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ABSTRACT

This paper investigates an open research challenge of reconstructing high-quality,
large-scale 3D open scenes from images. It is observed existing methods have var-
ious limitations, such as requiring precise camera poses for input and dense view-
points for supervision. To perform effective and efficient 3D scene reconstruction,
we propose a novel graph-guided 3D scene reconstruction framework, GraphGS.
Specifically, given a set of images captured by RGB cameras on a scene, we first
design a spatial prior-based scene structure estimation method. This is then used
to create a camera graph that includes information about the camera topology.
Further, we propose to apply the graph-guided multi-view consistency constraint
and adaptive sampling strategy to the 3D Gaussian Splatting optimization pro-
cess. This greatly alleviates the issue of Gaussian points overfitting to specific
sparse viewpoints and expedites the 3D reconstruction process. We demonstrate
GraphGS achieves high-fidelity 3D reconstruction from images, which presents
state-of-the-art performance through quantitative and qualitative evaluation across
multiple datasets.

1 INTRODUCTION

3D scene reconstruction aims to transform 2D images into realistic 3D scenes. This technology has
many practical applications such as Augmented Reality (AR) and Virtual Reality (VR) (Cheng et al.,
2023; Guo et al., 2023; Mi & Xu, 2023; Xiangli et al., 2022; Xu et al., 2023). The emergence of
Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) and 3D Gaussian Splatting (3DGS) (Kerbl
et al., 2023) enables differentiable novel-view synthesis and real-time rendering (Luiten et al., 2024;
Wu et al., 2023; Yang et al., 2023c). Recent studies have applied NeRF and 3DGS to unbounded
environments such as street views and urban areas (Turki et al., 2022; Tancik et al., 2022; Wang
et al., 2023b; Lin et al., 2024; Yan et al., 2023), broadening the application scenario.

However, achieving high-quality 3D scene reconstruction remains a challenging task. It is observed
existing works require precise camera poses for input and dense viewpoints for supervision (Lin
et al., 2024; Chen et al., 2024; Guo et al., 2023). Notably, public benchmark datasets such as those
referenced in (Geiger et al., 2012; Turki et al., 2022; Sun et al., 2020) often experience pose inaccu-
racies and sparse viewpoints for boundaries. These issues are typically attributed to motion-induced
vibrations and limitations in the positioning equipment used in vehicles or drones. Moreover, if one
would like to use mobile devices such as smartphones and DSLR cameras to capture images for
3D reconstruction, obtaining accurate camera poses and dense viewpoints can be challenging and
troublesome.

Although tools like COLMAP have been developed to lower the entry barrier for 3D reconstruction
by providing pose estimation, the heavy optimization costs and camera matching failures limit their
practicality (Schönberger & Frahm, 2016; Schönberger et al., 2016b). Additionally, methods that
incorporate pose estimation strategies for object reconstruction, struggle with broader scene appli-
cations (Yang et al., 2023b; Jain et al., 2021; Wang et al., 2023a; et al., 2023a). The limited number
of viewpoints and the vast number of images in outdoor scenes further complicate the issue.

To address the challenges of reconstructing large-scale open scenes from uncalibrated images, this
paper proposes GraphGS, a framework specifically tailored for large-scale 3D open scene recon-
struction. GraphGS utilizes 3DGS combined with our proposed spatial prior-based scene structure
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estimation to enhance the speed and accuracy of pose estimation, even for image collections com-
prising thousands of images. During the process of scene structure estimation, the matching rela-
tionship of cameras is also recorded, which is represented as a camera graph. The camera graph
provides useful topology information for scene cameras and benefits for gaussian optimization.

GraphGS innovatively proposes to apply the constructed camera graph to guide the optimization
process of large-scale 3DGS scenes, through multi-view consistency constraints and adaptive sam-
pling strategy. This ensures a more accurate 3D Gaussian point distribution. Besides, our proposed
approach prevents Gaussian points from overfitting to given sparse viewpoints, thereby enhancing
reconstruction quality. Furthermore, our adaptive sampling strategy reduces the number of itera-
tions for camera graph nodes, significantly accelerating the reconstruction of large-scale open 3DGS
scenes and reducing training time by nearly 50%.

The main contributions of this paper are summarized as follows:

• We introduce 3DGS in conjunction with spatial prior-based structure estimation method to
efficiently and accurately estimate structures from uncalibrated images.

• Through our proposed camera graph-guided 3D Gaussian optimization, GraphGS not only
improves the reconstruction quality, but also greatly accelerates the reconstruction process.

• With GraphGS framework, our method achieves state-of-the-art (SOTA) performance in
several large-scale benchmarks without using ground truth camera poses.

2 RELATED WORK

2.1 SCENE RECONSTRUCTION

The advent of NeRF (Mildenhall et al., 2021) has ushered in a golden age for 3D scene construction.
Numerous studies have improved its efficiency (Hedman et al., 2021; Müller et al., 2022; Reiser
et al., 2023) and generalization (Yu et al., 2021b; Wang et al., 2021a; Chen et al., 2021). Mip-
NeRF (Barron et al., 2021) and Zip-NeRF (Barron et al., 2023) have tackled aliasing issues, while
InstantNGP (Müller et al., 2022) integrates grid pyramid technologies to optimize sub-volumes.
UC-NeRF (Cheng et al., 2023) targets outdoor scenes, enhancing image consistency through color
correction and pose refinement. StreetSurf (Guo et al., 2023) and EmerNeRF (Yang et al., 2023a)
introduce novel approaches for multi-view reconstructions through disentanglement and self-guided
learning. Concurrently, PVG (Chen et al., 2024) utilizes 3DGS (Kerbl et al., 2023) to advance scene
reconstruction with techniques like time-dependent transparency and scene-flow smoothing.

Furthermore, to extend reconstruction techniques to larger-scale scenes, methods like Block-
NeRF (Tancik et al., 2022), Mega-NeRF (Turki et al., 2022), and Switch-NeRF (Mi & Xu, 2023)
employed a divide-and-conquer strategy. Mega-NeRF clustered pixels based on 3D sampling dis-
tances, Block-NeRF organized images into street blocks, and Switch-NeRF utilized a sparse net-
work for large-scale scene synthesis. These methods improved scalability and flexibility but faced
limitations in real-time rendering of large outdoor environments. VastGaussian (Lin et al., 2024)
incorporated 3DGS to enhance detail presentation and rendering speed in large-scale scenes. While
these methods have advanced scene reconstruction, they typically rely on precise camera poses and
initial data like LiDAR, which can be difficult to obtain in real-world applications, especially in
expansive outdoor settings.

2.2 POSE OPTIMIZATION

To address issues with pose accuracy, many studies seek to bypass the slow and occasionally impre-
cise COLMAP process by concurrently optimizing camera pose and scene representation using the
original MLP-based NeRF (Wang et al., 2021b), such as GARF (Chng et al., 2022) and BARF (Lin
et al., 2021). Joint-TensoRF(Cheng et al., 2024) focuses on refining camera poses and 3D scenes
using decomposed low-rank tensors. These methods have been proven effective in recovering ob-
ject structures and poses from imperfect or unknown camera positions, although their application
to broader scene reconstruction remains challenging. In 3DGS, COLMAP (Schönberger & Frahm,
2016; Schönberger et al., 2016b) is utilized for pose reconstruction and generating sparse initial
points via Structure-from-Motion (SfM) (Schönberger & Frahm, 2016). However, COLMAP’s
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Figure 1: Framework of the GraphGS method for efficient large-scale 3D scene reconstruction.
The process begins with spatial prior-based structure estimation, followed by octree-based efficient
organization of initialization points. The camera graph is obtained at the end of structure estimation,
which contains topology information of scene camera. The information in camera graph will be
further used for the following gaussian optimization.

dense matching time increases exponentially with the number of images, and its success rate is
limited, which poses significant challenges for outdoor scene reconstruction.

Building on the discussions above, this paper is dedicated to proposing a low-pose-requirement,
rapid, high-precision 3D reconstruction method suitable for both general and large-scale scenes.

3 METHOD

As shown in Fig. 1, we firstly design spatial prior-based scene structure estimation to improve ef-
ficiency of SfM pipeline with the input of thousands of images. During the process, we record the
matching information of cameras and formed a camera graph. The graph contains topology informa-
tion of scene cameras, which is suitable for guiding gaussian optimization to improve reconstruction
quality and efficiency. In addition, to accelerate the training process and decreases GPU memory
consumption, an octree point initialization strategy is introduced to reduce initializaition points.

3.1 SPATIAL PRIOR-BASED STRUCTURE ESTIMATION

In the reconstruction of 3DGS scenes from thousands to tens of thousands of images, rapidly and
accurately obtaining camera poses represents a significant challenge. Traditional Structure from Mo-
tion (SfM) pipeline(COLMAP (Schönberger & Frahm, 2016; Schönberger et al., 2016b)), typically
require days to accurately process such extensive datasets. We locate this problem in exhaustive
matcher of COLMAP pipeline, which takes all possible image pairs for feature matching and causes
time bottleneck. To address this issue, we have developed an innovative spatial analysis framework
for estimating scene structure. Initially, we acquire approximate camera poses from pre-trained fast
relative pose estimation models. Subsequently, utilizing concentric nearest neighbor pairing (Sec.
3.1.1) and quadrant filter (Sec. 3.1.2), we filter and prioritize image pairs that are crucial for accurate
camera pose estimation. This approach dramatically reduces computational load, facilitating swift
and precise reconstructions that transform processes from days-long endeavors to tasks completed
within hours. Additionally, we have constructed a camera graph to guide the optimization process
in 3DGS, further enhancing the efficiency and precision of the reconstruction.

3.1.1 CONCENTRIC NEAREST NEIGHBOR PAIRING

Compared to selecting all possible image pairs, opting for a sparser set can significantly accelerate
the process of scene structure estimation. However, improper selections may lead to failures in
matching cameras with the scene during the estimation phase. Our principle is, the distribution of
selected image pairs should reflect both local and global structure. To handle this issue, we propose
concentric nearest neighbor pairing. For camera ci, cj from N cameras altogether, we define s(i, j)
as the sorted order from nearest to farthest of camera cj relative to camera ci, then the set of all
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Figure 2: Illustration of spatial prior-based structure estimation, including two parts: Concentric
Nearest Neighbor Pairing (left) and Quadrant Filter (right). For Concentric Nearest Neighbor Pair-
ing, we first select ci’s nearest r cameras for matching to guarantee stability of local bundle adjust-
ment, then we select w cameras from every h+w cameras based on distance order, forming a series
of concentric circles. For quadrant filter of 2D case, camera ci is posed at the center of the coordinate
system, pointing towards the y-axis. For other cameras (we show 12 cameras), the relative position
and orientation to ci contains 4× 4 = 16 states.

matched pairs Sall is given by:

Sall =

N⋃
i=1

S(i), where (1)

S(i) = S
(i)
1 ∪ S

(i)
2 ∪ S

(i)
3

S
(i)
1 = {(ci, cj)|s(i, j) ≤ r, j = 1, 2, ..., N, j ̸= i}

S
(i)
2 = {(ci, cj)|0 ≤ (s(i, j)− r)%(h+ w) < w, j = 1, 2, ..., N, j ̸= i}

S
(i)
3 = {(ci, cj)|j = i− 1, j ≥ 1}

where the process of S(i)
1 , S(i)

2 are illustrated in Fig. 2 (left). This approach allows for a smooth
transition from local to global matching pairs, ensuring sparsity that enhances the efficiency of
feature matching. Notice there are repetitive elements among different S(i) (e.g. camera pair (c1, c3)
is equivalent to (c3, c1)), we eliminate them via HashSet at the end. In addition, we implement this
method via K-DTree ( (Bentley, 1975)) for high efficient storage and retrieval of camera distance
relationship to further save pair selection time.

Remark. When treating cameras as a graph node, and adding edges for every match pair in Sall,
an undirected graph will be formed, which we refer to as camera graph. To guarantee the success
of scene structure estimation, camera graph should be connected graph. However, this may not be
satisfied when S(i) = S

(i)
1 ∪ S

(i)
2 , and the proof is presented in Appendix A. To address this issue,

we add additional S(i)
3 to S(i) and pairs in S

(i)
3 will not be affected by the following quadrant filter

strategy.

3.1.2 QUADRANT FILTER

In reconstructing 3DGS scenes from a large number of images, selecting appropriate image pairs to
accelerate the estimation of scene structure is essential. Given two camera pairs which have little or
no view intersection with each other, it is inefficient to mark them as matching pairs. Besides, these
pairs introduce noise for global refinement. In this section we introduce quadrant filter strategy to
filter these noise pairs.

For one coarse camera ci, we denote its global position as p(i) = [xi, yi, zi] and orientation as
d(i) = [v

(i)
x , v

(i)
y , v

(i)
z ]. Broadly speaking, for arbitrary two camera ci, cj with varying position and
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orientation in 3D space, their relative position and relative orientation have 8 states respectively,
totally with 8× 8 = 64 states. This already provides enough information to filter noise pairs.

To record the relative position of camera cj to ci, we apply binary encoding as follows:

B(i,j)
p = {sgn(xj − xi), sgn(yj − yi), sgn(zj − zi)} (2)

with the sign function sgn(x):

sgn(x) =

{
1, if x > 0

0, if x ≤ 0
(3)

where B(i,j)
p is a three-digit binary number, representing 8 quadrants. For example, when

B(i,j)
p ={0,1,1}, it represents binary number 011, corresponding to the 3rd quadrant. (i, j) repre-

sents the position of cj relative to ci, meaning ci is posed on the origin of the 3D coordinate system,
pointing towards z-axis.

To record the relative orientation, a direct way is to calculate a rotation matrix to transform them
in the same standard, and follow the same approach like recording relative position. However, this
would be time-consuming since we have to solve a system of linear equations for every potential
camera pairs. To address this issue, we have proposition as follows:

Proposition 1 Given two spacial vectors d(i) = [v
(i)
x , v

(i)
y , v

(i)
z ], d(j) = [v

(j)
x , v

(j)
y , v

(j)
z ], their rel-

ative orientation have 8 states respectively, corresponding to 8 quadrants in 3D coordinate system.
The quadrant of relative orientation can be directly calculated via one cross product and one inner
product:

B(i,j)
d = {sgn(ex[d(i)× ]dT (j)), sgn(ey[d

(i)
× ]dT (j)), sgn(d(i)dT (j))} (4)

where B(i,j)
d is a three-digit binary number, representing 8 quadrants. [d

(i)
× ] represents the anti-

symmetric matrix of cross product:

[d
(i)
× ] =

 0 −v
(i)
z v

(i)
y

v
(i)
z 0 −v

(i)
x

−v
(i)
y v

(i)
x 0

 (5)

and ex = [1, 0, 0], ey = [0, 1, 0] represent unit vector of x, y axis.

The full proof is provided in Appendix C.

Proposition 1 provides an efficient way to record 8 states of relative orientation. After encoding both
position and orientation, we concatenate them to get final pose binary encoding with 6-bit:

B(i,j) = B(i,j)
p ⊕ B(i,j)

d (6)

this enables us to directly query a predefined state table to filter the noise camera pairs. As shown
in Fig. 2 (right), a 2D example, in this case, the relative position and relative orientation have 4
states respectively (that is, 4 quadrants). For different camera cj relative to ci, the c1 (green) should
be included in matching if it appears in S(i) of Equation 1, while the c2 (red) should be excluded.
For c3 (yellow), it has slight view intersection with ci, for this state, we set strict/loose mode of the
state table to handle it in practice. Notice even in the loose mode (we include all the yellow cameras
like c3 to matching), our method can also filter more than 38% noise camera pairs for cameras with
random poses. The detailed quadrant division of 3D coordinate system, full state table and analysis
of strict/loose mode are all presented in Appendix B.

3.1.3 OCTREE POINT INITIALIZATION

The design of this module is based on the observation that, in the scene reconstruction process
using 3DGS, not all initial points contribute equally to the ultimate quality of the reconstruction.
By efficiently managing these points, computational efficiency is optimized without compromising
reconstruction quality. Drawing inspiration from PlenOctrees (Yu et al., 2021a), we employ an
Octree (Meagher, 1980) structure for spatial detail management. Nodes in the octree are evaluated
based on the Level of Detail (LOD) of the initial points, with those falling below a detail threshold
τ—deemed minimally contributory to quality—being pruned to simplify the model.
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3.2 GRAPH-GUIDED GAUSSIAN OPTIMIZATION

3.2.1 CAMERA GRAPH DEFINITION

Based on the observation that viewpoint coverage in open scenes is relatively sparse compared to in-
door scenes or object reconstruction, supervision from a single viewpoint can lead to Gaussian points
overfitting near specific cameras. This results in an inaccurate Gaussian distribution and learning
predominantly from a single image rather than the entire scene. To address these challenges and
improve the efficiency, accuracy, and robustness of 3DGS reconstruction in open scenes, we have
specifically designed a weighted undirected camera graph based on structured estimation results.
The construction of this graph adheres to the following rules: 1) Each node corresponds to a view
camera’s rotation matrix R and translation matrix T; 2) Edges are formed based on the camera pairs
selected in Section 3.1. We aim to use this meticulously designed graph structure to precisely reflect
the spatial relationships between cameras, thereby effectively guiding the optimization process of
3DGS in open scenes.

3.2.2 GRAPH-GUIDED MULTI-VIEW CONSISTENCY CONSTRAINT

3

7

6

4

Figure 3: Example of edge weights.

We know that adjacent multi-view scenes with mini-
mal directional differences should exhibit nearly identi-
cal photometric values (Kloukiniotis et al., 2022). Con-
sequently, we designed edge weight we(i, j) of camera
graph to measure this directional differences as follows:

we(i, j) =
e−k∥p(i)−p(j)∥

2

1− e−d(i)dT (j)
(7)

where p(i), p(j) and d(i), d(j) are refined camera position
and orientation from rotation and translation matrix R,
T . Take Fig. 3 for example, supposing there are 3 edges
(3, 4), (3, 6), (3, 7) connecting to camera node 3. When
calculating the edge weights, Eq. 7 will take relative dis-
tance d36, d37, d34 and relative orientation θ36, θ37, θ34
into consideration, while the edge with smaller distance
and smaller angle obtains larger weight.

Based on the edge weights, we designed a multi-view
consistency photometric loss Lcons to enhance the robust-
ness of 3DGS optimization process as follows:

Lcons = λ
∑
i,j

∑
p

∥Ii(p)− Ij(Kj(RjiK
−1
i p+ Tji))∥ (8)

where Ii(p) represents the intensity or color at pixel p in the image from camera i. The matrices
Rji and Tji describe the rotation and translation from camera i to camera j, respectively, while
Ki and Kj are the intrinsic matrices, and λ is an adjustment factor. To obtain camera j given
camera i, we traverse all edges of camera i and select the camera with the maximum edge weight
to camera i as target camera j. Counterintuitively, while target camera j may provide rendered
results that are significantly worse than the ground truth images for supervision, they enhance the
reconstruction outcome. We believe this may act similar to data augmentation method, helping to
prevent overfitting.

3.2.3 ADAPTIVE SAMPLING OPTIMIZATION

We propose an adaptive sampling strategy that dynamically adjusts sampling rates during optimiza-
tion based on node importance in the graph. For nodes with less overlap with other viewpoints,
sampling frequency is reduced according to their weights. To assess the importance of each node
within the graph, we devise specific importance weights. We find that performing fewer iterations
on certain peripheral nodes does not significantly degrade the overall quality of reconstruction and
helps prevent overfitting due to insufficient supervision signals. The design of node weights primar-
ily considers two criteria: 1) Degree centrality, which calculates the number of neighbors connected

6
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Method Waymo KITTI

FPS ↑ PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑ PSNR ↑ SSIM ↑ LPIPS ↓
Mip-NeRF 360 (Barron et al., 2022) 0.042 22.42 0.698 0.471 0.053 20.68 0.650 0.480
S-NeRF (Xie et al., 2023) 0.001 19.22 0.515 0.400 0.008 18.71 0.606 0.352
StreetSurf (Guo et al., 2023) 0.097 23.78 0.822 0.401 0.037 22.48 0.763 0.304
Zip-NeRF (Barron et al., 2023) 0.500 26.21 0.815 0.389 0.610 21.41 0.665 0.470
UC-NeRF (Cheng et al., 2023) 0.032 26.72 0.800 0.375 0.051 24.05 0.721 0.400
BARF (Lin et al., 2021) 0.041 9.07 0.235 1.021 0.071 10.68 0.250 0.990
SPARF (et al., 2023b) - - - - - - - -
UP-NeRF (et al., 2023a) 0.120 26.16 0.876 0.375 - - - -
EmerNeRF (Yang et al., 2023a) 0.043 25.92 0.763 0.384 0.28 25.24 0.801 0.237
3DGS (Kerbl et al., 2023) 63 25.08 0.822 0.319 125 19.54 0.776 0.224
PVG (Chen et al., 2024) 50 28.11 0.849 0.279 59 26.63 0.885 0.127
Ours 52 29.43 0.899 0.217 79 26.98 0.887 0.157

Table 1: Quantitative comparison of novel view synthesis results on the Waymo and KITTI. Our
method demonstrates a competitive edge in rendering quality with higher FPS, PSNR, SSIM, and
lower LPIPS scores, affirming its efficacy in synthesizing realistic views in comparison to the current
state-of-the-art methods.

to each camera node; 2) Betweenness centrality, assessing the importance of each node across all
shortest paths, where nodes with higher centrality are considered more significant. We design node
weight wn(i) based on Betweenness centrality:

wn(i) =
∑

i̸=j ̸=k

σjk(i)

σjk
(9)

where σjk represents the number of shortest path between node j,k of camera graph. σjk(i) repre-
sents the number of shortest path passing node i between node j,k. After getting node weights, we
set a probability function P (i) for camera ci during iteration:

P (i) = wn(i)/Max({wn(i)}Ni=1) (10)

where the denominator represents the maximum value of all node weights. The function P (i)
represents the probability of view camera i participating in gaussian optimization. This design is
noteworthy as it significantly reduces the number of optimization iterations, which accelerates the
reconstruction process. Despite this reduction, it effectively enhances the geometric representation
of Gaussian points, substantially improving the overall quality of the reconstruction.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Metrics. We evaluate our method on three datasets: Waymo (Sun et al., 2020), KITTI
(Geiger et al., 2012), and Mill-19, which includes large-scale scenes like Buildings and Rubble
(Turki et al., 2022). For Waymo, we use images from three cameras (front, front-left, front-right)
across 32 scenes, totaling about 600 images per scene block. For KITTI, each scene block contains
approximately 100 images. Consistent with prior research, we select one out of every eight images
for testing, using the remainder for training. Our method, designed for scenarios lacking pose data,
does not use ground truth (GT) poses from the datasets.

We compare our method on the Waymo and KITTI datasets against various NeRF-based methods
(UC-NeRF (Cheng et al., 2023), Mip-NeRF 360 (Barron et al., 2022), Zip-NeRF (Barron et al.,
2023), StreetSurf (Guo et al., 2023), EmerNeRF (Yang et al., 2023a), SNeRF (Xie et al., 2023)) and
methods based on 3DGS (3DGS (Kerbl et al., 2023), PVG (Chen et al., 2024)). We specifically eval-
uate against both pose optimization (UC-NeRF (Cheng et al., 2023)) and pose-free reconstruction
methods (e.g., BARF (Lin et al., 2021), SPARF (et al., 2023b), UP-NeRF (et al., 2023a)). For the
large-scale Mill-19 dataset, we compare with Mega-NeRF (Turki et al., 2022), Switch-NeRF (Mi &
Xu, 2023), and VastGaussian (Lin et al., 2024), segmenting scenes for 3DGS due to memory limits.
For some methods, we use published results for comparisons.
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Ground Truth StreetSurfOurs PVG 3DGS

(a) Waymo

(b) KITTI

Figure 4: Qualitative comparison of novel view synthesis results on the Waymo and KITTI, show-
casing the Ground Truth alongside results from our GraphGS method, StreetSurf (Guo et al., 2023),
PVG (Chen et al., 2024), and 3DGS (Kerbl et al., 2023) for comprehensive evaluation. Our approach
yields closer fidelity to the Ground Truth, highlighting the effectiveness of our reconstruction method
in various urban scene complexities.

Method Building Rubble

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Mega-NeRF (Turki et al., 2022) 20.93 0.547 0.349 24.05 0.553 0.373
Switch-NeRF (Mi & Xu, 2023) 21.54 0.579 0.294 24.31 0.562 0.329
3DGS (Kerbl et al., 2023) 23.01 0.769 0.164 26.78 0.800 0.161
VastGaussian (Lin et al., 2024) 23.50 0.804 0.130 26.92 0.823 0.132
Ours 26.60 0.854 0.163 27.03 0.869 0.185

Table 2: Quantitative comparison of novel view synthesis on the Mill 19 large-scale scene dataset.

Ground Truth Mega-NeRFOurs Switch-NeRF 3DGS

(a) Building

(b) Rubble

Figure 5: Qualitative comparison of novel view synthesis in the Mill 19 large-scale scene
dataset (Turki et al., 2022), showcasing the Ground Truth alongside the results from our method
and other state-of-the-art methods including Mega-NeRF (Turki et al., 2022), Switch-NeRF (Mi &
Xu, 2023), and 3DGS (Kerbl et al., 2023).
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Strategy Matching
Time ↓ BA

Time ↓ PSNR ↑ SSIM ↑ LPIPS ↓

0.6k
COLMAP (Ex) 62 min 140 min 30.05 0.89 0.23
COLMAP (Vo) 50 min 104 min 29.02 0.88 0.26

Ours 3 min 20 min 30.18 0.90 0.24

2k
COLMAP (Ex) >24 h - - -
COLMAP (Vo) >24 h - - -

Ours 12 min 194 min 26.60 0.85 0.16
Table 3: Quantitative comparison of our Spatial Prior-based Structure Estimation for 0.6k and 2k
images. At 0.6k, COLMAP-Exhaustive (Ex) and COLMAP-VocabTree (Vo) are benchmarked. At
the 2k scene, COLMAP methods fail consistently, with SfM processing times exceeding 24 hours,
yielding no results. Our approach demonstrates significantly faster performance while maintaining
comparable accuracy.

Method PSNR ↑ SSIM ↑ LPIPS ↓
w/o QF 29.14 0.89 0.25
w/o CNNP 24.33 0.82 0.33
w/o Structure Estimation 24.77 0.803 0.444
w/o Multi-view Consistency 29.42 0.834 0.297

GraphGS(Ours) 30.36 0.891 0.267

Table 4: Quantitative Comparison of Ablation Experiments for Submodules.

Implementation. For image sets lacking pose or sequence information, we use a pre-trained model
(Wang et al., 2024) to estimate relative poses in about 0.01 seconds. Although not highly precise,
it effectively outlines the coarse distribution of the images. We then apply our scene structure strat-
egy to estimate scene structures, generate camera graphs, and calculate consistency and importance
weights. The multi-view consistency coefficient is set at 0.075. Additionally, we optimize memory
and training efficiency by using an octree to prune redundant points from approximately 300k to
100k. Further algorithmic details and training specifics are available in the supplementary materials.

4.2 EXPERIMENTAL RESULTS

Waymo, KITTI and Mill-19. Table 1 and Figure 4 show that our method outperforms others in
both quantitative and qualitative measures, driven by precise structure estimation and graph-guided
optimization. It accurately captures fine details such as tree branches without noticeable blurring,
while maintaining superior shape, geometry, and color fidelity. Notably, BARF does not converge
on two datasets, and SPARF, suitable only for sparse image sets. UP-NeRF also struggles with
convergence on the KITTI dataset. For large-scale scenes like Mill-19, presented in Table 2 and
Figure 5, our method continues to demonstrate clear edges and detailed clarity in elements like
rubble, grass, and stones.

Spatial Prior-based Structure Estimation. We demonstrate the efficiency of our spatial prior-
based method through Concentric Nearest Neighbor Pairing (CNNP 3.1.1) and Quadrant Filter (QF
3.1.2). Table 3 shows our method increases matching speed 20x and reduces bundle adjustment
time 5x compared to traditional approaches like exhaustive or vocabtree (Schönberger et al., 2016a)
matching. For large datasets, where naive 3DGS methods using COLMAP are impractical due to
long Structure from Motion times (typically >24 hours and always fails), our method completes
structure estimation in just a few hours and achieves higher-quality reconstructions by accurately
determining camera poses and avoiding invalid camera pairs.

4.3 ABLATION STUDY

We conducted ablation studies to assess the contributions of our method’s components to the recon-
struction process. This included evaluations of structural estimation and its sub-modules CNNP and

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Method Iterations Training
Time ↓ PSNR ↑ SSIM ↑ LPIPS ↓

w/o Adaptive
Sampling 30000 54 min 28.81 0.884 0.253

w Adaptive
Sampling 16830 28 min 30.36 0.891 0.267

Table 5: Quantitative comparison of Ablation Experiments on Adaptive Sampling Optimization.

w/ Adaptive Sampling w/o Adaptive Sampling w/ Adaptive Sampling w/o Adaptive Sampling

Figure 6: Ablation Experiments on Adaptive Sampling Optimization. This figure highlights the
impact of excluding our adaptive sampling optimization. Without this approach, Gaussian points
overfit to specific viewpoints, resulting in occlusions that obscure other perspectives and degrade
geometric accuracy. With adaptive sampling, these issues are mitigated, significantly improving the
quality of the reconstruction.

QF, as well as the effects of graph-guided multi-view consistency constraint and adaptive sampling
optimization on reconstruction quality.

Table 4 confirms the impact of each module on reconstruction quality. On the Waymo dataset, omit-
ting the QF leads to reduced accuracy due to the inclusion of non-intersecting camera pairs in pose
estimation, affecting camera pose precision. Similarly, excluding the CNNP module results in a
notable decline in quality because it fails to accurately capture global poses through local matching.
Integrating structure estimation significantly enhances reconstruction quality by precisely estimat-
ing the global scene structure. Additionally, the inclusion of graph-guided multi-view consistency
constraint further improves outcomes by maintaining consistency across multiple views.

Table 5 demonstrates that the adaptive sampling optimization method significantly reduces opti-
mization time and improves the quality of reconstruction. As illustrated in Figure 6, this approach
effectively mitigates overfitting to specific viewpoints by optimizing the distribution of Gaussian
points. This enhancement not only prevents the occlusion of other perspectives but also reduces
severe distortions within the reconstructed geometry, contributing to a more accurate and stable
reconstruction outcome. Additional ablation experiments can be found in Appendix D.

5 CONCLUSION

In conclusion, through our proposed structure estimation and graph-guided optimization methods,
GraphGS can achieve high-quality, rapid reconstruction of large-scale scenes from image sets with-
out ground truth poses. This capability is particularly meaningful for multimedia applications such
as virtual reality, gaming, and the metaverse. GraphGS not only meets the growing demand for fast
and reliable scene reconstruction but also provides a scalable and accessible solution.

Limitations. The absence of rear camera data and the anisotropic nature of the method limit the
comprehensive capture and reconstruction of reverse scenes. Additionally, the reliance on feature
points may cause the matching strategy to fail randomly, particularly in scenes with numerous dy-
namic objects. The effects on distant views and the blurring caused by large Gaussian points in
certain shots still need improvement and resolution.
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Figure 7: Counter example for one special case of r,h,w. In the special case, r = 2, h = N − 3,
w = 1. This means for every camera, we will only add its nearest camera and farthest camera as
graph edge. We list one counter example with N = 8. In the counter example, the red nodes and
yellow nodes are disconnected, while all the nodes follow the matching algorithm.

A APPENDIX: PROOF OF GRAPH CONNECTIVITY

For Equation. 1, if we remove S
(i)
3 , the Sall would be as follows:

Sall =

N⋃
i=1

S(i), where (11)

S(i) = S
(i)
1 ∪ S

(i)
2

S
(i)
1 = {(ci, cj)|s(i, j) ≤ r, j = 1, 2, ..., N, j ̸= i}

S
(i)
2 = {(ci, cj)|0 ≤ (s(i, j)− r)%(h+ w) < w, j = 1, 2, ..., N, j ̸= i}

In the scenario, the camera graph may not be connected graph. It would be fairly troublesome to
give directly proof. However, when considering proof by contradiction, one counter example for
one special case of r,h,w is enough.

Proof:

We choose the special case when r = 2, h = N − 3, w = 1, which means for every camera node
in graph, we only add edges to its nearest camera and farthest camera. In this scenario, one counter
example is illustrated in Fig. 7. The graph nodes represent cameras while the position of graph nodes
also represents the actual position of cameras. For example, camera node 1 connected camera 2 and
camera 8 since they are the nearest and farthest cameras to camera 1 respectively. After the edge
adding algorithm done, the camera 1, 2, 7, 8 and 3, 4, 5, 6 form two different connected components,
while the entire camera graph is not a connected graph.

B APPENDIX: STATE TABLE OF QUADRANT FILTER

In this part, we introduce quadrant division and the state table for filtering noise camera pairs as
described in Section 3.1.2 of the main paper.

Quadrant Division. As illustrated in Figure 8, we adopt the coordinate system of OpenCV, which
is a right-handed system. Within this camera coordinate system, it is assumed that the camera is
facing +z axis. We adhere to this assumption when calculating the relative orientation of cameras.

State Table. For state table, we identify 64 potential configurations describing the relative relation-
ship between two cameras. For the conciseness of representation, we only illustrate the successful
matching pairs, as shown in Table 6. The ”position quadrant” column lists all possible quadrants of
the relative position between cameras ci and cj , while the ”orientation quadrant” column indicates
the quadrant of relative orientation that enables successful matching. For instance, if cj is positioned
in the right upper rear quadrant of ci (quadrant 1 in Fig. 8), only a facing orientation in quadrant
7 (relative orientation) satisfies the matching condition under strict mode. Practically, we employ
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𝟙
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Quadrant

Quadrant number

Figure 8: Illustration of quadrant division: When calculating the relative position of cameras ci and
cj , we assume that camera ci is positioned at the origin. In determining the relative direction, we
assume that the orientation of camera ci is facing the +z axis.

Position Quadrant Orientation Quadrant
Strict Mode Loose Mode

1 7 2, 3, 6, 7
2 7, 8 2, 3, 4, 6, 7, 8
3 5, 6 1, 2, 3, 5, 6, 7
4 6 2, 3, 6, 7
5 3 2, 3, 6, 7
6 3, 4 2, 3, 4, 6, 7, 8
7 1, 2 1, 2, 3, 5, 6, 7
8 2 2, 3, 6, 7

Table 6: State Table Illustration.

Loose Mode for vehicle data due to the elongated and narrow camera track. For other situations, we
apply Strict Mode.

Probability of filter under Strict/Loose Mode. For the situation of random camera position and
orientation, the strict and loose mode of state table have different probability to filter irrelevant
camera pairs, which can be calculated theoretically to measure efficiency. For Strict mode, the
probability of filter is

Pstrict =
7

8
× 1

8
× 4 +

6

8
× 1

8
× 4 =

13

16
≈ 81.3% (12)

For Loose mode, the probability of filter is

Ploose =
4

8
× 1

8
× 4 +

2

8
× 1

8
× 4 =

6

16
≈ 37.5% (13)

It is notable even in loose mode, the probability of filter is still a high number, meaning more than
1/3 noise camera pairs are filtered. This greatly reduced the burden of calculation in the following
structure pipeline compared to the situation without quadrant filter.

C APPENDIX: PROOF OF PROPOSITION

In the Proposition 1 of main paper, we utilize the internal relations of cross product and inner product
within a right-handed 3D coordinate system to calculate the relative orientation without the need to
solve the linear system:

B(i,j)
d = {sgn(ex[d(i)× ]dT (j)), sgn(ey[d

(i)
× ]dT (j)), sgn(d(i)dT (j))} (14)
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where [d
(i)
× ] represents the anti-symmetric matrix of cross product:

[d
(i)
× ] =

 0 −v
(i)
z v

(i)
y

v
(i)
z 0 −v

(i)
x

−v
(i)
y v

(i)
x 0

 (15)

and ex = [1, 0, 0], ey = [0, 1, 0] represent unit vector of x, y axis. However, its mathematical
principles are omitted due to limited space. Here we will explain the rationality of our method.

Proof:

For cameras ci and cj with absolute orientations d(i) and d(j), we use their cross product d(i)×d(j) =
[v×x , v

×
y , v

×
z ] to reflect the relative orientation to some extent. We envision transforming them into a

standard coordinate system as illustrated in Figure 8 through several steps:

• Step 1: Translate them to the origin of the standard coordinate. This process does not alter
the cross product or their relative orientation.

• Step 2: From an overhead view of the standard coordinate (where the y-axis points into
the page), we note that the plane formed by d(i) and d(j) divides the x-z plane into two
parts. We then transform d(i) and d(j) such that d(i) × d(j) changes from [v×x , v

×
y , v

×
z ]

to [v×x , v
×
y , 0], while maintaining their relative orientation. This transformation is feasible

because the linear system we aim to solve is not full rank. After this transformation, the
plane of d(i) and d(j) coincides with the z-y plane.

• Step 3: We rotate d(i) and d(j) around the x-axis so that d(i) aligns with the z-axis.

After the aforementioned steps, as depicted in Figure 9, we have successfully translated d(i) and d(j)

from an arbitrary situation to the standard coordinate with d(i) pointing toward the +z axis. In this
process, no transformation matrix is required, while v×x , v×y , and the relative orientation of d(i) and
d(j) are preserved. This sets the stage for further analysis.

We then consider all potential positions of d(j). As shown in Figure 10, d(j) lies on a green plane that
can rotate around the z-axis. Viewing the coordinate system from the front, where the z-axis points
into the page, and due to the constraints of the right-handed rule, the potential positions of d(j) are
limited to half of the green plane, contingent upon one of four scenarios based on [v×x , v

×
y , 0]. Thus,

we can limit the relative orientation of d(j) to two of the eight quadrants through v×x and v×y .

Finally, we simply calculate the inner product of d(i) and d(j) to determine the relative orientation
along the z-axis (either quadrant 2, 3, 6, 7 or 1, 4, 5, 8). Based on the derivation above, the final
B(i,j)
d can be rewritten in a more direct form without a matrix:

B(i,j)
d = {sgn(v×x ), sgn(v×y ), sgn(d(i) · d(j))} (16)

The Equation 16 and Equation 14 are actually equivalent, while we keep Equation 14 in the main
text for the consistency of context.

D APPENDIX: ADDITIONAL ABLATION STUDIES

Impact of Octree Initializaion on reconstruction quality and training time. Quantitative results
in Table 7 show that our octree point initialization strategy cuts training time in half without com-
promising reconstruction quality. Further reductions in initial points did not significantly decrease
training times, likely due to the densification and point operations.

Camera Disturbance. To simulate real-world conditions where camera poses are uncertain, we
introduce disturbances by adding random noise from 0 to 0.3 radians to camera orientations and
positions in a selected Waymo scene. We assess the robustness of our methods by comparing them
with 3DGS and PVG under these conditions.

Our method remains robust against disturbances in camera poses, common in real-world scenarios
like road bumps. Figure 11 and Table 8 show that traditional 3DGS methods degrade significantly
under such disturbances, with heavy blurring that obscures scene objects. In contrast, our approach
maintains quality by calibrating camera poses using key camera pairs.
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Figure 9: Imagined Transform Illustration: Throughout the entire process, the relative orientation of
d(i) and d(j) is maintained without additional calculation.

Method Initial
Points Number

Training
Time ↓ PSNR ↑ SSIM ↑ LPIPS ↓

w/o Octree Point
Initialization 245820 54 min 29.74 0.841 0.291

w Octree Point
Initialization 100000 36 min 29.75 0.843 0.292

Table 7: Quantitative comparison of Ablation Experiments on Octree Point Initialization.

Method PSNR ↑ SSIM ↑ LPIPS ↓
3DGS (R*0.3 & T*0.3) 12.676 0.510 0.613
PVG (R*0.3 & T*0.3) 12.695 0.512 0.615
Our (R*0.3 & T*0.3) 28.53 0.886 0.221

Table 8: Quantitative comparison of novel view synthesis results on Waymo dataset with additional
noise. R*0.3 and T*0.3 represent the addition of 0.3 units of rotation and translation noise, respec-
tively.
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plane of 

𝟙 𝟠 Quadrant

𝟛 𝟜 𝟙 𝟚

𝟝 𝟞

𝟟 𝟠

Figure 10: Four situations for the plane of d(j), which depends on the sign of v×x , v
×
y .

Ours PVG 3DGSGround Truth

Figure 11: Qualitative comparison of novel view synthesis with added random Gaussian noise to
simulate imprecise pose data. Our method retains clarity and definition, while alternative approaches
like PVG (Chen et al., 2024) and 3DGS (Wu et al., 2023) show distortions under similar conditions.
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