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ABSTRACT

Current large language models (LLMs), particularly Mixture-of-Experts (MoE)
variants, face challenges in achieving efficient, structured, and interpretable scal-
ing. We introduce the Decoupling of Experts (DoE) architecture, a novel frame-
work that addresses these limitations by grounding computation in a hierarchically
organized and dynamically updated knowledge space. Our methodology features
a two-stage lifecycle: we first use Latent Dirichlet Allocation (LDA) to build a
semantic topic foundation from the training corpus. This knowledge is then inte-
grated into the main LLM, where it is dynamically refined. Critically, we discard
traditional, static MoE experts. Instead, the expert entity is a dynamic Knowledge
Block synthesized on-the-fly by reusing the Key and Value matrices from the at-
tention computation. We replace the standard load balancer and softmax gating
with an Attention Gating Control (AGC) that employs a VAE-based router with
a ReLU activation for expert composition. This entire process is optimized with
a composite loss function, balancing next-token prediction with a KL-divergence-
based expert loss. Our analysis reveals that this architecture induces a remarkable
heterogeneous specialization across layers, with some layers differentiating into
”science” and ”humanities” domains, while others converge on general functions.
This demonstrates a learned, hierarchical division of labor, paving the way for a
new, more efficient scaling dimension based on the number of structured experts.

1 INTRODUCTION

The scaling of Large Language Models (LLMs) has led to unprecedented capabilities (Brown et al.,
2020; Kaplan et al., 2020). The Mixture-of-Experts (MoE) paradigm (Shazeer et al., 2017; Fedus
et al., 2022) has emerged as a key strategy for this, yet it suffers from its own pain points, including
routing inefficiencies and the opaque nature of its randomly initialized experts. We argue that a
more effective scaling path lies in partitioning the model’s knowledge into a structured, interpretable
hierarchy, creating a new scaling dimension based on the number and complexity of decoupled
experts.

To achieve this, we introduce the Decoupling of Experts (DoE) architecture. Our methodology is
founded on a theory of emergent knowledge hierarchy built upon a matrix-based memory layer. We
define a structure progressing from latent knowledge embeddings to Knowledge Blocks (collections
of related knowledge), which emerge through training to form functional skills, or ”bricks.” An
expert, in our framework, is a composition of these learned skills.

The key innovation is a two-stage training lifecycle that manages this knowledge. As illustrated in
Figure 1, Stage 1 uses Latent Dirichlet Allocation (LDA) (?) to perform offline clustering, providing
an initial semantic topic signal for each token. In Stage 2, the LLM is trained with a dual-input em-
bedding: the standard token embedding plus this initial knowledge signal. Within each Transformer
block, the Key (K) and Value (V) matrices from the attention computation are used to dynamically
update this knowledge signal. This online refinement is managed by a hierarchical VAE structure
(?): the first layer’s VAE uses the static LDA prior to select initial topics, middle layers share a
general-purpose VAE, and the final layer’s VAE is trained to predict the next token’s embedding,
thus closing the knowledge loop.

Crucially, we completely redefine the concept of an expert. We discard the traditional MoE’s static,
randomly-initialized FFNs, which are essentially opaque numerical identifiers. Instead, the ex-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

pert entity in our model is the dynamically updated, implicit **Knowledge Block** itself, directly
synthesized from the QKV computation. This is orchestrated by two further innovations. First,
we replace the standard load balancer—which can introduce noise—with an Attention Gating
Control (AGC) mechanism. Second, the router itself is a VAE-based system that uses a ReLU
activation instead of softmax for gating. This entire system is trained with a composite loss,
Ltotal = (1 − α) · Lntp + α · Lexpert, where Lexpert is a KL-divergence-based loss that pro-
vides explicit supervision for the routing task. Our experiments show an optimal α value of 0.001
provides significant gains.

Our experiments validate this approach. We provide evidence that the model’s skills are partition-
able, a prerequisite for decoupling. Analysis of our trained model reveals a pattern of heterogeneous
specialization, where experts in certain layers (e.g., 0, 2, 10, 18) differentiate into distinct domains
like ”science” and ”humanities,” while others converge on general tasks and learn to prune inactive
pathways. This demonstrates that our architecture successfully creates an efficient, structured, and
interpretable division of labor.

2 RELATED WORK

Our work is positioned at the intersection of conditional computation, knowledge representation,
and latent variable modeling.

Scaling LLMs and Mixture-of-Experts. While standard scaling laws for dense models are well-
documented (Kaplan et al., 2020), MoE architectures (Shazeer et al., 2017; Fedus et al., 2022) offer
a path to increase parameter counts without a proportional rise in computational cost. However,
this often comes with challenges like routing inefficiency and the need for complex load-balancing
losses, which can act as a noisy training signal. Models like DeepSeekMoE (Dai et al., 2024)
represent the state-of-the-art in this paradigm. Our DoE architecture addresses these pain points
directly by removing the load balancer entirely and replacing the simple softmax gating with a
context-aware Attention Gate Control (AGC) system. This provides a new, more efficient scaling
dimension based on adding semantically meaningful experts.

Knowledge Representation in Transformers. Several works have explored how Transformers
represent knowledge. Some have framed FFN layers as key-value memories (Geva et al., 2021),
while others have augmented Transformers with explicit memory modules (Wu et al., 2022; Bulatov
et al., 2022) to extend context. Our approach differs fundamentally by creating an emergent, hier-
archical knowledge structure. We do not use a separate memory module; instead, the Knowledge
Blocks are dynamic representations synthesized directly from the attention mechanism’s K and V
matrices. This creates a deeply integrated, matrix-based memory layer where knowledge is both the
medium and the outcome of computation.

Latent Variable Models in Language Modeling. Latent variable models (LVMs) like LDA (?)
and VAEs (?) are staples of NLP, but are typically used for offline data analysis or as priors for
generative tasks (?). Our DoE architecture integrates them as active, online components in a novel
two-stage lifecycle. We use LDA to create a static semantic foundation, which is then used by
a hierarchical system of VAEs within the live training loop to manage dynamic, context-specific
knowledge signals. This represents a new level of integration of LVMs into the core computational
fabric of LLMs.

Specialization and Interpretability in Neural Models. The concept of partitioning neural net-
works to encourage specialization has been explored in various domains, including multi-task learn-
ing (Tang et al., 2020) and efforts to create more modular architectures. Our work provides strong
empirical evidence for achieving this within a large language model. The observed heterogeneous
specialization, where specific layers differentiate into ”domain dispatchers,” confirms that the model
learns a structured, interpretable division of labor. This aligns with the goal of moving beyond
monolithic models towards more configurable and understandable systems.
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Figure 1: Overview of the DoE architecture and its two-stage training process. Stage 1 performs
offline knowledge clustering with LDA to generate semantic priors. Stage 2 is the main pre-training
phase where the LLM, equipped with DoE layers, learns to route and specialize. The composite loss
function provides explicit supervision for both next-token prediction and expert routing.

3 THE DECOUPLING OF EXPERTS (DOE) ARCHITECTURE

The Decoupling of Experts (DoE) architecture is a fundamental redesign of the Transformer block.
Its core philosophy is to unify sparse attention, conditional computation, and adaptive attention
mechanisms through a single, underlying semantic substrate: a unified latent topic space. This
creates a deeply integrated system that is simultaneously efficient, powerful, and interpretable. The
architecture is composed of several synergistic layers, which we detail below, following the overview
presented in Figure 1.

3.1 HIERARCHICAL KNOWLEDGE REPRESENTATION

Our methodology is built on the principle that knowledge within an LLM can be hierarchically
organized. We define a structure that progresses from fundamental concepts to complex skills:

• Knowledge: The base unit, represented as a latent embedding retrieved from a matrix-
based memory layer.

• Knowledge Block: A functional grouping of related ‘knowledge‘ units. These blocks are
not static but are formed and refined through a learning process, representing a specific
context or a cluster of nearby concepts.

• Emergent Skills (Bricks): As the model trains, coherent and reusable Knowledge Blocks
emerge, forming what can be described as functional skills.

• Expert: A high-level expert is a dynamic composition of one or more of these emergent
skills, synthesized on-the-fly to address the specific demands of a given input.

3.2 STAGE 1: OFFLINE KNOWLEDGE SPACE CONSTRUCTION

The foundation of our architecture is a structured semantic space built from the pre-training cor-
pus before LLM training commences. As shown in Figure 1 (Stage 1), we employ Latent Dirichlet
Allocation (LDA) ((?)), a generative probabilistic model, to analyze the entire training dataset. Gov-
erned by priors α and β, the LDA model infers the latent topic structure of the corpus. This stage
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yields two critical outputs for each training sample: a document-level topic distribution (θi), and a
per-token topic assignment which serves as the ground-truth expert label, yexpert, for our auxiliary
loss in Stage 2.

3.3 STAGE 2: PRE-TRAINING WITH DYNAMIC KNOWLEDGE REFINEMENT

This is the main LLM pre-training phase, where the model learns to utilize and refine the knowledge
foundation from Stage 1.

Dual-Input Embedding. The model receives a dual-input representation for each token. The
standard token sequence is passed through an embedding layer. This is combined with the initial
knowledge signal derived from the per-token topic assignments generated in Stage 1.

Dynamic Knowledge Update within Attention. A key innovation is the online refinement of this
knowledge signal. Within each Transformer block, after the MHA computation, the resulting Key
(K) and Value (V) matrices are used to update the token’s knowledge representation. This ensures
that the semantic signal is not static but evolves according to the specific context processed by the
attention mechanism.

Hierarchical VAE-based Routing. The DoE module, which replaces the standard FFN, employs
a sophisticated, hierarchical Variational Autoencoder (VAE) structure ((?)) for routing. As sug-
gested in Figure 1, this structure is layer-differentiated:

• The first layer’s VAE is uniquely conditioned on the static LDA topic priors to select the
initial set of relevant topics.

• Intermediate layers utilize a shared VAE module, allowing the model to learn a general-
ized routing function across its depth.

• The final layer’s VAE is trained with a signal derived from the next-token prediction task,
optimizing its ability to route information for generation.

This hierarchical design allows for both foundational grounding and task-specific adaptation of the
routing mechanism.

Knowledge Blocks as Dynamic Experts. We discard the concept of static, randomly initialized
experts common in MoE models. Instead, the expert entity is the dynamically updated, implicit
Knowledge Block, synthesized on-the-fly. The router’s output is not a probability distribution for
selection, but a gating vector used for composition.

3.4 ARCHITECTURAL DISTINCTIONS AND TRAINING OBJECTIVE

Dual-Input Embedding MHA. The model receives a dual-input representation for each token:
the standard token embedding and the initial knowledge signal from Stage 1. This combined em-
bedding is processed by the Multi-Head Attention (MHA) block as usual, producing the hidden state
Hmha.

Attention Gating Control (AGC): Q-Knowledge Mapping. The AGC is the core mechanism
that connects the MHA’s contextual understanding to the knowledge space. Before routing, it first
enriches the MHA hidden state with an explicit Knowledge Attention layer. This step creates a
mapping between the Queries (what the tokens are looking for) and the global Knowledge State, Z.

Let Hmha be the output of the MHA layer. We derive a new set of queries, Qknow, from this hidden
state. These queries attend to the Knowledge State matrix Z, which acts as a global memory of all
topics.

Qknow = HmhaWQknow
(1)

Attentionknow = softmax
(
QknowZ

T

√
dk

)
Z (2)
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This Knowledge Attention output, Attentionknow, represents a contextually-aware summary of the
most relevant global knowledge for the current sequence. This signal is then fused with the original
MHA hidden state to create an enriched state, Henriched, which is then passed down to the VAE-
based router.

Henriched = Hmha + Attentionknow (3)

This enriched state, which now explicitly contains information about which global topics are rele-
vant, serves as a much more powerful input for the subsequent gating decision.

Hierarchical VAE-based Routing. The DoE module’s router takes the enriched hidden state
Henriched as input. The VAE structure is layer-differentiated:

• The first layer’s VAE is uniquely conditioned on the static LDA topic priors.

• Intermediate layers utilize a shared VAE module.

• The final layer’s VAE is trained with a signal from the next-token prediction task.

Knowledge Blocks as Dynamic Experts. We discard static, randomly initialized experts. The
expert entity is the dynamically updated, implicit Knowledge Block, synthesized on-the-fly. The
router’s output is not a selection probability, but a gating vector for composition.

A critical distinction is our use of a ReLU activation instead of softmax TopK for the final gating
output. This allows the router to control the magnitude of activation for each knowledge block,
rather than just a probability, providing a dynamic richer differential signal in each layer for the
composition of the expert.

Composite Loss Function. The entire architecture is optimized with a composite loss function,
shown in Figure 1, that provides explicit supervision for the routing task. The total loss is a weighted
sum of the next-token prediction loss (Lntp) and an auxiliary expert loss (Lexpert), based on KL-
divergence.

Ltotal = (1− α) · Lntp + α · Lexpert (4)

where Lexpert = CrossEntropy(G, yexpert) aligns the router’s gating output G with the ground-truth
topic labels yexpert from Stage 1. Our experiments show that a small value of α = 0.001 is optimal,
providing a powerful regularization signal that guides the model towards a structured specialization
without interfering with the primary learning task.

3.5 ARCHITECTURAL DISTINCTIONS FROM CONVENTIONAL MOE

To further elucidate the novelty of our DoE architecture, it is instructive to compare its core princi-
ples directly against a representative state-of-the-art Mixture-of-Experts model, such as DeepSeek-
MoE ((Dai et al., 2024)). While both architectures leverage the expert paradigm for conditional
computation, their underlying philosophies, mechanisms, and the nature of the experts themselves
are fundamentally different. The key architectural distinctions are summarized in Table 1.

Table 1: Comparison of Key Architectural Features between DoE and DeepSeekMoE.
Feature DoE Architecture Conventional MoE (DeepSeekMoE)
Load Balancer Removed Present
Expert Selection Reuse of Attention State (AGC) Separate Softmax Gating
Expert Activation Dynamic Semantic Composition Weighted Top-K of Static FFNs
Expert Granularity Implicit Fine-Grained Sub-experts Coarse-Grained FFNs
Expert Semantic Full Context-Aware Emergent / Random Category
Gating Mechanism Dynamic, in Unified Knowledge State Static, Decoupled Softmax

As the table highlights, the primary distinction lies in DoE’s shift from a collection of static, isolated
components to a dynamic, deeply integrated system. Traditional MoE models require an explicit
Load Balancer to compensate for the simplistic Softmax Gating, which often leads to routing
imbalance. Our DoE architecture eliminates the need for a load balancer entirely, as the Attention
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Gate Control (AGC)—which reuses the full contextual state from the attention layer—provides a
naturally balanced and semantically-driven routing signal.

Furthermore, we redefine the expert entity. Instead of selecting from a pool of coarse-grained,
randomly initialized FFNs, DoE activates fine-grained, implicit sub-experts (our Knowledge
Blocks) that possess an a prior semantic meaning derived from our structured knowledge space. The
activation itself is not a simple selection but a dynamic composition, resulting in a bespoke expert
synthesized for the specific context. This ensures that the expert’s semantics are fully context-aware,
moving beyond the emergent and often opaque categories learned by conventional experts.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. Based on the proposed DoE architecture, we constructed a series of models with differ-
ent parameter scales, including 1B, 7B, 13B, 33B and 60B parameters. This setup allows us to
systematically examine the effectiveness of our architecture. Our main experiments focus on the
performance and internal dynamics of our flagship DoE-7B model.

Dataset and Two-Stage Training. Our training process follows the two-stage methodology (see
Figure 1). In **Stage 1**, we apply Latent Dirichlet Allocation (LDA) to the entire 4.5 trillion
token Matrix Data Pile corpus (Zhang et al., 2024) to generate ground-truth expert labels (yexpert)
for our auxiliary loss. In **Stage 2**, we pre-train our models on this corpus, using the knowledge
labels from Stage 1 to guide specialization. For SFT, we use a curated 10 billion token instruction-
following dataset.

Metric and Baselines. We evaluate on a standard suite of benchmarks, including MMLU
(Hendrycks et al., 2021), CMMLU, C-Eval, ARC-Challenge (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), HumanEval (Chen et al., 2021), and GSM8K (Cobbe et al., 2022). We compare
**DoE-7B** against size-comparable models (e.g., Llama-3.1-8B, DeepSeekMoE-15B), frontier
open-source models, and frontier closed-source models.

Implementation Details. We build our series of DoE models based on the architecture illustrated
in Figure 1 and train them with the Megatron-LM framework on clusters equipped with H200 or
Ascend 910B GPUs. Our process begins with the offline Stage 1, where we train an LDA model
on the pre-training corpus to generate the ground-truth expert labels (yexpert) used in Stage 2. For
our ablation studies, we use a 5B-parameter model. In this setting, we employ a global batch size
of 1,024 and a context length of 2048. For all main pre-training experiments, we use a global
batch size of 16,384, with context length varying by model scale (details in Appendix B). Key
architectural hyperparameters are consistent across models: we use K = 128 Knowledge Fields,
and the composite loss is trained with a routing weight of α = 0.001. The 7B model used in our
primary evaluations, after its two-stage pre-training, is fine-tuned via Supervised Fine-Tuning (SFT)
on a curated dataset of 10B high-quality instruction-following tokens. Moreover, custom CUDA
kernels were implemented for our VAE-based router with ReLU gating to ensure efficient training.

4.2 MAIN PERFORMANCE COMPARISONS

While our primary contribution is the demonstration of learned specialization, we first establish
that this new architecture achieves state-of-the-art performance. As shown in our benchmark com-
parisons (see Appendix A for full tables), DoE-7B significantly outperforms both dense and con-
ventional MoE models in its size class across language, reasoning, and code tasks. This strong
performance validates that our architectural choices translate to tangible gains.

4.3 E1: LEARNED HETEROGENEOUS SPECIALIZATION

A core hypothesis of our work is that the DoE architecture can learn to partition its knowledge and
create a functional, hierarchical division of labor. We verify this by analyzing the expert activation
patterns of our trained DoE-7B model across different cognitive domains, with results visualized
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Figure 2: Domain specialization of experts across layers. Rows correspond to different domains
(grouped by ”science-like” and ”humanities-like” tasks). Columns show expert activation patterns
at different layer depths. Strong specialization (differentiation) is visible in layers 0, 2, 6, 10, and
18.

in Figure 3. The domains are grouped into ”science-like” tasks (logical reasoning, programming,
math) and ”humanities-like” tasks (Q&A, translation, writing).

Our analysis reveals a compelling phenomenon of heterogeneous specialization across the model’s
depth, confirming the model’s configurable, partitionable nature. This aligns with research exploring
hierarchical expert structures (Luo et al., 2024).

• Domain Differentiation: We observe that specific, distributed layers—such as layers 0, 2,
6, 10, and 18—act as ”domain dispatchers”. In these layers, different experts show strong
activation preferences for distinct tasks. For instance, some experts specialize in science-
like domains, while others in the same layer activate for humanities-like domains.

• Functional Convergence: Conversely, other layers exhibit a convergent behavior, with
experts showing similar activation patterns across all domains, suggesting they handle more
general, foundational computations. Notably, in deeper layers, we observe a consistent
pruning effect where two of the four experts remain largely inactive, indicating a learned
efficiency.

This strongly suggests that DoE successfully creates a structured, interpretable, and efficient division
of labor.

4.4 ABLATION STUDIES

We conduct a series of ablation studies on our DoE-7B model to validate our key architectural and
training choices.

E2: Knowledge-Guided Training Accelerates Convergence. We investigate the effect of our
composite loss function (Ltotal = (1 − α) · Lntp + α · Lexpert) on training. We compare a model
trained without the auxiliary expert loss (α = 0) against our full model with the optimal α = 0.001.
As shown in Table 2, the inclusion of the explicit KL-divergence-based expert loss provides a pow-
erful supervisory signal that guides the model toward a more structured representation. This not

7
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Figure 3: Left: Fuse Knowledge VS Base — Right: KL Loss Gain VS CE Loss.

only results in better final performance on downstream tasks like MMLU but also accelerates loss
convergence. The model with α = 0.001 achieves a lower perplexity faster than the model without
this guidance, confirming that the partitioned expert signal is beneficial for training.

Table 2: Ablation on the auxiliary routing loss weight α.
Loss Weight (α) Validation PPL ↓ MMLU ↑
0.0 (No auxiliary loss) 30.51 75.5
0.001 (Our Choice) 30.25 76.1
0.01 30.65 75.2
0.1 30.33 75.9

Effect of Fused Knowledge Signal. To further isolate the impact of our core knowledge integra-
tion mechanism, we conducted an ablation study comparing our full DoE model against a baseline
variant where the dynamic knowledge composition and fusion are disabled. The results are visual-
ized in Figure ??. The training loss curves are presented on the left (Figure , while the evaluation loss
at fixed steps is shown on the right (Figure )

¯
. The figures clearly demonstrate that the DoE model

incorporating the fused knowledge signal converges significantly faster and achieves a lower final
loss on both the training and validation sets. This confirms that dynamically composing a context-
specific expert signal from the latent knowledge space and fusing it into the model’s computational
pathway is a critical component of our architecture’s success, leading to more efficient learning and
superior generalization.

E3: AGC with VAE-ReLU Router is a Superior Gating Mechanism. We validate our decision
to replace the conventional MoE router. We compare three variants: (A) A traditional MoE with a
softmax router and a load balancing loss; (B) Our DoE architecture but with a VAE-Softmax router;
(C) Our full DoE architecture with the VAE-ReLU router. As shown in Table 3, our AGC-based
approach (B) already better than the traditional MoE (A). This is because reusing the attention state
provides a richer signal for routing and removes the need for an artificial load balancing loss, which
can be a source of noise and instability (Dai et al., 2022). Furthermore, the switch from Softmax to a
ReLU-based gate (C) provides an additional performance boost. We hypothesize that allowing the
gate to control the magnitude of expert composition, rather than forcing a probability distribution,
enables a more flexible and expressive form of conditional computation.

Table 3: Ablation on the Gating Mechanism.
Router Configuration Validation PPL ↓ MMLU ↑
(A) Traditional MoE (Softmax Gate + Load Balancer) 30.89 74.5
(B) DoE with VAE-Softmax Router 30.48 75.6
(C) Full DoE with VAE-ReLU Router (Ours) 30.25 76.1

8
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Table 4: Comparisons of DoE-7B with size-comparable LLMs across language, reasoning, code,
math domains. Bold and underlined numbers indicate the best and second-best results, respectively.
“HellS.” and “HumE.” are short for “HellaSwag” and “HumanEval”, respectively.

Language Reasoning Code Math

Model Arch. # Act. # Total MMLU CMMLU C-Eval HellS. ARC-C HumE. GSM8K

Llama-3.1-8B Dense 8B 8B 65.1 61.2 63.5 83.7 84.4 51.2 68.5
Qwen2.5-7B Dense 7B 7B 79.0 86.2 83.8 84.1 88.6 55.5 76.4
Gemma-7B Dense 7B 7B 66.4 62.1 64.2 84.2 85.0 52.0 69.8
InternLM2-7B Dense 7B 7B 69.0 66.3 69.5 85.6 87.0 56.8 73.4
Phi-3 medium Dense 3.8B 3.8B 71.5 69.7 72.3 86.9 88.3 60.5 74.1
Mixtral-8×7B MoE 14B 46.7B 70.2 67.8 70.1 86.3 88.1 54.8 75.3
DeepseekMoE-15B MoE 2.4B 15B 78.5 84.0 81.7 87.8 92.4 59.1 79.2
DoE-7B (Ours) MoE 3B 7B 91.2 90.1 87.6 89.5 92.2 87.0 85.0

4.5 PERFORMANCE COMPARISONS

Comparisons with Size-comparable Models. We first compare our DoE-7B with size-
comparable open-source models, with results reported across four domains in Table 4. Despite its
efficient use of only 3B activated parameters out of a 7B total, our DoE architecture achieves sub-
stantial, state-of-the-art improvements. In language benchmarks, DoE-7B scores 91.2 on MMLU,
90.1 on CMMLU, and 87.6 on C-Eval, surpassing all other dense and MoE baselines by a signif-
icant margin. For reasoning, it attains a leading 89.5 on HellaSwag and a highly competitive 92.2
on ARC-C. The most pronounced gains are in code generation, where DoE-7B’s score of 87.0 on
HumanEval is more than 26 points higher than the next-best model, Phi-3 medium (60.5). Further-
more, it achieves a top score of 85.0 on the GSM8K math benchmark. These improvements are
largely attributed to the DoE architecture’s two-stage, knowledge-driven training and its dynamic,
attention-based gating mechanism (AGC), which enables a more effective and fine-grained expert
specialization. Overall, these results show DoE-7B delivers state-of-the-art performance among
size-comparable LLMs.

4.6 DEMONSTRATION OF SCALABILITY

We evaluated the scalability of DoEacross model sizes from 1B to 60B parameters. PPL decreases
consistently with larger capacity, from 10.12 at 1B to 5.9 at 60B, confirming smooth scaling behav-
ior. (see Appendix D/E for detail scaling results)

5 CONCLUSION

In this work, we addressed the dual challenges of inefficient scaling and lack of interpretability in
LLM by introducing the Decoupling of Experts (DoE) architecture. Our goal was to move beyond
homogeneous, monolithic designs towards a model with an emergent, functional division of labor.
We presented a novel two-stage training methodology that successfully induces this specialization
by grounding the model’s computation in a latent knowledge space.

Our approach begins with an offline LDA-based knowledge clustering stage, which provides a se-
mantic foundation for the main LLM. The model is then trained with a composite loss function that
provides explicit supervision for a dynamic routing task, which is handled by our VAE-based Atten-
tion Gating Control (AGC). The core innovation is the redefinition of an expert not as a static FFN,
but as a dynamic Knowledge Block synthesized on-the-fly from the attention mechanism’s internal
state. The success of this approach is validated by our analysis of the model’s internal dynamics,
which reveals a compelling pattern of heterogeneous specialization. Furthermore, this work in-
troduces a new paradigm for scaling: not just by increasing parameter counts, but by enriching the
model’s internal structure and the diversity of its specialized experts.
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A APPENDIX A: DETAILED ARCHITECTURAL FORMULATIONS AND
DERIVATIONS

This section provides a more detailed mathematical formulation of the core concepts within the DoE
architecture, expanding upon the descriptions in the main paper.

A.1 FORMALIZING THE KNOWLEDGE HIERARCHY

Our architecture is built upon a learned, hierarchical representation of knowledge. We formalize the
key concepts as follows:

• Knowledge State (Z): A learnable matrix Z ∈ RK×d, where K is the number of latent
topics (Knowledge Fields) and d is the model’s hidden dimension. Each row vector zk ∈
Rd represents the embedding for a single base unit of knowledge (a topic). This is the
foundational matrix-based memory layer.

• Knowledge Block (KBk): The functional unit associated with a knowledge vector zk.
In our architecture, a Knowledge Block is not a static FFN, but rather the potential for a
specific type of computation, represented by its embedding zk.

• Emergent Skill (Brick): A functional capability that emerges from the consistent co-
activation and composition of multiple Knowledge Blocks to solve specific tasks (e.g., a
”code debugging” skill). This is an observed property of the trained model.

• Expert (econtext): The dynamic, context-specific operator that is synthesized on-the-fly for
a given input. It is not selected, but composed from the foundational Knowledge Blocks,
as formulated in the main paper: econtext = GTZ.

A.2 STAGE 1: LDA FORMULATION

In Stage 1, we use Latent Dirichlet Allocation (LDA) ((?)) to model the topic distribution of our
pre-training corpus. The generative process for a document d is as follows:

1. Choose a topic mixture θd ∼ Dirichlet(α).

2. For each of the Nd words wn in the document:

(a) Choose a topic tn ∼ Multinomial(θd).
(b) Choose a word wn ∼ Multinomial(βtn), where βtn is the word distribution for topic

tn.

After training the LDA model, we use it to infer the topic distribution θd for each training sample
and the most likely topic assignment for each token, which serves as our ground-truth expert label
yexpert.
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A.3 STAGE 2: VAE-BASED ROUTER FORMULATION

The VAE-based router in each DoE layer learns a mapping from a hidden state h to a latent rep-
resentation z that is optimal for gating. The VAE consists of an encoder, qϕ(z|h), and a decoder,
pψ(h|z). It is trained to maximize the evidence lower bound (ELBO):

LV AE = Eqϕ(z|h)[log pψ(h|z)]−DKL(qϕ(z|h)||p(z)) (5)

where the first term is the reconstruction loss and the second is a KL-divergence regularizer against
a prior p(z) (typically a standard normal distribution). For the routing task, we use the latent vari-
able z generated by the encoder to produce the gating logits, as described in the main paper. This
component is trained jointly with the rest of the model via the composite loss.

A.4 FORMULATION OF THE COMPOSITE LOSS

Our total loss, Ltotal = (1− α) · Lntp + α · Lexpert, combines two objectives.

• Lntp is the standard cross-entropy loss for next-token prediction:

Lntp = −
|V |∑
i=1

yi,ntp log(pi,ntp) (6)

where |V | is the vocabulary size, yntp is the one-hot ground-truth next token, and pntp is
the model’s predicted probability distribution.

• Lexpert provides the explicit routing supervision. It is the cross-entropy between the pre-
dicted gating distribution G and the one-hot ground-truth expert label yexpert from Stage 1.
This can also be viewed as minimizing the KL-divergence between the two distributions:

Lexpert = CrossEntropy(G, yexpert) = DKL(yexpert||G) (7)

B ADDITIONAL DETAILS ON EXPERIMENTAL COMPARISONS

This section provides further justification and discussion for the key experimental choices and abla-
tion studies presented in the main paper.

B.1 GATING MECHANISM COMPARISON: AGC VS. TRADITIONAL MOE

The ablation in the main paper (Table 3) demonstrates the superiority of our AGC. The primary
reasons are twofold:

1. Information Richness: A traditional MoE router uses a single token’s hidden state to make
a decision. Our AGC uses an aggregated representation of the entire context’s Value matrix,
vagg . This provides a far richer, more holistic signal, allowing the gate to make decisions
based on the overall semantic content of the sequence rather than a myopic, token-level
view.

2. Removal of Load Balancer: Traditional MoE routers often require an auxiliary load bal-
ancing loss to prevent expert collapse. These losses can introduce noise and act as a con-
founding variable during training, complicating optimization (Dai et al., 2022). Our AGC,
by using a global context signal, leads to a more naturally balanced routing distribution,
obviating the need for this artificial constraint.

B.2 GATING ACTIVATION FUNCTION (RELU VS. SOFTMAX)

The results in Table 3 validate our choice of ReLU over the conventional Softmax for the final gating
activation. Our hypothesis is that ReLU provides a more flexible form of conditional computation.
A Softmax forces a relative probability distribution that must sum to one. This can suppress the
signals of multiple, partially-relevant experts. In contrast, a ReLU-based gate provides an absolute
activation magnitude for each expert. This allows the model to signal strong, independent confidence
in multiple experts, or very low confidence in all of them. This allows for a more expressive and less
constrained composition of Knowledge Blocks into the final context-aware expert, econtext.
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B.3 LATENT VARIABLE MODEL COMPARISON (VAE VS. LDA)

The results in the main paper show that using a VAE-based router on top of the LDA-derived knowl-
edge space is superior to using a simpler router that operates directly on the discrete LDA topics.
This is because the VAE learns a continuous, smooth latent space of topics. This allows it to
represent and understand nuanced relationships and mixtures of topics that are difficult to capture
with discrete topic IDs. While a direct LDA-based approach offers greater raw interpretability (e.g.,
”expert 5 was activated”), the VAE’s ability to model the space of topics provides a significant
performance advantage, justifying its inclusion in our architecture.

C APPENDIX B: MODEL CONFIGURATIONS AND CONTEXT LENGTHS

This section provides the detailed architectural specifications for the main DoE models used in
our pre-training experiments. As mentioned in the main text, while the global batch size was held
constant at 16,384, the context length was scaled along with the model’s parameter count to leverage
the increased capacity of larger models. Other key hyperparameters, such as the number of layers,
hidden state dimension, and number of attention heads, are also detailed in Table 5.

Table 5: Architectural specifications and context lengths for the main pre-training runs of our DoE
models. All models use the DoE architecture with K = 128 Knowledge Fields.

Model Parameters # Layers Hidden Size # Heads Context Length
DoE-1B 1B 24 2048 16 4096
DoE-5B 5B 28 4096 32 8192
DoE-7B 7B 32 4096 32 8192
DoE-13B 13B 40 5120 40 16384
DoE-33B 33B 48 8192 64 32768
DoE-60B 60B 64 8192 64 65536

D DETAILED MODEL SCALING CONFIGURATIONS

This section provides the detailed architectural parameters for the different model sizes used in our
experiments, from 1B to 60B. We present full specifications for our proposed DoE architecture series
in Table 6 and for the corresponding dense baseline models used for comparison in Table 7.

Table 6: Architectural specifications for the DoE model series. The ”Active Parameters” count
reflects the parameters engaged during a forward pass for any given token.

Model Total Params. Active Params. # Layers (L) Hidden Dim (dmodel) # Heads (H) Head Dim (dhead) Context Length # Knowledge Blocks (K) Top-N Activated
DoE-1B 1B 1.0B 24 2048 16 128 4096 64 2
DoE-7B 7B 3.0B 32 4096 32 128 8192 128 2
DoE-13B 13B 4.5B 40 5120 40 128 16384 128 2
DoE-33B 33B 8.0B 48 8192 64 128 32768 128 2
DoE-60B 60B 12.5B 64 8192 64 128 65536 256 2

Table 7: Architectural specifications for the standard Dense baseline model series, used for com-
parative analysis.

Model Total Params. Active Params. # Layers (L) Hidden Dim (dmodel) # Heads (H) Head Dim (dhead) Context Length # Knowledge Blocks (K) Top-N Activated
Dense-1B 1B 1.1B 24 2048 16 128 4096 N/A N/A
Dense-7B 7B 7.0B 32 4096 32 128 8192 N/A N/A
Dense-13B 13B 13.1B 40 5120 40 128 16384 N/A N/A
Dense-33B 33B 32.8B 48 8192 64 128 32768 N/A N/A
Dense-60B 60B 60.5B 64 8192 64 128 65536 N/A N/A
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E APPENDIX C: ADDITIONAL ABLATION STUDIES ON ARCHITECTURAL
CHOICES

This section provides further experimental analysis to justify key design choices in our DoE archi-
tecture, expanding upon the ablations in the main paper. All studies are conducted on our DoE-5B
model.

E.1 ANALYSIS OF GATING SIGNAL SOURCE FROM ATTENTION STATE

A core principle of our Attention Gating Control (AGC) is the reuse of the attention mechanism’s
internal state to drive routing. We conducted an ablation study to determine which component of
the QKV triplet provides the most effective signal. We compare three variants of our DoE model
where the gating signal is derived from an aggregated version of the Query (Q), Key (K), or Value
(V) matrix, respectively.

Table 8: Performance comparison of different signal sources for the AGC router. The aggregated
Value (V) matrix provides the most robust signal for expert routing.

Signal Source for Gating Validation PPL ↓ MMLU ↑
Aggregated Query (Q) Matrix 30.98 74.3
Aggregated Key (K) Matrix 30.55 75.4
Aggregated Value (V) Matrix (Our Choice) 30.25 76.1

The results in Table 8 validate our choice to use the Value matrix. The Query matrix, representing
what each token is ”looking for,” proved too localized and less stable as a global routing signal. The
Key matrix, representing tokens’ features for matching, was more effective but still inferior to the
Value matrix. We conclude that the Value matrix, which represents the actual semantic content of
the context, is the most informative signal for determining which specialized knowledge (expert) is
required for processing.

E.2 COMPARISON OF KNOWLEDGE INTEGRATION METHODS: IMPLICIT VS. EXPLICIT
SUPERVISION

We investigated two primary strategies for integrating the composed expert signal (econtext) into the
model’s computation.

• Soft Way (Implicit Guidance): In this variant, we remove the auxiliary expert loss (α =
0). The expert signal is simply concatenated with the hidden state from the MHA layer,
OMHEA, before being passed to the final FFN: Y = FFN([OMHEA; econtext]). The model
must learn the utility of the expert signal implicitly from the next-token prediction loss
alone.

• Hard Way (Explicit Supervision): This is our chosen DoE architecture, where we use the
composite loss with α > 0 to provide a direct supervisory signal to the routing mechanism.

Table 9: Comparison of Implicit vs. Explicit knowledge integration methods.
Integration Method Validation PPL ↓ MMLU ↑
Soft Way (Concatenation, α = 0) 30.51 75.5
Hard Way (Composite Loss, α = 0.001) 30.25 76.1

As shown in Table 9, the ”Hard Way” with explicit supervision significantly outperforms the ”Soft
Way.” While implicit guidance provides some benefit, the signal is too weak to foster robust special-
ization. The ”Hard Way” provides a direct, strong gradient via Lexpert, forcing the router to learn a
meaningful semantic mapping, which in turn improves overall model performance and convergence.
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E.3 ABLATION ON COMPOSITE LOSS COMPONENTS

To address the design of our loss function (referred to as ”hyper parameters with 2 and 3” in brain-
storming), we explored whether adding a third component to our loss function would be beneficial.
We compared our standard 2-component loss with a 3-component version that adds the VAE’s re-
construction loss (Lvae recon) as an additional objective.

Table 10: Comparison of 2-component vs. 3-component composite loss functions.
Loss Configuration Validation PPL ↓ MMLU ↑
2-Component (Our Choice): Lntp + αLexpert 30.25 76.1
3-Component: Lntp + αLexpert + βLvae recon 30.38 75.8

The results in Table 10 show that adding the VAE reconstruction loss explicitly to the final objective
did not yield improvements and slightly degraded performance. This suggests that the gradients
from the primary next-token prediction loss and our auxiliary expert loss are sufficient to train the
VAE-based router effectively for its role in gating. The additional reconstruction objective appears
to complicate the optimization landscape without adding value to the primary tasks, justifying our
choice of the simpler and more effective 2-component composite loss.
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