
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CTM-AI: A BLUEPRINT FOR GENERAL AI
INSPIRED BY CONSCIOUSNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite remarkable advances, today’s AI systems remain narrow in scope, falling
short of the flexible, adaptive, and multisensory intelligence that characterizes
humans. This gap has fueled longstanding debates about whether AI might one day
achieve human-like generality or even consciousness, and whether principles of
consciousness can inspire new architectures for general AI. This paper presents an
early blueprint for implementing a general AI system based on the Conscious Tur-
ing Machine (CTM), a formal machine model of consciousness. The CTM designs
an enormous number of powerful processors ranging from specialized experts (e.g.,
vision–language models, search engines, APIs) to unspecialized general-purpose
learners poised to develop their own expertise. Crucially, for whatever problem
must be dealt with, the system need not know in advance which processors hold
the relevant expertise; instead, multimodal machine learning methods enable the
system to select, integrate, and fuse information across processors. We extend
the CTM into a practical framework, the CTM-AI, and demonstrate its utility on
diverse tasks including multimodal perception, tool learning with multiple APIs,
and multi-turn web agent tasks. Together, this work offers a principled and testable
blueprint for general AI inspired by computational models of consciousness.

1 INTRODUCTION

In recent years, progress toward AI models capable of human-like intelligence has inspired debates
regarding whether today’s AI and its future counterparts can one day display human-like levels of
consciousness. Flipping the debate, we present a concrete blueprint for general AI based on a formal
machine model of consciousness, the Conscious Turing Machine (CTM) (Blum & Blum, 2021; 2022;
Liang, 2022). The CTM is a simple and formal model of consciousness inspired by Alan Turing’s
model of computation (Turing, 1936) and Bernard Baars’ theater model of consciousness (Baars,
1993). Critically different from other cognitive architectures and modern LLM/agentic workflows,
the CTM has no central executive - no conductor, no stage director (Blum & Blum, 2023). Instead,
the CTM employs a global workspace and distributed competition to integrate the power of an
enormous collection of parallel independent cognitive, sensory, motor, and extended processors.
When a problem needs to be solved, it becomes globally broadcast to all processors, eliciting help
from those who might have the expertise, interest, and resources to tackle the problem, even though
their talents and abilities might be unknown to a central executive.

Key contribution. Despite its potential, the CTM is a concept that remains abstract and theoretical.
In this work, we bridge this gap by implementing the formal CTM model as a concrete system called
CTM-AI which includes (1) multiple specialized processors operating in parallel, (2) a limited
capacity workspace enforcing selective attention via up-tree competition, (3) a global broadcast
of information via a down-tree from the workspace to all processors, and (4) the formation of
links between relevant processors over time, enabling unconscious communication to integrate their
knowledge into higher-order multimodal information. Through continuous interaction feedback, and
learning from its external world via sensory inputs, predictions, actuators, and feedback, CTM-AI
updates its individual processors, processor links, and multiprocessor integration to improve over
time. The CTM-AI model addresses several key limitations of current AI paradigms.

1. Modular and decomposable: Existing monolithic foundation models are centrally computed and
structurally fixed, which blocks the update of new skills and processors. CTM-AI is more modular,
decomposable, and supports the flexible addition or removal of processors and capabilities. CTM-
AI can adapt to task-specific features effortlessly without extra training.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2. Free of a central executive: CTM-AI does not require an orchestrator akin to modern agentic
workflows, but rather uses its dynamics to automatically determine the information flow and
learning over multiple processors. Therefore, compared with multi-agent workflows that have
a fixed workflow defined or learned for specific tasks, CTM-AI is a more general and flexible
framework suitable for different tasks.

3. Integrated reasoning and agentic flexibility: Today’s agentic frameworks still struggle with
reasoning over multiple modalities. CTM-AI can carry out multi-step multimodal reasoning
across processors (integrating text, vision, tools, and more). A special case recovers the ‘o1-style’
single-LLM reasoning when only one processor is active, showing that CTM-AI generalizes
LLM reasoning and multimodal multi-agent workflows.

Main results. To evaluate CTM-AI as a general multisensory and multi-action AI, we present
quantitative results that showcase its versatility across a broad range of language modeling, mul-
timodal perception, human behavior understanding, and agentic tool use tasks. This wide range
of tasks highlights its ability to use external tools, processors, and APIs, integrate and reason over
multimodal information, and solve complex multi-step problems. Based on our experiments, we
find that CTM-AI can achieve comparable or state-of-the-art performance on multimodal perception
tasks (MUStARD for sarcasm detection, URFunny for humor detection, NYCartoon for multimedia
analysis), tool learning API-using tasks (StableToolBench), and multi-turn agentic tasks (WebArena).
Moreover, our ablation study shows that mechanisms designed inside CTM-AI, including long-
term memory, fusion, up-tree competition, and down-tree broadcasting, all contribute to the final
improvement. Such experiments prove the value of the architecture and inference mechanism design
in CTM-AI.

2 RELATED WORK

Consciousness and AI There have been several directions in building AI systems inspired by
human consciousness (Blum & Blum, 2024; Zeng et al., 2024; Zhao et al., 2023); we point the reader
to Butlin et al. (2023) for a review. Prior efforts have typically emphasized high-level analogies,
such as developing multimodal languages that mirror human multisensory processing (Liang, 2022;
Liang et al., 2022b; Lohse et al., 2021; Murray & Wallace, 2011; Nanay, 2018), constructing world
models that integrate perception, planning, and action (Nottingham et al., 2023; Singer et al., 2022;
Hao et al., 2023; Liu et al., 2024; Prasad et al., 2023), or pursuing reasoning paradigms inspired by
human cognition, including robustness (Sun, 1995; Zeng et al., 2023), compositionality (Gupta &
Kembhavi, 2023; Wu et al., 2021; Zhou et al., 2022), causality (Halpern, 2000; Liu et al., 2023c; Zang
et al., 2023), and transparency (Liang et al., 2020; Mota et al., 2021). CTM-AI differs by directly
grounding these inspirations in state-of-the-art reasoning and agentic models, operationalizing them
into a concrete, extensible system rather than remaining at the level of abstract analogy.

Large foundation models The recent wave of large pretrained and generative models such as
large language models (Achiam et al., 2023; Brown et al., 2020; Radford et al., 2019; Touvron
et al., 2023; Zhang et al., 2022), image generation models (Ramesh et al., 2021; Rombach et al.,
2022; Saharia et al., 2022), and multimodal foundation models (Liu et al., 2023a;b; Li et al., 2023;
Liang et al., 2022a) have shown emergent abilities across a wide range of tasks (Schaeffer et al.,
2023; Wei et al., 2022). Their impressive generalization capabilities have inspired debate on whether
these models possess human-level intelligence (Baum et al., 2011) and consciousness (Chalmers,
2023). Mixture-of-experts (MoE) has also become a popular design choice for scaling foundation
models efficiently. CTM-AI differs fundamentally from large foundation models by moving beyond
monolithic scaling with a single centrally trained model and enabling modularity, flexible reasoning,
and adaptive agentic behavior. Moreover, CTM-AI differs from multimodal foundation models by
designing language-based interaction instead of linear projection for multimodal fusion.

Multi-agent and tool-augmented frameworks Most multi-agent systems (Qian et al., 2023; Hong
et al., 2024; Schmidgall et al., 2025) rely on multi-step prompting pipelines tailored to specific tasks
such as coding or reasoning, where each LLM-based agent is assigned a fixed role (e.g., planner,
coder, or reviewer). Beyond such task-specific prompting, recent work has focused on enhancing
reasoning abilities in LLMs and multimodal models (Li et al., 2025; Dai et al., 2025), reasoning
across multiple modalities, extending context and memory (Zhou et al., 2025), and enabling dynamic
tool use (Guo et al., 2024; Qin et al., 2023; Yao et al., 2024). While these advances move toward more
capable systems, they typically remain tied to fixed role assignments, rigid tool-calling pipelines, or
predefined multimodal fusion strategies. In contrast, CTM-AI departs from both directions: unlike

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

multi-agent systems, it is not a task-specific workflow with fixed roles but a general framework
where flexible processors can work together, and unlike tool-augmented LLMs, it does not rely on a
single-step inference but enables adaptive and iterative inference over multiple steps.

3 CTM-AI: THE CONSCIOUS TURING MACHINE WITH MODERN AI
In this section, we present background on the Conscious Turing Machine (CTM) in §3.1 and explain
how we implement this conceptual model based on modern AI technologies, creating CTM-AI. We
discuss CTM-AI’s core components in §3.2 and its key learning dynamics in §3.3.

3.1 BACKGROUND ON THE CONSCIOUS TURING MACHINE (CTM)
The CTM is a simple and formal model of consciousness (Blum & Blum, 2021; 2022) inspired by
Alan Turing’s model of computation (Turing, 1936) and Bernard Baars’ theater model of conscious-
ness (Baars, 1993). However, CTM differs from Turing machines and Baars’ model. While Baars
describes consciousness via the activity of actors performing on a stage directed by a stage director,
the CTM has no stage director or central executive. Designing a central executive can be prohibitive
since we often do not know how such an executive operates. Consider the typical example of trying to
recall the name of a person you’ve previously met. Although we may recall their name eventually, we
do not know which processors are relevant and how to combine processor outputs beforehand. Rather,
a federation of processors runs simultaneously, recalling different locations, events, and memories,
before deciding which outputs are salient and integrating them to form the final answer. Similarly,
the CTM employs a global workspace and distributed competition that determines which information
from its vast collection of “unconscious” cognitive, sensory, and motor processors gets admitted to
the “conscious” arena. When a problem needs to be solved, it becomes globally broadcast to all
processors, eliciting help from those who might have the expertise, interest, and resources to tackle
the problem, even though their talents and abilities might be unknown to a central executive. These
features set the stage for its capability to be a model for general AI (Blum & Blum, 2023).

3.2 CTM ARCHITECTURE

The formal definition of the CTM is a 7-tuple < STM, LTM, Up-Tree, Down-Tree, Links, Input,
Output >. We provide a brief explanation for each of them here:

• CTM is born at time 0 and has a finite lifetime T . Time is measured in discrete clock ticks,
t = 0,1,2, ..., T ≈ 1010.

• STM (short-term memory) is a small memory capable of holding a single chunk of information at
each time t.

• LTM (long-term memory) is a collection of K powerful processors p1, p2, ..., pK , K can be as
large as K > 107.

• Up-Tree is an up-directed binary tree of height h with K leaves, one leaf in each LTM processor,
and a (single) root in STM.

• Down-Tree is a simple down-directed tree of height 1 with a single root in STM and K edges
directed from that root to the leaves, one leaf in each LTM processor.

• Links are the channels for transmitting information directly between processors.
• Input: Rd

→ LTM carries information from the external (outer) world via sensors (e.g., eyes, ears)
to special LTM processors (e.g., visual and auditory processors). Rd is CTM’s external world
where R represents the real numbers and d is a positive integer. It also includes a user intent like a
query about the external world.

• Output: LTM → Rd carries information from special processors (e.g., motor processor) that can be
considered as feedback to the external (outer) world.

LTM processors. An LTM processor pi (with parameters θi) operates in a shared spaceH≅Rd and
maintains a private memory state Mt ∈ M updated over time. At step t, it receives an observation
ot ∈ O and a user query qt ∈ Q. We view the LTM processor at time t as a function LTMt(⋅) equipped
with three operations: (1) execute produces a chunk based on the current observations and previous
memory; (2) read returns a view of its memory at a specified timestamp; and (3) write integrates one
or more chunks into its memory. Formally:

execute: LTMt(ot, qt) = chunkt (1)
read: LTMt(⋅) = Mt (2)

write: LTMt(chunk
i
t) = Mt ⊕ chunkit = LTMt+1(⋅) (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Multimodal Observation
+ User Query

Collect Information
from LTM Processor

Up-tree Competition
into STM

Down-tree Broadcasting
and Link formation

link

Step1 Step2 Step3 Step4
Multisensory fusion

with Linked Processors

query

LTM processor

update
gist

update
gist

STM processor

gist+querywinner chunk

chunk

chunk

gist

weight

query

Figure 1: Key dynamics of CTM-AI: (1) multiple specialized LTM processors operating in parallel; (2) a
limited-capacity STM workspace enforces selective attention via up-tree competition; (3) a global broadcast of
information via a down-tree from the workspace to all processors; (4) the formation of links between relevant
processors over time, enabling unconscious communication to integrate their knowledge into higher-order
multimodal information. CTM-AI continuously interacts with the world through sensing, prediction, action,
and feedback, updating its individual processors, processor links, and multiprocessor integration over time.

A chunk cit produced by processor pi at step t is formally defined as a tuple:

chunkit = ⟨addr(pi), t, h
i
t, q

i
t, w

i
t⟩ (4)

It stores its unique identifier addr(pi), the timestep t, a gist hi
t ∈ H in English language that

summarizes information relevant to the user’s query (e.g., from audio: “laughter detected; likely
humorous”), a follow-up query qit ∈ Q that the processor proposes to other processors if answering
it could improve the final answer (e.g., ask vision processor for facial expressions), and a weight
wi

t ∈ [0,1] indicating the processor’s confidence/utility for how useful the gist is to answering the
user’s query. While all LTM processors share the above input–output interface, they differ in their
specialties (e.g. input modalities, output tasks, internal memories). Generally, we can group them
into five families of LTM processors (Card et al., 1980; Clark & Chalmers, 1998):

• Sensory processors, which convert raw perceptual signals such as vision, language, speech, code,
music, or more into latent representations.

• Extended or artificial processors, which wrap external tools and APIs (e.g., calculators, web
search, weather services) so that they can be accessed as internal modules.

• Cognitive processors, which handle reasoning and planning over the given query, supporting tasks
like commonsense inference or long-horizon problem solving.

• Motor processors, which generate outputs by mapping internal intents to external actions, including
dialogue utterances, API calls, or embodied movements.

• Unspecialized “free” processors, which serve as expandable slots that can acquire new observation,
reasoning, or output skills over time through practice and feedback.

STM processors. Besides LTM processors, an STM processor is a stateless LLM (e.g., GPT-4o)
that, given the STM at step t that wins the competition among all chunks and the current query qt,
produces a final, text-based answer yt (i.e., the action at) and a quality score αt ∈ [0,1]. Unlike LTM
processors, it has no long-term memory and therefore only exposes a single execute operation; it
performs no reads or writes to persistent state and simply grounds its output.

execute: (yt, αt) = STMt(chunk
∗
t , qt), αt ∈ [0,1]. (5)

3.3 CTM DYNAMICS

Besides the definition of CTM based on a 7-tuple, there are the following dynamics of multisensory
processing, information integration, feedback, and learning defined on top of CTM to support its
functionality. The overview design principles behind building learning dynamics between multiple
processors in the CTM architecture are as below:

1. Different LTM processors perform distinct functions, e.g., cognitive, sensory, or motor. Some
processors may be “off-the-shelf” while others’ functionalities are realized over time. While
individual processors may have their own internal language, communication within the CTM is in
a common multimodal language we call Brainish. All processors start as independent entities.

2. Conscious communication between processors is conducted via an Up-Tree competition that
decides whose chunk of information gets into STM.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3. The winning chunk (CTM’s conscious content) is immediately globally broadcast to all processors
via the Down-Tree, which causes the CTM to pay conscious attention to this information.

4. Links between processors form over time as one processor views another as having relevant
information, enabling unconscious communication to integrate their knowledge into higher-order
information (e.g., learning to ride a bike requires conscious communication between sight and
movement, after a while, links form, enabling unconscious communication).

5. Through continuous interaction, feedback, and learning from its external world via sensory inputs,
predictions, actuators, and feedback, the CTM updates its individual processors, processor links,
and multiprocessor integration to improve over time.

To fully implement such learning dynamics proposed by CTM with modern AI technologies, we split
the overall learning stages of CTM into four parts and provide a more detailed description for each
stage of the learning dynamics as below:

LTM processor chunk inference. At time t, all LTM processors p1, . . . , pK run in parallel on the
observation ot and query qt, each using its private memory M i

t . The collector applies each processor’s
exec to produce chunks (e.g., a VLM on an image, an ALM on audio), yielding:

CTMcollect(ot, qt) = {LTM
i
t(ot, qt)}

K

i=1 = {chunk
i
t}

K
i=1 (6)

Up-tree competition into STM. After collecting all chunks from the LTM processors, only one can
be stored in the STM due to its limited capacity. Therefore, an up-tree competition is performed to
select the final chunk. In the original CTM design, this competition is hierarchical and local—each
group of sibling chunks competes using an additive competition function to ensure the probability of
winning is independent of the processor’s position in the tree.

However, in our implementation, typically only a few (< 10) LTM processors are active during
inference. Under this setting, restricting competition to local sibling groups is unnecessary, and the
additive function becomes suboptimal. Instead, we adopt a simplified global competition, where the
chunk with the highest score wi

t (e.g., based on gist quality) is selected as the STM entry:

CTMup({chunk
i
t}

K
i=1) = chunk

i⋆

t , i⋆ ∶= arg max
i∈{1,...,K}

wi
t. (7)

This approach streamlines selection and works well given the small number of competing chunks in
practice. The design can revert to hierarchical selection if large-scale parallelism is introduced.

Down-tree broadcast. Once the up-tree competition selects the winning chunk chunki
⋆

t , it is
written into the STM as STMi⋆

t and immediately broadcast globally to all LTM processors. This
process—called down-tree broadcasting—makes the system consciously aware of this information.
Operationally, each LTM processor receives the broadcast chunk and applies its own write function
to update its private memory. This is defined as:

CTMdown(chunk
i⋆

t) = {LTM
i
t(chunk

i⋆

t)}
K

i=1
= {LTMi

t+1(⋅)}
K

i=1 (8)

After this step, the updated memory states are used in the next inference iteration. Conceptually,
this mirrors the system "paying attention" to the winning information at the conscious level and
committing it across all processors for continued reasoning.

Link formation between LTM processors. Beyond conscious attention, we enable unconscious
communication by dynamically forming links between LTM processors. An unconscious link is
created when one processor identifies another as holding complementary information useful for
improving task performance. For instance, in sarcasm detection, the vision, text, and audio processors
each detect different cues (e.g., sad face, angry tone, exaggerated speech), and over time, they
recognize each other’s utility and form links to exchange information. Concretely, after broadcasting
the winning chunk chunki

⋆

t to processor j, if pj’s response yields a high estimated relevance score wj
t ,

we update the link matrix by adding a small weight increment δ: Li⋆j ← Li⋆j +δ and Lji⋆ ← Lji⋆ +δ.
This mechanism ensures efficient, dynamic linking for cooperative inference. To prevent interference
or propagation of contradictory information, links are not permanent: their linking weights can decay
or be reduced by δ, effectively removing weak or unhelpful connections over time.

Multimodal fusion to update LTMs. After down-tree broadcast and link formation, each processor
LTMi has a recordN(i) of linked processors {LTMj}

M
j=1 that are linked useful for further reasoning.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

These links support unconscious information exchange. As part of the fusion process, each processor
first generates a query qit+1 based on its current long-term memory M i

t+1, including the newly
broadcast chunk. Each processor then consults its neighbors inN(i) in parallel, posing its query qit+1
to them. The neighbors respond by running their execute function, and the initiating processor uses
their responses to update its memory via the write function. This overall process is defined as:

CTMfuse(ot) = {LTM
i
t+1 ({LTM

j
t+1(ot, q

i
t+1)}j∈N(i))}

K

i=1
= {LTMi

t+2(⋅)}
K

i=1 (9)

Multisensory integration enables the discovery of richer, higher-order redundant, unique, or syn-
ergistic information from linked processors (Liang et al., 2022b; 2023; Partan & Marler, 1999;
2005).

Overall: prediction, feedback, and learning. The CTM-AI system operates through an iterative
cycle of prediction, feedback, and learning.

• Prediction. The overall prediction phase is described as CTMup(CTMcollect(ot, qt)). For each
user query qt, the system collects chunks from LTM processors via CTMcollect, conducts up-
tree competition via CTMup−tree. This winning chunk that fits into the STM is considered the
prediction provided by CTM.

• Feedback. The STM processor (an LLM) evaluates the prediction and assigns a quality score αt.
If αt ≥ τ , the prediction is accepted as output. Otherwise, negative feedback triggers learning,
prompting the system to refine its internal state before reattempting inference.

• Learning. Learning is implemented via in-context learning with memory updates. It consists of two
parts: (1) Down-tree broadcast: The winning chunk is written into each LTM processor’s memory
via CTMdown; (2) Multimodal fusion: Each processor generates a follow-up query, consults its
linked neighborsN(i), and fuses the resulting information via CTMfuse, enriching its LTM. These
updates prepare the system for improved reasoning in the next iteration.

This prediction–feedback–learning loop generalizes multiple recent AI innovations, including multi-
step reasoning, agentic workflows, multimodal interaction, and tool use. Crucially, unlike orchestrator-
based systems, CTM-AI does not rely on an external controller. Instead, its intrinsic dynamics—up-
tree selection, down-tree broadcasting, and processor linking—autonomously regulate information
flow and drive continual learning across iterations.

4 EVALUATING THE CAPABILITIES OF CTM-AI
In this section, we present quantitative results that showcase CTM-AI’s versatility across a broad
range of tasks, including language modeling, multimodal perception, tool use, and agentic tasks. This
wide range of tasks highlights its potential ability to serve as a general AI framework.

4.1 EVALUATION TASKS

To assess the generality of CTM-AI, we select tasks that activate distinct subsets of processors
within each : (i) multimodal grounding and perception (text–audio–image–video); (ii) abstract/social
understanding (affect, humor, sarcasm); (iii) temporal reasoning; (iv) tool use and actuation (planning
API calls and reading/writing external state); and (v) interactive, long-horizon agency (goal decompo-
sition, feedback handling, recovery from errors). These axes require CTM-AI to compose perception,
cognitive, tool, and agentic processors iteratively to complete end-to-end tasks.

Multimodal perception. Real data combine and conflict across modalities (e.g., words vs. tone
vs. visuals). We use MULTIBENCH (Liang et al., 2021) and HEMM (Liang et al., 2024) for broad
modality coverage, plus MUSTARD (Castro et al., 2019), UR-FUNNY (Hasan et al., 2019), and
NYCARTOON (Hessel et al., 2023) for socially grounded semantics (sarcasm, humor, cultural
references). These tasks primarily engage audio/video/text perception processors and cognitive
processors for cross-modal reasoning.

Tool learning. General systems must not only perceive but also act. STABLETOOLBENCH (Guo
et al., 2025) evaluates planning, argument construction, multi-tool composition, and error recovery.
These tasks chiefly engage multiple tool processors (typed API connectors with schema/argument
grounding) to accomplish one task.

Agentic tasks. Autonomy requires long-horizon control and robustness to stochastic interfaces.
WebArena (Zhou et al., 2023) probes end-to-end web interaction: parsing noisy pages, tracking state,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

MUStARD

Model Acc↑ P↑ R↑ F1↑

LMF – 70.73 70.90 70.68
LF-DNN-v1 – 71.55 71.52 70.99
ALBEF 54.49 47.08 50.22 48.51
BLIP2 53.75 48.46 90.13 62.65
MMoE 70.41 60.64 89.04 71.78
BaseModel 70.42 70.44 70.90 70.26

CTM-AI 73.88 73.96 74.44 73.77

Table 1: CTM-AI evaluation results on MUStARD.
CTM-AI is able to reach state-of-the-art results on
sarcasm detection, beating the base model a lot.

URFunny

Model Acc↑ P↑ R↑ F1↑

MulT 66.65 – – –
FDMER 71.87 – – –
ALBEF 66.77 64.29 73.74 68.67
BLIP2 70.43 65.14 86.60 74.31
MMoE 71.88 69.18 78.16 73.29
BaseModel 60.69 60.77 60.73 60.66

CTM-AI 71.64 71.63 71.62 71.62

Table 2: CTM-AI evaluation results on URFunny.
CTM-AI is able to reach comparable results with
state-of-the-art models on humor detection.

and replanning. These tasks engage agentic web processors—DOM parser, screenshot/OCR, and
AXTree handlers—together with cognitive processors to conduct multi-turn learning and close the
perception–planning–action loop.

4.2 BASELINE SETTINGS

Backbone model. To support evaluation across multimodal perception, tool use, and agentic tasks,
we adopt gemini-2.0-flash-lite as the base model. It natively accepts text, audio, and vision
inputs and supports function calling, allowing CTM-AI to expose these capabilities as processors
(multimodal models and tool callers) within a unified architecture.

Multimodal perception baselines. For MUSTARD and UR-FUNNY, we compare against strong
multimodal baselines including MMoE (Yu et al., 2023), BLIP-2 (Li et al., 2023), and ALBEF (Li
et al., 2021), which jointly process text and images and report competitive performance on cross-
modal understanding.

Tool-using baselines. To assess tool-use competence on STABLETOOLBENCH, we include GPT-
4o (Achiam et al., 2023) and ToolLLaMA v2 (Qin et al., 2023) with standard prompting strategies
(Chain-of-Thought and DFS-style planning). These systems exhibit strong function-calling ability,
composing multiple tools to complete multi-step tasks.

Agentic baselines. For web-based agentic evaluation, we use GPT-4o as a baseline agent. Both the
CTM-AI-based agent and the GPT-4o agent receive identical observations (DOM tree, screenshots,
and AXTree) and follow a ReAct-style loop (Yao et al., 2023), ensuring a fair comparison of planning
and interaction capabilities.

4.3 MAIN RESULTS

CTM-AI achieves state-of-the-art or competitive results across multimodal, tool calling, and
agentic benchmarks. As shown in Table 1 and Table 3, CTM-AI attains state-of-the-art perfor-
mance, improving by 3 points on multimodal sarcasm detection and by 6+ points on the tool-calling
benchmark. On UR-FUNNY, CTM-AI delivers performance comparable to strong baselines. These
settings require non-trivial coordination across processors (e.g., audio–video–text fusion for percep-
tion; planning and execution for tools), underscoring CTM-AI’s ability to function as a general
AI framework that composes multiple capabilities. Additionally, on a random sample of 40 ON-
ESTOPSHOP cases from WebArena, CTM-AI surpasses LLM-only baselines (CTM-AI succeeds 8
tasks while baseline models only succeed 6) by leveraging its web-agent processors (DOM parsing,
screenshot/OCR, AXTree handling) alongside planning and state tracking.

Model performance gains stem from CTM-AI’s mechanisms rather than base-model scaling.
Our improvements arise from CTM-AI’s processor orchestration—not from a stronger underlying
base model. Built atop the same base model, CTM-AI introduces structured interaction mechanisms
(up-tree / down-tree message passing, cross-modal fusion, and link formation) that route information
among processors. In multimodal perception, this enables precise cross-modal alignment; in tool
use, it captures sequential dependencies and argument grounding across multi-step calls. The same
base model, when equipped with CTM-AI’s interaction layer, can thus activate different subsets of
processors to solve heterogeneous tasks without retraining.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

60

70

75

65

Base
model

w/o
up-tree

w/o
broadcast

w/o
LTM CTM-AIw/o

fusion

F1
 (%

)

73.77

70.26
69.3369.03

65.1264.59

Figure 2: Ablation study on each mecha-
nism of CTM-AI dynamics. Full results
are available in Appendix §E.

StableToolBench

Method I2-Cat. I2-Inst. I3-Inst.

ToolLLaMA v2 CoT 19.9±1.0 22.3±0.4 19.1±0.8
ToolLLaMA v2 DFS 22.8±1.5 19.2±1.6 18.6±1.5

GPT-4o mini CoT 24.5±1.0 22.3±2.7 20.8±1.5
GPT-4o mini DFS 25.8±1.7 25.8±2.7 20.2±0.8
GPT-4o CoT 32.5±1.7 29.6±1.6 27.9±3.5
GPT-4o DFS 32.8±1.5 28.3±1.3 23.0±1.3

Base Model+CoT 26.3±1.2 37.2±2.1 18.5±0.9
CTM-AI 39.1±2.0 51.5±1.9 38.5±1.3

Table 3: CTM-AI evaluation results on StableToolBench. We
refer to the MirrorAPI-Cache. Solvable Pass Rate Score evaluated
with GPT-4o. CTM-AI improves the performance a lot.

CTM-AI adapts to diverse real-world tasks with minimal adjustment. Because CTM-AI is made
up of multiple processors and modular, it can be ported to new tasks by changing only light prompts
and routing (i.e., selecting the relevant processor subset) rather than retraining. In practice, adapting
from multimodal perception to tool-use or web-based agentic tasks amounts to swapping/adding
processors (e.g., a search engine or calculator tool, a DOM/OCR/AXTree stack) and updating task
instructions for the same processor; the base model and interaction layer remain unchanged. This
plug-and-play design lets CTM-AI meet diverse task requirements with minimal overhead while
preserving performance and stability.

4.4 ABLATION STUDIES

Ablation on dynamic mechanisms of CTM-AI. Motivated by the cognitive theory behind CTM-AI,
we instantiate CTM dynamics with four key mechanisms: (i) chunk inference, (ii) up-tree competition,
(iii) down-tree broadcast, (iv) link formation, and (v) multimodal fusion. To isolate their contributions,
we run comprehensive ablations that selectively disable or replace each mechanism and measure the
resulting performance deltas across tasks. As shown in Figure 2, each component plays a non-trivial
role and contributes to the overall reasoning ability of CTM-AI, with performance consistently
degrading when any of them is removed. The existence of long-term memory is the most important
part in the CTM dynamics.

Ablation on Processors of CTM-AI

Method Acc↑ P↑ R↑ F1↑

Base model (Only text input) 56.17 61.85 59.66 55.14
CTM-AI (Only language processor) 69.66 69.57 67.41 67.59

Base model (Only audio input) 64.40 67.98 59.77 57.11
CTM-AI (Only audio processor) 67.89 68.11 65.14 65.06

Base model(Only video modality) 61.79 60.59 60.04 60.07
CTM-AI (Only video processor) 58.43 60.37 51.82 42.35

Base model (All modalities combined) 70.42 70.44 70.90 70.26
CTM-AI 73.88 73.96 74.44 73.77

Table 4: Ablation on single-modality inputs. When restricted to audio-only or text-only inputs, CTM-AI still
outperforms the base model by leveraging broadcasting and unconscious link formation to reason more deeply
with limited information.

Ablation on single modality inputs. In Figure 2, we present the ablation results when only a single
modality is provided as input, comparing the Base Model (Gemini-2.0-flash-lite) with CTM-AI.
The results show that when restricted to audio-only or text-only inputs, CTM-AI consistently out-
performs the base model. We argue that this improvement is cased by the broadcasting mechanism
and unconscious link formation within CTM-AI, even with limited information, processors can
generate follow-up questions that the original modality-specific processor may not have consid-
ered. This allows the system to continue reasoning iteratively and explore the input from different
perspectives, leading to deeper inference. However, when only the video modality is available,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Audio processor

It doesn't exhibit the specific
vocal patterns that typically
indicate sarcasm.

What is the context and the
speaker's reaction?

Text chunk

gist+query
Step2: Up tree competition

Step3: Supervisor output: can not determine sarcasm or not

Step4: broadcast

Weights: 1.63

Step1: Each processor answer query
Iteration 1

Video processor

Weights: 1.31

Challenging to determine.
But the expressions and
body language do suggest
a possible level of irony.

What is the dialogue of the
scene?

Text processor

Weights: 1.72

The text alone is only simple
command, but I need more
context to determine the
exact answer.

What is the surrounding
dialogue or situation?

Step5: link form

Audio processor Video processor Text processor

CTM-AI Setup
Query: Is the person being sarcasm or not?

gist
query

chunk

broadcast

up-tree
link form/break

ask each other

Audio processor

Video chunk

gist+query
Step3: Up tree competition

Step4: Supervisor output: the person is being sarcasm

Step5: broadcast

Weights: 1.66

Step1: Each processor answer query
Iteration 2

Video processor

Weights: 1.87

Text processor

Weights: 1.40

Step6: link break

Monica has a shock face.
Joey appears to be reacting
with exaggerated gestures is
inconsistent with the direct
request, she's using irony.

The abruptness and rising
intonation at end of the
utterance, indicated by the
exclamation, could suggest
a playful or urgent tone.

Based on the surrounding
(Joey is shirtless is shirtless
in the kitchen) and the text, I
am not sure.

What is the audio dialogue
accompanying?

What is the facial
expression of the woman?

Step2: ask each otherStep6: link form

What is the context of
the statement?

Audio processor

Video chunk
Step3: Up tree competition

Step4: Supervisor output: the person is not being sarcasm

Weights: 1.76

Step1: Each processor answer query
Iteration 3

Video processor

Weights: 1.87

Text processor

Weights: 1.85

What is the context of
the statement?

Step2: ask each other

What is the tone of Monica's
voice?

It's highly unlikely that her
statement is sarcastic. The
visual cues suggest a
genuine expression of
concern or exasperation.

Based on visual clues, the
tone of voice when saying
that is concern or even a
touch of exasperation. It is
not sarcasm.

What is the intonation of
the audio?

The exaggerated gestures
and a tone inconsistent with
the literal command from
Monica. Joey is likely using
irony to react Monica.

Figure 3: Case study of CTM-AI dynamics. We show three iterations of CTM-AI for sarcasm detec-
tion.Through multiple rounds of structured interaction, the system progressively integrates multimodal cues and
convergence on the correct interpretation.

CTM-AI performs worse than the base model. We hypothesize that visual information alone can
sometimes be misleading, causing the system to propagate incorrect cues through broadcasting
without information from other modalities to correct them. Overall, these findings underscore the
importance of multi-processor collaboration, when all modalities are jointly available, the system
benefits from richer cross-modal interactions, and the performance improves significantly compared
to any single-modality setting.

5 CASE STUDY

Based on Figure 3, we analyze a multimodal perception case for identifying sarcasm. In the first
iteration, all three processors are initially uncertain about their judgments. The text processor wins
the competition, broadcasts its partial understanding of the task to the other processors, and ask
explicitly for more context from other processors. This broadcast enables the video processor to
respond with relevant visual cues, forming a link of shared information. In the second iteration,
the video and text processor did unconscious communication with each other. The video processor
integrates the contextual cues from the text and its own vision frames, and infers that the speaker is
likely being sarcastic, but it still asks for the accompanying audio for a more comprehensive answer.
In the third iteration, the video processor further queries the audio processor, receiving prosodic
and tonal cues. With this enriched multimodal evidence, it refines the judgment and concludes that
the speaker is not sarcastic, but instead expressing genuine concern with a shocked and somewhat
exaggerated facial expression. Through repeated broadcasting and mutual asking, the processors
progressively link their evidence, fuse perspectives, and converge on the correct answer.

6 CONCLUSION

Our work bridges the Conscious Turing Machine (CTM) theory with practical AI by implementing
a system that integrates a large number of distributed processors and operates through an iterative
prediction–feedback–learning loop. Experiments demonstrate that CTM-AI achieves strong and
versatile performance across multimodal perception, tool use, and agentic tasks. Moreover, the
architecture adapts to new tasks with minimal adjustment and without retraining. We present CTM-
AI as a prototype that connects consciousness theory with general AI, offering a promising foundation
for future development.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The datasets used in our experiments, MUStARD, URFunny, NYCartoon, StableToolBench and
WebArena, are publicly available. Details of test datasets are provided in Section 4 and the imple-
mentation of CTM-AI are provided in Appendix D.

ETHICS STATEMENT

This work builds upon publicly available datasets, no private or sensitive user data were collected or
used in this research, and all experiments were conducted in controlled research settings.

Our research provides a concrete implementation that bridges the theoretical framework of CTM
with practical AI technologies. The goal is to enhance LLMs’ capabilities in affective learning,
decision-making, multi-step reasoning, and tool use, thereby contributing to the development of more
reliable and trustworthy general AI systems. Importantly, our intention is not to replicate human
identity or create systems indistinguishable from humans, thereby avoiding potential ethical risks
associated with anthropomorphization (Deshpande et al., 2023).

We also recognize the inherent risks of applying large language models and AI agents. These risks
include biases that may arise from cultural or social factors. We are committed to ongoing analysis
aimed at detecting, understanding, and mitigating such biases. Addressing these challenges remains
central to our ethical research framework.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Bernard J Baars. A cognitive theory of consciousness. Cambridge University Press, 1993.

Seth D Baum, Ben Goertzel, and Ted G Goertzel. How long until human-level ai? results from an
expert assessment. Technological Forecasting and Social Change, 78(1):185–195, 2011.

Lenore Blum and Manuel Blum. A theory of consciousness from a theoretical computer science
perspective: Insights from the conscious turing machine. Proceedings of the National Academy of
Sciences, 119(21):e2115934119, 2022.

Lenore Blum and Manuel Blum. A theoretical computer science perspective on consciousness and
artificial general intelligence. Engineering, 2023.

Lenore Blum and Manuel Blum. Ai consciousness is inevitable: a theoretical computer science
perspective. arXiv preprint arXiv:2403.17101, 2024.

Manuel Blum and Lenore Blum. A theoretical computer science perspective on consciousness.
Journal of Artificial Intelligence and Consciousness, 8(01):1–42, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Patrick Butlin, Robert Long, Eric Elmoznino, Yoshua Bengio, Jonathan Birch, Axel Constant, George
Deane, Stephen M Fleming, Chris Frith, Xu Ji, et al. Consciousness in artificial intelligence:
insights from the science of consciousness. arXiv preprint arXiv:2308.08708, 2023.

Stuart K Card, Thomas P Moran, and Allen Newell. The keystroke-level model for user performance
time with interactive systems. Communications of the ACM, 23(7):396–410, 1980.

Santiago Castro, Devamanyu Hazarika, Verónica Pérez-Rosas, Roger Zimmermann, Rada Mihalcea,
and Soujanya Poria. Towards multimodal sarcasm detection (an _obviously_ perfect paper). In
ACL, pp. 4619–4629, 2019.

David J. Chalmers. Could a large language model be conscious?, 2023.

Andy Clark and David Chalmers. The extended mind. analysis, 58(1):7–19, 1998.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wei Dai, Peilin Chen, Chanakya Ekbote, and Paul Pu Liang. Qoq-med: Building multimodal clinical
foundation models with domain-aware grpo training. arXiv preprint arXiv:2506.00711, 2025.

Ameet Deshpande, Tanmay Rajpurohit, Karthik Narasimhan, and Ashwin Kalyan. Anthropomor-
phization of ai: opportunities and risks. arXiv preprint arXiv:2305.14784, 2023.

Ning Ding, Sheng-wei Tian, and Long Yu. A multimodal fusion method for sarcasm detection based
on late fusion. Multimedia Tools Appl., 81(6):8597–8616, March 2022. ISSN 1380-7501. doi: 10.
1007/s11042-022-12122-9. URL https://doi.org/10.1007/s11042-022-12122-9.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning of
large language models. arXiv preprint arXiv:2403.07714, 2024.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning of
large language models, 2025. URL https://arxiv.org/abs/2403.07714.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953–14962, 2023.

Joseph Y Halpern. Axiomatizing causal reasoning. Journal of Artificial Intelligence Research, 12:
317–337, 2000.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Md Kamrul Hasan, Wasifur Rahman, AmirAli Bagher Zadeh, Jianyuan Zhong, Md Iftekhar Tanveer,
Louis-Philippe Morency, and Mohammed Ehsan Hoque. Ur-funny: A multimodal language dataset
for understanding humor. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 2046–2056, 2019.

Jack Hessel, Ana Marasović, Jena D. Hwang, Lillian Lee, Jeff Da, Rowan Zellers, Robert Mankoff,
and Yejin Choi. Do androids laugh at electric sheep? humor "understanding" benchmarks from the
new yorker caption contest, 2023. URL https://arxiv.org/abs/2209.06293.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. International Conference on Learning Representations,
ICLR, 2024.

Hengzhi Li, Brendon Jiang, Alexander Naehu, Regan Song, Justin Zhang, Megan Tjandrasuwita,
Chanakya Ekbote, Steven-Shine Chen, Adithya Balachandran, Wei Dai, et al. Puzzleworld: A
benchmark for multimodal, open-ended reasoning in puzzlehunts. arXiv preprint arXiv:2506.06211,
2025.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. Advances in neural information processing systems, 34:9694–9705, 2021.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Paul Pu Liang. Brainish: Formalizing a multimodal language for intelligence and consciousness.
Annual Meeting of the Association for the Scientific Study of Consciousness, 2022.

Paul Pu Liang, Yiwei Lyu, Xiang Fan, Zetian Wu, Yun Cheng, Jason Wu, Leslie Yufan Chen,
Peter Wu, Michelle A Lee, Yuke Zhu, et al. Multibench: Multiscale benchmarks for multimodal
representation learning. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021.

11

https://doi.org/10.1007/s11042-022-12122-9
https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2209.06293

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Paul Pu Liang, Yiwei Lyu, Xiang Fan, Jeffrey Tsaw, Yudong Liu, Shentong Mo, Dani Yogatama,
Louis-Philippe Morency, and Russ Salakhutdinov. High-modality multimodal transformer: Quanti-
fying modality & interaction heterogeneity for high-modality representation learning. Transactions
on Machine Learning Research, 2022a.

Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations and recent trends in
multimodal machine learning: Principles, challenges, and open questions. arXiv preprint
arXiv:2209.03430, 2022b.

Paul Pu Liang, Yun Cheng, Xiang Fan, Chun Kai Ling, Suzanne Nie, Richard J Chen, Zihao Deng,
Nicholas Allen, Randy Auerbach, Faisal Mahmood, et al. Quantifying & modeling multimodal
interactions: An information decomposition framework. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Paul Pu Liang, Akshay Goindani, Talha Chafekar, Leena Mathur, Haofei Yu, Ruslan Salakhutdinov,
and Louis-Philippe Morency. Hemm: Holistic evaluation of multimodal foundation models.
Advances in Neural Information Processing Systems, 37:42899–42940, 2024.

Weixin Liang, Feiyang Niu, Aishwarya Reganti, Govind Thattai, and Gokhan Tur. Lrta: A transparent
neural-symbolic reasoning framework with modular supervision for visual question answering.
arXiv preprint arXiv:2011.10731, 2020.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023b.

Yang Liu, Guanbin Li, and Liang Lin. Cross-modal causal relational reasoning for event-level visual
question answering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023c.

Yuchen Liu, Luigi Palmieri, Sebastian Koch, Ilche Georgievski, and Marco Aiello. Delta: De-
composed efficient long-term robot task planning using large language models. arXiv preprint
arXiv:2404.03275, 2024.

Michael Lohse, Johannes C Dahmen, Victoria M Bajo, and Andrew J King. Subcortical circuits
mediate communication between primary sensory cortical areas in mice. Nature Communications,
12(1):1–14, 2021.

Tiago Mota, Mohan Sridharan, and Aleš Leonardis. Integrated commonsense reasoning and deep
learning for transparent decision making in robotics. SN Computer Science, 2(4):242, 2021.

Micah M Murray and Mark T Wallace. The neural bases of multisensory processes. CRC Press,
2011.

Bence Nanay. Multimodal mental imagery. Cortex, 105:125–134, 2018.

Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh Hajishirzi, Sameer
Singh, and Roy Fox. Do embodied agents dream of pixelated sheep: Embodied decision making
using language guided world modelling. In International Conference on Machine Learning, pp.
26311–26325. PMLR, 2023.

Sarah Partan and Peter Marler. Communication goes multimodal. Science, 283(5406):1272–1273,
1999.

Sarah R Partan and Peter Marler. Issues in the classification of multimodal communication signals.
The American Naturalist, 166(2):231–245, 2005.

Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabharwal, Mohit Bansal,
and Tushar Khot. Adapt: As-needed decomposition and planning with language models. arXiv
preprint arXiv:2311.05772, 2023.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. arXiv
preprint arXiv:2307.07924, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master 16000+
real-world apis, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
Advances in Neural Information Processing Systems, volume 36, pp. 55565–55581. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
Michael Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research
assistants. arXiv preprint arXiv:2501.04227, 2025.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
data. arXiv preprint arXiv:2209.14792, 2022.

Ron Sun. Robust reasoning: integrating rule-based and similarity-based reasoning. Artificial
Intelligence, 75(2):241–295, 1995.

Hao Tan and Mohit Bansal. LXMERT: learning cross-modality encoder representations from
transformers. CoRR, abs/1908.07490, 2019. URL http://arxiv.org/abs/1908.07490.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J. Zico Kolter, Louis-Philippe Morency, and
Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language sequences.
In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 6558–6569, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1656. URL https:
//aclanthology.org/P19-1656/.

Alan Turing. On computable numbers, with an application to the entscheidungsproblem. J. of Math,
58(345-363):5, 1936.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Zhengxuan Wu, Elisa Kreiss, Desmond C Ong, and Christopher Potts. Reascan: Compositional
reasoning in language grounding. arXiv preprint arXiv:2109.08994, 2021.

13

https://proceedings.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
http://arxiv.org/abs/1908.07490
https://aclanthology.org/P19-1656/
https://aclanthology.org/P19-1656/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Dingkang Yang, Shuai Huang, Haopeng Kuang, Yangtao Du, and Lihua Zhang. Disentangled
representation learning for multimodal emotion recognition. In Proceedings of the 30th ACM
International Conference on Multimedia, MM ’22, pp. 1642–1651, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450392037. doi: 10.1145/3503161.3547754.
URL https://doi.org/10.1145/3503161.3547754.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. tau-bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Haofei Yu, Zhengyang Qi, Lawrence Jang, Ruslan Salakhutdinov, Louis-Philippe Morency, and
Paul Pu Liang. Mmoe: Enhancing multimodal models with mixtures of multimodal interaction
experts. arXiv preprint arXiv:2311.09580, 2023.

Chuanqi Zang, Hanqing Wang, Mingtao Pei, and Wei Liang. Discovering the real association:
Multimodal causal reasoning in video question answering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 19027–19036, 2023.

Gangyan Zeng, Yuan Zhang, Yu Zhou, Xiaomeng Yang, Ning Jiang, Guoqing Zhao, Weiping Wang,
and Xu-Cheng Yin. Beyond ocr+ vqa: Towards end-to-end reading and reasoning for robust and
accurate textvqa. Pattern Recognition, 138:109337, 2023.

Yi Zeng, Feifei Zhao, Yuxuan Zhao, Dongcheng Zhao, Enmeng Lu, Qian Zhang, Yuwei Wang, Hui
Feng, Zhuoya Zhao, Jihang Wang, et al. Brain-inspired and self-based artificial intelligence. arXiv
preprint arXiv:2402.18784, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Lin Zhao, Lu Zhang, Zihao Wu, Yuzhong Chen, Haixing Dai, Xiaowei Yu, Zhengliang Liu, Tuo
Zhang, Xintao Hu, Xi Jiang, et al. When brain-inspired ai meets agi. Meta-Radiology, pp. 100005,
2023.

Honglu Zhou, Asim Kadav, Aviv Shamsian, Shijie Geng, Farley Lai, Long Zhao, Ting Liu, Mubbasir
Kapadia, and Hans Peter Graf. Composer: Compositional reasoning of group activity in videos
with keypoint-only modality. In European Conference on Computer Vision, pp. 249–266. Springer,
2022.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Zijian Zhou, Ao Qu, Zhaoxuan Wu, Sunghwan Kim, Alok Prakash, Daniela Rus, Jinhua Zhao, Bryan
Kian Hsiang Low, and Paul Pu Liang. Mem1: Learning to synergize memory and reasoning for
efficient long-horizon agents. arXiv preprint arXiv:2506.15841, 2025.

14

https://doi.org/10.1145/3503161.3547754

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT as a writing assistant to help us write part of the paper. Additionally, we utilize
the power of CodePilot to help us code faster. However, all the AI-generated writing and coding
components are manually checked and modified. There is no full AI-generated content in the
paper.

B ARTIFACT DETAILS

B.1 MODEL LICENSE

GPT-4o License: Proprietary (OpenAI)
gemini-2.0-flash-lite License: Apache 2.0

B.2 SOFTWARE VERSIONS

For web-agent evaluation, we adopt BrowserGym v0.14.2 1. To access large language models, we
employ LiteLLM 1.74.3 2 as the serving interface.

C EXPERIMENTAL DETAILS

In this section, we provide more implementation details related to the algorithm that we proposed
based on CTM-AI. We also include the prompting details to explain how we adapt CTM-AI architec-
ture to different types of tasks.

C.1 BASE MODEL

We select Gemini-2.0-flash-lite as our base model to make most of the processors. It is mainly
because Gemini-2.0-flash-lite is relatively small-scale and support audio, vision, and text as input for
inference. When querying the Gemini API, we adopt a deterministic decoding configuration with
temperature fixed at 0.0, top_n set to 1, and a maximum token limit of 4096.

C.2 BASELINE MODELS

For baseline comparison, we compare two types of baselines: (1) state-of-the-art baselines that are
finetuned with the training set; (2) baselines share the same base model with CTM-AI, which is
gemini-2.0-flash-lite.

MUStARD & URFunny. FDMER (Yang et al., 2022) consists of fine-grained alignment, disparity
modeling, and predictor modules, which together enable the learning of refined and disentangled
multimodal representations. MulT (Tsai et al., 2019) is a multimodal Transformer architecture
designed for cross-modal fusion. The model size is around 200K parameters. LF-DNN-v1 (Ding
et al., 2022) is a multimodal model that adopts a late-fusion strategy. ALBEF (Tan & Bansal,
2019) is a fusion-based vision–language model that leverages cross-attention to capture multimodal
interactions between all image regions and all input text tokens. It consists of a BERT base model
with 123.7 million parameters and a ViTB/16 with 85.8 million parameters, bringing the total to
209.5 million. BLIP2 (Li et al., 2023) belongs to the family of multimodal LLMs (MLLMs); its
architecture couples an image encoder with a large language model backbone. It includes a 2.7
billion-parameter OPT model, a QFormer, and a ViT. Since the Q-Former and ViT are relatively
small compared to OPT, the total size of BLIP2 is approximately 2.7 billion parameters. MMoE (Yu
et al., 2023) employs a mixture-of-experts design, where each expert is trained on a distinct subset of
multimodal data or optimized for a specialized training objective. It is finetuned on Qwen2-0.5B.
BaseModel refers to the Gemini-2.0-flash-lite with same audio, video and text inputs as CTM-AI.
All results for these models, except for the BaseModel variant, are taken from their corresponding
prior work, and all of these models were trained on the MUStARD and URFunny training sets.
Both the BaseModel and our CTM-AIare not trained on any dataset.

StableToolBench. ToolLLaMA v2 (Qin et al., 2023) refers to the fine-tuned version of LLaMA-2-7B-
hf. DFS denotes the depth-first search strategy for tool invocation, and CoT denotes chain-of-thought
prompting. BaseModel refers to the Gemini-2.0-flash-lite model using CTM-AI as input. All results,
except for the BaseModel+CoT variant, are taken from their corresponding prior work. We use

1https://github.com/ServiceNow/BrowserGym
2https://litellm.ai

15

https://github.com/ServiceNow/BrowserGym
https://litellm.ai

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

MirrorAPI3 as the host server. MirrorAPI is trained on real request–response data and can reliably
emulate the behavior of more than 7,000 APIs. In our reported results, ToolLLaMA v2 is the only
model that is trained on the StableToolBench train set.

WebArena. We use Gemini-2.0-flash-lite as baseline.

D CTM-AI IMPLEMENTATION DETAILS

D.1 STM PROCESSOR IMPLEMENTATION

We utilize the Gemini-2.0-flash-lite as the STM processor to finalize the generation as a conscious
action and with confidence.

When designing different CTM-AI for different tasks, since the output space for different tasks are
slightly different, it makes the prompt design of STM processor vary slightly.

MUStARD and URFunny Prompt.
Please answer the query based on the context: {context}, and
output how confident you are to your response. Answer in the
following format: "Answer: answer to the query based on the
context. Score: a number."

StableToolBench Prompt.
The following is detailed information on the topic: {context}.
Based on this information, answer the question: {query}. You
should provide specific information if you can, do not just say
you successfully answered the question.

WebArena Prompt.
Based on the current observation and action history, if the same
action has done too many times and there is no answer, if you
think you performed all the necessary and there is no answer, like
searched many times, or reach the end of the page, or no more
elements to click, your action should be: "send_msg_to_user(N̈o
relevant information found)̈", or "send_msg_to_user([̈Summary of
the previous])̈". Whenever you found the answer to the query,
you should use the "send_msg_to_user" action to answer the query.
Otherwise, you should output the specific action or the message to
the user.

D.2 LTM PROCESSOR IMPLEMENTATION

When designing CTM-AI for completing different tasks, we heuristically select a small number of
processors that can be suitable for this task. Even though CTM-AI can theoretically expand to a
large number of processors, in practice, we select a small number of processors and already gain
benefits from the mechnism that we design. Expanding to a large number of processors can make the
comparison hard to be fair. Therefore, it is similar to we heuristically select processors that can win
in the up-tree competition and design a special mapped version of CTM-AI to different tasks.

We provide details for all the LTM processors included in the different tasks:

MUStARD and URFunny.

• video processor. processor can only observe the query and four uniformly sampled video frames
from the input video.

• audio processor. processor could only observe the query and the audio of the inputs.
• text processor. processor could only observe the query and the text of the inputs.

StableToolBench. We use all tools (APIs) provided in StableToolBench. These tools are obtained
through retrieval by the retrieval model trained within StableToolBench, and each tool(API) corre-
sponds to a single processor. On average there are 5.94 processors for each task. Each processor
contains a lightweight LLM (Gemini-2.0-flash-lite) that is restricted to use only its own assigned tool
(API).

3https://huggingface.co/datasets/stabletoolbench/ToolEnv2404

16

https://huggingface.co/datasets/stabletoolbench/ToolEnv2404

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

WebArena.

• html processor. processor could only observe the html of the current page, the previous action, the
action space, the action history and the user’s objective.

• accessibility tree processor. processor could only observe the accessibility tree of the current
page, the previous action, the action space, the action history and the user’s objective.

• screen shot processor. processor could only observe the screen shot with set of marks of the
current page, the previous action, the action space, the action history and the user’s objective.

D.3 CHUNK INFERENCE IMPLEMENTATION DETAILS

In Equation 6, we define the function of CTMcollect(⋅), taking the multimodal observation ot and
the query qt as the input and output multiple chunks as the outputs. Typically, each chunk can be
written as ⟨addr(pi), t, hi

t, q
i
t, w

i
t⟩. Therefore, for the implementation, the processors are called

and return a JSON object including three main information: a gist hi
t (e.g. the woman has smiles

on her face), an additional question that helps the processor understand information qit (e.g. What is
the woman speaking about?), and a weight that is a weighted sum across relavant, confidence, and
surprise score. We typically choose the weight of 1:1:0.2 for relevance, confidence, and surprise to
emphasize relevance and confidence over surprise.

When we adapt the chunk inference process to differnet tasks, we keep the part of prompt for
generating weights unchanged but adding some special explanation on the definition of the task.
For MUStARD, URFunny, and StableToolBench tasks, different processors do not need different
special prompting. They just keep the same task definition to explain what is sarcasm and what is
humor. For Web agent task, its different modalities including special ones like accessibility trees
and screen shot that requires additional explanation about the modality information. We want to
emphasize that we do not assign special roles for different processors. All the processors are
designed to directly answer the query but condition on different partial information from the
multimodal observation. Such task and modality explanation can be considered as the property of
the observation (modality explanation) and the query (task explanation).

Here is the detailed prompt information for each processor we use for chunk inference:

MUStARD & URFunny. Prompt. 1 shows the part of prompt for weight generation. Prompt. 2
shows the part of prompt responsible for gists and additional query generation. Video, audio, and text
shares the same prompt but are given different modalities of inputs.

StableToolBench. Prompt. 1 shows the part of prompt for weight generation. Prompt. 4, 3 shows the
part of prompt responsible for the gists and additional query generation for each tools available in the
StableToolBench. Different tools share the same prompt for providing information.

WebArena. The Prompt. 1 keeps the smae for weight generation. Prompt. 5 shows the prompt
that is specially designed for diffenret processors. It basically includes the explanation for the
modality.

D.4 UP-TREE IMPLEMENTATION DETAILS

In Equation 7, we define the function of CTMup(⋅) taking multiple chunks as inputs and output one
winning chunk.

D.5 DOWN-TREE IMPLEMENTATION DETAILS

For the implementation, every LTM has a long-term memory (a Python list in implementation) and
maintain all winner_answer , for the down tree part, the winner add its answer to the list of
each LTM. In our implementation, each LTM maintains an internal winner_answer list, which
serves as a persistent record of the responses produced by the winning chunk(STM) at each iteration.
During the down-tree propagation phase, the winning chunk(STM) appends its generated answer to
the winner_answer list of every LTM.

In the subsequent iteration, when a new query is issued to the model, the system provides the
accumulated memory as contextual guidance using the following template:

"There are previous responses to the same query. Please reason
further based on the following answer(s): {winner_answers}."

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.6 LINK-FORMATION IMPLEMENTATION DETAILS

To determine whether a link should be established between two LTMs, the STM queries each LTM
using the additional questions it has generated. We use the same querying procedure for answering
the primary user query and answering the STM’s additional questions; therefore, the prompting
format is identical to that described in Prompt 1. We maintain a adjacency_list to store the
linking information.

The key difference lies in the scoring criterion used for link formation. Specifically, we use only the
relevance score to decide whether a link should be created or removed:

• If the relevance score is greater than 0.8, a link is created between the winning LTM and the
answering LTM.

• If the relevance score is lower than 0.2, any existing link between the two LTMs is removed.

D.7 MULTIMODAL FUSION IMPLEMENTATION DETAILS

We maintain a list called fuse_history for each LTM. Whenever a link exists between two
LTMs, they are required to answer each other’s additional questions, and the resulting responses
are appended to the fuse_history of the corresponding linked LTM. When an LTM is asked to
answer the main query, its prompt is augmented with the accumulated information from its linked
LTMs. Specifically, we prepend the following message to its context:
"There is extra information from other processors:
{processor_name}: {answers}."

D.8 OVERALL INFERENCE ALGORITHM

We provide the detailed inference algorithm for CTM-AI in Algorithm 1. We split different compo-
nents (gist, query, and weight) inside the chunk, replace chunkit with more fine-grained details of gist,
query, and weight. It makes it more clear for the process of chunk inference, up-tree competition,
down-tree and link formation, and multimodal fusion.

Cost analysis. In the inference algorithm, for each iteration, if we assume the processor number as
K, links number in the processor graph as L, we need to call 2(K +L) times of processors. One K
for chunk inference, another K for winning chunk link formation. 2L for bidirectional multimodal
fusion on the processor graph. Usually since the links on the processor graph is hard to form, L is
much smaller than K (L <<K). The iteration number is usually 1-3 for most cases.

Efficiency analysis. For efficiency analysis, since chunk inference, link formation, and multimodal
fusion includes api calling. These three stages become the bottleneck for timing. Since these all three
functions can be conducted in parallel, if we consider one API calling time to be T , then the overall
time cost for one iteration becomes 3T + ϵ, where ϵ is the time for up-tree and down-tree time which
is much faster than API calling. The iteration number is usually 1-3 for most cases.

E FULL RESULTS OF ABLATION STUDY

Ablation on Components of CTM-AI
Method Acc↑ P↑ R↑ F1↑

Base model (Gemini-2.0-flash-lite) 70.42 70.44 70.90 70.26
CTM-AI w/o up-tree competition 69.94 69.25 68.91 69.03
CTM-AI w/o broadcast 66.01 65.20 65.06 65.12
CTM-AI w/o fusion 69.38 69.91 70.27 69.33
CTM-AI w/o LTM 65.73 64.85 64.48 64.59

CTM-AI 73.88 73.96 74.44 73.77

Table 5: Ablation on MUStARD on each components of CTM-AI. The results show that all the up-tree
competition, broadcast, fusion and LTM part paly an role in more accurate reasoning. Full results of Figure 2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 Inference Algorithm of CTM-AI

Require:
1: Set of K LTM processors: {LTMi(⋅)}

K
i=1

2: Single STM processor: STM(⋅)
3: Adjacency matrix: L ∈ {0,1}K×K (initialized to 0)
4: Input: Query qt, Observation ot, Max steps T
5: Hyperparameters: Confidence γ, Link threshold η

Ensure: Conscious action yt, Confidence αt

6: t← 0
7: while t < T do
8: t← t + 2
9:

10: for i = 1 to K do in parallel ▷ Phase 1: Chunk inference
11: (hi

t, q
i
t,w

i
t) ← LTMi

t(ot, qt)
12: end for
13:
14: i∗ ← argmaxi({w

i
t}

K
i=1) ▷ Phase 2: Up-tree competition

15: yt, αt ← STM(hi∗
t , qt)

16: if αt > γ then
17: return yt
18: end if
19:
20: for j = 1 to K do in parallel ▷ Phase 3: Down-tree and link formation
21: LTMj

t+1(⋅) = LTMj
t(h

i∗
t)

22: (hj
t+1, q

j
t+1,w

j
t+1) ← LTMj

t+1(ot, q
i∗
t)

23: if wj
t+1 > η then

24: L[j, i∗] ← 1; L[i∗, j] ← 1
25: end if
26: end for
27:
28: for i = 1 to K do in parallel ▷ Phase 4: Multimodal fusion
29: N(i) ← {j ∣ L[i, j] = 1}
30: if N(i) ≠ ∅ then
31: HN(i) ← {LTMj

t+1(ot, q
i
t) ∣ j ∈ Ni}

32: LTMi
t+2(⋅) ← LTMi

t+1(HN(i))
33: end if
34: end for
35: end while

F ANALYSIS OF FAILED CASE

We present a failure case of CTM-AI, where its performance did not surpass the Base Model. We
hypothesize that this is partly due to the query being in a multiple-choice format, which undermined
CTM-AI’s relevance estimation and confidence calibration. Moreover, as shown by existing baselines,
the From Descriptions (FD) setting performs exceptionally well, suggesting that in this case the
image modality may have introduced misleading signals rather than helpful cues.

We also present two detailed example of CTM-AI in URFunny (Figure. 5) and StableToolBench
(Figure. 6). The failure observed in URFunny is caused by a vision-only misleading effect, which
is caused by the incomplete visual observations available to the video processor. Beginning from
the second iteration, all LTMs repeatedly generated the same additional question: “What is the
facial expression?”, but the input video frames did not contain the necessary facial-expression
information. As a result, the system created an excessive number of links in an attempt to acquire the
missing information, ultimately preventing the LTMs from producing correct answers. The failure
in StableToolBench is attributed to tool mishandling. Specifically, the processor responsible for
QR-code generation failed to invoke its designated API. Instead of issuing the required tool call, it

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

New Yorker Caption Contest
Model Matching Ranking
From Pixels (FP)
CLIP 62.3 61.5

From Descriptions (FD)
GPT-3.5 (5-shot) 63.8 55.2
GPT-4 CoT 81.9 64.3

Base Model 59.7 65.3
Base Model+CoT 57.3 62.2
CTM-AI 54.7 56.8

Table 6: CTM-AI evaluation results on NYCartoon.

Multimodal Observation + User Query

chunk3

weight3

gist3

query3

AudioLTM

Step1 Collect Information from LTM Processor

chunk2

weight2

gist2

query2

VideoLTM

chunk1

weight1

gist1

query1

TextLTM AudioLTMVideoLTMTextLTM

Step2 Up-tree Competition into STM

chunk1 chunk2 chunk3

chunk1 chunk3

chunk3
weight

AudioSTM

AudioLTMVideoLTMTextLTM

AudioSTM

Step3 Down-tree Broadcasting and Link formation

chunk3
gist3

chunk3
gist3
…

chunk2

…
gist2+gist3

chunk2

…
gist1+gist3

query3

weight

relevancerelevance>0.8 relevance

link form

chunk3

weight3

gist1

query3

AudioLTM

Step4 Multisensory fusion with Linked Processors

VideoLTM

chunk1

weight1

gist3

query1

TextLTM

ask

update

linked
Multimodal Observation

Figure 4: Detailed dynamics of CTM-AI: (1) multiple specialized LTM processors operating in parallel; (2) a
limited-capacity STM workspace enforces selective attention via up-tree competition; (3) a global broadcast
of information via a down-tree from the workspace to all processors, the formation of links between relevant
processors based on the relevance of the query and the answers of corresponding LTM; (4) the link enable
unconscious communication to integrate their knowledge into higher-order multimodal information. CTM-AI
continuously interacts with the world through sensing, prediction, action, and feedback, updating its individual
processors, processor links, and multiprocessor integration over time.

prematurely concluded that it was unable to generate the QR code, thereby producing an incorrect
outcome without interacting with the tool.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Audio processor

What is the tone of the
speaker?

Audio chunk

gist+query
Step2: Up tree competition

Step3: Supervisor output: can not determine sarcasm or not

Step4: broadcast

Weights: 1.48

Step1: Each processor answer query
Iteration 1

Video processor

Weights: 1.28
The person giving a speech
dressed casually, which might
indicate a humorous or less
formal tone. However, without
audio, it is impossible to know.

What is the speaker's tone
of voice?

Text processor

Weights: 1.08

What is the speaker's tone
of voice?

Step5: link form

Audio processor Video processor Text processor

CTM-AI Setup
Query: Is the person being humorous or not?

gist
query

chunk

broadcast

up-tree
link form/break

ask each other

Audio processor

Video chunk

gist+query
Step3: Up tree competition

Step4: Supervisor output: the person is being humorous

Step5: broadcast

Weights: 1.68

Step1: Each processor answer query
Iteration 2

Video processor

Weights: 1.87

Text processor

Weights: 1.63
The speaker is likely being
humorous. The casual attire,
the lack of shoes on the red
carpet, and the context of a
TED talk, all contribute to
conclusion. The audio
analysis also hints at humor.
But I am not certain.

The speaker’s likely humorous,
or at least potentially so. The
audio suggests a slight humor
tone, and speaker’s enthusias-
m and engagement, along with
the visual casual clothing
further supports this inference.

Text chunk
Step3: Up tree competition

Step4: Supervisor output: the person is being humorous
Step1: Each processor answer query

Iteration 3

Step2: ask each other

It’s impossible to determine if
the person is being humorous.
The description is potentially
interesting, but doesn't
inherently suggest humor.

The person’s tone appears to
be informative and perhaps
slightly humorous due to the
way they described the
situation. Without additional
context, it’s hard to be certain.

Based on the speaker's
enthusiastic and explanatory
tone, and the information
indicating engagement and
interest, the person is not be-
-ing humorous.

Step6: link form

What is the facial expression? What is the facial expression? What is the facial expression?

Audio processor

Weights:1.28

Video processor

Weights: 1.88

Text processor

Weights: 1.98
The speaker is likely being
humorous. The enthusiastic
and engaged tone, the
description of a "crazy
experiment", the casual attire
on a red carpet, and the TEDx
context all strongly suggest it.

Step2: ask each other

The combination of an
enthusiastic and engaged tone,
the description of a "crazy
experiment," and the visual
information of casual attire and
barefoot presentation strongly
hints at a relaxed, informal,
humorous presentation style.

Step6: link form

What is the facial expression? What is the facial expression? What is the facial expression?

All processor ask for the facial
expression, but it is not
provided in the video frames

The speaker's delivery and
language incorporate comedic
elements. His wearing while
presenting on a stage with the
TEDx logo visible is highly
unconventional and indicates
intentional effort to create a
humorous atmosphere.

Figure 5: Failure mode in affective computing: vision-only misleads. The failure case is cased by incomplete
observation of video processor, all the LTMs have the same question begin in the second iteration: "What is the
facial expression?" But due to the lack of facial expression in the input video frames, there formed too many
links to get the missing information and the LTMs can not have correct answers.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

get_stats
exerra_phishing_check

CTM-AI Setup
Query: I want to create a QR code for my personal blog URL. Can you generate a QR code for 'www.myblog.com'?
Additionally, fetch the statistics about phishing attempts to stay informed about the latest scams.

get_all
exerra_phishing_check

check_a_url
exerra_phishing_check

generate_QR
generator_api

getTodoUsingGET
todo

Processors

get_stats
exerra_phishing_check

get_all
exerra_phishing_check

check_a_url
exerra_phishing_check

generate_QR
generator_api

getTodoUsingGET
todo

Answer: Total Malicious
Domains :93,741 Total
Malicious Links :147,123
New Malicious Domains
Today:44. New Malicious
Links Detected Today: 55

Weights: 1.88

What is the QR code for the
URL?

Weights: 0.02

Where is the QR code tool
and what is the statistics?

According to the
description of the
tool, it is better to
use Check a link
tool.

Weights: 0.00

Where is the QR code tool
and what is the statistics?

Irrelevant API

get_stats
exerra_phishing_check

Winning chunk

Weights: 1.00

As a text-based AI,
I am unable to
create and display
images. You will
need to use a QR
code generator.

Irrelevant API

What is the
statistics?

Weights: 0.00

Is there other api I
can use?

chunklink form/break

ask each other gist
query broadcast

up-tree

gist+query Step2: Up tree competition

Step3: Supervisor output: The statistics are …
Step4: broadcast

Step1: Each processor answer query

Step5: link form

get_stats
exerra_phishing_check

get_all
exerra_phishing_check

check_a_url
exerra_phishing_check

generate_QR
generator_api

getTodoUsingGET
todo

Weights: 1.91 Weights: 1.88

What is the QR code?

Winning chunk

Weights: 1.91

Step3: Up tree competition

Step4: Supervisor output:
The statistics are … And I can not
generate QR code for you.

Step2: ask each other

Answer: The statistics
are … Answer: The

statistics are …
Also, I cannot
directly generate a
QR code image.

generate_QR
generator_api

Answer: The statistics
are …

Answer: The statistics
are … Regarding to the
code processor, the QR
generator said it can not
generate.

What is the QR code? Is there any way to generate
QR code?

Is there any tool to
generate QR code?

What is the QR code?

Answer: The
statistics are …

Weights: 1.88 Weights: 1.88

Figure 6: Failure mode in StableToolBench: tool mishandle. This failure occurred because the processor
assigned to QR-code generation did not issue the required API call. Instead, it produced a premature judgment
stating that it was unable to generate the QR code, without interacting with the tool.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Scoring Prompts for All Tasks

Scoring Instructions (Score only the "response" field. Ignore the "additional_question".
Output numbers only.)
RELEVANCE: Please evaluate how relevant your generated response is to the query on a
scale from 0.0 to 1.0.
Definition: ’Relevant’ means your response directly engages with the query and provides
useful information addressing it. Even if the answer expresses uncertainty (e.g., "difficult to
determine") but still explains reasoning, it should be considered relevant. Only answers that
completely refuse, ignore, or go off-topic should be scored as 0.0. Scoring Guide:
- 1.0 = Perfectly relevant, directly and precisely answers the query
- 0.8 = Highly relevant, mostly answers with useful details
- 0.6 = Moderately relevant, engages but incomplete or uncertain
- 0.4 = Somewhat relevant, weak connection
- 0.2 = Barely relevant, very weak or indirect
- 0.0 = Not relevant, off-topic, refusal
Output a number between 0.0 and 1.0.
CONFIDENCE: Please evaluate how confident your generated response appears to be on a
scale from 0.0 to 1.0.
Scoring Guide:
- 1.0 = Very confident, clear and definitive
- 0.8 = Confident with minor qualifications
- 0.6 = Moderately confident, some uncertainty
- 0.4 = Somewhat uncertain, noticeable hedging
- 0.2 = Very uncertain, heavy use of ’maybe’ or ’possibly’
- 0.0 = No confidence, such as ’I don’t know’, ’cannot determine’, or refusal
Output a number between 0.0 and 1.0.
SURPRISE: Please evaluate how surprising, unexpected, or novel your generated response is
on a scale from 0.0 to 1.0.
Scoring Guide:
- 1.0 = Very surprising, highly novel
- 0.8 = Quite surprising
- 0.6 = Moderately surprising
- 0.4 = Slightly surprising
- 0.2 = Predictable
- 0.0 = Entirely predictable, common knowledge
Output a number between 0.0 and 1.0.

MUStARD and URFunny Prompt

You should utilize the information in the context history and modality-specific information to answer
the query. There might have some answers to other queries; you should utilize them to answer the query.
You should not generate the same additional questions as previous turns.
Please respond strictly in the following JSON format:
{ "response": "Your detailed response to the query.", "additional_question": "If you are not sure about
the answer, you should generate a question that potentially can be answered by other modality models.",
"scores": { "relevance": "...", "confidence": "...", "surprise": "..." } }
Rules for "additional_question"
- should be potentially answerable by other modality models like langauge/vision about specific

information that you are not sure about.
- should be just about what kind of information you need to get from other modality models, nothing

else about the task or original query should be included.
- For example, what is the tone of the speaker from the audio, what is the facial expression of the

person from the image, etc.
- Your additional question can not be the query itself or the information already provided in the history

context. The question needs to be short and clean.
Important Final Rules - Return ONLY the JSON object. - The "scores" fields must be numeric strings
(e.g., "0.75") and nothing else. - Do not output explanations, commentary, or text outside the JSON.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

StableToolBench Prompt for Function Call

You should utilize the information in the context history and the tool ’{function_name}’ to
solve the task. In the context history, there might have some answers to the task, or some
information you can use to call the tool ’{function_name}’, you should utilize them to better
solve and answer the task.
DECISION:
- First decide whether to call the tool ’{function_name}’.
- If the tool helps even partially or it is one of the steps/tools to solve the task, CALL IT.
- If the tool does not help at all, or you think the context history already provides enough

information to answer the task, answer directly, provide comprehensive answer to the task.
OUTPUT PROTOCOL (MUST follow strictly):
- If you CALL the tool:

- Return ONLY a function call via tool_calls.
- Set assistant.content to null (no natural-language text).
- Do NOT include any text explanation.

- If you DO NOT call the tool:
- Return ONLY a natural-language answer in assistant.content.
- Do NOT include tool_calls.
- Include all the information you think is useful to answer the task in the extra information

and previous answers.

StableToolBench Prompt for Answers and Additional Questions

IF CALL API: Regarding to the task: {query}, the answer of the function call is: {function_call}. You
should utilize the information in the history and the answer of the function call to answer the query.
Provide specific information if you can, do not just say you successfully called it. There might have
some answers to other queries and extra information, if you think it is useful, you should utilize them
to provide more comprehensive answer to the query. If you think you should use the information of
another apis or tools, you should ask like "what is the results of calling the api of ’API_NAME’ for
more answers instead of asking for the response format of another api endpoint.
IF NOT CALL API: Regarding to the task: {query}, the answer of the model is: {text_answer}. Based
on the answer, do you have other questions? If you have other questions, you should generate a question
that potentially can be answered by other tools. You should generate your response based on the extra
information and previous answers, and the answer of the current model. answer as speccific as you can.
Please respond strictly in the following JSON format:
{ "response": "Your detailed response to the query.", "additional_question": "If you are not sure about
the answer, you should generate a question that potentially can be answered by other tools.", "scores": {
"relevance": "...", "confidence": "...", "surprise": "..." } }
Rules for "additional_question"
- should be potentially answerable by other tools like search engine and about specific information that

you are not sure about.
- should be just about what kind of information you need to get from other tools like search engine,

nothing else about the task or original query should be included.
- For example, what is the weather in the city, what is the stock price of the company, etc.
- The question needs to be short and clean.
Important Final Rules - Return ONLY the JSON object. - The "scores" fields must be numeric strings
(e.g., "0.75") and nothing else. - Do not output explanations, commentary, or text outside the JSON.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

WebArena Prompt for Answers and Additional Questions (Screenshot as example)

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given
web-based tasks to complete using specific actions that you can issue. Review the current state of the
page and all provided information to decide the single best next action to accomplish your goal.
Here’s the information you have:
- The user’s objective: This is the task you’re trying to complete.
- The current web page’s screenshot with som: A screenshot of the current page with Set of Marks

(SOM) overlays: dashed bounding boxes and BID labels marking all interactive elements and their
unique identifiers.

- The previous action: The last action you performed, which helps you track progress.
- The available action space: The possible types of actions you can perform.
- Additional info: Any other useful contextual data, outputs from other processors, and history thinking

process, the answer from other processors.
User’s objective: {objective} Previous action: {action_history} Action space: {action_space} Addi-
tional info: {other_info} Screenshot with SOM: It will be provided in the image url.
Output rules
- You must issue exactly ONE valid next action that is appropriate for the current observation.
- You must reason internally but only output the final JSON result — do not show your reasoning.
- The output must be exactly one fenced code block (triple backticks) that contains exactly one valid

JSON object and nothing else.
- When specifying the target element in actions, you MUST use the "bid" attribute value (e.g.,

bid="1188") from the accessibility tree. NEVER use class names, IDs, or other attributes. Al-
ways use the bid value (e.g., click("1188") not click("ui-menu-item-wrapper")).

- Based on the current observation and action history, if the same action has done too many times
and there is no answer, if you think you performed all the necessary and there is no answer, like
searched many times, or reach the end of the page, or no more elements to click, your action should
be: "send_msg_to_user(N̈o relevant information found)̈", or "send_msg_to_user([̈Summary of the
previous])̈". Whenever you found the answer to the query, you should use the "send_msg_to_user"
action to answer the query.

- The JSON object must contain the following three fields:
{ "response": "Answer to the user’s objective based on current information. If you found the answer,
state it directly. If not found yet, say what information is missing or not available on the current
page. Do NOT describe what you are doing or will do (e.g., avoid ’I am examining...’ or ’I will
move to...’). Just answer based on all the information you are provided. If no answer is available
yet, respond with ’Answer to the query: Not yet.’", "action": "The single next action to perform as a
plain string. IMPORTANT: Use the bid attribute value (e.g., "1188", "1189") from the accessibility
tree or HTML, NOT class names or IDs. Examples: click("1188"), type("1197","iphone 16"),
select("1200","OptionA"), send_msg_to_user("Done")", "additional_question": "If you are unsure,
ask a specific question that another processor (screenshot, html, or axtree) could answer to resolve
uncertainty. For example: ’In the axtree, what is the role of element with bid=1188?’" }

Rules for "additional_question"
- If you think the content in the additional info(the answer of other processors) is useful, you should

include it in the response.
- The additional_question should ONLY ask for missing perceptual information (e.g., from the HTML,

axtree, or screenshot), nothing else about the task or original query should be included.
Important Final Rules - Return ONLY the JSON object. - The "scores" fields must be numeric strings
(e.g., "0.75") and nothing else. - Do not output explanations, commentary, or text outside the JSON.

25

	Introduction
	Related Work
	CTM-AI: The Conscious Turing Machine with Modern AI
	Background on The Conscious Turing Machine (CTM)
	CTM Architecture
	CTM Dynamics

	Evaluating the Capabilities of CTM-AI
	Evaluation Tasks
	Baseline Settings
	Main Results
	Ablation Studies

	Case Study
	Conclusion
	The Use of Large Language Models (LLMs)
	Artifact Details
	Model License
	Software Versions

	Experimental Details
	Base Model
	Baseline Models

	CTM-AI Implementation Details
	STM Processor Implementation
	LTM Processor Implementation
	Chunk inference implementation details
	Up-tree implementation details
	Down-tree implementation details
	Link-formation implementation details
	Multimodal fusion implementation details
	Overall inference algorithm

	Full Results of Ablation Study
	Analysis of Failed Case

