop

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Figure 3: WiM interactive retrieval design. The right side displays the document view, showing
processed segments, which can be labeled for relevance by the LLM classifier. The left side features
a chat view with a progress bar for segment processing. Users can interact by approving or rejecting
margins, and these interactions influence the final response. Each margin corresponds to a specific
document segment.

as filtering and improving recall (i.e., when models are fine-tuned for margin generation and clas-
sification tasks), using margins could prove beneficial as the filtered-out content would be entirely
irrelevant.

6 INTERACTIVE RETRIEVAL
Explainability The design principles behind WiM focus not just on enhancing final benchmark
performance, but also on improving the user experience. By presenting intermediate computation
steps, WiM renders the decision-making process of LLMs transparent. This clarity in the model’s
reasoning process aids not only in debugging but also provides insights that are crucial for both
end-users and developers, ensuring outputs that are both understandable and reliable.

Latency Handling long documents can degrade user experience due to significant latency, as the
model becomes unresponsive during processing, which can take minutes without clear indications
of wait time. Our design addresses this by providing relevant information during processing and by
segment-wise processing that incorporates a progress bar, thus reducing the initial response latency.

Early exit WiM also offers an “early exit” option, allowing users to stop the computation if they
find a satisfactory answer within any of the displayed margins. For example, in single-hop question-
answering scenarios, once the answer is found in a particular section, there is no need to process
further.

Human in the Loop Users have the ability to improve the decision-making process by adding
labels to the margins displayed in WiM. In this design, the final answer considers both the full
context and the user-labeled margins. Users can evaluate and label the streamed margins (e.g., with
a thumbs up or down), and these inputs could be reintegrated into the final decision-making step.
The proposed design, including this feedback loop, is illustrated in Figure 3.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 RELATED WORK

External Memory and Retrieval Methods Memory augmentation in Large Language Models
(LLMs) involves integrating external memory banks, such as k-nearest neighbor (k-NN) models, to
use textual similarities for generating context-aware completions (Khandelwal et al., 2020). These
k-NN based LLMs excel in managing irregular patterns and factual data (Daelemans et al., 1999).
Additionally, approaches like Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) and “En-
tities as Experts” (Févry et al., 2020) link LLMs with external data sources—ranging from structured
knowledge graphs (Liu et al., 2022) to learned entity embeddings. Such methods allow LLMs to ac-
cess and utilize external information to enhance response accuracy and relevance.

Scratchpad Mechanisms A method for intermediate computation in LLMs involves the use of
“scratchpads” or CoT (Wei et al., 2022) as a method for improving handling of sustained multi-
step computations. Adopted from the findings of “Show Your Work: Scratchpads for Intermediate
Computation with Language Models” (Nye et al., 2022) this method enables LLMs to show their
logic step-by-step, similar to a human using paper to jot down interim calculations. By training
Transformers to sequentially output the results of intermediate steps rather than only final answers,
LLMs demonstrate enhanced performance on complex tasks that go beyond single-step reasoning,
such as long addition and program execution. This method not only helps the model maintain and
extend context dynamically but also aids in debugging and understanding model decisions (Austin
et al., 2021). Further studies into length generalization have demonstrated that traditional fine-tuning
techniques on tasks requiring such generalizations often encounter significant limitations (Anil et al.,
2022). By integrating scratchpad-like methodologies, these language models can achieve a notable
improvement in handling progressively longer text spans. This enhancement proves particularly
valuable for challenges such as theorem proving and extensive text synthesis. Here, the in-context
learning combined with the sequential output of computed steps substantially bolsters task accuracy
and model robustness (Chen et al., 2021; Wu et al., 2021).

Context Aggregation Efficiency in context aggregation for LLMs have evolved with methods like
Fusion-in-Decoder (FiD) and Map Reduce. FiD, used in models such as T5 and BART, consolidates
contextual embeddings via encoder and decoder components to ensure comprehensive information
integration (Ivgi et al., 2023; Izacard & Grave, 2021). Conversely, LangChain’s Map Reduce pro-
cesses segments in parallel to quickly synthesize responses into a refined final output (Chase, 2022).
Parallel Context Windows (PCW) and Naive Bayes Context Extension (NBCE) further enhance
handling of extended contexts by partitioning these into smaller segments for efficient parallel pro-
cessing, optimizing both processing speed and response relevance (Su et al., 2024; Ratner et al.,
2023).

8 CONCLUSION

In this paper, we have introduced a new inference pattern called Writing in the Margins (WiM),
which leverages chunked prefill to add only a marginal computational cost, emulating the human
behavior of making notes in the margins. We demonstrated that this inference pattern significantly
boosts the performance of off-the-shelf models across various long-context, retrieval-oriented tasks,
including multi-hop reasoning (by 7.5% in HotpotQA, MultiHop-RAG), and aggregation (by 30.0%
in CWE). Remarkably, this method does not require finetuning and is compatible with any trans-
former model.

Additionally, our approach enhances end-user experience by making context processing more trans-
parent. By streaming ”margins” that influence final predictions, our design supports early en-
gagement. WiM differs from traditional long-context methods by allowing immediate streaming
of relevant margins after segment processing, improving latency and reducing computational de-
mands through an early exit strategy. This feature facilitates human-in-the-loop involvement in
LLM decision-making, boosting interaction and intervention opportunities.

Our innovation decouples training and inference, building on ideas like CoT. By merging KV cache
management with targeted prompting strategies, our approach complements existing prompt-based
methods, aiming to initiate research into KV cache-aware prompting. This could improve LLM
reasoning abilities and add a layer of interpretability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement We have made the code for reproducing our results available through
the HuggingFace transformer library at an <anonymised URL>. The evaluation data can be ob-
tained from the HuggingFace Hub under MultiHop-RAG3, or it can be generated using the RULER
code4 for datasets such as SQuAD, HotpotQA, and CWE, with the specific parameters detailed in
our paper. Both sources are provided under a permissive license. Furthermore, we have also dis-
closed the inference parameters and prompts needed to replicate our results.

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Ben-
haim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Qin Cai, Martin Cai, Caio César Teodoro
Mendes, Weizhu Chen, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Yen-Chun Chen, Yi-
Ling Chen, Parul Chopra, Xiyang Dai, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon,
Ronen Eldan, Victor Fragoso, Dan Iter, Mei Gao, Min Gao, Jianfeng Gao, Amit Garg, Abhishek
Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Jamie Huynh,
Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos Karampatziakis, Dongwoo Kim, Mahoud
Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars
Liden, Ce Liu, Mengchen Liu, Weishung Liu, Eric Lin, Zeqi Lin, Chong Luo, Piyush Madan,
Matt Mazzola, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel
Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sam-
budha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shi-
tal Shah, Ning Shang, Hiteshi Sharma, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea
Tupini, Xin Wang, Lijuan Wang, Chunyu Wang, Yu Wang, Rachel Ward, Guanhua Wang, Philipp
Witte, Haiping Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Sonali Yadav,
Fan Yang, Jianwei Yang, Ziyi Yang, Yifan Yang, Donghan Yu, Lu Yuan, Chengruidong Zhang,
Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren
Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024.
URL https://arxiv.org/abs/2404.14219.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gula-
vani, Alexey Tumanov, and Ramachandran Ramjee. Taming throughput-latency tradeoff in
llm inference with sarathi-serve. In 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), Santa Clara, CA, 2024. USENIX Association. URL https:
//www.usenix.org/conference/osdi24/presentation/agrawal.

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor Lewkowycz, Vedant Misra,
Vinay Venkatesh Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur.
Exploring length generalization in large language models. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Sys-
tems, 2022. URL https://openreview.net/forum?id=zSkYVeX7bC4.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-long.172.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gi-
aninazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten
Hoefler. Graph of thoughts: Solving elaborate problems with large language models. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 38(16):17682–17690, March 2024.
3https://huggingface.co/datasets/yixuantt/MultiHopRAG
4https://github.com/hsiehjackson/RULER

11

https://arxiv.org/abs/2404.14219
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://openreview.net/forum?id=zSkYVeX7bC4
https://arxiv.org/abs/2108.07732
https://aclanthology.org/2024.acl-long.172
https://huggingface.co/datasets/yixuantt/MultiHopRAG
https://github.com/hsiehjackson/RULER

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

ISSN 2159-5399. doi: 10.1609/aaai.v38i16.29720. URL http://dx.doi.org/10.1609/
aaai.v38i16.29720.

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing
text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

Harrison Chase. Langchain. https://github.com/langchain-ai/langchain, 10
2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
gloRA: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=6PmJoRfdaK.

W. Daelemans, A. van den Bosch, and J. Zavrel. Forgetting exceptions is harmful in language
learning. Machine Learning, 34(1-3):11–41, 1999. ISSN 0885-6125. Pagination: 32.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Anna Korhonen,
David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 2978–2988, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1285. URL https://aclanthology.
org/P19-1285.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,

12

http://dx.doi.org/10.1609/aaai.v38i16.29720
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://github.com/langchain-ai/langchain
https://openreview.net/forum?id=6PmJoRfdaK
https://openreview.net/forum?id=6PmJoRfdaK
https://aclanthology.org/P19-1285
https://aclanthology.org/P19-1285

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon
Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris
Cai, Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
Li, Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Di-
ana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa
Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Es-
teban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel,
Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Flo-
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Her-
man, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou,
Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren,
Hunter Goldman, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xi-
aocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao,
Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin
Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick,
Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Thibault Févry, Livio Baldini Soares, Nicholas FitzGerald, Eunsol Choi, and Tom Kwiatkowski.
Entities as experts: Sparse memory access with entity supervision. In Bonnie Webber, Trevor
Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 4937–4951, Online, November 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.400. URL https:
//aclanthology.org/2020.emnlp-main.400.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model, 2024. URL https://arxiv.org/abs/
2307.06945.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. RULER: What’s the real context size of your long-context language models? In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=kIoBbc76Sy.

Maor Ivgi, Uri Shaham, and Jonathan Berant. Efficient long-text understanding with short-text
models. Transactions of the Association for Computational Linguistics, 11:284–299, 2023.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), Proceed-
ings of the 16th Conference of the European Chapter of the Association for Computational Lin-
guistics: Main Volume, pp. 874–880, Online, April 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.eacl-main.74. URL https://aclanthology.org/2021.
eacl-main.74.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=HklBjCEKvH.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Haotong Zhang, and Ion Stoica. Efficient memory management for large language
model serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, SOSP ’23, New York, NY, USA, 2023. Association for Computing Machinery. doi:
10.1145/3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 9459–9474. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/6b493230205f780e1bc26945df7481e5-Paper.pdf.

Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. LooGLE: Can long-context lan-
guage models understand long contexts? In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 16304–16333, Bangkok, Thailand, August 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.859. URL https:
//aclanthology.org/2024.acl-long.859.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024. doi: 10.1162/tacl a 00638. URL
https://aclanthology.org/2024.tacl-1.9.

14

https://arxiv.org/abs/2407.21783
https://aclanthology.org/2020.emnlp-main.400
https://aclanthology.org/2020.emnlp-main.400
https://arxiv.org/abs/2307.06945
https://arxiv.org/abs/2307.06945
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://openreview.net/forum?id=HklBjCEKvH
https://doi.org/10.1145/3600006.3613165
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://aclanthology.org/2024.acl-long.859
https://aclanthology.org/2024.acl-long.859
https://aclanthology.org/2024.tacl-1.9

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Qi Liu, Dani Yogatama, and Phil Blunsom. Relational memory-augmented language mod-
els. Transactions of the Association for Computational Linguistics, 10:555–572, 2022. doi:
10.1162/tacl a 00476. URL https://aclanthology.org/2022.tacl-1.32.

Amirkeivan Mohtashami and Martin Jaggi. Random-access infinite context length for transformers.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=7eHn64wOVy.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=2DtxPCL3T5.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models.
In Deep Learning for Code Workshop, 2022. URL https://openreview.net/forum?
id=HBlx2idbkbq.

OpenAI. Gpt 4., 2023. URL https://openai.com/research/gpt-4.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=wHBfxhZu1u.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the 56th An-
nual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
784–789, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-2124. URL https://aclanthology.org/P18-2124.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Inbal Magar, Omri Abend, Ehud Karpas,
Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. Parallel context windows for large
language models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 6383–6402, Toronto, Canada, July 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.acl-long.352. URL https://aclanthology.org/2023.
acl-long.352.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. ZeroSCROLLS: A zero-shot
benchmark for long text understanding. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 7977–7989, Sin-
gapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-emnlp.536. URL https://aclanthology.org/2023.findings-emnlp.
536.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Jianlin Su, Murtadha Ahmed, Bo Wen, Luo Ao, Mingren Zhu, and Yunfeng Liu. Naive Bayes-
based context extension for large language models. In Kevin Duh, Helena Gomez, and Steven
Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies (Volume 1: Long Pa-
pers), pp. 7791–7807, Mexico City, Mexico, June 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.naacl-long.431. URL https://aclanthology.org/2024.
naacl-long.431.

Yixuan Tang and Yi Yang. Multihop-RAG: Benchmarking retrieval-augmented generation for multi-
hop queries. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=t4eB3zYWBK.

15

https://aclanthology.org/2022.tacl-1.32
https://openreview.net/forum?id=7eHn64wOVy
https://openreview.net/forum?id=7eHn64wOVy
https://openreview.net/forum?id=2DtxPCL3T5
https://openreview.net/forum?id=2DtxPCL3T5
https://openreview.net/forum?id=HBlx2idbkbq
https://openreview.net/forum?id=HBlx2idbkbq
https://openai.com/research/gpt-4
https://openreview.net/forum?id=wHBfxhZu1u
https://aclanthology.org/P18-2124
https://aclanthology.org/2023.acl-long.352
https://aclanthology.org/2023.acl-long.352
https://aclanthology.org/2023.findings-emnlp.536
https://aclanthology.org/2023.findings-emnlp.536
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://aclanthology.org/2024.naacl-long.431
https://aclanthology.org/2024.naacl-long.431
https://openreview.net/forum?id=t4eB3zYWBK
https://openreview.net/forum?id=t4eB3zYWBK

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Szymon Tworkowski, Konrad Staniszewski, Mikołaj Pacek, Yuhuai Wu, Henryk Michalewski, and
Piotr Miłoś. Focused transformer: Contrastive training for context scaling. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=s1FjXzJ0jy.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

vLLM. Performance and tuning, 2024. URL https://docs.vllm.ai/en/latest/
models/performance.html#chunked-prefill.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_VjQlMeSB_J.

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Baker Grosse. {INT}: An inequality benchmark
for evaluating generalization in theorem proving. In International Conference on Learning Rep-
resentations, 2021. URL https://openreview.net/forum?id=O6LPudowNQm.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=5Xc1ecxO1h.

16

https://openreview.net/forum?id=s1FjXzJ0jy
https://openreview.net/forum?id=s1FjXzJ0jy
https://docs.vllm.ai/en/latest/models/performance.html#chunked-prefill
https://docs.vllm.ai/en/latest/models/performance.html#chunked-prefill
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=O6LPudowNQm
https://arxiv.org/abs/2407.10671
https://aclanthology.org/D18-1259
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPENDIX - PSEUDOCODE FOR CHUNKEDPREFILL AND WRITING IN THE
MARGINS ALGORITHMS

Algorithm 1: Inference with Chunked Prefill
Input : system message (string)

context (string)
instruction (string)
llm (object)

Output: output (string)
1 context← system message + context;
2 segments← split(context);
3 past key value← [];
4 for segment ∈ segments do

// add the segment to the KV cache
5 prefill(llm, past key value, segment);
6 end
7 output← generate(llm, past key value, instruction);
8 return output

Algorithm 2: Writing in the Margins
Input : system message (string)

context (string)
instruction (string)
extractive summary prompt (string)
classification prompt (string)
llm (object)

Output: output (string)
1 context← system message + context;
2 segments← split(context);
3 past key value← [];
4 positive margins← [];
5 for segment ∈ segments do

// add the segment to the KV cache
6 prefill(llm, past key value, segment);

// generate using the content of the KV cache and then
discard any

// tokens added to the KV cache by the prompt and the
generated tokens

7 margin← generate(llm, past key value, extractive summary prompt);
8 classification input← format(classification prompt, margin, instruction);
9 end
// do not use any past KV cache to classify

10 classification result← generate(llm, NULL, classification input);
11 if classification result = true then
12 append(positive margins, margin)
13 end
14 all positive margins← concatenate(positive margins);
15 prefill(llm, past key value, all positive margins);
16 output← generate(llm, past key value, instruction);
17 return output

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 4: Sequence packing. Sequence packing allows to pack multiple unrelated documents in the
same sequence. By adjusting the attention mask, we can avoid cross-contamination. This speeds up
training time by reducing the number of padding tokens. A similar technique can also be used to
inference from multiple prompts using the same sequence.

B APPENDIX - DECOUPLING EXTRACTION AND CLASSIFICATION

Writing in the margins generates supplemental information by leveraging a partially prefilled KV
cache. Each subsequent segment c in the KV cache can be used to generate an annotation, known as
a “margin note”. To avoid providing the model with all the margins, we ask the model to generate the
first token corresponding to the margin classes: relevant vs. irrelevant. In this section, we explore the
possibility of decoupling the extraction and classification steps, which will allow for using separate
prompting strategies. This separation might further boost the performance of the WiM pattern. We
demonstrate that one can use the same instance of the model to perform both the computation of the
margins and their classification.

In a naive implementation of such overlapped computation, the user may treat the classification
request as an additional sequence and batch it with the prefilling request; this approach would require
a very large number of padding tokens to align the two sequences. A more computationally efficient
solution is to pack the classification request into the same sequence used to prefill the context and
adjust the attention mask accordingly. An example of such a mask is provided in Figure 4. This
technique is utilized during the pre-training of language models to reduce the number of padding
tokens.

The first request to the language model would only contain the first segment c1 and the additional
extractive instruction IA (the“extractive summary prompt”). The attention mask at this point is
provided in Figure 5 and Figure 6. This would generate the first margin M0. After generating M0,
the instruction prompt IA and all the subsequent tokens generated in M0 can be removed from the
KV cache, leaving the KV cache only with c1. In order to not grow or shrink a dynamically allocated
KV cache, it is possible to use a static KV cache, as the number of total tokens in each segment,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 5: Prefilling of the first segment c1 along with the extractive instruction IA. Padding
tokens are shown for clarity in case of a statically allocated KV cache, but they do not needed to be
attended to or used in the KV sequence when calculating the attention. The KV sequence should be
a slice of the KV tensor that includes only non-padding tokens.

Figure 6: Token generation using the prefilled KV cache. Each generated token replaces a padding
token in the KV cache.

extractive instruction and classification prompt is known in advance, so is the maximum number of
tokens for each margin Mi and classification result ω(I(Mi)).

Having generated the first margin M0, it is possible to add the second segment c2 to generate the
second margin M1 while at the same time classifying the previously generated margin M0. To do
so, the KV cache is prefilled with subsequent tokens c2, the extractive instruction IA and a number
of padding tokens to accommodate the generated tokens of margin M1. Moreover, the KV cache
is also expanded by adding the classification instruction I(M0) and a number of padding tokens to
accommodate the generated tokens for the classification result ω(I(M0)). The attention mask at this
point is provided in Figure 7.

Autoregressive token generation of the margin M1 and the classification result ω(I(M0)) can be
done in parallel by projecting the last token of each sub-sequence into logits. Each generated token
can then be added in place of a padding token in each subsequence to generate successive tokens.
Token generation at this stage is shown in Figure 8.

By using a statically allocated KV cache and by keeping track of how many tokens are used in it,
it is possible to use a partial view (also known as “tensor slicing”) of the KV tensor without any
computational overhead. It is also possible to use techniques like PagedAttention (Kwon et al.,
2023) to allocate the KV cache block by block, in order to optimize the memory consumption while
benefiting from a partial static allocation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 7: Prefilling of the second segment c1 along with the extractive instruction IA. In this case
the padding tokens between IA and I(M0) must be included in the KV sequence when calculating
the attention to retain the memory continuity of the tensor, but the terminal padding tokens need
not to. Each token in the second segment c2 needs to attend all tokens in the first segment c1. The
classification prompt I(M0) be considered a completely separate document in the same sequence as
prefilling.

Figure 8: Parallel token generation of the margin M1 and the classification result ω(I(M0)).
Each generated token replaces a padding token in its specific subsequence.

C APPENDIX - PROMPTING

For all benchmarks, we respected their original formulation. In all cases, the prompt strategy for the
Long Context LLM baseline could be expressed as:

{system_message}
‘‘‘text
{context}
‘‘‘
{instruction}
{query}

Where system message and instruction were usually the task instructions split into two
parts and appended before and after the main context respectively.

In the RAG approach, we used the original prompt but replaced contextwith all relevant segments
concatenated by a newline sign.

In WiM inference, all constructed prompts shared the common prefix:

{system_message}
‘‘‘text
{context}
‘‘‘

This was necessary for the efficient reuse of the KV cache. To ensure that predictions were com-
parable, we manually identified a promising prompt for the margin generation and final prediction
steps for all evaluated models.

C.1 MARGIN GENERATION

For each intermediate context contexti = Σi
1ci and instruction I , we used the following extractive

summary prompt IA to generate a margin note Mi:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

I_A = """
{system_message}
‘‘‘text
{context_i}
‘‘‘
Copy over all context relevant to the query: {query}
Provide the answer in the format: <YES/NO>#<Relevant context>.
Here are rules:
- If you don’t know how to answer the query - start your answer with NO#
- If the text is not related to the query - start your answer with NO#
- If you can extract relevant information - start your answer with YES#
- If the text does not mention the person by name - start your answer

↪→ with NO#
Example answers:
- YES#Western philosophy originated in Ancient Greece in the 6th century

↪→ BCE with the pre-Socratics.
- NO#No relevant context.
"""

In our experiments, the margin generation step was combined with the classification step; the first
token generated was a class label. We conditioned the generation of a margin based on the first token;
i.e., we continued the generation only if the first token was YES. Additionally, the prompt included
an explanation designed to enforce specific formatting and to prevent the model from inserting
comments before delivering its judgment.

In Appendix B, we explore the possibility of decoupling margin generation and classification
prompts while using the same instance of the model.

C.2 FINAL WIM PROMPT WITH ACCUMULATED MARGINS

We used two variants of the prompt, depending on the number of retrieved margins.

C.2.1 SINGLE MARGIN

{system_message}
‘‘‘text
{context}
‘‘‘
I asked my assistant to read and analyse the above content page by page

↪→ to help you complete this task. This is a margin note left on the
↪→ last page:

‘‘‘text
QUERY: {query}
ANSWER: {M_i}
‘‘‘
Read again the note(s) and the provided content, take a deep breath and

↪→ answer the query.
{instruction}
{query}

C.2.2 MULTIPLE MARGINS

{system_message}
‘‘‘text
{context}
‘‘‘
I asked my assistant to read and analyse the above content page by page

↪→ to help you complete this task. Those are margin notes left on each
↪→ page:

‘‘‘text
Page 0:
QUERY: {query}
ANSWER: {M_i}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Page 1:
QUERY: {query}
ANSWER: {M_j}
...
‘‘‘
Read again the note(s) and the provided content, take a deep breath and

↪→ answer the query.
{instruction}
{query}

We replaced the term “segment” with “page” to more closely replicate the human practice of writing
in the margins. In our experiments, there was no relationship between the order of the segments and
the page numbers; this is left as an optional implementation detail.

C.3 PROMPT USED WITH ACCURACY METRIC FOR SQUAD, HTOPOTQA AND
MULTIHOP-RAG

Evaluate the following exam answer. I will provide you with the query,
↪→ target answer(s) and the answer provided by the student.

The student’s answer does not need to preserve the casing of the target
↪→ answers, and slight variations in phrasing are acceptable, provided
↪→ the meaning remains correct.

Provide the answer in the format: <YES/NO>#<Explanation>.

Here are the rules:
- If the student’s answer is correct - start your answer with YES#
- If the student’s answer is wrong or it is missing - start your answer

↪→ with NO#

Example answers:

QUERY: As of 2016, about what percentage of adults aged 18 years or older
↪→ were overweight?

TARGET: 40%, forty percent
ANSWER: forty percent
YES#The student’s answer is correct.

QUERY: What is the value of p in 24 = 2p?
TARGET: 12, 12.0
ANSWER: five
NO#The student’s answer is wrong.

QUERY: What is the ’Lotus principle’?
TARGET: The so-called Lotus principle is that ’restrictions upon the

↪→ independence of States cannot therefore be presumed
ANSWER: The Lotus principle is a horticultural technique developed in

↪→ ancient Egypt for cross-pollinating lotus flowers with roses to
↪→ create fragrant, floating gardens.

NO#No, the student’s explanation is wrong.

QUERY: {query}
TARGET: {target}
ANSWER: {answer}

C.4 PROMPT USED WITH F1 METRIC FOR CWE

Evaluate the following exam answer. The student’s task was to identify
↪→ the most common words in text. I will provide you with the target
↪→ answer(s) - 10 words - and the student’s response.

The student’s answer does not need to preserve the casing of the target
↪→ words.

Provide your assessment in the format: <Positive>#<Negative>#<Explanation
↪→ >.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Here are the rules:
- <Positive> denotes the number of common words that the student has

↪→ correctly identified (i.e., those included in the target list).
- <Negative> represents the number of words the student has identified as

↪→ common but are incorrect (i.e., not included in the target list).
- If the student’s answer is non-relevant, simply return: 0#10#The answer

↪→ is garbage.
- If the student’s answer includes Python code, mention "python" in your

↪→ explanation.
- If the student provides the full answer twice, consider only the first

↪→ submission.

Example answers:

TARGET: jealousy, access, chase, recess, head, animal, capon, hops,
↪→ unequaled, mozzarella

ANSWER: Based on the provided content and the margin notes, the 10 most
↪→ common words in the input are:\n\n1. chase (100 occurrences)\n2.
↪→ unequaled (99 occurrences)\n3. access (98 occurrences)\n4. hops (97
↪→ occurrences)\n5. animal (95 occurrences)\n6. jealousy (96
↪→ occurrences)\n7. mozzarella (94 occurrences)\n8. recess (93
↪→ occurrences)\n9. capon (91 occurrences)\n10. oxygen (91 occurrences
↪→),

9#1#The student’s answer contains 9 correct words out of 10 given.

TARGET: seeder, workout, wafer, chronograph, liability, hovercraft,
↪→ nestling, alloy, netball, addicted

ANSWER: To find the 10 most common words in the given input, we need to
↪→ count the occurrences of each word and then sort them in descending
↪→ order. Here are the 10 most common words and their counts:\n\n1.
↪→ \"floodplain\" - 25 occurrences\n2. \"acetate\" - 24 occurrences\n3
↪→ . \"nondisclosure\" - 23 occurrences\n4. \"caterpillar\" - 22
↪→ occurrences\n5. \"moai\" - 21 occurrences\n6. \"video\" - 20
↪→ occurrences\n7. \"bacterium\" - 19 occurrences\n8. \"frog\" - 19
↪→ occurrences\n9. \"carnivore\" - 18 occurrences\n10. \"cattle\" - 18
↪→ occurrences\n\nNote: The input provided is a long list of words,
↪→ and the above list is based on the most frequent words found in the
↪→ list. The actual list may vary depending on the specific input.

0#10#The student’s answer provides only a generic answer and fails to
↪→ solve the problem.

TARGET: jealousy, access, chase, recess, head, animal, capon, hops,
↪→ unequaled, mozzarella

ANSWER: To find the 10 most common words in the provided input, we can
↪→ use a Python script that reads the text, splits it into words,
↪→ counts the occurrences of each word, and then prints the top 10
↪→ most common words along with their counts. Here’s a Python script
↪→ that accomplishes this:\n\npython\nfrom collections import Counter\
↪→ n\n# Read the text from the input\nwith open(’input.txt’, ’r’) as
↪→ file:\n text = file.read()\n\n# Split the text into words\nwords =
↪→ text.split()\n\n# Count the occurrences of each word\nword_counts =
↪→ Counter(words)\n\n# Get the 10 most common words\
↪→ nmost_common_words = word_counts.most_common(10)\n\n# Print the 10
↪→ most common words and their counts\nfor word, count in
↪→ most_common_words:\n print(word, count) The provided text\ntext =
↪→ 1.jealousy 2. gauge 3. work 4. townhouse 5. ubiquitous 6. regulator
↪→ 7. oxygen 8. verdict 9. war 10. verdict 11. rag 12. rag

1#11#The student’s answer contains python code. One word is correct but
↪→ it contains also other 11 incorrect words.

TARGET: {target}
ANSWER: {answer}

23

	Introduction
	Writing in the Margins
	Chunked Prefill
	Writing in the Margins

	Experimental Setup
	Datasets
	Long Context Window LLMs
	Evaluation
	Prediction
	Scoring

	Results
	Multi-Hop Reasoning
	Needle Retrieval and Single-Hop Question Answering
	Aggregation

	Ablation Study
	No margins filtering
	Replacing the content by margins

	Interactive Retrieval
	Related Work
	Conclusion
	Appendix - Pseudocode for ChunkedPrefill and Writing in the Margins algorithms
	Appendix - Decoupling Extraction and Classification
	Appendix - Prompting
	Margin generation
	Final WiM prompt with accumulated margins
	Single margin
	Multiple margins

	Prompt used with accuracy metric for SQuAD, HtopotQA and MultiHop-RAG
	Prompt used with F1 metric for CWE

