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ABSTRACT

Videos, with their unique temporal dimension, demand precise grounded under-
standing, where answers are directly linked to visual, interpretable evidence. De-
spite significant breakthroughs in text-based reasoning with large language mod-
els, multi-modal reasoning – especially for videos – remains limited. In this work,
we fill this gap by introducing VideoMind, a novel video-language agent for
temporal-grounded video reasoning. Our method involves two key innovations:
(1) We identify four essential capabilities for grounded video reasoning and pro-
pose a role-based agentic workflow, comprising a planner to coordinate roles,
a grounder for temporal event localization, a verifier to assess event can-
didates, and an answerer for question answering. (2) To efficiently integrate
these roles during inference, we propose a novel Chain-of-LoRA mechanism,
where a unified base model with multiple LoRA adapters is leveraged to enable
seamless role switching, balancing efficiency and flexibility. Extensive experi-
ments on 14 benchmarks across 3 tasks, including Grounded VideoQA, Video
Temporal Grounding, and General VideoQA, demonstrate the effectiveness of the
proposed scheme in advancing video agent, test-time scaling, and long-form video
reasoning. Code, models, and data will be publicly available.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have demonstrated remarkable success in
text-based reasoning (Wei et al., 2022; Yao et al., 2023a; Shinn et al., 2023), significantly improv-
ing both accuracy and interpretability in complex problem-solving scenarios (Yao et al., 2023b).
Following these breakthroughs, efforts have been devoted to extending these reasoning capabili-
ties to multi-modal domains (Zhang et al., 2023c; Xu et al., 2025; Thawakar et al., 2025) such as
vision-centric science (Lu et al., 2022) and math (Ma et al., 2025) understanding.

Among multi-modal signals, videos pose a unique challenge due to their temporal dimension, in-
troducing complexities absent in images or text. Effective video reasoning requires not only recog-
nizing visual appearances but also understanding how they evolve over time (Xiao et al., 2024; Di
& Xie, 2023; Chen et al., 2024a; Liu et al., 2024e; Wu et al., 2025). While recent visual Chain-of-
Thought (CoT) methods (Zhang et al., 2023c; Xu et al., 2025; Thawakar et al., 2025) excel at gen-
erating detailed thoughts for static images, they struggle with long videos as they cannot explicitly
localize or revisit earlier parts of the sequence, as presented in Figure 1 (left). Humans, by contrast,
can reason over long videos with ease: they break down complex problems, identify relevant mo-
ments, revisit them to confirm details, and synthesize their observations into coherent answers. This
natural proficiency motivates the development of an AI agent that emulates this process – flexibly
coordinating multiple capabilities to achieve advanced, vision-centric reasoning.

In this work, we introduce VideoMind, a video-language agent with enhanced temporal-grounded
reasoning capabilities. To meet the demands of diverse tasks, we define four essential roles for un-
derstanding complex long-form videos: (1) a planner to decompose tasks and coordinate other
roles, (2) a grounder for precise moment localization, (3) a verifier for moment candidates
assessment, and (4) an answerer for moment-aware response generation. Each role is carefully
designed to deliver strong performance, for example, the grounder is equipped with a timestamp
decoder to ensure accurate temporal grounding. To enable efficient integration of these roles, we
also propose a novel Chain-of-LoRA mechanism, where all the roles are implemented based on a
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Figure 1: Illustration of VideoMind’s Chain-of-LoRA reasoning mechanism. The problem is decom-
posed by the planner and distributed to grounder, verifier, and answerer to systematically localize,
verify, and interpret the relevant video moments.

unified LMM backbone with role-specific LoRA adapters (Hu et al., 2022). Therefore, role-specific
capabilities can be trained separately on tailored datasets. During inference, all the LoRA param-
eters are cached into the memory, so that each role could be activated by simply switching to the
corresponding LoRA, as shown in Figure 1 (right). This approach reflects a minimalist yet flexible
design philosophy, facilitating seamless transitions and interactions among roles without incurring
the memory overhead of maintaining multiple full models. As a result, VideoMind achieves both
efficiency and flexibility on diverse video understanding tasks.

We conduct extensive experiments on 14 public benchmarks, including 3 on Grounded VideoQA,
6 on Video Temporal Grounding, and 5 on General VideoQA, to evaluate the effectiveness of our
approach. VideoMind exhibits strong adaptability in addressing diverse reasoning tasks by jointly
providing accurate responses and temporal-grounded evidence. Notably, our 2B model surpasses
GPT-4o (OpenAI, 2024a) and Gemini-1.5-Pro (Reid et al., 2024) on several long video benchmarks
such as CG-Bench (Chen et al., 2024a), MLVU (Zhou et al., 2024), and LVBench (Wang et al.,
2024d). State-of-the-art performance is also achieved on temporal grounding datasets including
QVHighlights (Lei et al., 2021) and Charades-STA (Gao et al., 2017). We further conduct ablation
studies to justify our design choices, particularly the Chain-of-LoRA mechanism for enhancing
flexibility while preserving efficiency. Our contributions are summarized as follows:

1. We propose VideoMind, a multi-modal agentic framework that enhances video reasoning
by emulating human cognitive processes, including task decomposition, moment localiza-
tion and verification, and answer synthesis. It addresses the unique challenges of long video
reasoning in a progressive and structured manner.

2. We also introduce Chain-of-LoRA, an efficient test-time scaling mechanism that enables
a single model to seamlessly switch among multiple roles. This approach enhances Video-
Mind’s flexibility without incurring additional memory overhead.

3. Our method demonstrates strong performance across three scenarios: Grounded VideoQA,
Video Temporal Grounding, and General VideoQA. Notably, VideoMind-2B outperforms
GPT-4o and Gemini-1.5-Pro on several long video benchmarks.

2 RELATED WORK

Temporal-grounded Video Understanding Significant advances in video understanding have
propelled tasks such as video captioning (Zhao et al., 2023; Lin et al., 2024b), video question an-
swering (Xiao et al., 2021; Zhang et al., 2023a), and video-text retrieval (Miech et al., 2019; Lin
et al., 2022). However, these models often lack visually grounded correspondence and interpretabil-
ity, particularly for long-form videos. The task of Video Temporal Grounding (Gao et al., 2017;
Krishna et al., 2017) tackles this issue by requiring precise temporal localization for diverse queries,
though regression-based models (Liu et al., 2022; 2024d) excel at localization but fall short in pro-
viding textual interpretability. Recent benchmarks (Xiao et al., 2024; Chen et al., 2024a; Liu et al.,
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2024e) intensify this challenge, demanding both reasoning for complex questions and fine-grained
temporal correspondence. Previous baselines for these tasks typically rely on multi-task objec-
tives or modular agents composed of distinct components (Yu et al., 2023; Wang et al., 2024e; Fan
et al., 2024), often yielding sub-optimal performance or overly complex systems, which constrain
their efficiency and flexibility. Our VideoMind is an agentic workflow built upon a unified LMM,
seamlessly integrating multiple functionalities while enhancing localization and interpretability, thus
surpassing the limitations of prior methods.

Multi-modal Reasoning Large Multi-modal Models (Liu et al., 2023; 2025) exhibit generalized
capabilities such as free-form question answering. However, they fall short in addressing complex
challenges that often require reasoning (Wei et al., 2022). One approach to overcome this is to de-
velop agent-based interfaces (Zhang et al., 2023a; Kahatapitiya et al., 2024), which integrates textual
outputs from visual tools to enable reasoning via LLMs. Advanced methods (Suris et al., 2023; Yang
et al., 2023; Gao et al., 2023) invoke visual APIs (e.g., detectors and captioners) through progressive
execution and reasoning. Alternatively, pure text-based reasoning (OpenAI, 2024b; Guo et al., 2025)
has been a dominant paradigm in LLMs, exemplified by training with long CoT processes using rein-
forcement learning, which provides detailed step-by-step reasoning, with some works (Zhang et al.,
2023c; Xu et al., 2025; Chen et al., 2025b; Feng et al., 2025) extending this mechanism to the visual
domain. Despite these advances, extending reasoning to videos remains an open challenge. Given
the long-context nature of informative videos, we believe that a vision-centric CoT should incorpo-
rate a human-like re-watching strategy and self-validation of intermediate observations, leading us
to introduce a novel Chain-of-LoRA framework for video reasoning.

Inference-time Searching Inference-time searching has emerged as a critical technique for tack-
ling complex reasoning and planning challenges in domains like robotics (Wang et al., 2023), games
(Silver et al., 2016), and navigation (Teng et al., 2023). The advent of OpenAI o1 (OpenAI, 2024b)
has advanced these inference-time techniques within LLMs by integrating sampling strategies such
as controlled decoding (Chakraborty et al., 2024; Xu et al., 2024b), Best-of-N sampling (Lightman
et al., 2023), and Monte Carlo Tree Search (MCTS) (Wang et al., 2024f; Zhang et al., 2024a; Wang
et al., 2024a), allowing LLMs to iteratively refine outputs and achieve superior performance with-
out altering their underlying weights. However, the potential of inference-time searching remains
largely untapped in video understanding, where temporal reasoning introduces unique challenges.
In our framework, we explore how such a strategy can be tailored for video temporal reasoning,
observing that models are highly sensitive to the selection of temporal segments, often produc-
ing unreliable predictions when segment choices are sub-optimal. To address this, we propose a
moment-level searching approach where a grounder generates multiple candidates, followed by a
verifier that evaluates and determines the correct correspondence. The framework also supports
flexible inference-time role switching with minimal memory overhead.

3 METHOD

Overview Figure 2 provides an overview of VideoMind. Our model derives from the Qwen2-VL
(Wang et al., 2024c) architecture, consisting of an LLM backbone and a ViT-based visual encoder
support dynamic resolution inputs. Given a video input V and a text query Q, the model performs
step-by-step reasoning by adaptively calling different roles: (1) Planner: Dynamically coordi-
nates the following roles based on the query. (2) Grounder: Identifies and localizes relevant video
moments. (3) Verifier: Evaluates the validity of the moments identified by the grounder, refining
them through a zoom-in process with boolean outputs. (4) Answerer: Generates the final response
in natural language. This mechanism enables the models to revisit the videos several times (with
varying temporal segments & spatial resolutions) to derive the final response.

3.1 PLANNER

An agent must be flexible enough to handle diverse tasks and efficiently determine which functions
(roles) to call. To achieve this, we design the planner, which dynamically coordinates all the other
roles for each query. It decides the sequence of function calls based on the multi-modal context. We
utilize a JSON-style object {"type":"<role>","value":"<argument>"} to denote a
function call. In this way, a sequence of roles can be succinctly represented as a list of such objects.
Three reasoning plans for different tasks are pre-defined and illustrated in Figure 3.
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Figure 2: The overall workflow of VideoMind. Given a video and a query, it adaptively activates
different roles (e.g., Planner → Grounder → Verifier → Answerer in this case) and
performs step-by-step reasoning by calling individual modules.
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Grounder Verifier

Answerer

Answerer 1
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Figure 3: Planner coordinates all the other roles based on the video and query context, offering three
reasoning plans and a query rephrasing mechanism to address diverse demands.

(1) Grounding & Verifying & Answering: This plan requires the agent to generate both a textual
response and a corresponding temporal moment. For example, in Grounded VideoQA scenarios
(Xiao et al., 2021), to answer the question “What is the boy doing when the baby is crying?”, the
agent should identify the moment of “baby is crying”, and then investigate the boy’s activity.

(2) Grounding & Verifying: This plan is designed for grounding-only tasks such as moment re-
trieval (Lei et al., 2021; Gao et al., 2017). For questions like “When does the woman go down-
stairs?”), the model should provide precise timestamps directly as the answer. Since the grounding
results could potentially be unreliable, an extra zoom-in verification step is necessary.

(3) Answering Only: If the question is straightforward (e.g., “Summarize this video”) or the video
is very short (e.g., less than 10s), it could be unnecessary to perform grounding. Instead, the model
should watch the entire video and answer the question directly.

Query Rephrasing When the user query lacks sufficient detail for accurate moment localization,
the planner is allowed to rephrase the question into a more descriptive version. For instance, the
question “What is the person sitting on the bed doing as the baby plays?” may confuse the grounder
as it contains multiple events (“person sitting on the bed” and “baby plays”). It can be rephrased to
“the baby is playing” as an accurate scene description.

To train the planning and query rephrasing capabilities, we curated a dataset of 39K samples (shown
in Table 1) from public benchmarks. For planning, we aligned each reasoning plan with correspond-
ing question types: temporal questions from NExT-QA (Xiao et al., 2021) are assigned to Plan-1,
moment queries from QVHighlights (Lei et al., 2021) are for Plan-2, and causal & descriptive ques-
tions from NExT-QA (Xiao et al., 2021) are for Plan-3. For query rephrasing, we leverage GPT-4o
mini (OpenAI, 2024a) to generate synthetic video + question→ query samples for training.

3.2 GROUNDER

The grounder aims to localize relevant moments (i.e., predicting start and end timestamps) based
on text queries, thereby supporting the reasoning process by identifying visual cues. This require-
ment calls for the development of an LMM with robust temporal grounding capabilities.
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Timestamp Decoder Instead of directly predicting timestamps through language modeling (Ren
et al., 2024) or special tokens (Huang et al., 2024a; Liu et al., 2024e), we develop a timestamp
decoder to maximize the LMM-based grounding performance. Specifically, we introduce a <REG>
token to facilitate this process. When the <REG> token is generated, the last-layer hidden states of
it and all the visual tokens will be sent into the decoder for timestamp prediction, obtaining a tuple
[tstart, tend] representing the normalized start and end timestamps.

    LN + Linear

Temporal Pyramid

Self-​Attention + FFN

CLS Head REG Head

    LN + Linear

T
T/2

T/4
T/8

Positional EncodingElement-​Wise Add

Modality Embedding <REG> Token

Video Frame Token Multi-​modal Token

Figure 4: Detailed architecture of the
timestamp decoder.

As shown in Figure 4, the decoder accepts the hidden states
of the visual tokens hv ∈ R(T×H×W )×DL and the <REG>
token hr ∈ R1×DL as inputs, where T , H , W , DL are the
downsampled number of frames, height, width, and hidden
dimensions of the LLM, respectively. We apply a 1D aver-
age pooling with kernel size and stride equal to H × W to
compress the visual tokens to one token per frame.

h′
v = AvgPool(hv) ∈ RT×DL (1)

Then, h′
v and hr are projected by two linear layers Ev and

Er to reduce the hidden dimension to D.

ev = Ev(h
′
v) ∈ RT×D, er = Er(hr) ∈ R1×D (2)

The resulting ev and er serve as consolidated representa-
tions of the video frames and the query1, respectively. To
effectively integrate their information, we concatenate them
along the sequence dimension and send them into a three-
layer transformer encoder (Vaswani et al., 2017).

[e′v; e
′
r] = Transformer([ev +mv + ep;hr +mr]) (3)

Here, modality indicators mv ∈ R1×D and mr ∈ R1×D are
randomly initialized learnable embeddings. mv is expanded
to T ×D before being added with ev . ep is a normalized si-
nusoidal positional encoding (Vaswani et al., 2017) for pre-
serving temporal awareness. The output sequence is split
back into e′v and e′r, indicating the contextualized frame and query embeddings, respectively.

Temporal Feature Pyramid To improve the model’s adaptability to videos and moments of vary-
ing lengths, we map e′v into a four-level temporal feature pyramid (Liu et al., 2024d; Zhang et al.,
2022). Each level is produced by a Conv1D→LayerNorm→SiLU block, where the Conv1D
employs a kernel size and stride of 2. Therefore, the resulting four levels retain 1, 1/2, 1/4,
and 1/8 of the original sequence length, respectively. To accelerate the prediction, we concate-
nate the sequences from all pyramid levels along the temporal dimension to form pv with length
L = T + T/2 + T/4 + T/8, allowing parallelized prediction across temporal resolutions.

Prediction Heads We introduce two heads for timestamps prediction: (1) A classification head is
designed for frame-level foreground-background classification. This is instantiated by a two-layer
Conv1D module with kernel size 3 and padding 1, followed by a Sigmoid activation. The outputs
are frame-level confidence scores {ĉi}Li=0 indicating whether each frame falls inside the desired
moment. A binary focal loss (Lin et al., 2017) is utilized to optimize these scores.

Lcls = −λclsα(1− ĉi)
γ log(ĉi) (4)

Here, α = 0.9 and γ = 2.0 are hyperparameters of the focal loss, and λcls is the loss reweighing
term. (2) A boundary regression head is adopted to predict the frame-level temporal offsets for
start and end boundaries {[b̂si , b̂ei ]}Li=0. This is also a two-layer Conv1D block (with 2 output chan-
nels), followed by an exponential activation. Predictions from different pyramid levels are further
modulated by different learnable scaling factors. These outputs are supervised by an L1 loss.

Lreg = λreg(|bsi − b̂si |+ |bei − b̂ei |) (5)

In order to realize better alignment between e′v and e′r, we incorporate an additional contrastive
loss to encourage learning more discriminative representations. Specifically, we calculate the cosine

1We use the term “query” to denote the features of <REG> token.
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Table 1: Training datasets for different roles. Source datasets were repurposed for training planner
and verifier. mr and step denote the moment retrieval and step localization subsets, respectively.

Role #Samples Source Datasets

Planner 39K NeXT-QA (34K), QVHighlights (5K)

Grounder 210K QVHighlights (5K), DiDeMo (33K), TACoS (9K), InternVid-VTime (54K), CosMo-Cap (87K),
QuerYD (19K), HiRESTmr (8K), HiRESTstep (4K)

Verifier 232K DiDeMo (165K), TACoS (43K), QVHighlights (24K)

similarities among all frame-query pairs (denoted as {si}Li=0), then sample a positive frame (falling
within the ground truth boundary) and apply the following optimization objective:

Lcon = −λcon log
exp(sp/τ)

exp(sp/τ) +
∑

i∈Θ exp(si/τ)
(6)

Here, Θ is the set of frame indices with sp > si, and τ = 0.07 is the temperature parameter.
The final loss for the timestamp decoder is the sum of these losses at all layers with λcls = 5.0,
λreg = 1.0, and λcon = 0.05. The training datasets for the grounder are listed in Table 1.

3.3 VERIFIER

Key moments are crucial for providing visual cues, yet they might be unreliable due to grounding
errors. Thus, further verifications are necessary. We let the grounder generate top-5 predictions,
then employ the verifier to select the most reliable one. This process is presented below.

Grounder: Find the candidate moments

10, 23 15, 76 ... 51, 97 42, 89

0.29 0.86 0.470.52

Zoom-​in

Verifier: Yes or No?

Figure 5: The grounder generates multiple
candidate moments, which are then refined
by the verifier via zooming-in to investi-
gate and select the best one.

Recap by Zooming-in For each candidate moment,
we apply a zoom-in strategy by expanding the bound-
aries by 50% on both sides and temporally cropping the
enlarged segment. The resulting segment and the orig-
inal text query are sent to the verifier to assess whether
the queried event exactly occurs within the temporal
boundaries. To enhance boundary awareness, we adopt
two special tokens, <SEG-START> and <SEG-END>,
to explicitly mark the beginning and end of the mo-
ment. These tokens are inserted among the visual to-
kens at the corresponding frames, effectively guiding
the model in recognizing moment boundaries.

Boolean Judgement The verifier’s responses are bi-
nary, i.e., either “Yes” or “No”. To train this role,
we sample predictions from the grounder and assign
binary labels based on an IoU threshold of 0.5. The
model is then fine-tuned via SFT to predict these labels. During inference, for each candidate mo-
ment, we employ teacher forcing to obtain the likelihoods of the <Yes> and <No> tokens, denoted
as Ly and Ln, respectively. The confidence score is then computed as Sigmoid(Ly − Ln). The
moment with the highest score is selected and passed to the answerer.

3.4 ANSWERER

The answerer responds to the given question based on the cropped video segment (w/ grounder)
or the whole video (w/o grounder). Since the objective of this role is strictly aligned with existing
LMMs, we employ the original model directly without fine-tuning or architectural modifications.

3.5 CHAIN-OF-LORA

The four roles introduced above demonstrate distinct yet complementary capabilities, collaborating
to achieve advanced vision-centric reasoning. However, simply integrating these roles into a single
model poses challenges, as their core functionalities can interfere with one another. To avoid in-
efficiently implementing them as multiple models while still accommodating diverse demands, we
propose a novel Chain-of-LoRA mechanism to enable flexible and efficient role switching.

6
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Table 2: Performance comparison on Grounded VideoQA on CG-Bench (Chen et al., 2024a).

Method Size long-acc. mIoU rec.@IoU acc.@IoU

GPT-4o (OpenAI, 2024a) – 45.2 5.62 8.30 4.38
Gemini-1.5-Pro (Reid et al., 2024) – 37.2 3.95 5.81 2.53
Claude-3.5-Sonnet (Anthropic, 2025) – 40.5 3.99 5.67 2.79

Video-LLaVA (Lin et al., 2023a) 7B 16.2 1.13 1.96 0.59
VideoLLaMA (Zhang et al., 2023b) 7B 18.4 1.21 1.87 0.84
VideoChat2 (Li et al., 2024b) 7B 19.3 1.28 1.98 0.94
ST-LLM (Liu et al., 2024c) 7B 23.8 2.23 2.86 1.13
ShareGPT4Video (Chen et al., 2024c) 16B 26.7 1.85 2.65 1.01
Chat-UniVi-v1.5 (Jin et al., 2023) 13B 25.9 2.07 2.53 1.21
VILA (Lin et al., 2024a) 8B 28.7 1.56 2.89 1.35
LongVA (Zhang et al., 2024b) 7B 28.7 2.94 3.86 1.78
LLaVA-OneVision (Li et al., 2024a) 7B 31.1 1.63 1.78 1.08
Video-CCAM (Fei et al., 2024) 14B 29.7 2.63 3.48 1.83
Kangaroo (Liu et al., 2024b) 8B 30.2 2.56 2.81 1.94
VITA (Fu et al., 2024b) 8×7B 33.3 3.06 3.53 2.06
Qwen2-VL (Wang et al., 2024c) 72B 41.3 3.58 5.32 3.31
InternVL2 (OpenGVLab, 2024) 78B 42.2 3.91 5.05 2.64

VideoMind (Ours) 2B 31.0 5.94 8.50 4.02
VideoMind (Ours) 7B 38.4 7.10 9.93 4.67

Table 3: Performance comparison on Grounded VideoQA on ReXTime (Chen et al., 2024b). FT
indicates fine-tuning on the target dataset.

Method Size FT R@0.3 R@0.5 mIoU Acc Acc@IoU

VTimeLLM (Huang et al., 2024a) 7B ✗ 28.84 17.41 20.14 36.16 –
TimeChat (Ren et al., 2024) 7B ✗ 14.42 7.61 11.65 40.04 –
LITA (Huang et al., 2024b) 13B ✗ 29.49 16.29 21.49 34.44 –

VTimeLLM (Huang et al., 2024a) 7B ✓ 43.69 26.13 29.92 57.58 17.13
TimeChat (Ren et al., 2024) 7B ✓ 40.13 21.42 26.29 49.46 10.92

VideoMind (Ours) 2B ✗ 34.31 22.69 24.83 69.06 17.26
VideoMind (Ours) 7B ✗ 38.22 25.52 27.61 74.59 20.20

In greater detail, all roles are based on a shared LMM backbone and are augmented with different
LoRA adapters (Hu et al., 2022). Note that an additional timestamp decoder is used exclusively by
the grounder. During inference, the framework dynamically activates role-specific LoRA adapters
according to the planner, thereby maximizing the strengths of each role while minimizing the mem-
ory consumption and architectural modifications to the base model.

4 EXPERIMENTS

We evaluate the effectiveness of VideoMind through extensive experiments across 14 public bench-
marks. Specifically, we study the following research questions.

Q1. Whether VideoMind is flexible and effective on diverse video understanding tasks com-
pared to the corresponding baselines with task-specific designs?

Q2. Compared with (1) training a single agent on multiple tasks or (2) distributing all roles to
different models, what advantages does Chain-of-LoRA offer?

Q3. What effects does each individual design contribute? More importantly, whether each role
is necessary for building such a video reasoning system?

Detailed information about the benchmarks, evaluation settings, implementation details, and more
experimental results can be found in the appendix.

4.1 Q1: COMPARISON WITH STATE-OF-THE-ARTS

Grounded Video Question Answering Table 2 compares the Grounded VideoQA performance
on CG-Bench (Chen et al., 2024a), a challenging video benchmark with an average duration of 27
minutes. On temporal grounding metrics (mIoU and rec.@IoU), our lightweight 2B model outper-
forms all the baselines, including GPT-4o (OpenAI, 2024a) and Gemini 1.5 Pro (Reid et al., 2024).
Our 7B model further setups a new state-of-the-art on clue-grounded QA (acc.@IoU). In Table 3 and
Table 4, we further present the comparison results on ReXTime (Chen et al., 2024b) and NExT-GQA
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Table 4: Performance comparison on Grounded VideoQA on NExT-GQA (Xiao et al., 2024).

Method Size
IoU IoP

Acc@GQA
R@0.3 R@0.5 mIoU R@0.3 R@0.5 mIoP

FrozenBiLM NG+ (Yang et al., 2022) 890M 13.5 6.1 9.6 28.5 23.7 24.2 17.5
SeViLA (Yu et al., 2023) 4B 29.2 13.8 21.7 34.7 22.9 29.5 16.6
LangRepo (Kahatapitiya et al., 2024) 8×7B – 12.2 18.5 – 28.7 31.3 17.1
VideoStreaming (Qian et al., 2024b) 8.3B – 13.3 19.3 – 31.0 32.2 17.8
LLoVi (Zhang et al., 2023a) 1.8T – 15.3 20.0 – 36.9 37.3 24.3
HawkEye (Wang et al., 2024g) 7B 37.0 19.5 25.7 – – – –
VideoChat-TPO (Yan et al., 2024) 7B 41.2 23.4 27.7 47.5 32.8 35.6 25.5

VideoMind (Ours) 2B 45.2 23.2 28.6 51.3 32.6 36.4 25.2
VideoMind (Ours) 7B 50.2 25.8 31.4 56.0 35.3 39.0 28.2

Table 5: Performance comparison on video temporal grounding on Charades-STA (Gao et al., 2017)
and ActivityNet-Captions (Krishna et al., 2017). FT means fine-tuning on the target dataset.

Method Size FT
Charades-STA ActivityNet-Captions

R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

VTimeLLM (Huang et al., 2024a) 7B ✗ 51.0 27.5 11.4 31.2 44.0 27.8 14.3 30.4
TimeChat (Ren et al., 2024) 7B ✗ 51.5 32.2 13.4 – – – – –
Momentor (Qian et al., 2024a) 7B ✗ 42.6 26.6 11.6 28.5 42.9 23.0 12.4 29.3
ChatVTG (Qu et al., 2024) 7B ✗ 52.7 33.0 15.9 34.9 40.7 22.5 9.4 27.2
VideoChat-TPO (Yan et al., 2024) 7B ✗ 58.3 40.2 18.4 38.1 – – – –
E.T. Chat (Liu et al., 2024e) 4B ✗ 65.7 45.9 20.0 42.3 24.1 12.8 6.1 18.9
Grounded-VideoLLM (Wang et al., 2024b) 4B ✗ 54.2 36.4 19.7 36.8 – – – –
TRACE (Guo et al., 2024) 7B ✗ – 40.3 19.4 – – – – –
LLaVA-ST (Li et al., 2025a) 7B ✗ 63.1 44.8 23.4 42.4 – – – –
UniTime (Li et al., 2025b) 7B ✗ – 59.1 31.9 52.2 – 22.8 14.1 27.3

VideoMind (Ours) 2B ✗ 67.6 51.1 26.0 45.2 44.0 26.5 12.6 30.1
VideoMind (Ours) 7B ✗ 73.5 59.1 31.2 50.2 48.4 30.3 15.7 33.3

Table 6: Performance comparison on General VideoQA on
Video-MME (Fu et al., 2024a), MLVU (Zhou et al., 2024),
and LVBench (Wang et al., 2024d).

Method Size
Video-MME MLVU LVBench

All Long M-Avg Overall

GPT-4o (OpenAI, 2024a) – 71.9 65.3 54.5 30.8
Gemini-1.5-Pro (Reid et al., 2024) – 75.0 67.4 – 33.1

Video-LLaVA (Lin et al., 2023a) 7B 41.1 37.8 29.3 –
TimeChat (Ren et al., 2024) 7B 34.3 32.1 30.9 22.3
MovieChat (Song et al., 2023) 7B 38.2 33.4 25.8 22.5
PLLaVA (Xu et al., 2024a) 34B 40.0 34.7 53.6 26.1
VideoChat-TPO (Yan et al., 2024) 7B 48.8 41.0 54.7 –
LongVA (Zhang et al., 2024b) 7B 52.6 46.2 56.3 –

VideoMind (Ours) 2B 55.4 46.3 58.7 35.4
VideoMind (Ours) 7B 58.2 49.2 64.4 40.8

(Xiao et al., 2024). Despite the chal-
lenges posed by the causal event re-
lationships on ReXTime, our model
can successfully identify the cor-
rect moment, resulting in significant
performance boosts compared with
zero-shot baselines. On NExT-GQA,
compared to agent-based solutions
such as LLoVi (Zhang et al., 2023a)
and LangRepo (Kahatapitiya et al.,
2024) and end-to-end methods like
VideoChat-TPO (Yan et al., 2024),
VideoMind demonstrates its effec-
tiveness on both key event grounding
and question answering.

Video Temporal Grounding We also evaluate the grounder and verifier on video temporal ground-
ing datasets. The results on Charades-STA (Gao et al., 2017) and ActivityNet-Captions (Krishna
et al., 2017) are shown in Table 5. Benefiting from (1) the timestamp decoder design, and (2) a
verifier that refines the results by focusing on critical segments, our model surpasses all LLM-based
temporal grounding methods and yields competitive results compared to fine-tuned experts.

General Video Question Answering We are also interested in whether our temporally augmented
design can improve general VideoQA tasks. In Table 6, we evaluate our model on three long video
benchmarks to determine if the Chain-of-LoRA design generalizes to common settings. Our designs
effectively help the model localize cue segments before answering the question.

4.2 Q2: THE ADVANTAGES OF CHAIN-OF-LORA

Table 7 studies the effect of role integration on VideoMind-2B. First, text-based CoT does not im-
prove the base model, highlighting the need for a vision-centric reasoning strategy. Second, the
key capabilities of roles may conflict with one another, thus only sub-optimal performance can be

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

31s24s16s0s

Options: (A) Want to hug child (B) Dancing (C) Doing squats (D) Want to hug dog (E) Stretching his arms
Question: Why did the adult squat down and opened his arm at the end of the video?

8s

VideoMind (Ours)
In the video, the adult is seen stretching his arms 
out while holding the child. This suggests that the 
adult is likely trying to catch the child or provide 

support. The other options do not seem to be 
relevant to the context of the video. Answer: (E)

Chain-​of-​Thought

The moment that CoT might refer to

VideoMind's Grounded Moment

Ground Truth Moment

Grounder Query: The adult squats down 
and opens his arm at the end of the video

1. Grounder
2. Verifier
3. Answerer

Action Plan:

[18.2, 26.6]

[24.5, 30.3]

[26.6, 30.9]

[21.9, 29.5]

Candidate Moments:

0.420.40

Best Option: (A) 
Want to hug child

0.490.41

Final Answer:Confidence:

Figure 6: Visualization of the reasoning process of VideoMind. Through chaining the planner,
grounder, verifier, and answerer, our model accurately localizes the critical moment and
selects the correct answer, avoiding confusion from incorrect segments.

Table 7: Performance and efficiency comparison of
different test-time scaling and role integration strate-
gies. Mem indicates the peak GPU memory con-
sumption. Notably, Chain-of-LoRA achieves the best
performance with minimal memory cost.

Method Mem
NExT-GQA Charades-STA Video-MME

mIoU Acc R@0.5 mIoU All Long

Qwen2-VL-2B 4.1G – 69.6 – – 53.0 43.1
+ CoT 4.1G – 69.7 – – 52.8 43.3

+ All-in-One 4.2G 28.0 70.5 47.8 42.1 53.6 43.6
+ All-Distributed 16.6G 28.6 71.4 51.1 45.2 55.4 46.3
+ Chain-of-LoRA 4.2G 28.6 71.4 51.1 45.2 55.4 46.3

Table 8: Effects of individual roles. A, G, V,
P, G% denote the answerer, grounder, veri-
fier, planner, and the percentage of samples
processed with the grounder, respectively.

Roles To Use ReXTime Charades-STA

A G V P G% mIoU Acc R@0.5 R@0.7 mIoU

✓ 0% – 68.0 – – –
✓ ✓ 100% 24.5 68.8 – – –
✓ ✓ ✓ 100% 24.8 69.1 – – –
✓ ✓ ✓ ✓ 100% 24.7 69.2 – – –
✓ ✓ ✓ ✓ 40% 26.7 70.0 – – –

✓ – – 47.2 21.7 42.0
✓ ✓ – – 51.1 26.0 45.2

achieved via joint training. Compared to the all-distributed approach that requires multiple copies
(4×) of weights, Chain-of-LoRA offers the best balance between effectiveness and efficiency.

4.3 Q3: KEY ABLATION STUDIES

Effect of Individual Roles The contributions of different roles are studied in Table 8. Our observa-
tions are as follows: (1) Grounder: By identifying visual cues, the grounder can slightly improve
QA accuracy, indicating that the grounder is especially effective on long videos. (2) Verifier:
Selecting the best candidate through the verifier improves grounding performance, yielding a con-
sistent gain of 3.2 mIoU on Charades-STA. (3) Planner: Coordinating roles via the planner –
even when performing grounding on only 40% samples (the remaining 60% are directly processed
by the answerer) – boosts the accuracy from 69.2 to 70.0. This highlights the model’s flexibility to
adaptively determine whether to perform grounding under different temporal contexts.

4.4 VISUALIZATION

In Figure 6, we illustrate how VideoMind applies all roles to progressively derive the correct answer
while avoiding potential mistakes. The planner determines what roles are needed, then calls the
grounder to generate candidate moments. The verifier selects the most relevant segment (highlighted
in yellow), which is then zoomed-in and passed to the answerer for further reasoning.

5 CONCLUSION

In this work, we introduced VideoMind, a video-language agent designed for temporal-grounded
video reasoning. Our approach employs an agentic workflow consisting of four carefully designed
roles along with a Chain-of-LoRA strategy to flexibly switch among them. Extensive experiments
on Grounded VideoQA, Video Temporal Grounding, and General VideoQA tasks demonstrate the
effectiveness and significance of our method, particularly in long-form video reasoning by providing
evidence-based answers. We hope this work inspires future advancements in agentic reasoning.

Limitations & Future Work We acknowledge that our method requires careful optimization of
individual designs and preparation of training data. In our future work, we will investigate (1) the
possibility of joint-optimization of multiple roles and (2) the integration of audio modality.
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ETHICS STATEMENT

This study focuses on algorithmic innovations for improving the visual reasoning capabilities of
large multi-modal models. It does not involve human subjects, private data, or any potentially harm-
ful insights. All datasets used are publicly available and widely adopted in the community. We
acknowledge the potential risks of misuse associated with LLMs and LMMs, including the bias
propagation and harmful content generation. However, this study does not directly address the de-
ployment or generation. Instead, it contributes to the understanding of the model architecture and
the reasoning mechanism. To the best of our knowledge, our research complies with the ICLR Code
of Ethics and does not involve any known violations or harms.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of this study. To achieve this, we have pro-
vided key hyperparameters settings in Section 3, formulation of inference pipeline in Section A.1,
implementation details in Section A.2, evaluation metrics in Section B.1, and prompt templates in
Section C.1. We also open-source all the code (submitted as the supplementary material), model
checkpoints, data, and training logs in this study to facilitate future research in this direction.
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APPENDIX

In this appendix, we provide more details about the model inference pipeline and implementation
details to complement the main paper. Additional experiments, detailed analysis, and discussions
are also incorporated. Below is the table of contents.

A. Model

1. Inference Pipeline
2. Implementation Details

B. Experiments

1. Benchmarks and Settings
2. More Experimental Results
3. More Detailed Analysis

C. Miscellaneous

1. Prompt Templates

D. The Use of LLMs Statement

A MODEL

A.1 INFERENCE PIPELINE

The formulation of VideoMind’s inference pipeline is illustrated in Algorithm 1. Given a video V
and a question Q, the planner dynamically calls different roles on demand to analyze the multi-
modal context and generate the answer.

Algorithm 1 VideoMind’s Chain-of-LoRA Pipeline
1: Input: A video V and a questionQ
2: Output: An answer A to the question with temporal moment T = [ts, te]
3: Plan P ← Planner(V,Q)
4: if Grounder ∈ P then
5: {[tis, tie]}i← Grounder(V,Q)
6: for all i do
7: Ṽi ← ZoomIn(V, [tis, tie])
8: Scorei ← Verifier(Ṽi,Q)
9: end for

10: i← argmax si(Scorei)
11: end if
12: if Answerer ∈ P then
13: A ←Answerer(Ṽi,Q)
14: end if
15: return (A, T )

A.2 IMPLEMENTATION DETAILS

We leverage the 2B and 7B versions of Qwen2-VL (Wang et al., 2024c) as our base models, and
apply LoRA adapters with rank = 64 and alpha = 64 to the planner, grounder, and verifier. The
hidden size of the timestamp decoder is set to 256. The maximum number of tokens per frame
and maximum number of frames for the planner, grounder, verifier, and answerer are set as [64,
100], [64, 150], [64, 64], and [256, 32], respectively. We train different roles separately on different
datasets and load them together during inference, so that the model can efficiently switch roles by
activating different LoRAs. During training, we set the global batch size to 32, and utilize the
AdamW optimizer (Loshchilov & Hutter, 2019) with learning rates of 2e-5, 1e-4, and 5e-5 for
planner, grounder, and verifier, respectively. All the roles were trained for 1 epoch on their specific
datasets, with a linear warmup in the first 3% steps. During inference, we apply an NMS with
IoU = 0.75 to reduce duplicated moments from the grounder.
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Table 9: Details of the evaluation benchmarks. The datasets encompass three representative tasks,
i.e., Grounded VideoQA, Video Temporal Grounding, and General VideoQA, with video durations
ranging from several seconds to more than one hour.

Dataset Duration Domain Main Metrics

Grounded Video Question Answering (Grounding + QA)

CG-Bench (Chen et al., 2024a) 1624.4s Diverse rec.@IoU, acc.@IoU
ReXTime (Chen et al., 2024b) 141.1s Vlog, News, Activity mIoU, Acc (IoU⩾ 0.5)
NExT-GQA (Xiao et al., 2024) 39.5s Reasoning mIoP, Acc@GQA

Video Temporal Grounding (Grounding only)

Charades-STA (Gao et al., 2017) 30.1s Indoor R@{0.3∼ 0.7}, mIoU
ActivityNet-Captions (Krishna et al., 2017) 111.4s Activity R@{0.3∼ 0.7}, mIoU
QVHighlights (Lei et al., 2021) 150s Vlog, News R@{0.5, 0.7}, mAP
TACoS (Regneri et al., 2013) 358.2s Cooking R@{0.3∼ 0.7}, mIoU
Ego4D-NLQ (Grauman et al., 2022) 379.0s Egocentric R@{0.3∼ 0.7}, mIoU
ActivityNet-RTL (Huang et al., 2024b) 111.4s Reasoning P@0.5, mIoU

General Video Question Answering (QA only)

Video-MME (Fu et al., 2024a) 1017.9s Diverse Acc (w/o subs)
MLVU (Zhou et al., 2024) 930s Diverse Acc
LVBench (Wang et al., 2024d) 4101s Diverse Acc
MVBench (Li et al., 2024b) 15s Diverse Acc
LongVideoBench (Wu et al., 2024) 473s Diverse Acc

Table 10: Performance on MultiHop-EgoQA (Chen et al., 2025a). FT means fine-tuning on the
target dataset. Sent. Sim. denotes sentence similarity computed by all-MiniLM-L6-v2.

Method Size FT
Temporal Grounding Question Answering

IoU@0.3 mIoU Sent. Sim. Score

Human – – 87.0 61.8 74.3 7.5

GPT-4o (OpenAI, 2024a) – ✗ 12.0 12.2 73.7 5.4
InternVL2 (OpenGVLab, 2024) 8B ✗ 6.3 6.6 71.9 4.5
LLaVA-NeXT-Video (Liu et al., 2024a) 7B ✗ – – 62.1 4.2
TimeChat (Ren et al., 2024) 7B ✗ 3.0 3.6 58.9 3.3
VTimeLLM (Huang et al., 2024a) 7B ✗ 8.8 9.2 70.5 4.3
GeLM (Chen et al., 2025a) 7B ✓ 18.2 16.7 75.0 4.8

VideoMind (Ours) 2B ✗ 23.2 17.8 58.8 3.5
VideoMind (Ours) 7B ✗ 25.1 19.0 77.3 4.9

B EXPERIMENTS

B.1 BENCHMARKS AND SETTINGS

The experiments are extensively designed across 14 diverse benchmarks. The statistics are listed in
Table 9. The major benchmarks are introduced below.

CG-Bench (Chen et al., 2024a) is designed for long video grounded question answering, featuring
a diverse domain and various evaluation metrics. It includes 1.2K manually curated videos, ranging
from 10 to 80 minutes, with a total of 12K QA pairs. The dataset is categorized into perception, rea-
soning, and hallucination question types, and introduces clue-based evaluation methods like white
box and black box assessments to ensure models provide answers based on accurate video reasoning.

ReXTime (Chen et al., 2024b) tests models on complex temporal reasoning, using an automated
pipeline for QA pair generation, significantly reducing manual effort. It includes 921 validation
and 2.1K test samples, each manually curated for accuracy, and highlights a 14.3% accuracy gap
between SoTA models and human performance. This benchmark is crucial for evaluating models
on cause-and-effect relationships across video segments.

NExT-GQA (Xiao et al., 2024) aims to challenge models to reason about causal and temporal
actions, supporting both multi-choice and open-ended tasks. This is an extension of NExT-QA
(Xiao et al., 2021) comprising 10.5K manually labeled video QA pairs with temporal segments.
The samples in this benchmark are from “causal” and “temporal” classes, while the “descriptive”
questions in NExT-QA are discarded.
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Table 11: Video temporal grounding on TACoS (Regneri et al., 2013). FT means fine-tuning on the
target dataset. Note that our method was co-trained on this dataset.

Method Size FT R@0.3 R@0.5 R@0.7 mIoU

Non-LLM-based Specialists

2D-TAN (Zhang et al., 2020b) – ✓ 40.0 28.0 12.9 27.2
Moment-DETR (Lei et al., 2021) – ✓ 38.0 24.7 12.0 25.5
UniVTG (Lin et al., 2023b) – ✓ 51.4 35.0 17.4 33.6
R2-Tuning (Liu et al., 2024d) – ✓ 49.7 38.7 25.1 35.9

LLM-based Generalists

VideoMind (Ours) 2B ✗ 38.6 26.9 15.5 27.4
VideoMind (Ours) 7B ✗ 49.5 36.2 21.4 34.4

Table 12: Performance of video temporal grounding on Ego4D-NLQ (Grauman et al., 2022). FT
means fine-tuning on the target dataset. VideoMind-Ego is a variant of our method trained with extra
67K egocentric grounding samples from NaQ (Ramakrishnan et al., 2023).

Method Size FT R@0.3 R@0.5 R@0.7 mIoU

Non-LLM-based Specialists

2D-TAN (Zhang et al., 2020b) – ✓ 4.3 1.8 0.6 3.4
VSLNet (Zhang et al., 2020a) – ✓ 4.5 2.4 1.0 3.5
Moment-DETR (Lei et al., 2021) – ✓ 4.3 1.8 0.7 3.5
UniVTG (Lin et al., 2023b) – ✓ 7.3 4.0 1.3 4.9
R2-Tuning (Liu et al., 2024d) – ✓ 7.2 4.5 2.1 4.9
UniVTG (Lin et al., 2023b) – ✗ 6.5 3.5 1.2 4.6

LLM-based Generalists

VideoMind (Ours) 2B ✗ 5.9 2.9 1.2 4.7
VideoMind (Ours) 7B ✗ 7.2 3.7 1.7 5.4

VideoMind-Ego (Ours) 2B ✗ 7.2 3.9 1.8 5.3

Charades-STA (Gao et al., 2017) contains 10K in-door videos, averaging 30.1 seconds each, with
16K temporal annotations spanning daily activity, alongside free-text descriptions. These rich an-
notations make Charades-STA particularly suitable for evaluating temporal grounding models under
indoor environments.

ActivityNet-Captions (Krishna et al., 2017) is a large-scale benchmark with 20K untrimmed
YouTube videos with a total of 849 hours, covering diverse activities from personal care to sports.
This dataset contains high-quality dense video captioning annotations (3.65 temporally localized
sentences per video), which we use as queries for video temporal grounding. Each query has an
average length of 13.5 words.

B.2 MORE EXPERIMENTAL RESULTS

Multi-Hop Grounded Question Answering To investigate the performance of our method on
novel tasks that require a hybrid or dynamically generated sequence of steps, we evaluate our method
on MultiHop-EgoQA (Chen et al., 2025a), a Grounded VideoQA dataset highlighting multi-hop
temporal reasoning. For each question, the model must ground and reason on multiple relevant mo-
ments before answering, which is a paradigm that does not fit neatly into the pre-defined single-hop
grounding pipeline. The evaluation results are shown in Table 10. Thanks to VideoMind’s archi-
tectural design to produce multiple candidate moments in a single grounding step, it can effectively
capture the multi-hop evidence required by this benchmark. As a result, our method achieves strong
zero-shot performance, surpassing all open-source baselines and remaining competitive to closed-
source GPT-4o (OpenAI, 2024a) across both grounding metrics and QA metrics.

Video Temporal Grounding We additionally compare VideoMind with representative methods on
the challenging TACoS (Regneri et al., 2013), Ego4D-NLQ (Grauman et al., 2022), and QVHigh-
lights (Lei et al., 2021) datasets in Table 11, Table 12, and Table 13, respectively. Our 2B model
performs better than the strong task-specific baseline UniVTG (Lin et al., 2023b) on TACoS but
slightly worse than it on Ego4D-NLQ. This is justifiable as neither the grounder nor the verifier was
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Table 13: Fine-tuned video temporal grounding results on
QVHighlights (Lei et al., 2021).

Method Size
R1 mAP

@0.5 @0.7 @0.5 @0.75 Avg.

Non-LLM-based Specialists

XML (Lei et al., 2020) – 41.83 30.35 44.63 31.73 32.14
XML+ (Lei et al., 2021) – 46.69 33.46 47.89 34.67 34.90
Moment-DETR (Lei et al., 2021) – 59.78 40.33 60.51 35.36 36.14
UMT (Liu et al., 2022) – 60.83 43.26 57.33 39.12 38.08
MomentDiff (Li et al., 2023b) – 58.21 41.48 54.57 37.21 36.84
QD-DETR (Moon et al., 2023) – 62.40 44.98 62.52 39.88 39.86
UniVTG (Lin et al., 2023b) – 65.43 50.06 64.06 45.02 43.63
R2-Tuning (Liu et al., 2024d) – 68.03 49.35 69.04 47.56 46.17

LLM-based Generalists

VideoMind (Ours) 2B 75.42 59.35 74.11 55.15 51.60
VideoMind (Ours) 7B 78.53 61.09 76.07 58.17 54.19

Table 14: Comparison of performance
on reasoning temporal localization on
ActivityNet-RTL (Huang et al., 2024b).
Our zero-shot VideoMind-7B outper-
forms the strong fine-tuned baseline
LITA-13B (Huang et al., 2024b) by a
considerable margin.

Method Size FT P@0.5 mIoU

LITA (Huang et al., 2024b) 7B ✓ 21.2 24.1
LITA (Huang et al., 2024b) 13B ✓ 25.9 28.6

VideoMind (Ours) 2B ✗ 20.1 22.7
VideoMind (Ours) 7B ✗ 28.0 31.3

Table 15: Performance of VideoQA on LongVideoBench (Wu et al., 2024) val split.

Method Size Acc
Acc @ Duration Groups

(8, 15] (15, 60] (180, 600] (900, 3600]

GPT-4o (OpenAI, 2024a) – 66.7 71.4 76.7 69.1 60.9
GPT-4 Turbo (Achiam et al., 2023) – 59.0 65.2 68.2 62.4 50.5
Gemini-1.5-Pro (Reid et al., 2024) – 64.0 67.4 75.1 65.3 58.6
Gemini-1.5-Flash (Reid et al., 2024) – 61.6 68.3 76.2 62.6 54.0

Idefics2 (Laurencon et al., 2024) 8B 49.7 59.8 65.7 47.8 42.7
Phi-3-Vision (Abdin et al., 2024) 4B 49.6 59.3 61.6 46.8 44.7
Mantis-Idefics2 (Jiang et al., 2024) 8B 47.0 56.6 55.8 45.6 42.2
Mantis-BakLLaVA (Jiang et al., 2024) 7B 43.7 53.4 57.6 40.3 38.7

VideoMind (Ours) 2B 48.8 59.3 59.3 49.3 41.7
VideoMind (Ours) 7B 56.3 67.7 67.4 56.8 48.6

Table 16: Performance comparison on general VideoQA on MVBench (Li et al., 2024b).

Model Size AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg.

GPT-4V (OpenAI, 2023) – 55.5 63.5 72.0 46.5 73.5 18.5 59.0 29.5 12.0 40.5 83.5 39.0 12.0 22.5 45.0 47.5 52.0 31.0 59.0 11.0 43.5

Video-ChatGPT (Maaz et al., 2023) 7B 23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5 32.7
Video-LLaMA (Zhang et al., 2023b) 7B 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0 34.1
VideoChat (Li et al., 2023a) 7B 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0 35.5
Video-LLaVA (Lin et al., 2023a) 7B 46.0 42.5 56.5 39.0 53.5 53.0 48.0 41.0 29.0 31.5 82.5 45.0 26.0 53.0 41.5 33.5 41.5 27.5 38.5 31.5 43.0
TimeChat (Ren et al., 2024) 7B 40.5 36.0 61.0 32.5 53.0 53.5 41.5 29.0 19.5 26.5 66.5 34.0 20.0 43.5 42.0 36.5 36.0 29.0 35.0 35.0 38.5
PLLaVA (Xu et al., 2024a) 7B 58.0 49.0 55.5 41.0 61.0 56.0 61.0 36.0 23.5 26.0 82.0 39.5 42.0 52.0 45.0 42.0 53.5 30.5 48.0 31.0 46.6
ShareGPT4Video (Chen et al., 2024c) 7B 49.5 39.5 79.5 40.0 54.5 82.5 54.5 32.5 50.5 41.5 84.5 35.5 62.5 75.0 51.0 25.5 46.5 28.5 39.0 51.5 51.2
ST-LLM (Liu et al., 2024c) 7B 66.0 53.5 84.0 44.0 58.5 80.5 73.5 38.5 42.5 31.0 86.5 36.5 56.5 78.5 43.0 44.5 46.5 34.5 41.5 58.5 54.9
VideoGPT+ (Maaz et al., 2024) 3.8B 69.0 60.0 83.0 48.5 66.5 85.5 75.5 36.0 44.0 34.0 89.5 39.5 71.0 90.5 45.0 53.0 50.0 29.5 44.0 60.0 58.7
VideoChat2 (Li et al., 2024b) 7B 75.5 58.0 83.5 50.5 60.5 87.5 74.5 45.0 47.5 44.0 82.5 37.0 64.5 87.5 51.0 66.5 47.0 35.0 37.0 72.5 60.4

VideoMind (Ours) 2B 78.5 76.0 75.5 46.0 69.5 90.5 71.5 33.0 48.0 40.0 92.5 52.5 71.5 92.0 44.5 61.5 61.5 37.5 51.0 57.0 62.5
VideoMind (Ours) 7B 74.0 71.5 81.0 50.0 77.0 93.0 75.0 38.0 48.5 46.0 91.0 39.0 80.0 94.5 49.5 55.5 70.0 40.5 57.0 61.0 64.6

trained on egocentric videos, while UniVTG was pretrained on 1.8M samples from Ego4D (Grau-
man et al., 2022). To align the setting, we trained an additional VideoMind-2B variant with extra
67K grounding samples from NaQ (Ramakrishnan et al., 2023). To our best knowledge, VideoMind
is the first LLM-based grounding model that supports multi-moment outputs, thereby being
able to be evaluated on QVHighlights. Compared with task-specific experts, our VideoMind-2B
significantly outperforms all previous methods and sets a new state-of-the-art.

Reasoning Temporal Localization We also evaluate the generalizability of grounder and verifier
on the more challenging reasoning temporal localization (Huang et al., 2024b) task, which is similar
to video temporal grounding, but the queries are not directly describing the moment. The models
are required to infer the actual event using their world knowledge. The results in Table 14 show that
VideoMind can successfully generalize its zero-shot grounding capability to complex scenarios.

General Video Question Answering For the task of long VideoQA, we also provide evaluations
on LongVideoBench (Wu et al., 2024) in Table 15, which further verifies the effectiveness of Video-
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Table 17: Comparison with representative video reasoning methods on video QA/grounding tasks.

Method Size
CG-Bench MLVU LVBench Charades-STA ActivityNet-Captions

long-acc. M-Avg Overall R@0.5 mIoU R@0.5 mIoU

Pure Text-based Reasoning Models

LongVILA-R1 (Chen et al., 2025b) 7B 26.7 56.5 34.7 30.3 30.0 16.4 21.4
Video-R1 (Feng et al., 2025) 7B 34.4 63.1 38.4 35.3 34.9 22.6 28.0

Vision-centric Reasoning Models

VideoMind (Ours) 7B 38.4 64.4 40.8 59.1 50.2 30.3 33.3

Table 18: Performance of different timestamp modeling designs on Charades-STA (Gao et al., 2017).

Method R@0.3 R@0.5 R@0.7 mIoU

Text-only (Ren et al., 2024) 56.8 39.5 14.3 36.1
Special Tokens (Qian et al., 2024a) 56.4 39.2 14.5 35.7
Embedding Matching (Liu et al., 2024e) 59.6 43.5 17.0 38.2
Time Marker (Chen et al., 2024d) 60.5 43.9 17.2 38.6
Timestamp Decoder (Ours) 64.1 47.2 21.7 42.0

Table 19: Case distribution on ReXTime (Chen et al., 2024b) and NExT-GQA (Xiao et al., 2024).
Correct, Planning, Grounding, Verification, and Answering refers to correct prediction, planning
error, grounding error, verification error, and answering error, respectively.

Method Size
ReXTime NExT-GQA

Correct Planning Grounding Verification Answering Correct Planning Grounding Verification Answering

VideoMind 2B 69.1% 1.2% 18.3% 5.7% 5.7% 71.2% 1.9% 14.0% 6.9% 6.0%
VideoMind 7B 74.6% 1.1% 15.0% 4.6% 4.7% 76.6% 0.7% 11.8% 5.8% 5.1%

3.9%

59.2%
18.4%

18.4%

(a) ReXTime (2B)

4.3%

59.1%
18.1%

18.5%

(b) ReXTime (7B)

6.6%

48.6%24.0%

20.8%

(c) NExT-GQA (2B)

3.0%

50.4%
24.8%

21.8%

(d) NExT-GQA (7B)

Figure 7: Error distribution of our 2B and 7B variants on ReXTime (Chen et al., 2024b) and NExT-
GQA (Xiao et al., 2024) datasets. The red, orange, blue, and green portions represent planning,
grounding, verification, and answering errors, respectively.

Mind on videos scaling to one-hour long. Table 16 presents more results of VideoMind on MVBench
(Li et al., 2024b), which is a benchmark with very short videos (around 15s). Our model can still
achieve good performance on these short video scenarios.

Comparison with Text-based Reasoning Models In Table 17, we compare our method with
representative pure text-based video reasoning methods. Our method significantly outperforms both
baselines on all benchmarks, demonstrating that vision-centric reasoning is superior to pure text-
based reasoning on long/complex video reasoning tasks.

B.3 MORE DETAILED ANALYSIS

Timestamp Modeling Designs The grounder plays a crucial role in our proposed Chain-of-LoRA
pipeline. The model’s temporal grounding quality directly impacts the final QA accuracy. To demon-
strate the necessity of this design, we implement and compare the following alternative timestamp
modeling techniques based on VideoMind-2B (Grounder):
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Figure 8: The correlation between grounding IoU and the final QA accuracy of VideoMind-2B on
ReXTime (Chen et al., 2024b) and NExT-GQA (Xiao et al., 2024) datasets.

Table 20: Effect of the temporal feature pyramid
on Charades-STA (Gao et al., 2017).

#Pyramid Levels
Charades-STA

R@0.3 R@0.5 R@0.7 mIoU

1 60.55 44.57 15.82 38.13
2 61.51 46.90 19.36 40.43
3 62.62 47.02 20.08 41.27
4 63.55 47.23 21.69 42.02

Table 21: Effect of different verifier styles on
Charades-STA (Gao et al., 2017).

Verifier Type
Charades-STA

R@0.3 R@0.5 R@0.7 mIoU

Direct 60.42 45.28 19.32 39.84
Expand 65.10 48.70 23.15 43.57
Textual 65.24 49.33 23.89 44.01

Special Token 67.63 51.05 25.99 45.22

Table 22: Effect of the verifier on Charades-STA (Gao et al., 2017). IoU Raise means the percentage
of the samples whose grounding IoU is raised by the verifier.

Role(s) Size R@0.3 R@0.5 R@0.7 mIoU IoU Raise

Grounder 2B 63.2 46.9 20.5 41.7 –
Grounder + Verifier 2B 68.0 (+7.6%) 51.2 (+9.2%) 24.3 (+18.5%) 44.8 (+7.4%) 32.9%

Grounder 7B 69.4 53.2 26.6 46.8 –
Grounder + Verifier 7B 73.8 (+6.3%) 59.1 (+11.1%) 30.1 (+13.2%) 49.8 (+6.4%) 31.3%

Table 23: The accuracy of planner with
different input combinations.

Input Video Input Question Planning Acc

✓ 0.42
✓ 0.79

✓ ✓ 0.93

Table 24: Comparison of average inference time on CG-
Bench (Chen et al., 2024a) (avg. duration: 27 min).

Method Size Inference Time (s/video)

LongVILA-R1 (Chen et al., 2025b) 7B 8.75

VideoMind 7B 9.53 (+8.9%)
VideoMind (w. Auto Planning) 7B 8.07 (-7.8%)

1. Text-only (Ren et al., 2024): Directly represent timestamps in text form (e.g., “2.3 seconds”).
2. Special Tokens (Qian et al., 2024a): Define a set of timestamp tokens (e.g., <T0>, <T1>).
3. Embedding Matching (Liu et al., 2024e): Predict frame features to retrieve the frame index.
4. Time Marker (Chen et al., 2024d): Explicitly insert textual timestamps among visual tokens.

Their zero-shot video temporal grounding results are shown in Table 18. The results clearly demon-
strate that the timestamp decoder delivers the strongest temporal grounding capability. We attribute it
to two key factors: (1) It decouples continuous timestamp modeling from discrete token prediction,
allowing the model to represent time with higher precision; (2) The direct regression supervision
(L1 Loss) further enhances time reasoning and stabilizes training. Moreover, the timestamp decoder
naturally supports predicting multiple moments with corresponding confidence scores, supporting
tasks like multi-moments retrieval (Lei et al., 2021) and facilitating moment re-ranking through the
verifier. These advantages jointly enhance the reliability of temporal grounding, which ensures the
correct moment could be localized for further reasoning.

Effect of the Temporal Feature Pyramid Table 20 studies the effectiveness of the temporal fea-
ture pyramid. Our baseline model directly makes predictions on the last-layer transformer outputs.
When adding more pyramid levels, the performance of video temporal grounding consistently im-
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Table 25: Controlled experiments with strictly aligned hyperparameter settings. Both MLVU (Zhou
et al., 2024) and LVBench (Wang et al., 2024d) are downsampled to 300 samples each.

Method Size
MLVU (mini) LVBench (mini)

M-Avg Overall

GPT-4o (OpenAI, 2024a) – 59.7 31.3
Gemini-1.5-Pro (Reid et al., 2024) – 60.3 36.3

VideoMind (Ours) 2B 59.3 35.7
VideoMind (Ours) 7B 62.7 40.3

Table 26: Performance comparison among the integration of our Chain-of-LoRA mechanism on
different representative base models.

Base Model Size
CG-Bench ReXTime Video-MME MLVU LVBench

acc.@IoU Acc@IoU w/o sub. M-Avg Overall

Qwen2-VL (Wang et al., 2024c) 2B 4.0 17.3 55.4 58.7 35.4
7B 4.7 20.2 58.2 64.4 40.8

Qwen2.5-VL (Bai et al., 2025) 3B 5.0 15.6 60.9 62.7 40.5
7B 5.7 19.8 65.9 66.3 45.2

InternVL3 (Zhu et al., 2025) 2B 4.1 17.5 58.2 61.4 38.1
8B 4.5 20.8 66.5 63.8 42.3

Table 27: Performance of the simulated multi-role pipelines on closed-source models. Both MLVU
(Zhou et al., 2024) and LVBench (Wang et al., 2024d) are downsampled to 300 samples each.

Method Multi-Role
Pipeline

MLVU (mini) LVBench (mini)

M-Avg Overall

GPT-4o (OpenAI, 2024a) ✗ 59.7 31.3
✓ 62.3 (+4.4%) 32.7 (+4.5%)

GPT-5 (OpenAI, 2025) ✗ 61.7 34.3
✓ 63.3 (+2.6%) 36.3 (+5.8%)

Gemini-2.5-Pro (DeepMind, 2025) ✗ 73.3 65.7
✓ 76.3 (+4.1%) 68.7 (+4.6%)

proves under all metrics on Charades-STA (Gao et al., 2017) under zero-shot setting, suggesting the
effectiveness of improving the robustness of the model when facing moments with different lengths.

Effect of the Verifier for Zoom-in Evaluation To quantify the verifier’s corrective gain, we pro-
vide a comparison between w. and w/o the verifier on Charades-STA (Gao et al., 2017) in Table 22.
The results demonstrate that the verifier consistently enhances temporal grounding performance, es-
pecially on high-quality predictions (e.g., 18.5% higher R@0.7 on the 2B variant), highlighting its
importance in the overall pipeline.

Design Choices of Verifier In Table 21, we examine various design choices for the verifier. The
term “Direct” refers to the method where the grounded moment is directly sent into the model with-
out any expansion. “Expand” denotes expanding the temporal boundaries by 50%, while “Textual”
involves adding supplementary textual information to indicate the length of the target event. “Spe-
cial Token” represents our final approach, utilizing special tokens to denote the grounded start and
end timestamps. The comparison demonstrates that expanding the temporal boundaries effectively
broadens the verifier’s perceptual range, and the use of special tokens enhances the model’s aware-
ness of precise moment boundaries.

Reliability of the Planner We provide an in-depth investigation into the reliability of the planner.
Specifically, we randomly split the planner’s training dataset into an 80% training set and a 20%
test set, and then re-train the planner on the training set and evaluate it as a three-way classification
task on the held-out test set. The metric planning accuracy is defined as the proportion of
samples for which the predicted reasoning plan is correct. The comparison among different input
combinations in Table 23 demonstrate that incorporating both video (even with low resolution) and
question input substantially improves planning performance, and the resulting 93% accuracy reflects
the considerable reliability of the planner.
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Inference-Time Efficiency In Table 24, we study the inference-time efficiency of our method on
CG-Bench (Chen et al., 2024a). All experiments are conducted on a single NVIDIA RTX 6000 Ada
GPU. Compared with the text-based reasoning baseline LongVILA-R1 (Chen et al., 2025b), our full
pipeline is approximately 8.9% slower. However, this gap can be easily bridged by activating the
planner’s auto-planning capability. When the planner is allowed to choose the reasoning path, some
easy questions are routed directly to the answerer, which substantially reduces the average inference
time from 9.53s to 8.07s per video, resulting 7.8% faster inference speed than the baseline.

Overall Robustness and Error Accumulation We acknowledge that the proposed sequential rea-
soning pipeline has the potential risk of error propagation and accumulation. To quantify this effect,
we conduct a systematic analysis of error propagation on two representative datasets: ReXTime
(Chen et al., 2024b) (more temporal-related) and NExT-GQA (Xiao et al., 2024) (more reasoning-
related). For both datasets, each error case is categorized into one of the following types: (1) Plan-
ning Error: The question can only be correctly answered by switching to another reasoning plan
(e.g., from “all roles” to “answerer only”); (2) Grounding Error: All the top-5 predicted moments
are incorrect (i.e., having temporal IoU < 0.5); (3) Verification Error: The moment selected after
verification is incorrect; (4) Answering Error: The predicted answer is incorrect.

We present the case distributions in Table 19 and error distributions in Figure 7. Several conclusions
can be drawn from the results: (1) The planner is highly reliable, accounting for less than 5% of the
error cases on both datasets; (2) Grounding errors account for roughly half of all failures. This is
aligned with our hypothesis that accurate temporal grounding plays a crucial role in the multi-role
reasoning pipeline; (3) Verification and answering contribute comparably smaller portions of the
failures, accounting for only about 20% error cases each.

Correlation between Grounding IoU and QA Accuracy We study the correlation between tem-
poral grounding performance and QA accuracy in Figure 8. Specifically, we group the samples in
ReXTime (Chen et al., 2024b) and NExT-GQA (Xiao et al., 2024) datasets into different IoU buck-
ets, and plot the average QA accuracy within each bucket. On ReXTime, which is more temporal-
related, the results show a clear positive correlation between grounding IoU and final QA accuracy.
On the more reasoning-related NExT-GQA, such correlation is less significant.

Controlled Experiments on Closed-source APIs The results of closed-source models in Table 2
and Table 6 are reported from the corresponding benchmark papers, without strictly aligned settings.
Therefore, we provide a controlled experiment to validate the advantages of our method. Specifi-
cally, we select two challenging long video understanding benchmarks, i.e., MLVU (Zhou et al.,
2024) and LVBench (Wang et al., 2024d), and randomly sample 300 QA pairs from each, forming
MLVU (mini) and LVBench (mini). We align the key hyperparameters as follows:

1. Frame Rate: 1 FPS
2. Max Frame Count: 150
3. Frame Resolution: max 448 × 448 pixels with natural aspect ratio
4. Model Hyperparameters: temperature = 0, top p = 0, top k = 0

The comparisons are presented in Table 25, clearly showing that our VideoMind-7B outperforms
both GPT-4o (OpenAI, 2024a) and Gemini-1.5-Pro (Reid et al., 2024) on both datasets.

Integration with More Open-source LMMs In Table 26, we study whether the proposed Chain-
of-LoRA pipeline provides a consistent benefit across different base models. The results show that
when integrated with stronger base models like Qwen2.5-VL (Bai et al., 2025) and InternVL3 (Zhu
et al., 2025), the performance of our Chain-of-LoRA pipeline could be further enhanced on multiple
long video benchmarks, highlighting our method’s generalizability.

Integration with Closed-source LMMs We are also interested in whether the proposed multi-
role pipeline could be simulated via a series of prompts on closed-source models. To investigate
this, we evaluate the effectiveness of the multi-role reasoning prompt when applied to three models,
i.e., GPT-4o (OpenAI, 2024a), GPT-5 (OpenAI, 2025), and Gemini-2.5-Pro (DeepMind, 2025), on
the previously constructed MLVU (mini) and LVBench (mini). The results in Table 27 show that
our pipeline consistently boosts the performance of different closed-source models, highlighting an
interesting finding: the multi-role reasoning pipeline itself can systematically enhance long video
reasoning, even without role-specific model designs or training.
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C MISCELLANEOUS

C.1 PROMPT TEMPLATES

We present the prompts used in this work, including the input prompts for each role of VideoMind
and the prompt for GPT-4o mini (OpenAI, 2024a) for data annotation.

Prompt for the Planner:

You are acting as the planner now. Given a question about the video, your task is to analyze the question
and identify the best way to answer this question. You have access to the following tools:

Grounder: Accepts a text query and localizes the relevant video segment according to the query.
Verifier: A tool supporting grounder by verifying the reliability of its outputs.
Answerer: Answer a given question directly based on the whole video or a cropped video segment.

Your response must be a list in JSON format. A valid plan for reasoning could be “grounder, ver-
ifier, answer”, “grounder, verifier”, or “answerer”, depending on the given question. Please see an
example of the format below.

[{“type”: “grounder”, “value”: “text query”}, {“type”: “verifier”}, {“type”: “answerer”}]

Note that only the grounder can accept an argument called “value”, which is the text query used
for grounding. Now I give you the question: “{question}”. Please think carefully and respond with your
plan in JSON directly.

Prompt for the Grounder:

You are acting as the grounder now. Given a video and a text query, your goal is to temporally localize
the video moment described by the query. If the query is directly describing a moment, simply localize it
according to its content. Otherwise, if the moment is described as “before/after a pivotal event”, you need
to determine the actual event it refers to. The localized moment should only cover the target event. Now I
give you the query: “{query}”. Please think carefully and provide your response.

Prompt for the Verifier:

You are acting as the verifier now. You will be presented a text query describing a moment that potentialy
happens in the given video. Your task is to identify whether the video segment between <SEG-START>
and <SEG-END> perfectly covers the moment. If the described moment can be seen in the video, please
focus on verifying whether the moment starts at <SEG-START> and ends at <SEG-END>. Respond with
“Yes” if you think the moment boundaries are correct, otherwise “No”. If the described moment cannot
be seen in the video, respond with “No” directly. Now I give you the query: “{query}”. Please think
carefully and respond with “Yes” or “No” directly.

Prompt for the Answerer: When subtitles are considered, we only present the first 100 lines.

You are given a video with {duration} seconds long.
Subtitles: {subtitles}
{question}
Options:
(A) {option 1}
(B) {option 2}
(C) {option 3}
(D) {option 4}
Please only give the best option.

Prompt for Query Rephrasing Data Generation:
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You are an expert in rewriting questions into queries. I will give you a question that requires to be
answered based on a specific moment in a video. Your task is to analyze the question and rewrite it into
a declarative sentence, which could be used as a text query to search for the relevant video moment. The
query should be concise, describing the key event or key scene that the question asks for.

Here are some examples:

Question: How does the male cyclist react when he sees the steep path?
Query: The male cyclist sees the steep path.

Question: What did the girl do at the end of the video?
Query: The end of the video.

Question: What did the lady do as she was cycling off?
Query: The lady is cycling off.

Question: What is the person with red shirt doing on the yacht?
Query: The person with red shirt stays on the yacht.

Now I give you the question: “{question}”. Please think carefully and respond with the query directly.

D THE USE OF LLMS STATEMENT

Large Language Models (LLMs) were used in this study to aid in polishing the manuscript. Specif-
ically, we used LLMs to assist in refining the language and detecting potential grammatical errors.
This is to improve readability and ensure clarity of the paper. We confirm that LLMs were not in-
volved in research ideation, method exploration, and experiment designs. All research ideas, meth-
ods, and analysis were produced by the authors. We take full responsibility for the content in this
paper, including the text generated or polished by the LLMs.
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