

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ENHANCING DEEP TABULAR MODELS WITH GBDT-GUIDED PIECEWISE-LINEAR EMBEDDINGS

Anonymous authors

Paper under double-blind review

ABSTRACT

Tabular data remains central to many scientific and industrial applications. Recently, deep learning models are emerging as a powerful tool for tabular data prediction, outperforming traditional methods such as Gradient Boosted Decision Trees (GBDTs). Despite this success, the fundamental challenge of feature heterogeneity still remains. Unlike in image or text modalities where features are semantically homogeneous, each tabular feature often carries a distinct semantic meaning and distribution. A common strategy to address the heterogeneity is to project features into a shared high-dimensional vector space. Among the various feature types in tabular data, categorical features are effectively embedded via embedding bags, which assign a learnable vector to each unique category. In contrast, effective embeddings for numerical features remain underexplored. In this paper, we argue that piecewise-linear functions are well suited to modeling the irregular and high-frequency patterns often found in tabular data, provided that breakpoints are carefully chosen. To this end, we propose GBDT-Guided Piecewise-Linear (GGPL) embeddings, a method comprising breakpoints initialization using GBDT split thresholds, stable breakpoint optimization using reparameterization, and stochastic regularization via breakpoints deactivation. Thorough evaluation on 46 datasets shows that applying GGPL to a range of state-of-the-art tabular models consistently improves performance—especially on regression tasks—or at least matches their native numerical embeddings. Together with its negligible overhead, this suggests that GGPL can serve as a practical default numerical embedding for future tabular architectures. The code is available in the supplementary material.

1 INTRODUCTION

Tabular data, characterized by its structured format of rows and columns, remains the most common data modality in a vast array of scientific and industrial domains, from healthcare and finance to e-commerce and climate science (Shwartz-Ziv & Armon, 2022; Somvanshi et al., 2024). Its practical importance across numerous domains has established predicting a target column from a set of observed features as a central problem within the field of machine learning, attracting extensive research (Gorishniy et al., 2021; Lee et al., 2024; Eo et al., 2025; Hollmann et al., 2025; Lee et al., 2025; Ye et al., 2025).

Deep learning architectures for tabular data (Yan et al., 2023; Gorishniy et al., 2025; Hollmann et al., 2025; Ye et al., 2025) are increasingly outperforming Gradient Boosted Decision Trees (GBDTs; Chen & Guestrin, 2016; Ke et al., 2017; Prokhorenkova et al., 2018) on many benchmarks, which have long been the dominant approach in the field. This shift is driven by the ability of deep models to capture complex, non-linear feature interactions, reducing the dependence on manual feature engineering. In real-world applications with large and diverse datasets, deep learning models stand out for their high prediction accuracy and efficient inference.

Nevertheless, effectively handling heterogeneous tabular features remains a key challenge for deep models (Gorishniy et al., 2021). Unlike images or text, where features (e.g., pixels or words) are semantically homogeneous, tabular columns often represent fundamentally different concepts whose scales and distributions can vary widely. A common strategy to address this heterogeneity is to map features into a shared high-dimensional vector space, allowing subsequent layers to function

effectively (e.g., matrix multiplication in an MLP or the attention mechanism in a Transformer). Moreover, this projection into a high-dimensional space empowers the network to learn complex, non-linear feature interactions. While there is a well-established practice for categorical features using embedding bags (Mikolov et al., 2013; Guo et al., 2017), a standard methodology for embedding numerical features has yet to emerge.

Embedding a numerical feature can be viewed as learning a continuous mapping from \mathbb{R} to \mathbb{R}^d . A variety of approaches have been explored for this purpose, including Multi-Layer Perceptrons (MLPs; Gorishniy et al., 2022; Wu et al., 2024), Fourier features (Gorishniy et al., 2022; Sergazinov et al., 2025), and piecewise-linear functions (Gorishniy et al., 2022). Among these, we find piecewise-linear functions well suited for embedding tabular data. Real-world tabular datasets often exhibit irregular and non-smooth feature–target relationships. A key aspect of these relationships is the presence of high-frequency components, which are critical for accurate prediction (Grinsztajn et al., 2022). However, MLPs exhibit a spectral bias that prevents them from effectively capturing such high-frequency target functions (Rahaman et al., 2019). Although Fourier features have addressed this limitation in computer vision (Tancik et al., 2020; Mildenhall et al., 2021), their effectiveness is reduced in the tabular domain. Accurate modeling with Fourier features requires an appropriate choice of frequency components, but the heterogeneity of tabular data implies that a different set of frequencies may be optimal for each feature. While the expressiveness of piecewise-linear functions in modeling irregular and high-frequency patterns also depends critically on the appropriate placement of breakpoints (Hastie et al., 2009), our method addresses this challenge by effectively selecting suitable breakpoints for each numerical feature.

In this paper, we address the challenge of breakpoint positioning within the prior piecewise-linear embedding (Gorishniy et al., 2022). To this end, we propose the GBDT-Guided Piecewise-Linear (GGPL) embedding that focuses on three essential components: initialization, optimization, and regularization. The properties of tabular data and their target functions make each of these components important. Effectively modeling the irregular and non-smooth function requires precise breakpoint placement, which makes both effective initialization and stable optimization essential. Additionally, the task of tabular prediction exhibits an inherent tendency to overfit (Kadra et al., 2021) and lacks the inherent invariances (e.g., spatial invariance in images) that facilitate data augmentation. This makes robust regularization essential. To address these challenges, we propose the following contributions, which are described in detail in Section 3.

1. We initialize the breakpoints using the split thresholds of the largest gains from an XGBoost model, effectively leveraging the well-established strength of GBDT.
2. We reparameterize the optimization of breakpoints into a stable process by optimizing the ratios of piece lengths on a probability simplex, which guarantees valid breakpoint positions throughout training.
3. We propose a regularization technique that stochastically deactivates breakpoints during training, encouraging similarity between adjacent linear pieces to prevent overfitting.

In practice, we train a default XGBoost once to obtain the split thresholds, which minimizes training overhead and shows no statistically significant difference from a hyperparameter-tuned one. In addition, all proposed methods are training-only and not applied at inference, so there is no additional inference-time overhead compared with prior piecewise-linear embedding methods (Gorishniy et al., 2022).

We validate our proposed method through extensive experiments on the 46 datasets from Gorishniy et al. (2025), spanning a wide range of sizes and domains. Our embedding demonstrates statistically significant improvements in two settings: (i) when applied to state-of-the-art deep tabular models (Yan et al., 2023; Gorishniy et al., 2025; Ye et al., 2025) and (ii) when compared with existing numerical embedding methods (Gorishniy et al., 2022; Li et al., 2024). Notably, our best-performing model achieves the top average rank across all datasets. Moreover, on small-sized datasets where tabular foundation models are available, our GGPL-enhanced models perform competitively, sometimes surpassing TabPFN (Hollmann et al., 2025). The detailed experimental setup and results are presented in Section 4. A subsequent analysis, including ablation studies, statistical tests, and performance analysis across dataset characteristics, is provided in Section 5.

We validate our proposed method through extensive experiments on the 46 datasets from Gorishniy et al. (2025), spanning a wide range of sizes and domains. Our embedding demonstrates statis-

108 tically significant improvements in two settings: (i) when applied to state-of-the-art deep tabular
 109 models (Yan et al., 2023; Gorishniy et al., 2025; Ye et al., 2025) and (ii) when compared with
 110 existing numerical embedding methods (Gorishniy et al., 2022; Li et al., 2024). These gains are
 111 more consistent on regression tasks, and on classification they are relatively small but at least match
 112 the performance of the native numerical embeddings. Combined with the negligible training and
 113 inference overhead of GPL, these results suggest that it can serve as a practical default numerical
 114 embedding for future tabular architectures. Notably, our best-performing model achieves the
 115 top average rank across all datasets. Moreover, on small-sized datasets where tabular foundation
 116 models are available, our GPL-enhanced models perform competitively, sometimes surpassing
 117 TabPFN (Hollmann et al., 2025). The detailed experimental setup and results are presented in Sec-
 118 tion 4, and subsequent analysis, including ablation studies, statistical tests, and performance analysis
 119 across dataset characteristics, is provided in Section 5.

120 2 RELATED WORK

121 2.1 TABULAR PREDICTION MODELS

124 GBDTs like XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and Cat-
 125 Boost (Prokhorenkova et al., 2018) have long been the state-of-the-art. They build an ensemble
 126 of weak decision trees sequentially and are known for their ability to handle sparse, heterogeneous
 127 data and capture complex feature interactions. However, their performance is being surpassed by
 128 deep learning architectures, which can be largely classified into two main categories: foundation
 129 models and task-specific models.

130 Foundation models like TabPFN (Hollmann et al., 2025) can be applied to various downstream tasks
 131 without further parameter tuning, demonstrating remarkable performance on small-scale problems.
 132 This is achieved by pre-training a large model on millions of synthetic datasets and leveraging in-
 133 context learning at inference-time. However, their quadratic time complexity with respect to the
 134 number of training samples restricts their applicability to large-scale datasets.

135 Task-specific models, while chronologically preceding foundation models, remain a crucial and
 136 practical type as they are free from the scalability issues of foundation models. To improve the
 137 performance of task-specific models, various approaches have been explored, such as improving
 138 backbone architectures, enhancing embedding methods, and incorporating the strengths of GBDTs.
 139

140 2.2 IMPROVEMENTS IN TASK-SPECIFIC MODELS

142 One primary line of research is designing specialized backbone architectures. These include MLP-
 143 based models, which have shown that even simple architectures can achieve top-tier performance
 144 when combined with proper regularization and ensemble techniques (Kadra et al., 2021; Holzmüller
 145 et al., 2024; Gorishniy et al., 2025); Transformer-based models that adapt the self-attention mecha-
 146 nism to learn complex interactions among heterogeneous features (Gorishniy et al., 2021; Yan et al.,
 147 2023); and retrieval-based models that make predictions by retrieving similar instances from the
 148 training set (Gorishniy et al., 2024; Ye et al., 2025).

149 Another key line of research involves improving embedding methods for input features. MLP-based
 150 embedding methods apply a feature-specific MLP to map each scalar value to an embedding vector
 151 (Guo et al., 2017; Gorishniy et al., 2022; Wu et al., 2024). However, MLPs have a spectral bias
 152 towards learning smooth functions (Rahaman et al., 2019), which may not be optimal for the of-
 153 ten irregular relationships in tabular data. Inspired by their success in computer vision (Mildenhall
 154 et al., 2021), Fourier embeddings have also been used for numerical embeddings (Gorishniy et al.,
 155 2022; Sergazinov et al., 2025), but their effectiveness is limited in the tabular domain due to fea-
 156 ture heterogeneity, which makes it difficult to find suitable frequency components for all features.
 157 Piecewise-linear embedding methods partition a feature’s range into a set of bins and learn a linear
 158 function within each bin. Gorishniy et al. (2022) introduce piecewise-linear embedding and propose
 159 two methods for initializing breakpoints: a quantile-based approach, which places breakpoints based
 160 on the input distribution, and a target-aware approach, which trains a decision tree for each input
 161 feature to predict the target and uses the resulting thresholds. However, these breakpoints are fixed
 162 and not optimized during training. Further, the feature-wise decision tree-based approach prevents
 163 considering complex feature interactions when placing breakpoints.

162 A third line of work incorporates the strengths of GBDTs into deep learning models. Some meth-
 163 ods introduce modules to mimic the thresholding behavior of decision trees within a neural net-
 164 work (Popov et al., 2020; Katzir et al., 2021). Another method uses GBDTs to calculate feature
 165 frequencies to determine the selection ratio of feature gates (Li et al., 2024). Our approach, rather
 166 than mimicking GBDTs, leverages their efficiency and accuracy to initialize the breakpoints of the
 167 piecewise-linear embedding using split thresholds with the largest score gain.
 168

169 3 PROPOSED METHOD

171 3.1 BACKGROUND: PIECEWISE-LINEAR ENCODING

173 To enhance the representational capacity of tabular models, prior work has proposed embedding
 174 scalar numerical features into higher-dimensional vector spaces using piecewise-linear encoding
 175 (PLE; Gorishniy et al., 2022). Formally, for i -th numerical feature $x_i \in \mathbb{R}$, the input range is
 176 partitioned into $K_i + 1$ disjoint intervals $[t_k^{(i)}, t_{k+1}^{(i)}]$ for $k = 0, \dots, K_i$, and the encoding is computed
 177 as $\text{PLE}(x_i) = [e_0^{(i)}, \dots, e_{K_i}^{(i)}] \in \mathbb{R}^{K_i+1}$:

$$179 \quad e_k^{(i)} = \begin{cases} 0, & x_i < t_k^{(i)} \text{ and } k > 0 \\ 1, & x_i \geq t_{k+1}^{(i)} \text{ and } k < K_i \\ \frac{x_i - t_k^{(i)}}{t_{k+1}^{(i)} - t_k^{(i)}}, & \text{otherwise} \end{cases} \quad (1)$$

183 The conditions on k ($k > 0$ and $k < K_i$) handle linear extrapolation when input values x_i fall
 184 outside the range. This encoding produces a continuous and order-aware vector representation of
 185 scalar inputs, which can serve as an effective replacement for the original input value in downstream
 186 architectures. However, prior implementations of PLE use fixed breakpoints (e.g., quantile or target-
 187 aware), which remain static during training. We instead initialize breakpoints using GBDT splits
 188 and jointly optimize them via a differentiable reparameterization. This enables the embedding to
 189 adapt to high-frequency or irregular patterns. We further apply stochastic regularization to improve
 190 generalization.

192 3.2 GBDT-GUIDED PIECEWISE-LINEAR EMBEDDING

194 The embedding function in a tabular neural network, $\phi_i : \mathbb{R} \rightarrow \mathbb{R}^d$, maps i -th feature to a shared
 195 high-dimensional space. In this paper, we use PLE to model $\phi_i(x_i)$ through a piecewise-linear curve
 196 as follows.

$$197 \quad \phi_i(x_i) = \left[\mathbf{w}_0^{(i)}, \mathbf{w}_1^{(i)}, \dots, \mathbf{w}_{K_i}^{(i)} \right] \begin{bmatrix} e_0^{(i)} \\ e_1^{(i)} \\ \vdots \\ e_{K_i}^{(i)} \end{bmatrix} + \mathbf{b}^{(i)} \quad (2)$$

201 $\phi_i(x_i)$ maps each scalar input to a point on a continuous piecewise-linear curve in \mathbb{R}^d . Specifically,
 202 when $x_i = t_k^{(i)}$, the embedding becomes a vertex of the curve given by $\mathbf{v}_k^{(i)} = \mathbf{b}^{(i)} + \sum_{j=0}^{k-1} \mathbf{w}_j^{(i)}$.
 203 When $x_i \in [t_k^{(i)}, t_{k+1}^{(i)}]$, the embedding lies on the line segment connecting $\mathbf{v}_k^{(i)}$ and $\mathbf{v}_{k+1}^{(i)}$. When
 204 $x_i < t_0^{(i)}$ or $x_i \geq t_{K_i+1}^{(i)}$, the embedding extrapolates linearly based on the first or last segment,
 205 respectively. An example of $\phi_i(x_i)$ is illustrated in Figure 1.

208 The main challenge is to determine the optimal positions of $t_k^{(i)}$ and their corresponding $\mathbf{v}_k^{(i)}$, which
 209 are defined by $\mathbf{w}_k^{(i)}$ and $\mathbf{b}^{(i)}$. The GGPL embedding tackles this through three components:

- 211 1. GBDT-guided initialization which determines the initial values of $t_k^{(i)}$,
- 212 2. simplex-based reparameterization for stable optimization of $t_k^{(i)}$,
- 213 3. stochastic breakpoint regularization to mitigate overfitting.

215 All parameters including $\mathbf{w}_k^{(i)}$ and $\mathbf{b}^{(i)}$ are optimized via standard backpropagation.

216
217

3.3 GBDT-GUIDED BREAKPOINT INITIALIZATION

218
219
220
221
222
223

Our initialization method determines the initial values of $t_k^{(i)}$ using GBDTs trained on the data. Specifically, we adopt the feature threshold values used for splitting nodes in the GBDT as the initial locations for the breakpoints. By leveraging GBDTs' well-established strength, this approach identifies the most effective splits based on their gain scores. This process allocates fewer breakpoints to less important features, reducing the risk of overfitting by saving parameters. Algorithmic details are provided in Appendix A.1.

224
225
226
227
228
229
230

To keep the pipeline lightweight, we obtain split thresholds from a single XGBoost model with default hyperparameters trained on each dataset. Moreover, because the GBDT is used only to initialize breakpoints, it incurs no inference-time cost. Across the 46 datasets, the tuned XGBoost initializer does not yield statistically significant improvements over the default ($p \approx 0.07$), indicating that the default setting is adequate as a practical choice. Nonetheless, accuracy can still be pushed further through additional tuning of the initializer when desired. Further details are provided in Appendix A.2, including comparisons to tuned XGBoost and alternative GBDT initializers.

231
232

3.4 STABLE SIMPLEX-BASED OPTIMIZATION

233
234
235

Directly training $t_k^{(i)}$ may break ordering constraints ($t_{k-1}^{(i)} \leq t_k^{(i)}$) and is prone to division-by-zero errors. To optimize $t_k^{(i)}$ stably, we reparameterize the problem as the following.

236
237
238
239
240

We first normalize the position of each $t_k^{(i)}$ as $r_k^{(i)} = (t_k^{(i)} - \min(X_i)) / (\max(X_i) - \min(X_i))$, where X_i is the set of values for i -th feature in the training set. Then, we define the k -th proportion as $\pi_k^{(i)} = r_k^{(i)} - r_{k-1}^{(i)}$. The vector of proportions $\pi^{(i)} = [\pi_1^{(i)}, \dots, \pi_{K_i+1}^{(i)}]$ forms a point on the K_i -dimensional probability simplex (Δ^{K_i}), which is the output of the softmax function.

241

$$\pi^{(i)} = \text{softmax}(\mathbf{z}^{(i)}) \quad (3)$$

242
243
244

Optimizing unconstrained logits $\mathbf{z}^{(i)} \in \mathbb{R}^{K_i+1}$ instead of $t_k^{(i)}$ guarantees that the breakpoints remain ordered and prevents them from collapsing within the feature's range.

245
246

3.5 STOCHASTIC BREAKPOINT REGULARIZATION

247
248
249
250
251
252

Since there are no smoothness constraints between adjacent embedding vectors, the learned function exhibits high tortuosity, which increases the risk of overfitting. To mitigate this, we introduce a regularization technique analogous to dropout that encourages similarity between adjacent embedding vectors. During each training forward pass, we randomly deactivate a fraction of $t_k^{(i)}$ for $k = 1, \dots, K_i$ with probability p .

253
254
255
256
257

Figure 2 provides a visual example of the stochastic regularization technique. When $t_k^{(i)}$ is deactivated, its corresponding $\mathbf{v}_k^{(i)}$ is ignored, and a new linear piece is formed between $\mathbf{v}_{k-1}^{(i)}$ and $\mathbf{v}_{k+1}^{(i)}$ (or the nearest active breakpoints if multiple consecutive breakpoints are deactivated). The embedding should remain consistent even if some breakpoints are deactivated. This encourages the model

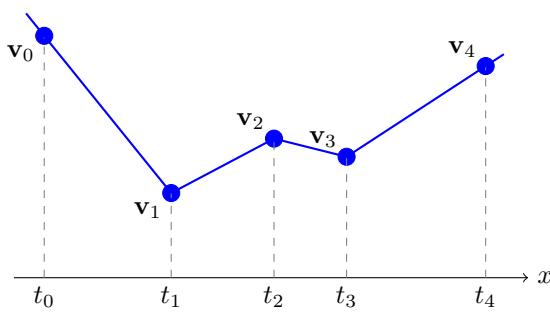
268
269

Figure 1: A piecewise-linear embedding that maps a scalar feature into a high-dimensional space, defined by a set of breakpoints ($t_k \in \mathbb{R}$) and their corresponding embedding vectors ($\mathbf{v}_k \in \mathbb{R}^d$).

270 to learn a smoother function, which is beneficial for regression but can be detrimental for classification tasks that rely on sharp decision boundaries. Consequently, we apply this regularization only
 271 to regression tasks. At inference-time, all breakpoints are activated ($p = 0$), and unlike dropout, no
 272 scaling of the embeddings is required. We analyze the effect of this regularization for regression and
 273 classification in Appendix A.3.
 274

276 4 EXPERIMENTS

277 4.1 DATASETS

280 We conduct a comprehensive evaluation on the benchmark of 46 datasets previously used in Gor-
 281 ishniy et al. (2025). These datasets span a wide range of tabular tasks, with sample sizes from a few
 282 thousand to over a million and feature counts up to nearly a thousand—reflecting the scale and com-
 283 plexity of real-world applications. The characteristics of these datasets are summarized in Table 1,
 284 with further details available in Appendix B.
 285

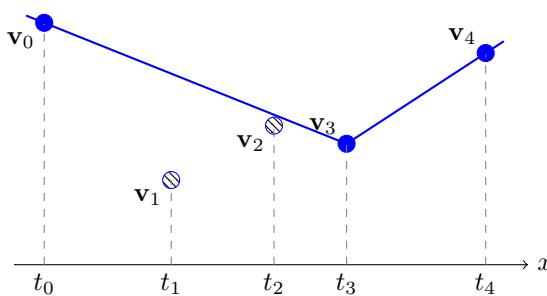
286 Table 1: Overview of the 46 benchmark datasets, categorized by task, sample size, and feature-to-
 287 sample ratio.

289 Category	290 Criteria	291 Count
290 Total	291	292 46
292 Task	Classification	18
	Regression	28
294 Sample size	Small ($\leq 30k$)	24
	Large ($> 30k$)	22
296 Feature-to-sample ratio	High (> 0.001)	21
	Low (≤ 0.001)	25

300 4.2 BASELINE MODELS

302 To evaluate the effectiveness and versatility of our GGPL embedding, we integrate it into three state-
 303 of-the-art deep tabular models and a baseline MLP, with each representing a different architectural
 304 paradigm. For each model, we then compare the performance of the original version against its
 305 GGPL-enhanced counterpart. The selected models are MLP, T2G-Former, ModernNCA, and TabM,
 306 and we provide detailed descriptions of these four models in Appendix C.1.1.

307 In addition, we include 10 additional models, including GBDTs (Chen & Guestrin, 2016; Ke et al.,
 308 2017; Klambauer et al., 2017; Prokhorenkova et al., 2018; Gorishniy et al., 2021; Somepalli et al.,
 309 2021; Wang et al., 2021; Chen et al., 2023; 2024; Gorishniy et al., 2024) for comparison purposes
 310 without incorporating our proposed method. TabPFN (Hollmann et al., 2025) is also included in
 311



322 Figure 2: The effect of stochastic breakpoint regularization. When the middle breakpoints are deac-
 323 tivated (dashed circle), a new, linear piece is formed directly between its neighbors (solid circle).

324 Table 2: Average ranks across 46 datasets (lower is better). The numbers in parentheses indicate the
 325 rank improvement from applying GGPL.
 326

327 Model	328 All Tasks (↓)	329 Regression (↓)	330 Classification (↓)	331 Num. Embedding
<i>GBDT models</i>				
330 LightGBM	9.48	8.86	10.44	-
331 XGBoost	9.00	8.93	9.11	-
332 CatBoost	8.04	7.64	8.67	-
<i>Deep learning models (without numerical embedding)</i>				
334 DCN2	16.04	15.93	16.22	-
335 SNN	15.20	15.61	14.56	-
<i>Deep learning models (with numerical embedding)</i>				
338 ExcelFormer	13.61	13.86	13.22	GLU
339 SAINT	12.46	13.07	11.50	MLP
340 FT-Transformer	11.70	12.25	10.83	Linear
341 Trompt	10.63	10.39	11.00	Linear
342 MLP	10.28	10.32	10.22	Periodic
343 T2G-Former	9.02	9.14	8.83	Linear
344 TabR	7.98	8.32	7.44	Periodic
345 ModernNCA	7.70	8.82	5.94	Periodic
346 TabM-mini	3.61	3.00	4.56	Piecewise-linear
<i>Deep learning models (with GGPL embedding)</i>				
348 MLP-GGPL	8.28 (-2.00)	7.64 (-2.68)	9.28 (-0.94)	GGPL (Ours)
349 T2G-Former-GGPL	7.80 (-1.22)	7.07 (-2.07)	8.94 (+0.11)	GGPL (Ours)
350 ModernNCA-GGPL	7.09 (-0.61)	8.07 (-0.75)	5.56 (-0.38)	GGPL (Ours)
351 TabM-mini-GGPL	2.96 (-0.65)	2.04 (-0.96)	4.39 (-0.17)	GGPL (Ours)

352
 353 the comparison only on small-scale datasets that meet its constraints. Detailed descriptions of these
 354 baseline models are in Appendix C.1.2.
 355

356 4.3 IMPLEMENTATION DETAILS

358 For TabM, we use the official implementation from Gorishniy et al. (2025), while our implementa-
 359 tions of T2G-Former and ModernNCA are based on the code from Liu et al. (2024). To ensure a fair
 360 comparison, we follow the training protocol of Gorishniy et al. (2025).
 361

362 With some exceptions, we apply a slightly modified version of the quantile transform from scikit-
 363 learn (Pedregosa et al., 2011) to numerical features. We use cross-entropy loss for classification
 364 and mean squared error loss for regression. Hyperparameters are tuned using Optuna (Akiba et al.,
 365 2019) over 100 trials (50 for large datasets). All baselines except TabPFN are also tuned using the
 366 hyperparameter search spaces from Gorishniy et al. (2025), while TabPFN is evaluated with default
 367 configuration. Further details are provided in Appendix C.2.
 368

369 4.4 RESULTS

370 For each dataset, we evaluate model performance using accuracy for classification and root mean
 371 squared error (RMSE) for regression, averaging the results over 15 random seeds. To aggregate
 372 performance across datasets, we compute the average rank of each model based on these scores.
 373 Detailed results for each dataset can be found in Appendix D.

374 **Main Results**

375 We present the main results in Table 2, which shows the average ranks of our GGPL-enhanced
 376 models against various baselines across all 46 datasets, as well as separate ranks for regression
 377 and classification tasks. The results consistently show that applying our GGPL embedding leads to

378
379
380
Table 3: Comparison with TabPFN on 23 small-
scale datasets.

381 Model	382 All (↓)	383 Reg. (↓)	384 Cls. (↓)
385 LightGBM	386 10.91	387 10.40	388 11.88
389 XGBoost	390 10.70	391 10.80	392 10.50
393 MLP	394 10.96	395 11.60	396 9.75
397 T2G-Former	398 10.22	399 9.87	400 10.88
401 ModernNCA	402 9.39	403 10.73	404 6.88
405 MLP-GGPL	406 9.04	407 8.53	408 10.00
409 T2G-Former-GGPL	410 8.57	411 7.20	412 11.13
413 CatBoost	414 8.00	415 7.93	416 8.13
417 ModernNCA-GGPL	418 7.52	419 8.13	420 6.38
421 TabPFN	422 5.96	423 6.93	424 4.13
425 TabM-mini	426 4.57	427 3.47	428 6.63
429 TabM-mini-GGPL	430 3.30	431 2.47	432 4.88

393
394
395
396
397
398
Table 4: Ablation study on the components
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
14

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 5: GGPL vs other numerical embeddings on the MLP backbone using stratified Wilcoxon signed-rank test.

Baseline Method	Z-statistics	p-value
No Embedding	17.0	$< 10^{-10}$
T2V	10.6	$< 10^{-10}$
Periodic	3.38	7.15×10^{-4}
Piecewise-linear (quantile-based)	4.22	2.43×10^{-5}
Piecewise-linear (target-aware)	4.32	1.58×10^{-5}

Table 6: GGPL vs native numerical embeddings across models using stratified Wilcoxon signed-rank test.

Model	Z-statistics	p-value
MLP	3.38	7.15×10^{-4}
T2G	4.90	9.74×10^{-7}
MNCA	2.37	1.79×10^{-2}
TabM	4.47	7.66×10^{-6}

We further quantify the effect size of GGPL when used as a drop-in replacement for native numerical embeddings by computing Elo ratings (Elo, 1967), which is recently adopted in TabArena (Erickson et al., 2025). Following TabArena, we estimate 95% confidence intervals via 200-round bootstrap resampling (2.5–97.5% quantiles). Unlike TabArena, we calibrate the Elo scale by fixing the MLP backbone with its native numerical embedding to 1000 and report all other Elo scores relative to this anchor.

As shown in Figure 3, GGPL increases the Elo rating of every backbone. For MLP, the 95% confidence intervals of the native and GGPL variants do not overlap. For T2G-Former and TabM-mini, the intervals partially overlap, and the mean Elo of the GGPL variant lies near the upper end of the native variant’s confidence interval. For ModernNCA, the intervals overlap more substantially, indicating a smaller yet positive shift. This pattern is consistent with our stratified Wilcoxon signed-rank tests, where ModernNCA also exhibited the largest (yet still significant) p -value of 1.79×10^{-2} . Taken together, the Elo and Wilcoxon analyses confirm that replacing native numerical embeddings with GGPL yields consistent and statistically meaningful improvements across architectures. Further details of the Elo rating and plots of all models are provided in Appendix E.1.

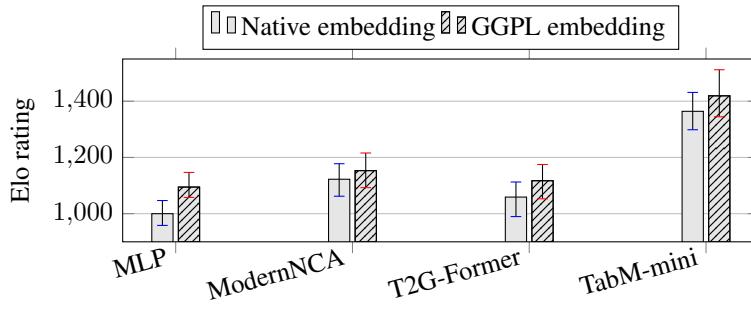


Figure 3: Elo ratings for each backbone with its native numerical embedding (solid bars) and with GGPL (hatched bars). MLP with native embedding is used as baseline (1000). Error bars indicate 95% confidence intervals.

5.3 PERFORMANCE ANALYSIS BY DATASET CHARACTERISTICS

To better understand where GGPL provides the most significant benefits, we analyze its performance improvement across different dataset characteristics in Table 7. A few general trends emerge from the data. First, we observe that the performance gains are consistently more pronounced in regression tasks than in classification. In contrast to classification tasks, where precise modeling near decision boundaries is important, regression tasks require global accuracy. This result suggests that our approach is particularly effective for regression tasks, as it helps model the entire feature–target relationship with high fidelity. Second, with the exception of MLP on feature-to-sample ratio, our method tends to yield greater improvements on datasets with small sample sizes and high feature-to-sample ratios. This indicates that GGPL provides a valuable inductive bias that is effective in preventing overfitting, where training data is limited or feature dimensionality is high.

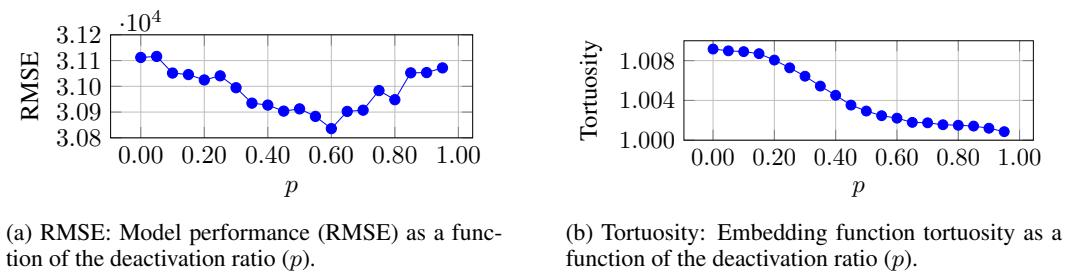
486 Table 7: Average rank improvement of GGPL across different dataset characteristics.
487

Characteristic	MLP	T2G-Former	ModernNCA	TabM-mini
Regression task	10.32 → 7.64 (-2.68)	9.14 → 7.07 (-2.07)	8.82 → 8.07 (-0.75)	3.00 → 2.04 (-0.96)
Classification task	10.22 → 9.28 (-0.94)	8.83 → 8.94 (+0.11)	5.94 → 5.56 (-0.38)	4.56 → 4.39 (-0.17)
Small sample size	10.58 → 8.21 (-2.37)	9.38 → 8.04 (-1.34)	8.25 → 6.75 (-1.50)	3.75 → 2.92 (-0.83)
Large sample size	9.95 → 8.36 (-1.59)	8.64 → 7.55 (-1.09)	7.09 → 7.45 (+0.36)	3.45 → 3.00 (-0.45)
High feature-to-sample ratio	10.19 → 8.52 (-1.67)	9.05 → 7.67 (-1.38)	9.10 → 7.62 (-1.48)	3.90 → 3.24 (-0.66)
Low feature-to-sample ratio	10.36 → 8.08 (-2.28)	9.00 → 7.92 (-1.08)	6.52 → 6.64 (+0.12)	3.36 → 2.72 (-0.64)

495
496 5.4 ANALYSIS OF STOCHASTIC BREAKPOINT REGULARIZATION
497

498 We investigate the effect of stochastic breakpoint regularization by varying its deactivation ratio (p)
499 using the MLP-GGPL model on the House 16H dataset (Gorishniy et al., 2024). While holding all
500 other hyperparameters constant, we vary p from 0.0 to 0.95 in increments of 0.05, averaging results
501 over 100 random seeds. We evaluate model performance and embedding complexity, where the
502 latter is measured by tortuosity. Further details about tortuosity are provided in Appendix E.2.

503 Figure 4a shows that RMSE is minimized at $p = 0.60$, indicating that an appropriate level of regular-
504 ization is essential for the best performance. Figure 4b shows that tortuosity decreases monotonically
505 with p , confirming that the regularization smooths the embedding function as intended.

513 (a) RMSE: Model performance (RMSE) as a func-
514 tion of the deactivation ratio (p).
515513 (b) Tortuosity: Embedding function tortuosity as a
514 function of the deactivation ratio (p).
515516 Figure 4: The effect of the deactivation ratio (p) in stochastic breakpoint regularization.
517518 5.5 EFFECT SIZE ANALYSIS
519

520 Finally, we aggregate effect sizes across datasets by normalizing each dataset so that the best-
521 performing model scores 1 and the worst scores 0. We then use these normalized scores to com-
522 pute, for each architecture and task, the mean and standard deviation of the gap between the base-
523 line and its GGPL-enhanced variant. In addition, we plot histograms of the baseline and GGPL-
524 normalized scores to visualize the distributional shifts; detailed statistics and figures are provided in
525 Appendix E.3. On regression tasks, the GGPL distributions tend to shift toward 1 and the mean gains
526 are consistently positive across architectures, whereas on classification tasks the two histograms al-
527 most overlap. These results indicate that GGPL improves (on regression) or at least matches (on
528 classification) the native numerical embeddings of several state-of-the-art tabular architectures, sup-
529 porting our goal of providing a practical default numerical embedding that can be plugged into
530 diverse models with minimal overhead.

531 6 CONCLUSION
532

533 In this paper, we addressed the challenge of numerical feature embedding for deep tabular models.
534 To this end, we proposed GGPL, a piecewise-linear embedding method built on three components:
535 GBDT-guided initialization, stable optimization on a probability simplex, and stochastic breakpoint
536 regularization. Our analysis confirms that all three components are essential for the method’s effec-
537 tiveness. With their synergy, GGPL significantly boosts various state-of-the-art models to achieve
538 the top average rank in extensive experiments. Our method demonstrates particular strength in data-
539 scarce settings, indicating it provides a valuable inductive bias to promote better generalization for
540 deep tabular models.

540 REFERENCES

542 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
 543 A next-generation hyperparameter optimization framework. In *Proceedings of the 25th ACM*
 544 *SIGKDD International Conference on Knowledge Discovery and Data Mining*, 2019.

545 Jintai Chen, Jiahuan Yan, Qiyuan Chen, Danny Z Chen, Jian Wu, and Jimeng Sun. Can a deep
 546 learning model be a sure bet for tabular prediction? In *Proceedings of the 30th ACM SIGKDD*
 547 *Conference on Knowledge Discovery and Data Mining*, pp. 288–296, 2024.

548 Kuan-Yu Chen, Ping-Han Chiang, Hsin-Rung Chou, Ting-Wei Chen, and Tien-Hao Chang. Trompt:
 549 Towards a better deep neural network for tabular data. In *International Conference on Machine*
 550 *Learning*, pp. 4392–4434. PMLR, 2023.

552 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the*
 553 *22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 785–794,
 554 2016.

555 Arpad E Elo. The proposed uscf rating system, its development, theory, and applications. *Chess*
 556 *life*, 22(8):242–247, 1967.

558 Moonjung Eo, Kyungeun Lee, Hye-Seung Cho, Dongmin Kim, Ye Seul Sim, and Woohyun Lim.
 559 Representation space augmentation for effective self-supervised learning on tabular data. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 11625–11633, 2025.

561 Nick Erickson, Lennart Purucker, Andrej Tschalzev, David Holzmüller, Prateek Mutalik Desai,
 562 David Salinas, and Frank Hutter. Tabarena: A living benchmark for machine learning on tab-
 563 ular data. *arXiv preprint arXiv:2506.16791*, 2025. URL <https://arxiv.org/abs/2506.16791>.

565 Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
 566 models for tabular data. *Advances in neural information processing systems*, 34:18932–18943,
 567 2021.

569 Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
 570 tabular deep learning. *Advances in Neural Information Processing Systems*, 35:24991–25004,
 571 2022.

572 Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem
 573 Babenko. Tabr: Tabular deep learning meets nearest neighbors. In *ICLR*, 2024.

575 Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. Tabm: Advancing tabular deep learning
 576 with parameter-efficient ensembling. In *The Thirteenth International Conference on Learning*
 577 *Representations*, 2025. URL <https://openreview.net/forum?id=Sd4wYYOhmY>.

581 Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
 582 deep learning on typical tabular data? *Advances in neural information processing systems*, 35:
 583 507–520, 2022.

585 Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
 586 machine based neural network for ctr prediction. In *Proceedings of the 26th International Joint*
 587 *Conference on Artificial Intelligence*, pp. 1725–1731, 2017.

588 Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. *The elements of*
 589 *statistical learning: data mining, inference, and prediction*, volume 2. Springer, 2009.

592 Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
 593 Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
 594 foundation model. *Nature*, 01 2025. doi: 10.1038/s41586-024-08328-6. URL <https://www.nature.com/articles/s41586-024-08328-6>.

595 David Holzmüller, Léo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned mlps and
 596 boosted trees on tabular data. *Advances in Neural Information Processing Systems*, 37:26577–
 597 26658, 2024.

594 Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
 595 tabular datasets. *Advances in neural information processing systems*, 34:23928–23941, 2021.
 596

597 Liran Katzir, Gal Elidan, and Ran El-Yaniv. Net- $\{\text{dnf}\}$: Effective deep modeling of tabular data. In
 598 *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=73WTGs96kho>.
 599

600 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
 601 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural*
 602 *information processing systems*, 30, 2017.

603 Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
 604 neural networks. *Advances in neural information processing systems*, 30, 2017.

605

606 Kyungeun Lee, Ye Seul Sim, Hye-Seung Cho, Moonjung Eo, Suhee Yoon, Sanghyu Yoon, and
 607 Woohyung Lim. Binning as a pretext task: Improving self-supervised learning in tabular domains.
 608 *arXiv preprint arXiv:2405.07414*, 2024.

609 Kyungeun Lee, Moonjung Eo, Hye-Seung Cho, Dongmin Kim, Ye Seul Sim, Seoyoon Kim,
 610 Min-Kook Suh, and Woohyung Lim. Multitab: A comprehensive benchmark suite for multi-
 611 dimensional evaluation in tabular domains. *arXiv preprint arXiv:2505.14312*, 2025.

612

613 Xuan Li, Yun Wang, and Bo Li. Tree-regularized tabular embeddings. *arXiv preprint*
 614 *arXiv:2403.00963*, 2024.

615

616 Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, and Han-Jia Ye. Talent: A tabular analytics and learning
 617 toolbox. *arXiv preprint arXiv:2407.04057*, 2024.

618 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 619 ence on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.
 620

621 Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-
 622 tions of words and phrases and their compositionality. *Advances in neural information processing*
 623 *systems*, 26, 2013.

624

625 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 626 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 627 *of the ACM*, 65(1):99–106, 2021.

628

629 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 630 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 631 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
 12:2825–2830, 2011.

632

633 Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for
 634 deep learning on tabular data. In *International Conference on Learning Representations*, 2020.
 635 URL <https://openreview.net/forum?id=r1eiu2VtwH>.

636

637 Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
 638 Gulin. Catboost: unbiased boosting with categorical features. *Advances in neural information*
 639 *processing systems*, 31, 2018.

640

641 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
 642 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International conference*
 643 *on machine learning*, pp. 5301–5310. PMLR, 2019.

644

645 Ivan Rubachev, Nikolay Kartashev, Yury Gorishniy, and Artem Babenko. Tabred: Analyzing pitfalls
 646 and filling the gaps in tabular deep learning benchmarks. In *The Thirteenth International Confer-
 647 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=L14sqcrUC3>.
 648

649 Renat Sergazinov, Jing Wu, and Shao-An Yin. Random at first, fast at last: Ntk-guided fourier
 650 pre-processing for tabular dl. *arXiv preprint arXiv:2506.02406*, 2025.

648 Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. *Information*
 649 *Fusion*, 81:84–90, 2022.

650
 651 Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
 652 Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
 653 *arXiv preprint arXiv:2106.01342*, 2021.

654 Shriyank Somvanshi, Subashish Das, Syed Aaqib Javed, Gian Antariksa, and Ahmed Hossain. A
 655 survey on deep tabular learning. *arXiv preprint arXiv:2410.12034*, 2024.

656
 657 Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
 658 Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
 659 high frequency functions in low dimensional domains. *Advances in neural information processing*
 660 *systems*, 33:7537–7547, 2020.

661 Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
 662 v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
 663 In *Proceedings of the web conference 2021*, pp. 1785–1797, 2021.

664
 665 Yuqian Wu, Hengyi Luo, and Raymond ST Lee. Deep feature embedding for tabular data. *arXiv*
 666 *preprint arXiv:2408.17162*, 2024.

667 Jiahuan Yan, Jintai Chen, Yixuan Wu, Danny Z Chen, and Jian Wu. T2g-former: organizing tabular
 668 features into relation graphs promotes heterogeneous feature interaction. In *Proceedings of the*
 669 *AAAI Conference on Artificial Intelligence*, volume 37, pp. 10720–10728, 2023.

670 Han-Jia Ye, Huai-Hong Yin, De-Chuan Zhan, and Wei-Lun Chao. Revisiting nearest neighbor
 671 for tabular data: A deep tabular baseline two decades later. In *The Thirteenth International*
 672 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=JytL2Mr1LT>.

676 DISCLOSURE OF LLM ASSISTANCE

677 This paper benefited from assistance by a large language model (LLM) to improve its grammar.

681 A ALGORITHMIC DETAILS

683 A.1 GBDT-GUIDED BREAKPOINT INITIALIZATION

684 Given a trained GBDT, we collect node split thresholds and aggregate their gains to find a small set
 685 of informative breakpoints for each numerical feature, as described in Algorithm 1.

687 A.2 SENSITIVITY TO THE CHOICE OF GBDT INITIALIZER

689 In practice, we initialize breakpoints by training a default XGBoost model once per dataset. This
 690 choice keeps the pipeline simple with negligible computational overhead while already yielding
 691 competitive performance. To examine the sensitivity to the choice of GBDT initializer, we compare
 692 this default XGBoost against several alternatives on the MLP-GGPL backbone: a tuned XGBoost
 693 obtained via a 100-trial hyperparameter search using Optuna (Akiba et al., 2019), a default Light-
 694 GBM model, and XGBoost variants with fewer trees ($n_{\text{estimators}}$). All other training settings are kept
 695 identical except for the GBDT initializer.

696 As summarized in Table 8, the tuned XGBoost tends to perform better than the default, but the
 697 difference is not statistically significant at the conventional $\alpha = 0.05$ level. Likewise, default Light-
 698 GBM and a moderately shallower XGBoost yield performance that is statistically indistinguishable
 699 from the default XGBoost initializer, whereas only an extremely small XGBoost (with very few
 700 trees) shows a clear degradation. Overall, these results suggest that our default XGBoost initial-
 701 izer is a reasonable trade-off between simplicity and performance, while more aggressive tuning or
 alternative GBDTs can be used when additional performance gains are desired.

Algorithm 1 Breakpoint Selection from GBDT

Input: $S = [(i, t, g)]$: A list of node split information from the trained GBDT model, representing feature index, threshold, and gain for each node.
 X : The training data, to extract min/max values.
 K : Total number of internal breakpoints.
 N_{num} : Set of numerical feature indices.

Output: T : A dictionary mapping numerical features to their sorted list of breakpoints.

```

1:  $G \leftarrow \text{defaultdict}(\text{float})$ 
2:  $T \leftarrow \text{defaultdict}(\text{list})$ 
3: for  $(i, t, g) \in S$ :
4:    $G[(i, t)] += g$                                  $\triangleright \text{Aggregate gain of thresholds}$ 
5:    $G \leftarrow \text{top\_k}(G, K)$                    $\triangleright \text{Select top } K \text{ splits}$ 
6: for  $i \in \text{keys}(G)$ :
7:    $T[i].append(t)$                                  $\triangleright \text{Map thresholds to features}$ 
8: for  $i \in N_{num}$ :
9:    $T[i].extend([\min(X[i]), \max(X[i])])$ 
10:   $T[i].sort()$                                  $\triangleright \text{Add boundaries and sort thresholds}$ 
11: return  $T$ 
  
```

Table 8: Comparison of the default XGBoost initializer with alternative GBDT initializers.

Comparison	Z-statistic	p-value
vs XGBoost (tuned, 100 trials)	-1.82	0.067
vs LightGBM (default)	0.88	0.375
vs XGBoost ($n_{\text{estimators}} = 10$)	0.56	0.571
vs XGBoost ($n_{\text{estimators}} = 1$)	4.14	3.34×10^{-5}

A.3 EFFECT OF STOCHASTIC BREAKPOINT REGULARIZATION

We quantify the effect of stochastic breakpoint regularization by comparing MLP-GGPL models trained with and without the regularizer, separately for regression and classification tasks. For each dataset, we use identical hyperparameters except for the regularization switch ($p > 0$ vs. $p = 0$), evaluate 15 random seeds, and apply a stratified Wilcoxon signed-rank test over seed-level paired differences.

Table 9: Stratified Wilcoxon signed-rank tests for stochastic breakpoint regularization (on vs. off) on MLP-GGPL across 46 datasets.

Task	Z-statistic	p-value
Regression	1.36	0.17
Classification	-0.17	0.87

For regression, the positive Z-statistic with a moderate p -value suggests a weak trend that the regularized variant tends to perform better than its unregularized counterpart. For classification, the test statistic is slightly negative with a large p -value ($p \approx 0.87$), indicating that the regularization does not help for classification. Consistent with these observations, we enable stochastic breakpoint regularization only for regression tasks and disable it for classification.

B DATASET DETAILS

B.1 PREPROCESSING

To ensure a fair comparison and reproducibility, we follow the preprocessing used in Gorishniy et al. (2025), from which we adopt the benchmark datasets. Our preprocessing follows their methodology without any modifications. The key procedures are summarized below.

- Numerical features: By default, a slightly modified version of the quantile transform from scikit-learn (Pedregosa et al., 2011) is applied, which adds a small Gaussian noise (mean: 0, std: 1e-5) before calculating the distribution. For exceptions where quantile transform is detrimental, standard normalization or identical mapping is used.
- Categorical features: All categorical features are processed using one-hot encoding.
- Binary features: Features with only two distinct values are mapped to {0, 1}.

Please refer to the config files on the source code in the supplementary materials for dataset-specific details.

B.2 DATASET CHARACTERISTICS

We provide a detailed overview of the 46 datasets used in our evaluation in Table 10. This benchmark, originally used by Gorishniy et al. (2025), is composed of datasets from three sources: 28 from Grinsztajn et al. (2022), 10 from Gorishniy et al. (2024), and 8 from Rubachev et al. (2025). The table summarizes key characteristics for each dataset, including its size, feature composition (numerical, binary, and categorical), task type, and its corresponding reference within the benchmark.

C EXPERIMENTAL DETAILS

C.1 BASELINE MODEL DETAILS

C.1.1 BACKBONE MODELS FOR GGPL

We integrated our proposed GGPL embedding into four backbone models. For each model, the original component for processing numerical features was replaced by GGPL.

- **MLP:** A standard multi-layer perceptron, often used as a deep learning baseline due to its small and lightweight architecture. Gorishniy et al. (2022) compare various numerical embeddings on MLPs and find that piecewise-linear and periodic embeddings yield substantial performance improvements. We use a standard MLP as a primary backbone for evaluating GGPL and the base model for our in-depth analyses.
- **T2G-Former:** T2G-Former (Yan et al., 2023) is a Transformer-based architecture for tabular data that uses a T2G module to model feature interactions. We replace its original linear embedding layer for numerical features with GGPL.
- **ModernNCA:** ModernNCA (Ye et al., 2025) is a retrieval-augmented model that learns a distance metric for nearest-neighbor-based prediction. Its original numerical embedding, based on periodic functions, is replaced with GGPL.
- **TabM:** TabM (Gorishniy et al., 2025) is an MLP-based model with parameter-efficient ensembling. Among its variants, TabM-mini with a piecewise-linear embedding achieves the best performance. In our experiments, we employ the TabM-mini and replace the original quantile-based embedding with fixed breakpoints with GGPL.

C.1.2 OTHER BASELINE MODELS FOR COMPARISON

To establish a comprehensive performance benchmark, we compare our GGPL-enhanced models against the following groups of baseline models.

- **GBDT models:** These models represent the traditional machine learning methods for tabular data. XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost (Prokhorenkova et al., 2018)
- **Other Deep Learning Models:** These models represent diverse advancements in deep learning architectures for tabular data.

Table 10: Detailed characteristics of the 46 benchmark datasets.

Dataset	# Samples	# Feat.	# Num	# Bin	# Cat	Task	# Classes	Reference
Adult	48842	14	6	1	7	cls.	2	Gorishniy et al. (2024)
Black_Friday	166821	9	4	1	4	reg.	-	Gorishniy et al. (2024)
California_Housing	20640	8	8	0	0	reg.	-	Gorishniy et al. (2024)
Churn_Modelling	10000	11	7	3	1	cls.	2	Gorishniy et al. (2024)
Covertype	581012	15	10	4	1	cls.	7	Gorishniy et al. (2024)
Diamond	53940	9	6	0	3	reg.	-	Gorishniy et al. (2024)
Higgs_Small	98049	28	28	0	0	cls.	2	Gorishniy et al. (2024)
House_16H	22784	16	16	0	0	reg.	-	Gorishniy et al. (2024)
Microsoft	1200192	136	131	5	0	reg.	-	Gorishniy et al. (2024)
Otto_Group_Products	61878	93	93	0	0	cls.	9	Gorishniy et al. (2024)
Ailerons	13750	33	33	0	0	reg.	-	Grinsztajn et al. (2022)
analcatdata_supreme	4052	7	2	5	0	reg.	-	Grinsztajn et al. (2022)
bank-marketing	10578	7	7	0	0	cls.	2	Grinsztajn et al. (2022)
Brazilian_houses	10692	11	8	2	1	reg.	-	Grinsztajn et al. (2022)
cpu_act	8192	21	21	0	0	reg.	-	Grinsztajn et al. (2022)
credit	16714	10	10	0	0	cls.	2	Grinsztajn et al. (2022)
elevators	16599	16	16	0	0	reg.	-	Grinsztajn et al. (2022)
fifa	18063	5	5	0	0	reg.	-	Grinsztajn et al. (2022)
house_sales	21613	17	15	2	0	reg.	-	Grinsztajn et al. (2022)
isofet	7797	613	613	0	0	reg.	-	Grinsztajn et al. (2022)
jannis	57580	54	54	0	0	cls.	2	Grinsztajn et al. (2022)
kdd_ipums_la_97-small	5188	20	20	0	0	cls.	2	Grinsztajn et al. (2022)
KDDCup09_upselling	5032	49	34	1	14	cls.	2	Grinsztajn et al. (2022)
MagicTelescope	13376	10	10	0	0	cls.	2	Grinsztajn et al. (2022)
medical_charges	163065	3	3	0	0	reg.	-	Grinsztajn et al. (2022)
Mercedes_Benz	4209	359	0	356	3	reg.	-	Grinsztajn et al. (2022)
MiamiHousing2016	13932	13	13	0	0	reg.	-	Grinsztajn et al. (2022)
MiniBooNE	72998	50	50	0	0	cls.	2	Grinsztajn et al. (2022)
nyc-taxi-green	581835	16	9	3	4	reg.	-	Grinsztajn et al. (2022)
OnlineNewsPopularity	39644	59	45	14	0	reg.	-	Grinsztajn et al. (2022)
particulate-matter-ukair	394299	6	3	0	3	reg.	-	Grinsztajn et al. (2022)
phoneme	3172	5	5	0	0	cls.	2	Grinsztajn et al. (2022)
pol	15000	26	26	0	0	reg.	-	Grinsztajn et al. (2022)
road-safety	111762	32	29	0	3	cls.	2	Grinsztajn et al. (2022)
superconduct	21263	79	79	0	0	reg.	-	Grinsztajn et al. (2022)
wine	2554	11	11	0	0	cls.	2	Grinsztajn et al. (2022)
wine_quality	6497	11	11	0	0	reg.	-	Grinsztajn et al. (2022)
year	515345	90	90	0	0	reg.	-	Grinsztajn et al. (2022)
Cooking_Time	319986	192	186	3	3	reg.	-	Rubachev et al. (2025)
Delivery_ETA	350516	220	218	1	1	reg.	-	Rubachev et al. (2025)
Ecom_Offers	160057	110	104	6	0	cls.	2	Rubachev et al. (2025)
Homecredit_Default	381664	677	593	2	82	cls.	2	Rubachev et al. (2025)
Homesite_Insurance	260753	298	252	23	23	cls.	2	Rubachev et al. (2025)
Maps_Routing	279945	986	984	0	2	reg.	-	Rubachev et al. (2025)
Sberbank_Housing	28321	392	365	17	10	reg.	-	Rubachev et al. (2025)
Weather	189963	99	96	3	0	reg.	-	Rubachev et al. (2025)

SNN (Klambauer et al., 2017), FT-Transformer (Gorishniy et al., 2021), SAINT (Somepalli et al., 2021), DCN2 (Wang et al., 2021), Trompt (Chen et al., 2023), ExcelFormer (Chen et al., 2024), TabR (Gorishniy et al., 2024)

- **Foundation Model:** TabPFN is a pre-trained foundation model that can perform inference on unseen tasks without any parameter tuning, although its application is limited by dataset size constraints.

TabPFN (Hollmann et al., 2025)

C.2 IMPLEMENTATION DETAILS

C.2.1 HARDWARE ENVIRONMENT

Our experiments were conducted on servers equipped with Intel(R) Xeon(R) Gold 6240 CPUs @ 2.60GHz and NVIDIA RTX 3090 GPUs. While most experiments were run on a single GPU, training on large datasets required up to 8 GPUs to meet GPU memory demands, particularly for models with high memory consumption (T2G-Former Yan et al., 2023, ModernNCA Ye et al., 2025).

864 C.2.2 HYPERPARAMETER SEARCH SPACES
865866 All models are trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with an early
867 stopping patience of 16 epochs, and hyperparameters were tuned using Optuna (Akiba et al., 2019)
868 with the TPE sampler over 100 trials for most datasets, and 50 trials for large ones.869 For our GPL-enhanced backbone models (MLP, T2G-Former, ModernNCA, and TabM), the
870 search spaces for all non-GPL hyperparameters were kept identical to those in Liu et al. (2024) for
871 T2G-Former and ModernNCA and those in Gorishniy et al. (2025) for MLP and TabM. We provide
872 the detailed search spaces in Tables 11 to 14.873 For all baseline models, including GBDTs and other deep learning methods, the hyperparameter
874 search spaces were kept identical to those defined in Gorishniy et al. (2025). We refer to their
875 original paper for the details.
876877
878 D DETAILED EXPERIMENTAL RESULTS
879880 Tables 15 and 16 provide the detailed performance metrics for all models across all 46 datasets,
881 including the mean and standard deviation over 15 random seeds. For the baseline models, we
882 report the performance scores directly from the original benchmark publication by Gorishniy et al.
883 (2025), as our experimental setup is identical to theirs.
884885
886 Table 11: Hyperparameter search spaces for MLP-GPL.
887

888 Hyperparameter	889 Search Space
889 Learning rate	LogUniform: [3e-5, 0.001]
890 Weight decay	{0, LogUniform: [0.0001, 0.1]}
891 # layers	Int: [1, 5]
892 Width	Int: [64, 1024, 16]
893 Dropout	{0, Uniform: [0.0, 0.5]}
894 Embedding dim. (d)	Int: [8, 32, 4]
895 Average number of breakpoints (K)	Int: [2, 48]
896 Deactivation Prob. (p)	{0, Uniform: [0.0, 0.3]}

898
899 Table 12: Hyperparameter search spaces for T2G-Former-GPL.
900

902 Hyperparameter	903 Search Space
904 Learning rate	LogUniform: [1e-5, 0.001]
905 Weight decay	LogUniform: [1e-6, 0.001]
906 # layers	Int: [1, 4]
907 Token width	Categorical: {8, 16, 32, 64, 128}
908 Residual dropout	{0, Uniform: [0.0, 0.2]}
909 Attention dropout	Uniform: [0.0, 0.5]
910 FFN dropout	Uniform: [0.0, 0.5]
911 FFN expansion rate	Uniform: [0.67, 2.67]
912 Frozen switch	Categorical: {true, false}
913 Activation	relu
914 Num heads	8
915 Embedding dim. (d)	Identical to the token width
916 Average number of breakpoints (K)	Int: [2, 48]
917 Deactivation Prob. (p)	{0, Uniform: [0.0, 0.3]}

918
919
920
921
922
923
924
925

Table 13: Hyperparameter search spaces for ModernNCA-GGPL.

Hyperparameter	Search Space
Learning rate	LogUniform: [1e-5, 0.1]
Weight decay	{0, LogUniform: [1e-6, 0.001]}
# MLP layers	{0, Int: [0, 2]}
MLP width	Int: [64, 1024]
Projection Dim.	Int: [64, 1024]
Dropout	Uniform: [0.0, 0.5]
Sample rate	Uniform: [0.05, 0.6]
Temperature	1.0
Embedding dim. (d)	Int: [8, 32, 4]
Average number of breakpoints (K)	Int: [2, 48]
Deactivation Prob. (p)	{0, Uniform: [0.0, 0.3]}

939
940
941
942
943
944
945
946
947
948
949
950
951
952

Table 14: Hyperparameter search spaces for TabM-mini-GGPL.

Hyperparameter	Search Space
Learning rate	LogUniform: [0.0001, 0.003]
Weight decay	{0, LogUniform: [0.0001, 0.1]}
# layers	Int: [1, 4]
Width	Int: [64, 1024, 16]
Dropout	{0, Uniform: [0.0, 0.5]}
# ensembles	32
Embedding dim. (d)	Int: [8, 32, 4]
Average number of breakpoints (K)	Int: [2, 48]
Deactivation Prob. (p)	{0, Uniform: [0.0, 0.3]}

966
967
968
969
970
971

Table 15: Detailed classification results (Accuracy \uparrow). Scores for baseline models are from Gorishny et al. (2025)

Table 16: Detailed regression results (RMSE \downarrow). Scores for baseline models are from Gorishniy et al. (2025).

1026 **E DETAILED ANALYSIS**
10271028 **E.1 ELO EVALUATION DETAILS**
1029

1030 We use an Elo-based evaluation Elo (1967) to summarize the relative performance of multiple archi-
1031 tectures across heterogeneous datasets and tasks that differ in both evaluation metrics and difficulty.
1032 We include all 18 models considered in our main experiments (Table 2). These consist of each
1033 backbone (MLP, T2G-Former, ModernNCA, TabM-mini) with its native numerical embedding and
1034 with the proposed GPL embedding, together with additional baselines such as GBDTs. The Elo
1035 evaluation is computed jointly over all 46 datasets (classification and regression), using the same
1036 metrics as in the main experiments (accuracy for classification and RMSE for regression).
1037

1038 Following TabArena (Erickson et al., 2025), we use a stable Bradley-Terry implementation to com-
1039 pute Elo scores and 200 bootstrapping rounds to approximate 2.5%-97.5% confidence interval. We
1040 also adopt the 400-point Elo gap. The expected win rate of i -th model with Elo ratings of R_i against
 R_j is

$$1041 E_i = \frac{1}{1 + 10^{(R_j - R_i)/400}},$$

1042 Finally, unlike TabArena, we calibrate 1000 Elo to the performance of native MLP model.
1043

1044 Figure 5 summarizes the resulting Elo ratings and confidence intervals for all 18 models. GPL-
1045 enhanced variants consistently achieve higher Elo scores than their native counterparts, confirming
1046 the improvements reported in the main text.
1047

1048 **E.2 DEFINITION OF EMBEDDING TORTUOSITY**
1049

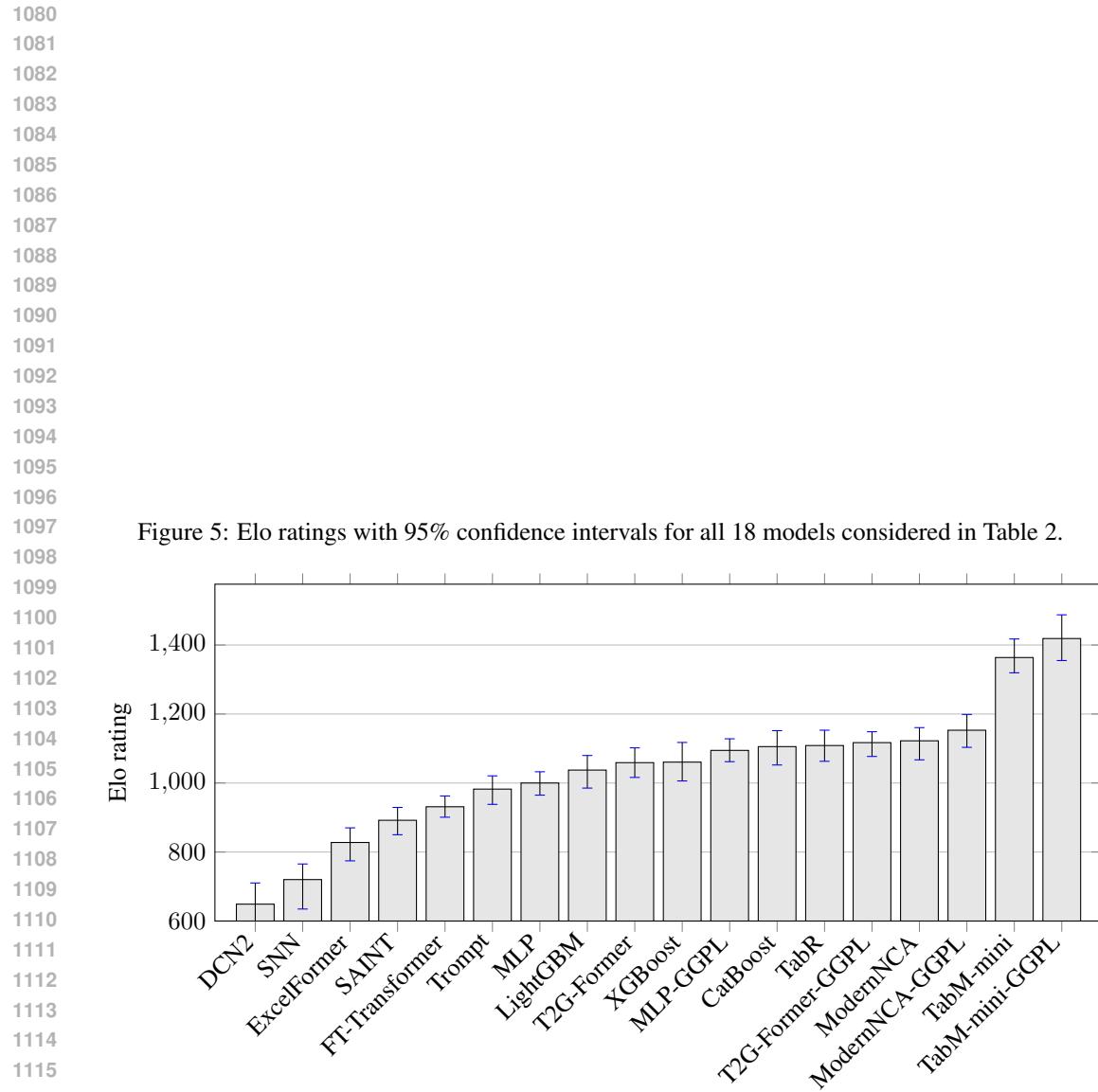
1050 We quantify the complexity of a learned numerical embedding (ϕ) by measuring its tortuosity. For
1051 a given numerical feature i , let $t_1^{(i)} < t_2^{(i)} < \dots < t_{K_i}^{(i)}$ denote the breakpoints that are initial-
1052 ized from GBDT (e.g., XGBoost) splits and subsequently optimized by backpropagation, and let
1053 $\mathbf{v}_1^{(i)}, \dots, \mathbf{v}_{K_i}^{(i)} \in \mathbb{R}^d$ be the corresponding embedding vectors. As formulated in Eq. 4, we define the
1054 tortuosity of ϕ_i as the ratio of the piecewise-linear curve length to the Euclidean distance between
1055 its start and end points. A higher value indicates a more complicated function, while a value closer
1056 to 1 signifies a smoother path.
1057

$$1058 \text{Tortuosity}(\phi_i) = \frac{\sum_{k=0}^{K_i} \left\| [\mathbf{v}_{k+1}^{(i)}; t_{k+1}^{(i)}] - [\mathbf{v}_k^{(i)}; t_k^{(i)}] \right\|_2}{\left\| [\mathbf{v}_{K_i+1}^{(i)}; t_{K_i+1}^{(i)}] - [\mathbf{v}_0^{(i)}; t_0^{(i)}] \right\|_2} \quad (4)$$

1061 **E.3 EFFECT SIZE DETAILS**
1062

1063 We aggregate effect sizes across datasets by normalizing each dataset so that the best-performing
1064 model attains a score of 1 and the worst-performing model a score of 0. For each backbone and task,
1065 we then define the normalized-score gain Δ as the difference between the GPL-enhanced variant
1066 and its baseline (native) numerical embedding, and summarize this gain via its mean and standard
1067 deviation over all datasets and seeds.
1068

1069 Figure 6 shows histograms of these normalized scores for regression (left) and classification (right)
1070 across all datasets and seeds for the four backbones (TabM-mini, ModernNCA, T2G-Former, MLP).
1071 For each architecture, we compare the native numerical embedding (Baseline) and GPL, along
1072 with the mean $\mu(\Delta)$ and standard deviation $\sigma(\Delta)$ of Δ . On regression tasks, all backbones exhibit
1073 positive mean gains, and the GPL histograms are shifted toward 1 relative to their baselines, indi-
1074 cating consistent improvements in performance. On classification tasks, the two histograms overlap.
1075 Table 2 and Figure 6 confirm that GPL consistently improves regression performance and yields
1076 slightly improved, at least comparable performance on classification.
1077



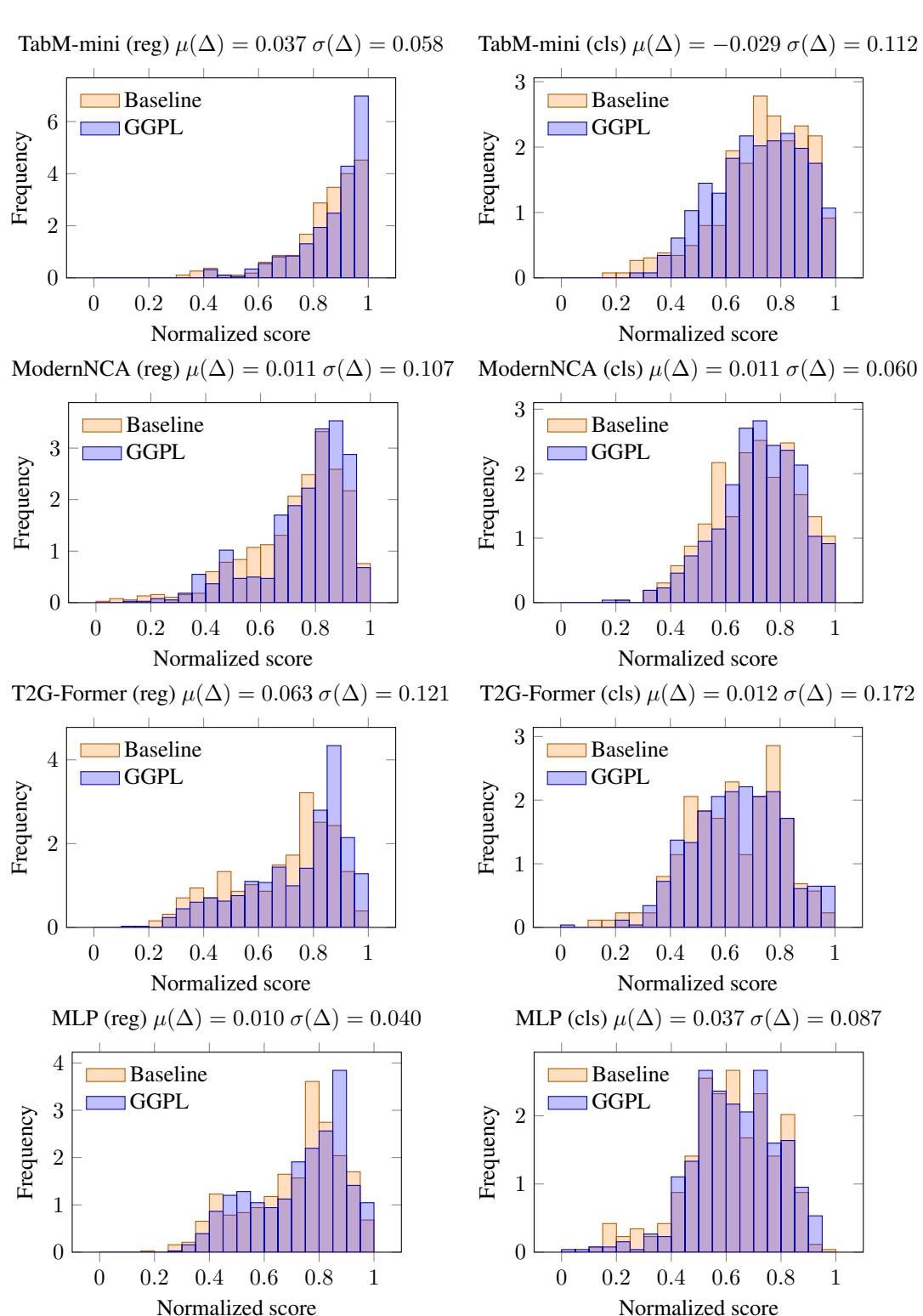


Figure 6: Histograms of normalized scores for regression (left) and classification (right) across all datasets and seeds for four backbones (TabM-mini, ModernNCA, T2G-Former, MLP). For each architecture we compare the native numerical embedding (Baseline) and GGPL, and report the mean $\mu(\Delta)$ and standard deviation $\sigma(\Delta)$ of the normalized-score gain Δ .