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SAMPLING AND EDITING BY CONTRASTIVE PAIRS
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Figure 1: (a). Unpaired image-to-image translation by our proposed COT Flow, with one-step or
multi-step sampling. (b), (c). Our proposed COT Editor enables zero-shot image editing with high
flexibility. COT composition (b) allows users to composite elements and synthesize realistic images.
Shape-texture coupling (c) allows users to separately draw or use shapes and textures as dual inputs,
to generate fused images with high quality.

ABSTRACT

Diffusion models have demonstrated strong performance in sampling and editing
multi-modal data with high generation quality, yet they suffer from the iterative
generation process which is computationally expensive and slow. In addition,
most methods are constrained to generate data from Gaussian noise, which limits
their sampling and editing flexibility. To overcome both disadvantages, we present
Contrastive Optimal Transport Flow (COT Flow), a new method that achieves fast
and high-quality generation with improved zero-shot editing flexibility compared
to previous diffusion models. Benefiting from optimal transport (OT), our method
has no limitation on the prior distribution, enabling unpaired image-to-image (I2I)
translation and doubling the editable space (at both the start and end of the tra-
jectory) compared to other zero-shot editing methods. In terms of quality, COT
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Flow can generate competitive results in merely one step compared to previous
state-of-the-art unpaired image-to-image (I2I) translation methods. To highlight
the advantages of COT Flow through the introduction of OT, we introduce the
COT Editor to perform user-guided editing with excellent flexibility and quality.

1 INTRODUCTION

Diffusion models, with flexible training and sampling principles rooted in Statistical Physics, have
achieved unprecedented success in generating data from noise Ho et al. (2020); Song & Ermon
(2019); Ramesh et al. (2022); Saharia et al. (2022); Nichol et al. (2021); Rombach et al. (2021);
Dhariwal & Nichol (2021); Ho & Salimans (2022); Kazerouni et al. (2023); Janner et al. (2022);
Poole et al. (2022); Li et al. (2023); Liu et al. (2024). However, the fundamental limitations of
diffusion-based models, namely the sampling inefficiency and restrictive prior distribution, still
barricade them from wider applications, despite the recent series of improved methods Nichol &
Dhariwal (2021); Karras et al. (2022); Song et al. (2023). With a similar iterative sampling process,
flow-based methods Chen et al. (2018); Kidger et al. (2020) also suffer from the computational in-
efficiency problem. From a high-level perspective, the current deep generative models still cannot
simultaneously satisfy three performance indicators: (1) high-quality generation, (2) mode coverage
and diversity, and (3) fast sampling, which is identified as the generative learning trilemma Xiao
et al. (2021) shown in Fig.2a.

To tackle the generative learning trilemma and eliminate the constraints on prior distribution, we
present a novel flow-based model called Contrastive Optimal Transport Flow (COT Flow), which
fundamentally addresses the computational inefficiency problem through the optimal transport (OT)
formulation. We claim that OT enables the fastest sampling for diffusion/flow-based methods with
two key features to overcome sampling inefficiency: (1) straight lines from source to target and (2)
no crossing among the trajectories. Similar principles were approached implicitly in a few latest
work Liu et al. (2022); Lipman et al. (2022); Tong et al. (2023); Esser et al. (2024); Karras et al.
(2022). Specifically, many recent breakthroughs Song et al. (2020a); Nichol & Dhariwal (2021);
Karras et al. (2022) focused on the following strategies: optimizing the sampling trajectories towards
straight lines, improving the time schedule of the diffusion process Song et al. (2020a); Karras et al.
(2022), adjusting the noise schedule or forward diffusion process Song et al. (2020b); Nichol &
Dhariwal (2021); Lin et al. (2023); Bartosh et al. (2024), introducing fast samplers Nichol & Dhari-
wal (2021); Lu et al. (2022a;b); Karras et al. (2022), using distillation techniques Song et al. (2023);
Liu et al. (2022); Salimans & Ho (2022); Xu et al. (2023); Meng et al. (2022), and eliminating the
crossing among the trajectories to improve sample stability and efficiencyLiu et al. (2022); Lipman
et al. (2022); Tong et al. (2023); Esser et al. (2024). We note that these improved techniques, though
from different angles, approached the similar concept of OT between Gaussian and data distribution,
as shown in Fig.2b. Another prominent group of recent works (Korotin et al. (2022a;b); Fan et al.
(2021; 2022); Rout et al. (2021)) enforce direct OT by training two neural networks on saddle point
problems Boyd & Vandenberghe (2004).

The proposed COT Flow satisfies the three performance requirements in the trilemma:

Sample efficiency: The proposed COT Flow explicitly builds the bridge between diffusion/flow-
based models and OT, and thus enforces straight trajectories and eliminates the crossing to improve
sample efficiency. With the benefit of both diffusion/flow-based models and the OT formulation,
COT Flow enables one-step or few-step sampling by design, while still producing high-quality and
high-diversity results from arbitrary prior distributions. Furthermore, COT Flow allows zero-shot
editing, and introduces diverse editing possibilities (Fig.1b).

Sample quality: COT Flow leverages the intriguing similarities between consistency models Song
et al. (2023); Song & Dhariwal (2023); Luo et al. (2023) and contrastive learning He et al. (2019);
Chen & He (2020); Chen et al. (2020); Grill et al. (2020) to produce high-quality generation using
indirect loss functions. In particular, the objective of consistency models consists of the similarity
between time-adjacent data pairs ⟨xt,xt+1⟩, which function exactly the same as the positive sample
pairs in contrastive learning (He et al. (2019) Eq.1). In addition, consistency models use a series
of similar techniques as those in contrastive learning, such as exponential moving average (EMA)
weights of the teacher model and ”stopgrad” operator Song et al. (2023); Song & Dhariwal (2023);
Chen & He (2020); Grill et al. (2020), suggesting the hidden link between the two state-of-the-art

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: (a). The generative learning trilemma. Current generative methods still cannot simulta-
neously satisfy the three performance indicators: high quality, fast sampling, and mode coverage.
(b). Recent developments of the diffusion/flow-based generative models, including iDDPMNichol
& Dhariwal (2021), EDMKarras et al. (2022), DDIMSong et al. (2020a), DPMLu et al. (2022a), Pro-
gressive Distillation (PD)Salimans & Ho (2022), Consistency Distillation (CD)Song et al. (2023),
VP ODESong et al. (2020b), Flow Matching (FM)Lipman et al. (2022), Conditional Flow Matching
(CFM)Tong et al. (2023), Rectified Flow (RF)Liu et al. (2022), Stable Diffusion v3 (SDv3)Esser
et al. (2024) All methods implicitly approach the OT formulation, either by sampling straight trajec-
tories or avoiding crossing between the trajectories through various techniques.)

learning frameworks. Enlightened by this connection, we introduce the Contrastive OT Pairs (COT
Pairs) for positive pair sampling during COT Flow training. By using a similar contrastive loss as
in Grill et al. (2020), we consider the proposed COT Flow model as a powerful contrastive learning
encoder E to map all data points on the OT trajectories towards their end. We evaluate COT Flow’s
sample quality via the FID scores in various unpaired I2I translation tasks such as handbags→shoes,
CelebA male→female, and outdoor→church (Fig.1a).

Mode coverage: COT Flow achieves competitive sample diversity and mode coverage compared to
diffusion models, benefiting from the non-adversarial contrastive loss and the OT formulation. The
adversarial objectives in Generative Adversarial Nets (GAN)Goodfellow et al. (2014), Wasserstein
GANArjovsky et al. (2017), and StyleGANKarras et al. (2018; 2019) are susceptible to training
instability and mode collapse Xiao et al. (2021), which even the state-of-the-art GAN-based methods
still suffer from Park et al. (2020). Diffusion-based model objectives, on the other hand, are closely
related to the Evidence Lower Bound (ELBO) of the target data and are thus less prone to training
instability and mode collapse Ho et al. (2020); Kingma & Gao (2023). In addition, with the OT
formulation, the proposed COT Flow minimizes the transportation cost and directly maps the source
distribution to the target distribution, improving the faithfulness to the target data.

In summary, our main contributions are: (1) We tackle the generative learning trilemma by intro-
ducing a novel framework called Contrastive Optimal Transport Flow (COT Flow), which explicitly
combines diffusion/flow-based model with OT to directly learn the generative flow between any two
unpaired data sources. (2) We present the Contrastive Optimal Transport Pair (COT Pair) formu-
lation to train our proposed COT Flow, leveraging the intriguing connection between consistency
models and contrastive learning. (3) To showcase the advantages of COT Flow, we introduce the
COT Editor to perform controllable sampling and flexible zero-shot image editing, including COT
composition, shape-texture coupling, and COT augmentation, and demonstrate these functionalities
via diverse data and application scenarios.

2 BACKGROUND

COT Flow leverages the theories and concepts from (1) optimal transport Villani (2009), (2) con-
trastive learning He et al. (2019), and (3) consistency models Song et al. (2023), crossing these
three prominent methodologies in optimization and machine learning. For a quick understanding
of the proposed COT Flow, we first briefly present the three core methodologies and discuss their
interconnections in Section 3.1.

Notations. Throughout the paper, X and Y denote two metric spaces of data, µ(x) and ν(y) denote
the probability distributions on X and Y , respectively. For describing the projection between µ(x)
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and ν(y), we denote T : X → Y as a measurable map, which satisfies: for any measurable subsets
B ⊂ Y , T−1(B) ⊂ X . We denote Π(µ, ν) as the set of joint probability distributions on X × Y
whose marginals are µ and ν.

2.1 OPTIMAL TRANSPORT

The optimal Transport (OT) problem seeks the minimum overall transportation cost from one mea-
sure to another. Consider a cost function c : X×Y → R, Kantorovitch (1958) formulates a transport
coupling π ∈ Π(µ, ν) and introduces the OT cost:

Cost(µ, ν) := inf
π∈Π(µ,ν)

∫
X×Y

c(x,y)dπ(x,y) (1)

This is defined as the Kantorovich problem, where the infimum is taken over transport couplings
π ∈ Π(µ, ν). The optimal π∗ is called the OT plan, which always exists under mild conditions
on spaces X , Y and cost function c (Villani (2009)). According to the duality principle Boyd &
Vandenberghe (2004), the dual problem of Kantorovich’s optimization is:

Cost(µ, ν) := sup
φ,ψ

{∫
X
φ(x)dµ(x) +

∫
Y
ψ(y)dν(y)

}
(2)

where φ ∈ L1(µ) and ψ ∈ L1(ν) are called Kantorovich potentials which satisfy φ(x) + ψ(y) ≤
c(x,y). For φ : X → R, ψ : Y → R, and a certain cost function c, we replace the first poten-
tial φ(x) by defining the c-transform of ψ: φ(x) = ψc(x) = infy∈Y{c(x,y) − ψ(y)}, and the
Kantorovich problem 2 is rewritten as:

Cost(µ, ν) := sup
ψ

{∫
X
inf
y
{c(x,y)− ψ(y)}dµ(x) +

∫
Y
ψ(y)dν(y)

}
(3)

where we denote the right side of 3 as a saddle point problem supψ infy L(ψ,y), whose solution
(ψ∗,y∗) contains the optimal choice of y given a certain x. In practice, y∗ can be estimated by
optimizing a neural network ỹ = Tθ(x), leading to neural OT methods Korotin et al. (2022a;b); Fan
et al. (2021; 2022). We further illustrate the training of Tθ(x) in Section 3.

2.2 CONTRASTIVE LEARNING

With impressive results on multiple visual tasks, contrastive learning methods learn data representa-
tions by attracting the embeddings of positive sample pairs and (optionally) repulse the embeddings
of negative sample pairs in an unsupervised manner He et al. (2019); Chen et al. (2020). For the
methods that only consider the positive pairs Chen & He (2020); Grill et al. (2020), the core method-
ology can be described as minimizing the loss function:

L(θ, θ−) := d(qθ(Eθ(x)), Eθ−(x+)) (4)

where E is the target network, which we consider as an encoder. θ− denotes the exponential moving
average (EMA) of the past values of the network’s weights θ. d(·, ·) is the distance function between
the data embedding E(x) and its corresponding positive pairs E(x+), whose inputs x+ are aug-
mented from the same sample x. Combined with the EMA weights θ− and the ”stopgrad” operator,
an additional prediction head qθ is introduced on top of the encoder Eθ to prevent model collapse
and enable the contrastive learning methods to produce meaningful representations. In Section 3,
we introduce the similarities between contrastive learning and consistency models.

2.3 CONSISTENCY MODELS

Consistency models (CMs) are an emerging family of generative models whose key idea is maintain-
ing consistency along the ordinary differential equation (ODE) trajectory derived from the diffusion
models, which we briefly introduce in Appendix E. One drawback of diffusion models is their slow
sampling speed. CMs, on the other hand, learn the consistency along the trajectories {x̂t}t∈[0,T ]

of the probability flow ODE 28 and map all the points on these trajectories to their origin x̂0. This
mapping can be described as the consistency function f∗ : (xt, t)→ x0 which satisfies the boundary
condition f∗(x, 0) = x0. We then approximate f∗(x, t) by training the consistency model fθ(xt, t).
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By discretizing the probability flow ODE 28 with a limited sequence of time steps ϵ < t1 < t2 <
... < tN = T , the consistency model fθ(xt, t) is trained by minimizing the consistency matching
loss (CM loss):

LN (θ, θ−) := E
[
λ(ti)d(fθ(xti+1

, ti+1), fθ−(xti , ti))
]
, i ∼ U [1, N − 1] (5)

where xti+1
is sampled from the distribution pti+1

(x) and the parameter θ− is the EMA of θ obtained
with the ”stopgrad” operator θ− ← stopgrad(µθ−+(1−µ)θ). 0 ≤ µ < 1 denotes the EMA decay
rate. λ(ti) > 0 is a weighting function and d(·, ·) is a distance function with a typical choice
of squared l2. U [1, N − 1] denotes the uniform distribution over 1, 2, ..., N − 1. For xti , CMs
provide two approximations and correspondingly form two training algorithms called consistency
distillation (CD) and consistency training (CT). The approximation from CD is x̂ti = xti+1

−
(ti − ti+1)ti+1sϕ(xti+1

, ti+1), which relies on a pre-trained diffusion model sϕ(x, t). While the
approximation from CT is x̂ti = x + tiz where z ∼ N (0, I) is the same noise when forming
xti+1

= x + ti+1z. We can directly sample the final generation by x0 = fθ(z, tN ) or optionally
sample the intermediate results xk = fθ(xk+1, tik+1

) +
√
t2N − ϵ2zk for k = K − 1, ..., 1.

Comparing the CM loss LN (θ, θ−) in 5 and the contrastive learning loss in 4, we observe both
structural and conceptual similarities between them, which will be discussed in Section 3.1.

3 METHOD

Figure 3: An overview of the
training process. COT Flow
minimizes the distances between
the encodings of the positive
pairs, which are sampled in the
augmentation area between x
in Data 1 and its OT mapping
Tϕ(x) (Eq.12).

Our proposed COT Flow tackles the generative learning trilemma by fundamentally regularizing the
transportation flows between two distributions. COT Flow consists of three main parts: (1) COT
Pairs, (2) COT training, and (3) COT Editor. In the sections below, we first discuss the similari-
ties between CMs and contrastive learning, which inspire our formulation of COT Pairs and COT
training. We then introduce the COT Editor framework.

3.1 SIMILARITIES BETWEEN CONTRASTIVE LEARNING AND CONSISTENCY MODELS

One may raise a question on the mechanism of CMs: Why do they work well by simply minimizing
the difference between two points on the same trajectory, especially with no guidance of the trajec-
tory’s origin x0 in the loss function? Here we put forward a hypothesis on why they learn to map to
the origin by exploring the systematic similarities between CMs and contrastive learning: The con-
sistency function fθ(x, t) is a trajectory’s origin encoder Eθ(x), which has the same functionality of
the encoder in contrastive learning.

Firstly, we notice the similarity between the CM loss 5 and the contrastive loss 4, which are both
summarized by a distance metric d(·, ·). Specifically, the CM loss indicates the distance between
the two output points fθ(xti+1

, ti+1) and fθ−(xti , ti) from the same trajectory, while the contrastive
loss indicates the distance between the embeddings of the positive pairs Eθ(x) and Eθ−(x+) from the
same image. This suggests that CMs have the capability of learning representations from complex
distributions and are capable of mapping denoising trajectories {xt}t∈[ϵ,T ] to their origins x0.

Secondly, the strategies and training recipes of the two methods are similar, especially those for
preventing mode collapsing. They both utilize weight-sharing Siamese networks θ, θ− to minimize
the distance metric d(·, ·) of the entities, and they both use ”stopgrad” operations to distinguish the
networks and prevent collapsing:

θ− ← θ− − η∇θd
(
Eθ(·), stopgrad(Eθ−(·))

)
(6)
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Furthermore, the recent work from both sides Chen & He (2020); Song & Dhariwal (2023) illus-
trated a common improvement to optimize the results and simplify the strategies: removing the
EMA decay for the Siamese structure, whose weights share the same update∇θ. This improvement
has been proven effective from both sides Chen & He (2020); Song & Dhariwal (2023), underlining
the same mechanism between CMs and contrastive learning.

With the above observations, we explain the capability of the consistency function fθ(x, t) to map
the intermediates towards the origin by considering the consistency function fθ(x, t) as the encoder
Eθ(x) in contrastive learning. With this foundation, we introduce COT Pairs and COT training in
the following sections.

3.2 COT PAIRS

In Section 2.1, we introduce the Kantorivich problem. The entropic regularization of the Kan-
torovich problem, namely the entropic OT (EOT) problem Villani (2009), minimizes the transporta-
tion cost derived from 1:

Cost(µ, ν) := inf
π∈Π(µ,ν)

{∫
X×Y

c(x,y)dπ(x,y) + λH(π)

}
(7)

where the solution π∗
λ is the EOT plan. With the relative entropy λH(π), the expensive computation

in the exact OT problem is alleviated. For neural OT models, using EOT enables stochastic processes
within the OT mapping and relates OT with diffusion models Gushchin et al. (2022). In the following
Eq.12, we introduce noise into COT training, where Proposition 3.1 shows its relationship to the
EOT plan.

We modify a neural OT model to estimate the OT map between the two data distributions. Ac-
cording to Section 2.1, the solution (ψ∗,y∗) of the Kantorovich problem 3 can be estimated by two
corresponding networks (ψω, Tϕ(x)), resulting in the neural OT objective:

Cost(µ, ν) := sup
ψω

{
inf
Tϕ

∫
X

{
c(x, Tϕ(x))− ψω(Tϕ(x))

}
dµ(x) +

∫
Y
ψω(y)dν(y)

}
(8)

where ψω denotes the Kantorovich potential in Section 2.1 and Tϕ is the estimated OT map. The
infimum of Tϕ is interchanged with the integral by Rockafellar (1976) and the OT problem 1 is
derived into the optimization of the neural networks:

sup
ω

inf
ϕ
L(ψω, Tϕ) (9)

To approach 9 in implementation, we optimize the parameters ω, ϕ using stochastic gradient ascent-
descent (SGAD) by sampling mini-batch data from source and target datasets x ∼ µ(x), y ∼ ν(y):

ω ← ω +∇ω
{
− 1

|x|
∑
x∈X

ψω
(
Tϕ(x)

)
+

1

|y|
∑
y∈Y

ψω(y)

}
(10)

ϕ← ϕ−∇ϕ
{

1

|x|
∑
x∈X

[
c
(
x, Tϕ(x)

)
−ψω

(
Tϕ(x)

)]}
(11)

where |x|, |y| denote the sizes of the corresponding mini-batches x ∼ ν(x), y ∼ µ(y). c(·, ·)
denotes the cost function in 3 which is typically l2-norm. Based on the trained Tϕ(x) in 10 and 11,
we interpolate an augmentation area between µ(x) and ν(y) for training COT Flow, whose concept
”augmentation” derives from contrastive learning:

{x̃t}t∈[0,1] = {tTϕ(x) + (1− t)x+ t(1− t)σ2z}t∈[0,1] (12)

where σ is the noise scale and z ∼ N (0, I) is standard Gaussian noise. We prove that the OT plan
π∗ in 1 can be extended in t ∈ [0, 1] by formulating this augmentation area:

Proposition 3.1 (Eq.12 estimates the dynamic extension of the OT plan). Let π∗ be the OT plan
between µ(x) and ν(y). Let the OT map T ∗ recovers π∗. The augmentation defined by Eq.12 using
T ∗ samples the same probability as the dynamic extension of the EOT plan π∗

λ with λ = 2σ2.
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We provide the proof in Appendix B. With the guarantee of Proposition 3.1 and the observation in
Section 3.1, we consider the augmentations x̃t as the intermediates of the entropic OT trajectory
{x̃t}t∈[0,1] and formulate a set of positive pairs as in contrastive learning, which we name as COT
Pairs. In particular, COT Pairs ⟨xt1 ,xt2⟩ are randomly selected along the trajectory {x̃t}t∈[0,1]:

xt1 ,xt2 ∈ {x̃t}t∈[0,1], 0 ≤ t1 < t2 ≤ 1 (13)

Unlike CMs choosing adjacent pairs from ODE solvers, we formulate random COT pairs in the
proposed augmentation area in Eq.12.

3.3 COT TRAINING

According to the relationship between contrastive learning and CMs discussed in section 3.1, we
consider the consistency function fθ(·) as an encoder E(xt) towards the origins y of the entropic OT
trajectories {x̃t}t∈[0,1]. The COT training loss to optimize the origin encoder E(xt, t) is:

LCOT(θ) = d
(
Eθ(xt1 , t1), Eθ(xt2 , t2)

)
, 0 ≤ t1 < t2 ≤ 1 (14)

where d(·, ·) denotes the dissimilarity function, which is l2-norm by default and xt1 , xt2 is the COT
Pair from {x̃t}t∈[0,1]. Inspired by Esser et al. (2024), the origin estimation E(xt) is more difficult
for t in the middle of [0, 1] since we introduce additional Gaussian noise in a quadratic manner
t(1− t)σ2z. We use the mode distribution defined in Esser et al. (2024) to sample the intermediate
time step with higher frequencies.

Compared to the CM loss in 4, we emphasize the consistency along the whole OT trajectory through
COT Pairs in random time steps. In addition, we use auxiliary noise to enhance the robustness of the
OT consistency, with the theoretical guarantee in EOT and Lemma 3.1. The pseudo-code of COT
Flow training pipeline is in Algorithm 1. The detailed algorithm in implementation is in Appendix
A.

Algorithm 1 COT Training

Input: source data distribution µ, neural OT map Tϕ, parameters θ, noise scale σ, learning rate η.
repeat

Sample x ∼ µ(x) and t1, t2 ∈ [0, 1]
x̃ti ← tiTϕ(x) + (1− ti)x+ ti(1− ti)σ2z, z ∼ N (0, I), i = 1, 2
LCOT(θ)← d

(
Eθ(xt1 , t1), Eθ(xt2 , t2)

)
θ ← stopgrad(θ + η∇θLCOT(θ))

until convergence

3.4 COT EDITOR

To further illustrate the flexibility and generalizability of COT Flow, we introduce COT Editor, a
zero-shot image editor that possesses various scenarios using a series of modifications of a self-
augmentation sampling strategy:

x̃
(k)
tk

= tkx+ (1− tk)ỹ(k) + tk(1− tk)σ2zk (15)

ỹ(k+1) = Eθ
(
x̃
(k)
tk
, tk

)
, k = 1, 2, . . . (16)

where ỹ(k) is the last estimation of target data. x̃(k)
tk

is the corresponding self-augmented sample. tk
represents a chosen time step series 0 < tk < 1, which is not limited to monotonically increase over
time. With a well-trained model under Eq.9, we can sample from the source distribution through
one-step sampling ỹ = Eθ(x, 0), or optionally adopt a multi-step self-augmentation sampling strat-
egy in Eq.15/21, which enables zero-shot editing through the intermediate sampling steps. Both
sampling strategies are illustrated in the left panel of Fig.4. With the benefit of unlimited input
distribution of COT Flow, COT Editor extends the existing zero-shot image editing scenarios, for-
mulating a dual-channel editing space where both source and target data space X ,Y are included.
We demonstrate its capability by introducing the following scenarios: (1) COT composition, (2)
shape-texture coupling, and (3) COT augmentation.
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Figure 4: Left: The sampling strategy of our method. Given an input x, we can generate the target
data ỹ with one-step sampling ỹ = Eθ(x, 1), or optionally multi-step sampling using Eq.15/21,
where the intermediates x̃tk are the augmentations between the source input x and the generated
target ỹ. Right: Three scenarios of the proposed COT Editor, some of which have dual-channel
inputs as extensions to the current editing methods. (a). COT composition. Given a target image y
with an edited component or mask m, we use the guidance y(g)= y ⊕m as the single input and
synthesize the output ỹ by Eq.17. (b). Shape-texture coupling. With a drawn stroke image x̂1 and
a texture image x̂2, the output ỹ consists of both features. (c). COT augmentation. Given a series
of auto-detected cardiac-cycle edges {x̂(a)} and a single MRI y, we can generate a cycle of cardiac
MRI {ỹ} with the same movements of {x̂(a)} and style of y.

For COT composition, given a target image y with an edited component or mask m, we denote the
combination as the guidance y(g) = y ⊕m of the COT Editor and perform the following one-step
editing to obtain realistic outputs:

ỹ = Eθ(y(g) + tg(1− tg)σ2z, tg), tg ∈ [0, 1] (17)

where tg denotes the chosen time step of the guidance editing, enabling the trade-off between faith-
fulness and realism as in Meng et al. (2021). For shape-texture coupling, considering a drawn shape
x̂1 and a texture image x̂2, we can generate a realistic image using x̂1, x̂2 as the augmentation
sources:

ỹ = Eθ(tcx̂1 + (1− tc)x̂2 + tc(1− tc)σ2z, tc), tc ∈ [0, 1] (18)

For COT augmentation, we provide a medical image synthesis scenario. We denote {x̂(a)} as a
series of auto-detected cardiac-cycle edges and augment a fixed input cardiac MRI (cMRI) y by
fusing them:

{ỹ} ← Eθ(tay + (1− ta){x̂(a)}+ ta(1− ta)σ2z, ta), ta ∈ [0, 1] (19)

The dual ends of the OT trajectory in COT Flow enrich these additional zero-shot editing applica-
tions, where we demonstrate the results in Section 4.2.

4 EXPERIMENTS

We employ COT Flow in various experiments compared with other popular methods. Section 4.1
shows competitive performances of COT Flow on unpaired I2I translation benchmarks. We compare
the generation quality with SDEdit Meng et al. (2021) and CycleGAN Zhu et al. (2017), which are
popular diffusion/GAN-based methods. Section 4.2 provides the results of our proposed extended
scenarios of zero-shot editing, including COT composition, shape-texture coupling, and COT aug-
mentation. In Section 4.3, we discuss several key techniques of COT Flow by ablation studies. The
implementation details of all the experiments are shown in Appendix A.

4.1 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

We perform experiments on handbag→shoes (64×64), CelebA male→female (64×64),
outdoor→church (128×128), and edges→cardiac MRI (cMRI) (128×128) to implement unpaired
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Table 1: FID↓ scores of the baseline methods and our proposed COT Flow on handbag→shoes
(64×64), CelebA male→female (64×64), and outdoor→church (128×128). Compared to SDEdit
with a larger number of function evaluations (NFE), we use one-step sampling in COT Flow as the
GAN-based methods.

Method DiscoGAN CycleGAN MUNIT SDEdit COT Flow (ours)

NFE 1 1 1 500 1

handbag→shoes 22.42 16.00 15.76 18.91 15.01
male→female 35.64 17.74 17.07 17.26 16.30
outdoor→church 75.36 46.39 31.42 28.84 26.34

I2I translation. The formulation of these datasets is in Appendix A. With the recommendation of
Karras et al. (2022) and Song et al. (2023) to train the diffusion-based methods, we choose the
hyper-parameters that are unrelated to our proposed ideas to be in line with these methods, where
further details can be found in Appendix A.

Figure 5: Generation comparison between our method (bottom row) and SDEdit (middle row) on
CelebA male→female (64×64), handbag→shoes (64×64), and outdoor→church (128×128). We
use one-step sampling in our method and set t = 500 of the reverse diffusion process in SDEdit to
perform the results.

As shown in Fig.1a, our method provides high-quality generations with one-step or multi-step sam-
pling. In Fig.5, we compare the generation results between SDEdit and the proposed COT Flow,
illustrating a more faithful unpaired I2I translation by our method. In Table 1, our method outper-
forms the other diffusion/GAN-based methods in terms of the FID↓ scores by one-step sampling.

4.2 COT EDITOR SCENARIOS

In section3.4, we introduce three scenarios of the proposed COT Editor. Fig.1b further present edit-
ing results with the trained COT Flow on handbag→shoes (64×64), CelebA male→female (64×64),
and outdoor→church (128×128).

4.3 ABLATION STUDIES

We provide reasons of COT Flow’s key design by the following ablation studies. In Table 2, we
choose alternated contrastive pair formulations, neural OT mapping direction, and sampling strate-
gies, which represent the key design of our method. In particular, we (1) train a COT Flow model
with only adjacent contrastive pairs ⟨xtk ,xtk+1⟩ as is implemented in Song et al. (2023), (2) use
the opposite direction of neural OT mapping from target to source (T ′(y)) to form the contrastive
pairs using {x̃t}t∈[0,1] = {ty + (1 − t)T ′

ϕ(y) + t(1 − t)σ2z}t∈[0,1] instead of Eq.12, and (3) try a
different sampling strategy in an ancestral manner, which is commonly adopted in diffusion-based
models Ho et al. (2020). As shown in Table 2, COT Flow with the paper’s choice outperforms the
other alternatives in one-step and multi-step sampling.
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Table 2: Ablating COT pairs and sampling strategy on various datasets (evaluated by FID↓ scores).
”Adjacent pairs” denotes training the COT Flow with only adjacent positive pairs ⟨xtk ,xtk+1⟩ as
is implemented in Song et al. (2023). ”Reverse OT” denotes training a neural OT model T ′(y)
with opposite direction mapping from target space Y to source space X and form the COT pairs.
”Ancestral” denotes using a sampling strategy in an ancestral manner in COT Flow.

Method Adjacent pairs Reverse NOT Paper’s choice

NFE 1 1 40 (Ancestral) 40 1

handbag→shoes 15.24 33.49 19.97 18.33 15.01
male→female 16.67 30.28 21.12 16.93 16.30
outdoor→church 26.95 38.11 26.92 26.05 26.34

5 CONCLUSION

We presented COT Flow, a new method that provides a tangible approach to tackle the generative
learning trilemma, achieving fast and high-quality generation and flexible zero-shot image editing.
Benefiting from OT reformulation, we achieved competitive sample quality on a great variety of
unpaired I2I translation tasks, representing flow between diverse distributions. With the proposed
COT Editor, We demonstrated flexible zero-shot editing capacities with three scenarios, namely,
COT composition, shape-texture coupling, and COT augmentation.

Our method explicitly built the bridge between diffusion/flow-based models and OT by combining
consistency models and contrastive learning, opening up new directions for future work. The pro-
posed COT Editor expanded the possibility of zero-shot image editing by the dual-channel editing
spaces, enabling new directions for zero-shot editing applications.
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A IMPLEMENTATION DETAILS

In this section, we provide the implementation details of our method. Section A.1 provides the
detailed training algorithm of our method in the implementation. Section A.2 introduces the used
datasets and the construction of the unpaired I2I translation tasks. Section A.3 discusses the details
of the chosen hyper-parameters of our method. Section A.4 provides the training details and the
computational complexity of our method. Section A.5 introduces the alternative combinations of
our method in Section 4.3 to perform the ablation studies.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.1 DETAILED ALGORITHM

In the implementation, we uniformly discretize the sampled time steps t1, t2 in Eq.13 with the
number of the discrete time steps N . We use LPIPS Zhang et al. (2018) distance as the distance
metric d(·, ·). The detailed training algorithm of our method is as follows:

Algorithm 2 COT Training

Input: source data distribution µ, neural OT map Tϕ, parameters θ, noise scale σ, learning rate
η, distance metric d(·, ·), and number of discretization N .
repeat

Sample x ∼ µ(x) and n1, n2 ∈ U [0, N − 1] n1 < n2
x̃ti ← ni

N−1Tϕ(x) + (1− ni

N−1 )x+ ni

N−1 (1−
ni

N−1 )σ
2z, z ∼ N (0, I), i = 1, 2

θ1, θ2 ← θ
LCOT(θ1, θ2)← d

(
Eθ1(xt1 , t1), Eθ2(xt2 , t2)

)
θ ← θ + η∇θ1LCOT(θ1, θ2)

until convergence

A.2 DATASETS

We use the following publicly available datasets as the sources x or targets y: Amazon handbags and
shoes Yu & Grauman (2014) to perform handbag→shoes (64×64); CelebA faces Liu et al. (2015)
to perform male→female (64×64); outdoor images of MIT places database Zhou et al. (2014) and
LSUN church dataset Yu et al. (2015) to perform outdoor→church (128×128); auto-detected edges
on the M&Ms dataset Campello et al. (2021) and ACDC dataset Bernard et al. (2018) to perform
edges→cMRI (128×128). All the coupled datasets are unpaired and randomly sampled during
training.

For the proposed zero-shot image editing scenarios, we utilize the trained models on the aforemen-
tioned tasks, where no additional dataset is needed.

A.3 HYPER-PARAMETERS

Despite the differences between our method and diffusion-based models, we use the recommenda-
tions in Karras et al. (2022) for the common hyper-parameters such as learning rate and number of
discrete time steps (N = 40). We use the noise scale σ = 1 for all the tasks.

A.4 TRAINING DETAILS

For the network structure and the training details of the neural OT models, we follow the recommen-
dations of Korotin et al. (2022a). The neural OT models converge in 1-2 days on a single NVidia
A40 GPU (48GB). The batch size during training is 64 for all the tasks.

For the encoder models Eθ, the network structure uses the recommendations in Song et al. (2023),
and the models converge in 3-4 days on 4×NVidia A40 GPUs (48GB). The batch size during training
is 128 for all the tasks.

A.5 ABLATION STUDY DETAILS

We provide three alternatives as a comparison to ablate our training and/or sampling choices.

In particular, we first train the models using adjacent positive pairs ⟨xtk ,xtk+1⟩ instead of the COT
Pairs ⟨xt1 ,xt2⟩ provided by Eq.13. This alternative evaluates the importance of the chosen COT Pair
formulation and emphasizes the connection between consistency models and contrastive learning.

Secondly, we choose an opposite direction to train the neural OT models in each task. For example,
in the handbag→shoes task, instead of training a neural OT model T (x) from the handbag dataset
to the shoes dataset, we train a reverse neural OT model T ′(y) from shoes data y to handbag data
x. This alternative evaluates the paper’s choice of the neural OT model’s direction and verifies the
formulation of COT Pairs.
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Finally, we provide an optional sampling strategy to prove the effectiveness of our self-augmentation
sampling strategy in COT Editor. After training the models, we implement an ancestral-like sam-
pling strategy to generate the results:

x̃
(k)
tk

=
tk
tk−1

x̃
(k−1)
tk−1

+ (1− tk
tk−1

)ỹ(k) + tk(1− tk)σ2zk (20)

ỹ(k+1) = Eθ
(
x̃
(k)
tk
, tk

)
, k = 1, 2, . . . , x̃

(0)
t0 = x (21)

B PROOF OF THEOREM

Proposition 3.1. Let π∗ be the OT plan between µ(x) and ν(y). Let the OT map T ∗ recover π∗. The
augmentation defined by Eq.12 using T ∗ samples the same probability as the dynamic extension of
the EOT plan π∗

λ with λ = 2σ2.

Proof. According to Gushchin et al. (2024), the augmentation between x and T ∗(x) using Eq.12
samples a probability distribution:

pt(xt|x, T ∗(x)) = N (xt|tT ∗(x) + (1− t)x, t(1− t)σI) (22)

which is the time marginal of a Brownian Bridge wσ
|x,T∗(x) (Appendix C). Using the probability

distribution in 22, the Schrödinger Bridge S∗ (Appendix D) between µ(x) and ν(y) can be estimated
by:

S̃∗ =

∫
R×R

wσ
|x,ydπ̃

∗(x, Tϕ(x)) (23)

Which is the dynamic extension of the entropy-regularized OT problem with optimum π∗
2σ2 accord-

ing to Tong et al. (2023), where the joint marginal distribution πS
∗

of S∗ at times 0,1 is the EOT
plan π∗

2σ2 in 7, i.e., πS
∗
= π∗

2σ2 .

C BROWNIAN BRIDGE

Suppose we have a data point x with time intermediates xt in the processes. Given a Wiener process
wσ
t defined by dwσ

t =
√
σdwt with volatility σ > 0, t ∈ [0, T ], and standard Wiener process wt.

A Brownian Bridge is the conditional probability distribution wσ
|x0,xT

subject to the condition that
the start and end point of the process is x0,xT . The probability distribution is:

N (xt|txT + (T − t)x0, t(T − t)σI) (24)

Intuitively, the Brownian Bridge is pinned to the values x0,xT at t = 0 and t = T , and the most
uncertainty lies in the middle of the bridge.

D SCHRÖDINGER BRIDGE

Given two probability distribution µ(x) and ν(y), consider the Wiener process wσ
t with volatility

σ > 0 starts at µ(x) at t = 0, the Schrödinger Bridge between µ(x), ν(y) is:

S∗ = min
S∈F(µ,ν)

KL(S ∥ wσ
t ) (25)

where S is a stochastic process and F(µ, ν) is a set of stochastic processes with the start of µ(x) at
t = 0 and end of ν(y) at t = T .

E DIFFUSION MODELS

Diffusion models learn to denoise the data in different noise scales and generate samples from noise
via an iterative denoising process. The original data distribution µ(x) is diffused with a stochastic
differential equation (SDE):

dxt = g(xt, t)dt+ σ(t)dwt (26)
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where t ∈ [0, T ], T > 0 is a constant, g is the drift term and dwt represents a standard Wiener
process. We denote the intermediate distribution of xt as pt(x). Then the SDE process has a dual
ODE whose solution trajectories at time t are distributed according to pt(x):

dxt =

[
g(xt, t)−

1

2
σ(t)2∇ log pt(xt)

]
dt (27)

where ∇ log pt(xt) denotes the score function of pt(x), which is estimated by a neural network
sϕ(xt, t) ≈ ∇ log pt(xt). We then sample x0 from the estimated probability flow ODE:

dxt
dt

= −tsϕ(xt, t) (28)

where we initialize xT ∼ N (0, T 2I) and solve 28 backward in time to obtain the generation x̂0 via
various ODE solvers such as Euler and Heun solvers.

F LIMITATIONS

COT Flow explicitly builds the bridge between optimal transport and diffusion/flow-based models.
However, our method requires a two-step training pipeline, including the neural OT model T (x) and
the encoder model E , which may influence the training and deploying stability. A promising future
direction is to design an end-to-end method with OT formulation explicitly.

G BROADER IMPACTS

COT Flow and other generative models pose a risk of synthesizing inappropriate content such as
deep-fake images, violence, or privacy-related offensiveness.

H ADDITIONAL EXPERIMENTS

We compared the zero-shot image editing ability between our model and SDEdit on different
datasets. We took 600k iteration steps with a batch size of 256 on 4×NVidia A40 GPUs to train
our model, and we followed the recommended training hyper-parameters in Meng et al. (2021) to
ensure the convergence of the baseline SDEdit model. The results in Fig.6 show that our model
(COT Editor) outperforms SDEdit in both image editing quality and fidelity on all datasets.
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Figure 6: Zero-shot image editing comparison between our method (COT Editor) and SDEdit on
CelebA male→female (64×64), handbag→shoes (64×64), and outdoor→church (128×128). We
use one-step and multi-step sampling in our method and set t = 300, 400, 500, 600 of the reverse
diffusion process in SDEdit to perform the editing results.
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