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ABSTRACT

Despite remarkable advances, today’s Al systems remain narrow in scope, falling
short of the flexible, adaptive, and multisensory intelligence that characterizes
humans. This gap has fueled longstanding debates about whether AI might one
day achieve human-like generality or even consciousness, and whether principles
of consciousness can inspire new architectures for general Al. This paper presents
an early blueprint for implementing a general Al system based on the Conscious
Turing Machine (CTM), a formal machine model of consciousness. The CTM has
an enormous number of powerful processors ranging from specialized experts (e.g.,
vision—language models, search engines, APIs) to unspecialized general-purpose
learners poised to develop their own expertise. Crucially, for whatever problem
must be dealt with, the system need not know in advance which processors hold
the relevant expertise; instead, multimodal machine learning methods enable the
system to select, integrate, and fuse information across processors. We extend
the CTM into a practical framework, the CTM-AI, and demonstrate its utility on
diverse tasks including multimodal perception, tool learning with multiple APIs,
and multi-turn web agent tasks. Together, this work offers a principled and testable
blueprint for general Al inspired by computational models of consciousness.

1 INTRODUCTION

In recent years, progress toward Al models capable of human-like intelligence has inspired debates
regarding whether today’s Al and its future counterparts can one day display human-like levels of
consciousness. Flipping the debate, we present a concrete blueprint for general Al based on a formal
machine model of consciousness, the Conscious Turing Machine (CTM) (Blum & Blum) 2021} |2022;
Liang [2022)). The CTM is a simple and formal model of consciousness inspired by Alan Turing’s
model of computation (Turing), |1936)) and Bernard Baars’ theater model of consciousness (Baars|
1993). Critically different from other cognitive architectures and modern LLM/agentic workflows,
the CTM has no central executive - no conductor, no stage director (Blum & Blum) 2023)). Instead,
the CTM employs a global workspace and distributed competition to integrate the power of an
enormous collection of parallel independent cognitive, sensory, motor, and extended processors.
When a problem needs to be solved, it becomes globally broadcast to all processors, eliciting help
from those who might have the expertise, interest, and resources to tackle the problem, even though
their talents and abilities might be unknown to a central executive.

Key contribution. Despite its potential, the CTM is a concept that remains abstract and theoretical.
In this work, we bridge this gap by implementing the formal CTM model as a concrete system called
CTM-AI which includes (1) multiple specialized processors operating in parallel, (2) a limited
capacity workspace enforcing selective attention via up-tree competition, (3) a global broadcast
of information via a down-tree from the workspace to all processors, and (4) the formation of
links between relevant processors over time, enabling unconscious communication to integrate their
knowledge into higher-order multimodal information. Through continuous interaction feedback, and
learning from its external world via sensory inputs, predictions, actuators, and feedback, CTM-AI
updates its individual processors, processor links, and multiprocessor integration to improve over
time. The CTM-AI model addresses several key limitations of current Al paradigms.

1. Modular and decomposable: Existing monolithic foundation models are centrally computed and
structurally fixed, which blocks the update of new skills and processors. CTM-AI is more modular,
decomposable, and supports the flexible addition or removal of processors and capabilities. CTM-
Al can adapt to task-specific features effortlessly without extra training.
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2. Free of a central executive: CTM-AI does not require an orchestrator akin to modern agentic
workflows, but rather uses its dynamics to automatically determine the information flow and
learning over multiple processors. Therefore, compared with multi-agent workflows that have
a fixed workflow defined or learned for specific tasks, CTM-AI is a more general and flexible
framework suitable for different tasks.

3. Integrated reasoning and agentic flexibility: Today’s agentic frameworks still struggle with
reasoning over multiple modalities. CTM-AI can carry out multi-step multimodal reasoning
across processors (integrating text, vision, tools, and more). A special case recovers the ‘ol-style’
single-LLM reasoning when only one processor is active, showing that CTM-AI generalizes
LLM reasoning and multimodal multi-agent workflows.

Main results. To evaluate CTM-AI as a general multisensory and multi-action Al, we present
quantitative results that showcase its versatility across a broad range of language modeling, mul-
timodal perception, human behavior understanding, and agentic tool use tasks. This wide range
of tasks highlights its ability to use external tools, processors, and APIs, integrate and reason over
multimodal information, and solve complex multi-step problems. Based on our experiments, we
find that CTM-AI can achieve comparable or state-of-the-art performance on multimodal perception
tasks (MUStARD for sarcasm detection, URFunny for humor detection, NYCartoon for multimedia
analysis), tool learning API-using tasks (StableToolBench), and multi-turn agentic tasks (WebArena).
Moreover, our ablation study shows that mechanisms designed inside CTM-AI, including long-
term memory, fusion, up-tree competition, and down-tree broadcasting, all contribute to the final
improvement. Such experiments prove the value of the architecture and inference mechanism design
in CTM-AL

2 RELATED WORK

Consciousness and AI There have been several directions in building Al systems inspired by
human consciousness (Blum & Bluml 2024} Zeng et al., 2024} Zhao et al.| 2023)); we point the reader
to Butlin et al.| (2023) for a review. Prior efforts have typically emphasized high-level analogies,
such as developing multimodal languages that mirror human multisensory processing (Liang} 2022
Liang et al., [2022b; [Lohse et al.,|2021; |[Murray & Wallacel 2011; Nanay, [2018]), constructing world
models that integrate perception, planning, and action (Nottingham et al.| 2023} |Singer et al., 2022}
Hao et al.l 2023} |[Liu et al.| 2024} |Prasad et al.| 2023)), or pursuing reasoning paradigms inspired by
human cognition, including robustness (Sun, 1995} [Zeng et al., |2023)), compositionality (Gupta &
Kembhavi, 2023; (Wu et al.,2021; Zhou et al., 2022)), causality (Halpern, 2000; |Liu et al., 2023c} Zang
et al.,[2023)), and transparency (Liang et al., [2020; Mota et al., 2021)). CTM-AI differs by directly
grounding these inspirations in state-of-the-art reasoning and agentic models, operationalizing them
into a concrete, extensible system rather than remaining at the level of abstract analogy.

Large foundation models The recent wave of large pretrained and generative models such as
large language models (Achiam et al., 2023; Brown et al., [2020; Radford et al.| [2019} [Touvron
et al.;, 2023} Zhang et al.| [2022), image generation models (Ramesh et al., 2021} |Rombach et al.,
2022 Saharia et al., [2022)), and multimodal foundation models (Liu et al., 2023ab; L1 et al., 2023}
Liang et al.| [2022a) have shown emergent abilities across a wide range of tasks (Schaeffer et al.,
2023} |Weit et al., 2022)). Their impressive generalization capabilities have inspired debate on whether
these models possess human-level intelligence (Baum et al., 2011)) and consciousness (Chalmers,
2023)). Mixture-of-experts (MoE) has also become a popular design choice for scaling foundation
models efficiently. CTM-AI differs fundamentally from large foundation models by moving beyond
monolithic scaling with a single centrally trained model and enabling modularity, flexible reasoning,
and adaptive agentic behavior. Moreover, CTM-AI differs from multimodal foundation models by
designing language-based interaction instead of linear projection for multimodal fusion.

Multi-agent and tool-augmented frameworks Most multi-agent systems (Qian et al.,|2023; Hong
et al.| [2024; |Schmidgall et al., |2025) rely on multi-step prompting pipelines tailored to specific tasks
such as coding or reasoning, where each LLM-based agent is assigned a fixed role (e.g., planner,
coder, or reviewer). Beyond such task-specific prompting, recent work has focused on enhancing
reasoning abilities in LLMs and multimodal models (Li et al.| [2025} [Dai et al., 2025)), reasoning
across multiple modalities, extending context and memory (Zhou et al., 2025), and enabling dynamic
tool use (Guo et al.| [2024;|Qin et al., 2023} Yao et al., 2024). While these advances move toward more
capable systems, they typically remain tied to fixed role assignments, rigid tool-calling pipelines, or
predefined multimodal fusion strategies. In contrast, CTM-AI departs from both directions: unlike
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multi-agent systems, it is not a task-specific workflow with fixed roles but a general framework
where flexible processors can work together, and unlike tool-augmented LLMs, it does not rely on a
single-step inference but enables adaptive and iterative inference over multiple steps.

3 CTM-AI: THE CONSCIOUS TURING MACHINE WITH MODERN Al

In this section, we present background on the Conscious Turing Machine (CTM) in and explain
how we implement this conceptual model based on modern Al technologies, creating CTM-AIL We
discuss CTM-AT’s core components in §3.2]and its key learning dynamics in §3.3]

3.1 BACKGROUND ON THE CONSCIOUS TURING MACHINE (CTM)

The CTM is a simple and formal model of consciousness (Blum & Blum,[2021}; 2022) inspired by
Alan Turing’s model of computation (Turing} [1936) and Bernard Baars’ theater model of conscious-
ness (Baars}, |1993). However, CTM differs from Turing machines and Baars’ model. While Baars
describes consciousness via the activity of actors performing on a stage directed by a stage director,
the CTM has no stage director or central executive. Designing a central executive can be prohibitive
since we often do not know how such an executive operates. Consider the typical example of trying to
recall the name of a person you’ve previously met. Although we may recall their name eventually, we
do not know which processors are relevant and how to combine processor outputs beforehand. Rather,
a federation of processors runs simultaneously, recalling different locations, events, and memories,
before deciding which outputs are salient and integrating them to form the final answer. Similarly,
the CTM employs a global workspace and distributed competition that determines which information
from its vast collection of “unconscious” cognitive, sensory, and motor processors gets admitted to
the “conscious” arena. When a problem needs to be solved, it becomes globally broadcast to all
processors, eliciting help from those who might have the expertise, interest, and resources to tackle
the problem, even though their talents and abilities might be unknown to a central executive. These
features set the stage for its capability to be a model for general Al (Blum & Blum) 2023).

3.2 CTM ARCHITECTURE

The formal definition of the CTM is a 7-tuple < STM, LTM, Up-Tree, Down-Tree, Links, Input,
Output >. We provide a brief explanation for each of them here:

* CTM is born at time 0 and has a finite lifetime 7". Time is measured in discrete clock ticks,
t=0,1,2,...,T ~ 10,

* STM (short-term memory) is a small memory capable of holding a single chunk of information at
each time ¢.

* LTM (long-term memory) is a collection of K powerful processors p1, ps, ..., P, K can be as
large as K > 107.

* Up-Tree is an up-directed binary tree of height A with K leaves, one leaf in each LTM processor,
and a (single) root in STM.

* Down-Tree is a simple down-directed tree of height 1 with a single root in STM and K edges
directed from that root to the leaves, one leaf in each LTM processor.

* Links are the channels for transmitting information directly between processors.

« Input: R? - LTM carries information from the external (outer) world via sensors (e.g., eyes, ears)
to special LTM processors (e.g., visual and auditory processors). R? is CTM’s external world
where R represents the real numbers and d is a positive integer. It also includes a user intent like a
query about the external world.

* Output: LTM — R¢ carries information from special processors (e.g., motor processor) that can be
considered as feedback to the external (outer) world.

LTM processors. An LTM processor p; (with parameters 6;) operates in a shared space H=R¢ and
maintains a private memory state M; € M updated over time. At step {, it receives an observation
o¢ € O and a user query ¢; € Q. We view the LTM processor at time ¢ as a function LTM,(-) equipped
with three operations: (1) execute produces a chunk based on the current observations and previous
memory; (2) read returns a view of its memory at a specified timestamp; and (3) write integrates one
or more chunks into its memory. Formally:

execute: LTM;(0s,q;) = chunk; e))
read: LTM,(-) = M; )
write: LTM,(chunk!) = M, @ chunk! = LTM,,, (") (3)
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Figure 1: Key dynamics of CTM-AI: (1) multiple specialized LTM processors operating in parallel; (2) a
limited-capacity STM workspace enforces selective attention via up-tree competition; (3) a global broadcast of
information via a down-tree from the workspace to all processors; (4) the formation of links between relevant
processors over time, enabling unconscious communication to integrate their knowledge into higher-order
multimodal information. CTM-AI continuously interacts with the world through sensing, prediction, action,
and feedback, updating its individual processors, processor links, and multiprocessor integration over time.

A chunk ¢! produced by processor p; at step t is formally defined as a tuple:
chunk; = (addr(p:), t. hy, q;, w}) @

It stores its unique identifier addr(p;), the timestep ¢, a gist hi € H in English language that
summarizes information relevant to the user’s query (e.g., from audio: “laughter detected; likely
humorous”), a follow-up query ¢! € Q that the processor proposes to other processors if answering
it could improve the final answer (e.g., ask vision processor for facial expressions), and a weight
w} € [0,1] indicating the processor’s confidence/utility for how useful the gist is to answering the
user’s query. While all LTM processors share the above input—output interface, they differ in their
specialties (e.g. input modalities, output tasks, internal memories). Generally, we can group them
into five families of LTM processors (Card et al., [ 1980; |Clark & Chalmers||1998)):

* Sensory processors, which convert raw perceptual signals such as vision, language, speech, code,
music, or more into latent representations.

» Extended or artificial processors, which wrap external tools and APIs (e.g., calculators, web
search, weather services) so that they can be accessed as internal modules.

» Cognitive processors, which handle reasoning and planning over the given query, supporting tasks
like commonsense inference or long-horizon problem solving.

» Motor processors, which generate outputs by mapping internal intents to external actions, including
dialogue utterances, API calls, or embodied movements.

» Unspecialized “free” processors, which serve as expandable slots that can acquire new observation,
reasoning, or output skills over time through practice and feedback.

STM processors. Besides LTM processors, an STM processor is a stateless LLM (e.g., GPT-40)
that, given the STM at step ¢ that wins the competition among all chunks and the current query ¢,
produces a final, text-based answer y; (i.e., the action a;) and a quality score o € [0, 1]. Unlike LTM
processors, it has no long-term memory and therefore only exposes a single execute operation; it
performs no reads or writes to persistent state and simply grounds its output.

execute: (y;, o) = STM;(chunk;, ¢), ag € [0,1]. 3)

3.3 CTM DYNAMICS

Besides the definition of CTM based on a 7-tuple, there are the following dynamics of multisensory
processing, information integration, feedback, and learning defined on top of CTM to support its
functionality. The overview design principles behind building learning dynamics between multiple
processors in the CTM architecture are as below:

1. Different LTM processors perform distinct functions, e.g., cognitive, sensory, or motor. Some
processors may be “off-the-shelf” while others’ functionalities are realized over time. While
individual processors may have their own internal language, communication within the CTM is in
a common multimodal language we call Brainish. All processors start as independent entities.

2. Conscious communication between processors is conducted via an Up-Tree competition that
decides whose chunk of information gets into STM.
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3. The winning chunk (CTM’s conscious content) is immediately globally broadcast to all processors
via the Down-Tree, which causes the CTM to pay conscious attention to this information.

4. Links between processors form over time as one processor views another as having relevant
information, enabling unconscious communication to integrate their knowledge into higher-order
information (e.g., learning to ride a bike requires conscious communication between sight and
movement, after a while, links form, enabling unconscious communication).

5. Through continuous interaction, feedback, and learning from its external world via sensory inputs,
predictions, actuators, and feedback, the CTM updates its individual processors, processor links,
and multiprocessor integration to improve over time.

To fully implement such learning dynamics proposed by CTM with modern Al technologies, we split
the overall learning stages of CTM into four parts and provide a more detailed description for each
stage of the learning dynamics as below:

LTM processor chunk inference. At time ¢, all LTM processors p1, ..., px run in parallel on the
observation o; and query ¢, each using its private memory M. The collector applies each processor’s
exec to produce chunks (e.g., a VLM on an image, an ALM on audio), yielding:

i K i
CTMcollect(Otv qt) = {LTMt(Otv qt)}i:l = {Chunkt}i[il (6)

Up-tree competition into STM. After collecting all chunks from the LTM processors, only one can
be stored in the STM due to its limited capacity. Therefore, an up-tree competition is performed to
select the final chunk. In the original CTM design, this competition is hierarchical and local—each
group of sibling chunks competes using an additive competition function to ensure the probability of
winning is independent of the processor’s position in the tree.

However, in our implementation, typically only a few (< 10) LTM processors are active during
inference. Under this setting, restricting competition to local sibling groups is unnecessary, and the
additive function becomes suboptimal. Instead, we adopt a simplified global competition, where the
chunk with the highest score w; (e.g., based on gist quality) is selected as the STM entry:

CTM,p ({chunk}X,) = chunki*, i = arg {max }wt 7
ie{l
This approach streamlines selection and works well given the small number of competing chunks in
practice. The design can revert to hierarchical selection if large-scale parallelism is introduced.

Down-tree broadcast. Once the up-tree competition selects the winning chunk chunki , it is

written into the STM as STM? and immediately broadcast globally to all LTM processors. This
process—called down-tree broadcasting—makes the system consciously aware of this information.
Operationally, each LTM processor receives the broadcast chunk and applies its own write function
to update its private memory. This is defined as:

& i K i K
CTMuown (chunky ) = {LTM](chunk] )}~ = {LTM{,, ()}, ®)

After this step, the updated memory states are used in the next inference iteration. Conceptually,
this mirrors the system "paying attention" to the winning information at the conscious level and
committing it across all processors for continued reasoning.

Link formation between LTM processors. Beyond conscious attention, we enable unconscious
communication by dynamically forming links between LTM processors. An unconscious link is
created when one processor identifies another as holding complementary information useful for
improving task performance. For instance, in sarcasm detection, the vision, text, and audio processors
each detect different cues (e.g., sad face, angry tone, exaggerated speech), and over time, they
recognize each other’s utlhty and form links to exchange information. Concretely, after broadcastlng

the winning chunk chunkt to processor j, if p;’s response yields a high estimated relevance score wy,
we update the link matrix by adding a small weight increment §: L;»; < L~ +6 and Lj;» < L+ +0.
This mechanism ensures efficient, dynamic linking for cooperative inference. To prevent interference
or propagation of contradictory information, links are not permanent: their linking weights can decay
or be reduced by 4, effectively removing weak or unhelpful connections over time.

Multimodal fusion to update LTMs. After down tree broadcast and link formation, each processor
p; has a record N/ (¢) of linked processors {p]} ?, that are linked useful for further reasoning. These
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links support unconscious information exchange. As part of the fusion process, each processor first
generates a query gy, based on its current long-term memory M, ;, including the newly broadcast
chunk. Each processor then consults its neighbors in A/(7) in parallel, posing its query g, ; to them.
The neighbors respond by running their execute function, and the initiating processor uses their

responses to update its memory via the write function. This overall process is defined as:

. . . K .
CTMfuse(Ot) = {LTM1+1 ({LTM§+1(Ot7 qz+1)}j€/\/(i))}i=1 = {LTM;HQ()}il (9)

Multisensory integration enables the discovery of richer, higher-order redundant, unique, or syn-
ergistic information from linked processors (Liang et al.l 2022b} 2023}, |[Partan & Marler; [1999;
2005)).

Overall: prediction, feedback, and learning. The CTM-AI system operates through an iterative
cycle of prediction, feedback, and learning.

* Prediction. The overall prediction phase is described as CTM,, (CTMcoltect (04, ¢¢) ). For each
user query ¢, the system collects chunks from LTM processors via CTM_ojject, conducts up-
tree competition via CTMyp—tree. This winning chunk that fits into the STM is considered the
prediction provided by CTM.

* Feedback. The STM processor (an LLM) evaluates the prediction and assigns a quality score .
If a; > 7, the prediction is accepted as output. Otherwise, negative feedback triggers learning,
prompting the system to refine its internal state before reattempting inference.

* Learning. Learning is implemented via in-context learning with memory updates. It consists of two
parts: (1) Down-tree broadcast: The winning chunk is written into each LTM processor’s memory
via CTMgown; (2) Multimodal fusion: Each processor generates a follow-up query, consults its
linked neighbors A/ (), and fuses the resulting information via CTMgyse, enriching its LTM. These
updates prepare the system for improved reasoning in the next iteration.

This prediction—feedback—learning loop generalizes multiple recent Al innovations, including multi-
step reasoning, agentic workflows, multimodal interaction, and tool use. Crucially, unlike orchestrator-
based systems, CTM-AI does not rely on an external controller. Instead, its intrinsic dynamics—up-
tree selection, down-tree broadcasting, and processor linking—autonomously regulate information
flow and drive continual learning across iterations.

4 EVALUATING THE CAPABILITIES OF CTM-AI

In this section, we present quantitative results that showcase CTM-AT’s versatility across a broad
range of tasks, including language modeling, multimodal perception, tool use, and agentic tasks. This
wide range of tasks highlights its potential ability to serve as a general Al framework.

4.1 EVALUATION TASKS

To assess the generality of CTM-AI, we select tasks that activate distinct subsets of processors
within each : (i) multimodal grounding and perception (text—audio—image—video); (ii) abstract/social
understanding (affect, humor, sarcasm); (iii) temporal reasoning; (iv) tool use and actuation (planning
API calls and reading/writing external state); and (v) interactive, long-horizon agency (goal decompo-
sition, feedback handling, recovery from errors). These axes require CTM-AI to compose perception,
cognitive, tool, and agentic processors iteratively to complete end-to-end tasks.

Multimodal perception. Real data combine and conflict across modalities (e.g., words vs. tone
vs. visuals). We use MULTIBENCH (Liang et al.,[2021) and HEMM (Liang et al.,|2024) for broad
modality coverage, plus MUSTARD (Castro et al.,[2019), UR-FUNNY (Hasan et al.| 2019), and
NYCARTOON (Hessel et al., [2023) for socially grounded semantics (sarcasm, humor, cultural
references). These tasks primarily engage audio/video/text perception processors and cognitive
processors for cross-modal reasoning.

Tool learning. General systems must not only perceive but also act. STABLETOOLBENCH (Guo
et al., [2025) evaluates planning, argument construction, multi-tool composition, and error recovery.
These tasks chiefly engage multiple tool processors (typed API connectors with schema/argument
grounding) to accomplish one task.

Agentic tasks. Autonomy requires long-horizon control and robustness to stochastic interfaces.
WebArena (Zhou et al.| [2023) probes end-to-end web interaction: parsing noisy pages, tracking state,
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MUStARD URFunny

Model Acc? PT RT F11 Model Acc?T Pt R?T F11
LMF - 70.73 7090 70.68 MulT 66.65 - - -
LF-DNN-vl - 71.55 7152 70.99 FDMER 71.87 - - -
ALBEF 5449 47.08 5022 48.51 ALBEF 66.77 6429 73.74 68.67
BLIP2 5375 4846 90.13 62.65 BLIP2 7043 65.14 86.60 74.31
MMoE 70.41 60.64 89.04 71.78 MMOoE 71.88 69.18 78.16 73.29
BaseModel 7042 70.44 7090 70.26 BaseModel 60.69 60.77 60.73  60.66
CTM-AI 73.88 7396 7444 73.77 CTM-AI 71.64 71.63 71.62 71.62

Table 1: CTM-AI evaluation results on MUStARD. Table 2: CTM-AI evaluation results on URFunny.
CTM-ALl is able to reach state-of-the-art results on ~ CTM-AI is able to reach comparable results with
sarcasm detection, beating the base model a lot. state-of-the-art models on humor detection.

and replanning. These tasks engage agentic web processors—DOM parser, screenshot/OCR, and
AXTree handlers—together with cognitive processors to conduct multi-turn learning and close the
perception—planning—action loop.

4.2 BASELINE SETTINGS

Backbone model. To support evaluation across multimodal perception, tool use, and agentic tasks,
we adopt gemini-2.0-flash-1ite asthe base model. It natively accepts text, audio, and vision
inputs and supports function calling, allowing CTM-AI to expose these capabilities as processors
(multimodal models and tool callers) within a unified architecture.

Multimodal perception baselines. For MUSTARD and UR-FUNNY, we compare against strong
multimodal baselines including MMOoE (Yu et al.,|2023)), BLIP-2 (Li et al.,[2023)), and ALBEF (Li
et al., [2021), which jointly process text and images and report competitive performance on cross-
modal understanding.

Tool-using baselines. To assess tool-use competence on STABLETOOLBENCH, we include GPT-
40 (Achiam et al[2023)) and ToolLLaMA v2 (Qin et al.} 2023)) with standard prompting strategies
(Chain-of-Thought and DFS-style planning). These systems exhibit strong function-calling ability,
composing multiple tools to complete multi-step tasks.

Agentic baselines. For web-based agentic evaluation, we use GPT-40 as a baseline agent. Both the
CTM-AlI-based agent and the GPT-40 agent receive identical observations (DOM tree, screenshots,
and AXTree) and follow a ReAct-style loop (Yao et al.l 2023)), ensuring a fair comparison of planning
and interaction capabilities.

4.3 MAIN RESULTS

CTM-AI achieves state-of-the-art or competitive results across multimodal, tool calling, and
agentic benchmarks. As shown in Table|I|and Table 4] CTM-ALI attains state-of-the-art perfor-
mance, improving by 3 points on multimodal sarcasm detection and by 6+ points on the tool-calling
benchmark. On UR-FUNNY, CTM-ALI delivers performance comparable to strong baselines. These
settings require non-trivial coordination across processors (e.g., audio—video—text fusion for percep-
tion; planning and execution for tools), underscoring CTM-ATI’s ability to function as a general
Al framework that composes multiple capabilities. Additionally, on a random sample of 40 ON-
ESTOPSHOP cases from WebArena, CTM-AI surpasses LLM-only baselines (CTM-AI succeeds 8
tasks while baseline models only succeed 6) by leveraging its web-agent processors (DOM parsing,
screenshot/OCR, AXTree handling) alongside planning and state tracking.

Performance gains stem from CTM-AI’s mechanisms rather than base-model scaling. Our
improvements arise from CTM-ATI’s processor orchestration—not from a stronger underlying base
model. Built atop the same base model, CTM-AT introduces structured interaction mechanisms
(up-tree / down-tree message passing, cross-modal fusion, and link formation) that route information
among processors. In multimodal perception, this enables precise cross-modal alignment; in tool
use, it captures sequential dependencies and argument grounding across multi-step calls. The same
base model, when equipped with CTM-AT’s interaction layer, can thus activate different subsets of
processors to solve heterogeneous tasks without retraining.
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75 StableToolBench
Method 12-Cat. 12-Inst. 13-Inst.
70 ToolLLaMA v2 CoT 199+1.0 22.3+04 19.1+0.8
< ToolLLaMA v2 DFS  22.8+1.5 19.2+1.6 18.6+1.5
b GPT-40 mini CoT 24.5+1.0 223+2.7 20.8+1.5
65 GPT-40 mini DFS 25.8+1.7 25.8+2.7 20.2+0.8
GPT-40 CoT 32.5+¢1.7 29.6£1.6 27.9+3.5
GPT-40 DFS 32.8+1.5 283+1.3 23.0+1.3
60— "o — wio—wo —Base Base Model+CoT 26.3+1.2 37.2+2.1 18.5+0.9
LTM broadcast up-tree fusion model CTM-Al CTM-AI 39.1+2.0 51.5+1.9 38.5+1.3

T?ble 3: Ablation study on each mecha- Table 4: CTM-AI evaluation results on StableToolBench. We
nism of CTM-ATI dynamics. Full results  ofer (6 the MirrorAPI-Cache. Solvable Pass Rate Score evaluated
are available in Appendix @ with GPT-40. CTM-AI improves the performance a lot.

CTM-AI adapts to diverse real-world tasks with minimal adjustment. Because CTM-AI is made
up of multiple processors and modular, it can be ported to new tasks by changing only light prompts
and routing (i.e., selecting the relevant processor subset) rather than retraining. In practice, adapting
from multimodal perception to tool-use or web-based agentic tasks amounts to swapping/adding
processors (e.g., a search engine or calculator tool, a DOM/OCR/AXTree stack) and updating task
instructions for the same processor; the base model and interaction layer remain unchanged. This
plug-and-play design lets CTM-AI meet diverse task requirements with minimal overhead while
preserving performance and stability.

4.4 ABLATION STUDIES

Ablation on dynamic mechanisms of CTM-AI. Motivated by the cognitive theory behind CTM-AI,
we instantiate CTM dynamics with four key mechanisms: (i) chunk inference, (ii) up-tree competition,
(iii) down-tree broadcast, (iv) link formation, and (v) multimodal fusion. To isolate their contributions,
we run comprehensive ablations that selectively disable or replace each mechanism and measure the
resulting performance deltas across tasks. As shown in Figure 3] each component plays a non-trivial
role and contributes to the overall reasoning ability of CTM-AI, with performance consistently
degrading when any of them is removed. The existence of long-term memory is the most important
part in the CTM dynamics.

Ablation on Processors of CTM-AI

Method AccT Pt Rt F11
Base model (Only text input) 56.17 61.85 59.66 55.14
CTM-AI (Only language processor) 69.66 69.57 6741 67.59
Base model (Only audio input) 64.40 6798 59.77 57.11
CTM-AI (Only audio processor) 67.89 68.11 65.14 65.06
Base model(Only video modality) 61.79 60.59 60.04 60.07
CTM-AI (Only video processor) 5843 6037 51.82 4235
Base model (All modalities combined) 70.42 70.44 7090 70.26
CTM-AI 73.88 7396 7444 73.77

Table 5: Ablation on single-modality inputs. When restricted to audio-only or text-only inputs, CTM-AI still
outperforms the base model by leveraging broadcasting and unconscious link formation to reason more deeply
with limited information.

Ablation on single modality inputs. In Figure[3] we present the ablation results when only a single
modality is provided as input, comparing the Base Model (Gemini-2.0-flash-lite) with CTM-AI.
The results show that when restricted to audio-only or text-only inputs, CTM-Alconsistently out-
performs the base model. We argue that this improvement is cased by the broadcasting mechanism
and unconscious link formation within CTM-AI, even with limited information, processors can
generate follow-up questions that the original modality-specific processor may not have consid-
ered. This allows the system to continue reasoning iteratively and explore the input from different
perspectives, leading to deeper inference. However, when only the video modality is available,
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CTM-Al Setup
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Figure 2: Case study of CTM-AI dynamics. We show three iterations of CTM-AI for sarcasm detec-
tion.Through multiple rounds of structured interaction, the system progressively integrates multimodal cues and
convergence on the correct interpretation.

CTM-ATI performs worse than the base model. We hypothesize that visual information alone can
sometimes be misleading, causing the system to propagate incorrect cues through broadcasting
without information from other modalities to correct them. Overall, these findings underscore the
importance of multi-processor collaboration, when all modalities are jointly available, the system
benefits from richer cross-modal interactions, and the performance improves significantly compared
to any single-modality setting.

5 CASE STUDY

Based on Figure[2] we analyze a multimodal perception case for identifying sarcasm. In the first
iteration, all three processors are initially uncertain about their judgments. The text processor wins
the competition and broadcasts its partial understanding of the dialogue to the other processors and
explicitly asking for more surrounding context. This broadcast enables the video processor to respond
with relevant visual cues, forming a link of shared information. In the second iteration, the video and
text processor did unconscious communication with each other. The video processor integrates the
contextual cues from the text and its own vision frames, and infers that the speaker is likely being
sarcastic, but it still asks for the accompanying audio for a more comprehensive answer. In the third
iteration, the video processor further queries the audio processor, receiving prosodic and tonal cues.
With this enriched multimodal evidence, it refines the judgment and concludes that the speaker is not
sarcastic, but instead expressing genuine concern with a shocked and somewhat exaggerated facial
expression. Through repeated broadcasting and mutual asking, the processors progressively link their
evidence, fuse perspectives, and converge on the correct answer.

6 CONCLUSION

Our work bridges the Conscious Turing Machine (CTM) theory with practical Al by implementing
a system that integrates a large number of distributed processors and operates through an iterative
prediction—feedback—learning loop. Experiments demonstrate that CTM-Alachieves strong and
versatile performance across multimodal perception, tool use, and agentic tasks. Moreover, the
architecture adapts to new tasks with minimal adjustment and without retraining. We present CTM-
Alas a prototype that connects consciousness theory with general Al, offering a promising foundation
for future development.
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REPRODUCIBILITY STATEMENT

The datasets used in our experiments, MUStARD, URFunny, NYCartoon, StableToolBench and
WebArena, are publicly available. Details of the test dataset are provided in Section 4 and the
implementation of CTM-AI are provided in Appendix [

ETHICS STATEMENT

This work builds upon publicly available datasets, no private or sensitive user data were collected or
used in this research, and all experiments were conducted in controlled research settings.

Our research provides a concrete implementation that bridges the theoretical framework of CTM
with practical Al technologies. The goal is to enhance LLMs’ capabilities in affective learning,
decision-making, multi-step reasoning, and tool use, thereby contributing to the development of more
reliable and trustworthy general Al systems. Importantly, our intention is not to replicate human
identity or create systems indistinguishable from humans, thereby avoiding potential ethical risks
associated with anthropomorphization (Deshpande et al., 2023)).

We also recognize the inherent risks of applying large language models and Al agents. These risks
include biases that may arise from cultural or social factors. We are committed to ongoing analysis
aimed at detecting, understanding, and mitigating such biases. Addressing these challenges remains
central to our ethical research framework.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT as a writing assistant to help us write part of the paper. Additionally, we utilize
the power of CodePilot to help us code faster. However, all the Al-generated writing and coding
components are manually checked and modified. There is no full Al-generated content in the

paper.
B ARTIFACT DETAILS

B.1 MODEL LICENSE

GPT-4o License: Proprietary (OpenAl)
gemini-2.0-flash-lite License: Apache 2.0
B.2 SOFTWARE VERSIONS

For web-agent evaluation, we adopt BrowserGym v0.14.2 |https://github.com/
ServiceNow/BrowserGym. To access large language models, we employ LiteLLM
1.743https://litellm.ai as the serving interface.

C EXPERIMENTAL DETAILS

When querying the Gemini API, we adopt a deterministic decoding configuration with temperature
fixed at 0.0, top_n set to 1, and a maximum token limit of 4096.

D FULL RESULTS OF ABLATION STUDY

Ablation on Components of CTM-AI
Method Acet Pt R? F17

Base model (Gemini-2.0-flash-lite) 70.42 70.44 7090 70.26
CTM-AI w/o up-tree competition 69.94 69.25 6891 69.03

CTM-AI w/o broadcast 66.01 6520 65.06 65.12
CTM-AI w/o fusion 69.38 69.91 70.27 69.33
CTM-AI w/o LTM 6573 64.85 64.48 64.59
CTM-AI 73.88 73.96 74.44 73.77

Table 6: Ablation on MUStARD on each components of CTM-AI. The results show that all the up-tree
competition, broadcast, fusion and LTM part paly an role in more accurate reasoning. Full results of Figure

E ANALYSIS OF FAILED CASE

We present a failure case of CTM-AI,

. . New Yorker Caption Contest
where its performance did not surpass the ew Torker T-aption T-ontes

Base Model. We hypothesize that this is Model Matching  Ranking
partly due to the query being in a multiple- From Pixels (FP)
choice format, which undermined CTM- CLIP 62.3 61.5

AT’s relevance estimation and confidence

. A . Fi D ipti FD
calibration. Moreover, as shown by exist- rom Descriptions (FD)

. . .. GPT-3.5 (5-shot 63.8 55.2

ing baselines, the From Descriptions (FD) GPT-4 C(()T shot) 81.9 64.3

setting performs exceptionally well, sug-

gesting that in this case the image modality gase ﬁogei CoT 22; ggg
: : ; : ase Model+Co . .

may have introduced misleading signals CTM.AI 547 s6.8

rather than helpful cues.

F IMPLEMENTATION Table 7: CTM-AI evaluation results on NYCartoon.

OF CTM-AI

We present the pseudocode of CTM-AI in
Algorithm 1]
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Algorithm 1 Iterative inference of CTM-AI

Require: processors P = {p;} X, each with long-term memory {m,, } X,

1

9:

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:

2
3
4
5:
6.
7
8

processor-link matrix L € {0, 1

}KXK

multisensory observation stream (x4 )¢»1, user query @, horizon H
Ensure: conscious action a

ct<«0
: while TRUE do

parallel for : < 1 to K
Ni—{ilLi; =1}

(Ci,t+1a Qi,t+1) <~ pi(%,Q)
end parallel for

if ISREADY (¢ ¢+17+1) then
At+H+1 < ACT(Ck,t+H+1)
return a;, g1

end if

parallel for j < 1to K
Mp; < Mip; U Chost+ H+1

if ISHELPFUL(c¢;, ¢+ m+2) then
Lk,j <~ 1
end if
end parallel for
end while

t < t + H + 2; read current observation x;

Mp, < Myp, U FUSE(pi7 {pj }jGNia T, Q)

(Ck7t+H+1» Qk7t+H+1) <~ UPTREE({Ci,tH}gl)

(Cj;t+H+2a (Jj.,t+H+2) < Pj (wt, Qk,t+H+1)

> find linked processors

> ask processors

> broadcast to all memories
> answer winner’s question

> form link to helpful processor
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