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ABSTRACT

Tabular data remains central to many scientific and industrial applications. Re-
cently, deep learning models are emerging as a powerful tool for tabular data
prediction, outperforming traditional methods such as Gradient Boosted Decision
Trees (GBDTs). Despite this success, the fundamental challenge of feature het-
erogeneity still remains. Unlike in image or text modalities where features are
semantically homogeneous, each tabular feature often carries a distinct semantic
meaning and distribution. A common strategy to address the heterogeneity is to
project features into a shared high-dimensional vector space. Among the various
feature types in tabular data, categorical features are effectively embedded via em-
bedding bags, which assign a learnable vector to each unique category. In contrast,
effective embeddings for numerical features remain underexplored. In this paper,
we argue that piecewise-linear functions are well suited to modeling the irregu-
lar and high-frequency patterns often found in tabular data, provided that break-
points are carefully chosen. To this end, we propose GBDT-Guided Piecewise-
Linear (GGPL) embeddings, a method comprising breakpoints initialization using
GBDT split thresholds, stable breakpoint optimization using reparameterization,
and stochastic regularization via breakpoints deactivation. Thorough evaluation
on 46 datasets shows that applying GGPL to a range of state-of-the-art tabular
models consistently improves performance—especially on regression tasks—or
at least matches their native numerical embeddings. Together with its negligi-
ble overhead, this suggests that GGPL can serve as a practical default numerical
embedding for future tabular architectures. The code is available in the supple-
mentary material.

1 INTRODUCTION

Tabular data, characterized by its structured format of rows and columns, remains the most common
data modality in a vast array of scientific and industrial domains, from healthcare and finance to
e-commerce and climate science (Shwartz-Ziv & Armon, 2022; Somvanshi et al., 2024). Its prac-
tical importance across numerous domains has established predicting a target column from a set
of observed features as a central problem within the field of machine learning, attracting extensive
research (Gorishniy et al., 2021; Lee et al., 2024; Eo et al., 2025; Hollmann et al., 2025; Lee et al.,
2025; Ye et al., 2025).

Deep learning architectures for tabular data (Yan et al., 2023; Gorishniy et al., 2025; Hollmann
et al., 2025; Ye et al., 2025) are increasingly outperforming Gradient Boosted Decision Trees (GB-
DTs; Chen & Guestrin, 2016; Ke et al., 2017; Prokhorenkova et al., 2018) on many benchmarks,
which have long been the dominant approach in the field. This shift is driven by the ability of deep
models to capture complex, non-linear feature interactions, reducing the dependence on manual fea-
ture engineering. In real-world applications with large and diverse datasets, deep learning models
stand out for their high prediction accuracy and efficient inference.

Nevertheless, effectively handling heterogeneous tabular features remains a key challenge for deep
models (Gorishniy et al., 2021). Unlike images or text, where features (e.g., pixels or words) are se-
mantically homogeneous, tabular columns often represent fundamentally different concepts whose
scales and distributions can vary widely. A common strategy to address this heterogeneity is to
map features into a shared high-dimensional vector space, allowing subsequent layers to function
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effectively (e.g., matrix multiplication in an MLP or the attention mechanism in a Transformer).
Moreover, this projection into a high-dimensional space empowers the network to learn complex,
non-linear feature interactions. While there is a well-established practice for categorical features us-
ing embedding bags (Mikolov et al., 2013; Guo et al., 2017), a standard methodology for embedding
numerical features has yet to emerge.

Embedding a numerical feature can be viewed as learning a continuous mapping from R to Rd.
A variety of approaches have been explored for this purpose, including Multi-Layer Perceptrons
(MLPs; Gorishniy et al., 2022; Wu et al., 2024), Fourier features (Gorishniy et al., 2022; Sergazi-
nov et al., 2025), and piecewise-linear functions (Gorishniy et al., 2022). Among these, we find
piecewise-linear functions well suited for embedding tabular data. Real-world tabular datasets often
exhibit irregular and non-smooth feature–target relationships. A key aspect of these relationships is
the presence of high-frequency components, which are critical for accurate prediction (Grinsztajn
et al., 2022). However, MLPs exhibit a spectral bias that prevents them from effectively captur-
ing such high-frequency target functions (Rahaman et al., 2019). Although Fourier features have
addressed this limitation in computer vision (Tancik et al., 2020; Mildenhall et al., 2021), their ef-
fectiveness is reduced in the tabular domain. Accurate modeling with Fourier features requires an
appropriate choice of frequency components, but the heterogeneity of tabular data implies that a
different set of frequencies may be optimal for each feature. While the expressiveness of piecewise-
linear functions in modeling irregular and high-frequency patterns also depends critically on the
appropriate placement of breakpoints (Hastie et al., 2009), our method addresses this challenge by
effectively selecting suitable breakpoints for each numerical feature.

In this paper, we address the challenge of breakpoint positioning within the prior piecewise-linear
embedding (Gorishniy et al., 2022). To this end, we propose the GBDT-Guided Piecewise-Linear
(GGPL) embedding that focuses on three essential components: initialization, optimization, and reg-
ularization. The properties of tabular data and their target functions make each of these components
important. Effectively modeling the irregular and non-smooth function requires precise breakpoint
placement, which makes both effective initialization and stable optimization essential. Addition-
ally, the task of tabular prediction exhibits an inherent tendency to overfit (Kadra et al., 2021) and
lacks the inherent invariances (e.g., spatial invariance in images) that facilitate data augmentation.
This makes robust regularization essential. To address these challenges, we propose the following
contributions, which are described in detail in Section 3.

1. We initialize the breakpoints using the split thresholds of the largest gains from an XGBoost
model, effectively leveraging the well-established strength of GBDT.

2. We reparameterize the optimization of breakpoints into a stable process by optimizing the
ratios of piece lengths on a probability simplex, which guarantees valid breakpoint posi-
tions throughout training.

3. We propose a regularization technique that stochastically deactivates breakpoints during
training, encouraging similarity between adjacent linear pieces to prevent overfitting.

In practice, we train a default XGBoost once to obtain the split thresholds, which minimizes training
overhead and shows no statistically significant difference from a hyperparameter-tuned one. In ad-
dition, all proposed methods are training-only and not applied at inference, so there is no additional
inference-time overhead compared with prior piecewise-linear embedding methods (Gorishniy et al.,
2022).

We validate our proposed method through extensive experiments on the 46 datasets from Gorishniy
et al. (2025), spanning a wide range of sizes and domains. Our embedding demonstrates statistically
significant improvements in two settings: (i) when applied to state-of-the-art deep tabular mod-
els (Yan et al., 2023; Gorishniy et al., 2025; Ye et al., 2025) and (ii) when compared with existing
numerical embedding methods (Gorishniy et al., 2022; Li et al., 2024). Notably, our best-performing
model achieves the top average rank across all datasets. Moreover, on small-sized datasets where
tabular foundation models are available, our GGPL-enhanced models perform competitively, some-
times surpassing TabPFN (Hollmann et al., 2025). The detailed experimental setup and results are
presented in Section 4. A subsequent analysis, including ablation studies, statistical tests, and per-
formance analysis across dataset characteristics, is provided in Section 5.

We validate our proposed method through extensive experiments on the 46 datasets from Gorishniy
et al. (2025), spanning a wide range of sizes and domains. Our embedding demonstrates statis-
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tically significant improvements in two settings: (i) when applied to state-of-the-art deep tabular
models (Yan et al., 2023; Gorishniy et al., 2025; Ye et al., 2025) and (ii) when compared with
existing numerical embedding methods (Gorishniy et al., 2022; Li et al., 2024). These gains are
more consistent on regression tasks, and on classification they are relatively small but at least match
the performance of the native numerical embeddings. Combined with the negligible training and
inference overhead of GGPL, these results suggest that it can serve as a practical default numer-
ical embedding for future tabular architectures. Notably, our best-performing model achieves the
top average rank across all datasets. Moreover, on small-sized datasets where tabular foundation
models are available, our GGPL-enhanced models perform competitively, sometimes surpassing
TabPFN (Hollmann et al., 2025). The detailed experimental setup and results are presented in Sec-
tion 4, and subsequent analysis, including ablation studies, statistical tests, and performance analysis
across dataset characteristics, is provided in Section 5.

2 RELATED WORK

2.1 TABULAR PREDICTION MODELS

GBDTs like XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and Cat-
Boost (Prokhorenkova et al., 2018) have long been the state-of-the-art. They build an ensemble
of weak decision trees sequentially and are known for their ability to handle sparse, heterogeneous
data and capture complex feature interactions. However, their performance is being surpassed by
deep learning architectures, which can be largely classified into two main categories: foundation
models and task-specific models.

Foundation models like TabPFN (Hollmann et al., 2025) can be applied to various downstream tasks
without further parameter tuning, demonstrating remarkable performance on small-scale problems.
This is achieved by pre-training a large model on millions of synthetic datasets and leveraging in-
context learning at inference-time. However, their quadratic time complexity with respect to the
number of training samples restricts their applicability to large-scale datasets.

Task-specific models, while chronologically preceding foundation models, remain a crucial and
practical type as they are free from the scalability issues of foundation models. To improve the
performance of task-specific models, various approaches have been explored, such as improving
backbone architectures, enhancing embedding methods, and incorporating the strengths of GBDTs.

2.2 IMPROVEMENTS IN TASK-SPECIFIC MODELS

One primary line of research is designing specialized backbone architectures. These include MLP-
based models, which have shown that even simple architectures can achieve top-tier performance
when combined with proper regularization and ensemble techniques (Kadra et al., 2021; Holzmüller
et al., 2024; Gorishniy et al., 2025); Transformer-based models that adapt the self-attention mecha-
nism to learn complex interactions among heterogeneous features (Gorishniy et al., 2021; Yan et al.,
2023); and retrieval-based models that make predictions by retrieving similar instances from the
training set (Gorishniy et al., 2024; Ye et al., 2025).

Another key line of research involves improving embedding methods for input features. MLP-based
embedding methods apply a feature-specific MLP to map each scalar value to an embedding vec-
tor (Guo et al., 2017; Gorishniy et al., 2022; Wu et al., 2024). However, MLPs have a spectral bias
towards learning smooth functions (Rahaman et al., 2019), which may not be optimal for the of-
ten irregular relationships in tabular data. Inspired by their success in computer vision (Mildenhall
et al., 2021), Fourier embeddings have also been used for numerical embeddings (Gorishniy et al.,
2022; Sergazinov et al., 2025), but their effectiveness is limited in the tabular domain due to fea-
ture heterogeneity, which makes it difficult to find suitable frequency components for all features.
Piecewise-linear embedding methods partition a feature’s range into a set of bins and learn a linear
function within each bin. Gorishniy et al. (2022) introduce piecewise-linear embedding and propose
two methods for initializing breakpoints: a quantile-based approach, which places breakpoints based
on the input distribution, and a target-aware approach, which trains a decision tree for each input
feature to predict the target and uses the resulting thresholds. However, these breakpoints are fixed
and not optimized during training. Further, the feature-wise decision tree-based approach prevents
considering complex feature interactions when placing breakpoints.
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A third line of work incorporates the strengths of GBDTs into deep learning models. Some meth-
ods introduce modules to mimic the thresholding behavior of decision trees within a neural net-
work (Popov et al., 2020; Katzir et al., 2021). Another method uses GBDTs to calculate feature
frequencies to determine the selection ratio of feature gates (Li et al., 2024). Our approach, rather
than mimicking GBDTs, leverages their efficiency and accuracy to initialize the breakpoints of the
piecewise-linear embedding using split thresholds with the largest score gain.

3 PROPOSED METHOD

3.1 BACKGROUND: PIECEWISE-LINEAR ENCODING

To enhance the representational capacity of tabular models, prior work has proposed embedding
scalar numerical features into higher-dimensional vector spaces using piecewise-linear encoding
(PLE; Gorishniy et al., 2022). Formally, for i-th numerical feature xi ∈ R, the input range is
partitioned into Ki+1 disjoint intervals [t(i)k , t

(i)
k+1) for k = 0, . . . ,Ki, and the encoding is computed

as PLE(xi) = [e
(i)
0 , . . . , e

(i)
Ki

] ∈ RKi+1:

e
(i)
k =


0, xi < t

(i)
k and k > 0

1, xi ≥ t
(i)
k+1 and k < Ki

xi−t
(i)
k

t
(i)
k+1−t

(i)
k

, otherwise
(1)

The conditions on k (k > 0 and k < Ki) handle linear extrapolation when input values xi fall
outside the range. This encoding produces a continuous and order-aware vector representation of
scalar inputs, which can serve as an effective replacement for the original input value in downstream
architectures. However, prior implementations of PLE use fixed breakpoints (e.g., quantile or target-
aware), which remain static during training. We instead initialize breakpoints using GBDT splits
and jointly optimize them via a differentiable reparameterization. This enables the embedding to
adapt to high-frequency or irregular patterns. We further apply stochastic regularization to improve
generalization.

3.2 GBDT-GUIDED PIECEWISE-LINEAR EMBEDDING

The embedding function in a tabular neural network, ϕi : R → Rd, maps i-th feature to a shared
high-dimensional space. In this paper, we use PLE to model ϕi(xi) through a piecewise-linear curve
as follows.

ϕi(xi) =
[
w

(i)
0 ,w

(i)
1 , . . . ,w

(i)
Ki

]

e
(i)
0

e
(i)
1
...

e
(i)
Ki

+ b(i) (2)

ϕi(xi) maps each scalar input to a point on a continuous piecewise-linear curve in Rd. Specifically,
when xi = t

(i)
k , the embedding becomes a vertex of the curve given by v

(i)
k = b(i) +

∑k−1
j=0 w

(i)
j .

When xi ∈ [t
(i)
k , t

(i)
k+1), the embedding lies on the line segment connecting v

(i)
k and v

(i)
k+1. When

xi < t
(i)
0 or xi ≥ t

(i)
Ki+1, the embedding extrapolates linearly based on the first or last segment,

respectively. An example of ϕi(xi) is illustrated in Figure 1.

The main challenge is to determine the optimal positions of t(i)k and their corresponding v
(i)
k , which

are defined by w
(i)
k and b(i). The GGPL embedding tackles this through three components:

1. GBDT-guided initialization which determines the initial values of t(i)k ,

2. simplex-based reparameterization for stable optimization of t(i)k ,
3. stochastic breakpoint regularization to mitigate overfitting.

All parameters including w
(i)
k and b(i) are optimized via standard backpropagation.
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3.3 GBDT-GUIDED BREAKPOINT INITIALIZATION

Our initialization method determines the initial values of t
(i)
k using GBDTs trained on the data.

Specifically, we adopt the feature threshold values used for splitting nodes in the GBDT as the ini-
tial locations for the breakpoints. By leveraging GBDTs’ well-established strength, this approach
identifies the most effective splits based on their gain scores. This process allocates fewer break-
points to less important features, reducing the risk of overfitting by saving parameters. Algorithmic
details are provided in Appendix A.1.

To keep the pipeline lightweight, we obtain split thresholds from a single XGBoost model with
default hyperparameters trained on each dataset. Moreover, because the GBDT is used only to
initialize breakpoints, it incurs no inference-time cost. Across the 46 datasets, the tuned XGBoost
initializer does not yield statistically significant improvements over the default (p ≈ 0.07), indicating
that the default setting is adequate as a practical choice. Nonetheless, accuracy can still be pushed
further through additional tuning of the initializer when desired. Further details are provided in
Appendix A.2, including comparisons to tuned XGBoost and alternative GBDT initializers.

3.4 STABLE SIMPLEX-BASED OPTIMIZATION

Directly training t
(i)
k may break ordering constraints (t(i)k−1 ≤ t

(i)
k ) and is prone to division-by-zero

errors. To optimize t
(i)
k stably, we reparameterize the problem as the following.

We first normalize the position of each t
(i)
k as r

(i)
k = (t

(i)
k − min(Xi))/(max(Xi) − min(Xi)),

where Xi is the set of values for i-th feature in the training set. Then, we define the k-th proportion
as π

(i)
k = r

(i)
k − r

(i)
k−1. The vector of proportions π(i) = [π

(i)
1 , . . . , π

(i)
Ki+1] forms a point on the

Ki-dimensional probability simplex (∆Ki ), which is the output of the softmax function.

π(i) = softmax(z(i)) (3)

Optimizing unconstrained logits z(i) ∈ RKi+1 instead of t(i)k guarantees that the breakpoints remain
ordered and prevents them from collapsing within the feature’s range.

3.5 STOCHASTIC BREAKPOINT REGULARIZATION

Since there are no smoothness constraints between adjacent embedding vectors, the learned func-
tion exhibits high tortuosity, which increases the risk of overfitting. To mitigate this, we introduce
a regularization technique analogous to dropout that encourages similarity between adjacent em-
bedding vectors. During each training forward pass, we randomly deactivate a fraction of t(i)k for
k = 1, . . . ,Ki with probability p.

Figure 2 provides a visual example of the stochastic regularization technique. When t
(i)
k is deacti-

vated, its corresponding v
(i)
k is ignored, and a new linear piece is formed between v

(i)
k−1 and v

(i)
k+1

(or the nearest active breakpoints if multiple consecutive breakpoints are deactivated). The embed-
ding should remain consistent even if some breakpoints are deactivated. This encourages the model

x
t0

v0

t1

v1

t2

v2

t3

v3

t4

v4

Figure 1: A piecewise-linear embedding that maps a scalar feature into a high-dimensional space,
defined by a set of breakpoints (tk ∈ R) and their corresponding embedding vectors (vk ∈ Rd).
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to learn a smoother function, which is beneficial for regression but can be detrimental for classifi-
cation tasks that rely on sharp decision boundaries. Consequently, we apply this regularization only
to regression tasks. At inference-time, all breakpoints are activated (p = 0), and unlike dropout, no
scaling of the embeddings is required. We analyze the effect of this regularization for regression and
classification in Appendix A.3.

4 EXPERIMENTS

4.1 DATASETS

We conduct a comprehensive evaluation on the benchmark of 46 datasets previously used in Gor-
ishniy et al. (2025). These datasets span a wide range of tabular tasks, with sample sizes from a few
thousand to over a million and feature counts up to nearly a thousand—reflecting the scale and com-
plexity of real-world applications. The characteristics of these datasets are summarized in Table 1,
with further details available in Appendix B.

Table 1: Overview of the 46 benchmark datasets, categorized by task, sample size, and feature-to-
sample ratio.

Category Criteria Count
Total 46

Task Classification 18
Regression 28

Sample size Small (≤ 30k) 24
Large (> 30k) 22

Feature-to-sample ratio High (> 0.001) 21
Low (≤ 0.001) 25

4.2 BASELINE MODELS

To evaluate the effectiveness and versatility of our GGPL embedding, we integrate it into three state-
of-the-art deep tabular models and a baseline MLP, with each representing a different architectural
paradigm. For each model, we then compare the performance of the original version against its
GGPL-enhanced counterpart. The selected models are MLP, T2G-Former, ModernNCA, and TabM,
and we provide detailed descriptions of these four models in Appendix C.1.1.

In addition, we include 10 additional models, including GBDTs (Chen & Guestrin, 2016; Ke et al.,
2017; Klambauer et al., 2017; Prokhorenkova et al., 2018; Gorishniy et al., 2021; Somepalli et al.,
2021; Wang et al., 2021; Chen et al., 2023; 2024; Gorishniy et al., 2024) for comparison purposes
without incorporating our proposed method. TabPFN (Hollmann et al., 2025) is also included in

x
t0

v0

t1

v1

t2

v2

t3

v3

t4

v4

Figure 2: The effect of stochastic breakpoint regularization. When the middle breakpoints are deac-
tivated (dashed circle), a new, linear piece is formed directly between its neighbors (solid circle).
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Table 2: Average ranks across 46 datasets (lower is better). The numbers in parentheses indicate the
rank improvement from applying GGPL.

Model All Tasks (↓) Regression (↓) Classification (↓) Num. Embedding
GBDT models
LightGBM 9.48 8.86 10.44 -
XGBoost 9.00 8.93 9.11 -
CatBoost 8.04 7.64 8.67 -

Deep learning models (without numerical embedding)
DCN2 16.04 15.93 16.22 -
SNN 15.20 15.61 14.56 -

Deep learning models (with numerical embedding)
ExcelFormer 13.61 13.86 13.22 GLU
SAINT 12.46 13.07 11.50 MLP
FT-Transformer 11.70 12.25 10.83 Linear
Trompt 10.63 10.39 11.00 Linear
MLP 10.28 10.32 10.22 Periodic
T2G-Former 9.02 9.14 8.83 Linear
TabR 7.98 8.32 7.44 Periodic
ModernNCA 7.70 8.82 5.94 Periodic
TabM-mini 3.61 3.00 4.56 Piecewise-linear

Deep learning models (with GGPL embedding)
MLP-GGPL 8.28 (-2.00) 7.64 (-2.68) 9.28 (-0.94) GGPL (Ours)
T2G-Former-GGPL 7.80 (-1.22) 7.07 (-2.07) 8.94 (+0.11) GGPL (Ours)
ModernNCA-GGPL 7.09 (-0.61) 8.07 (-0.75) 5.56 (-0.38) GGPL (Ours)
TabM-mini-GGPL 2.96 (-0.65) 2.04 (-0.96) 4.39 (-0.17) GGPL (Ours)

the comparison only on small-scale datasets that meet its constraints. Detailed descriptions of these
baseline models are in Appendix C.1.2.

4.3 IMPLEMENTATION DETAILS

For TabM, we use the official implementation from Gorishniy et al. (2025), while our implementa-
tions of T2G-Former and ModernNCA are based on the code from Liu et al. (2024). To ensure a fair
comparison, we follow the training protocol of Gorishniy et al. (2025).

With some exceptions, we apply a slightly modified version of the quantile transform from scikit-
learn (Pedregosa et al., 2011) to numerical features. We use cross-entropy loss for classification
and mean squared error loss for regression. Hyperparameters are tuned using Optuna (Akiba et al.,
2019) over 100 trials (50 for large datasets). All baselines except TabPFN are also tuned using the
hyperparameter search spaces from Gorishniy et al. (2025), while TabPFN is evaluated with default
configuration. Further details are provided in Appendix C.2.

4.4 RESULTS

For each dataset, we evaluate model performance using accuracy for classification and root mean
squared error (RMSE) for regression, averaging the results over 15 random seeds. To aggregate
performance across datasets, we compute the average rank of each model based on these scores.
Detailed results for each dataset can be found in Appendix D.

Main Results

We present the main results in Table 2, which shows the average ranks of our GGPL-enhanced
models against various baselines across all 46 datasets, as well as separate ranks for regression
and classification tasks. The results consistently show that applying our GGPL embedding leads to

7
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Table 3: Comparison with TabPFN on 23 small-
scale datasets.

Model All (↓) Reg. (↓) Cls. (↓)
LightGBM 10.91 10.40 11.88
XGBoost 10.70 10.80 10.50
MLP 10.96 11.60 9.75
T2G-Former 10.22 9.87 10.88
ModernNCA 9.39 10.73 6.88
MLP-GGPL 9.04 8.53 10.00
T2G-Former-GGPL 8.57 7.20 11.13
CatBoost 8.00 7.93 8.13
ModernNCA-GGPL 7.52 8.13 6.38
TabPFN 5.96 6.93 4.13
TabM-mini 4.57 3.47 6.63
TabM-mini-GGPL 3.30 2.47 4.88

Table 4: Ablation study on the components
of GGPL. Performance is measured by the
average rank on all 46 datasets using the
MLP backbone.

Embedding Method Average Rank
Base 9.76
Base+I 8.91 (-0.85)
Base+I+O 8.52 (-0.39)
Base+I+O+R (GGPL) 8.28 (-0.24)

performance improvements across all four backbone architectures with diverse design paradigms.
For instance, GGPL provides a substantial boost to MLP on regression tasks, improving its average
rank by 2.68. Overall, TabM-mini-GGPL emerges as the best-performing model, achieving the top
average rank of 2.96 across all tasks. This demonstrates that our proposed embedding is not only
effective but also versatile, enhancing the capabilities of diverse model architectures.

Comparison on Small-Scale Datasets

To motivate our focus on task-specific models, we compare GGPL-enhanced variants against the
foundation model TabPFN (Hollmann et al., 2025). This comparison uses 23 small-scale datasets
from the full benchmark of 46 datasets that satisfy TabPFN’s constraints (≤ 10 classes, ≤ 500
features, and ≤ 10000 samples). As shown in Table 3, our GGPL-enhanced models are competitive
with both TabPFN and CatBoost, even on small-scale datasets where these models are presumed to
excel. Notably, TabM-mini-GGPL surpasses TabPFN to achieve the top overall rank. These results
highlight that task-specific models can attain state-of-the-art performance without the scalability
constraints of foundation models.

5 ANALYSIS

5.1 ABLATION STUDY

To isolate the contribution of each of our proposed components—Initialization (I), Optimization
(O), and Regularization (R)—we conduct an ablation study on the MLP backbone. Starting from
a piecewise-linear embedding where breakpoints are initialized uniformly (Base), we incrementally
add I, O, and R. The results in Table 4 demonstrate that each component consistently improves
performance, validating our design choices.

5.2 STATISTICAL TESTING OF GGPL AGAINST OTHER EMBEDDINGS

To evaluate the effectiveness of our proposed GGPL embedding, we conduct two comparisons:
(i) against existing numerical embeddings on the MLP backbone and (ii) as a drop-in replace-
ment within other architectures (e.g., T2G, MNCA, TabM), replacing their native numerical em-
beddings. The baseline embeddings on the MLP backbone include no embedding, periodic encod-
ing, and piecewise-linear embeddings with both initialization methods (quantile-based and target-
aware; Gorishniy et al., 2022); additionally, we compare against the tree-based T2V method (Li
et al., 2024) on the 16 binary classification tasks.

We apply a stratified Wilcoxon signed-rank test to assess statistical significance across datasets with
multiple random seeds: each dataset is treated as a stratum, seed-level paired differences are com-
puted within each dataset, and the stratum-specific statistics are aggregated into a single p-value.
As shown in Tables 5 and 6, GGPL demonstrates consistent and statistically significant improve-
ments—over all numerical embedding baselines on MLP and over the native numerical embeddings
on other architectures.
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Table 5: GGPL vs other numerical embeddings
on the MLP backbone using stratified Wilcoxon
signed-rank test.

Baseline Method Z-statistics p-value

No Embedding 17.0 < 10−10

T2V 10.6 < 10−10

Periodic 3.38 7.15× 10−4

Piecewise-linear
(quantile-based) 4.22 2.43× 10−5

Piecewise-linear
(target-aware) 4.32 1.58× 10−5

Table 6: GGPL vs native numerical em-
beddings across models using stratified
Wilcoxon signed-rank test.

Model Z-statistics p-value

MLP 3.38 7.15× 10−4

T2G 4.90 9.74× 10−7

MNCA 2.37 1.79× 10−2

TabM 4.47 7.66× 10−6

We further quantify the effect size of GGPL when used as a drop-in replacement for native numerical
embeddings by computing Elo ratings (Elo, 1967), which is recently adopted in TabArena (Erickson
et al., 2025). Following TabArena, we estimate 95% confidence intervals via 200-round bootstrap
resampling (2.5–97.5% quantiles). Unlike TabArena, we calibrate the Elo scale by fixing the MLP
backbone with its native numerical embedding to 1000 and report all other Elo scores relative to this
anchor.

As shown in Figure 3, GGPL increases the Elo rating of every backbone. For MLP, the 95% confi-
dence intervals of the native and GGPL variants do not overlap. For T2G-Former and TabM-mini,
the intervals partially overlap, and the mean Elo of the GGPL variant lies near the upper end of
the native variant’s confidence interval. For ModernNCA, the intervals overlap more substantially,
indicating a smaller yet positive shift. This pattern is consistent with our stratified Wilcoxon signed-
rank tests, where ModernNCA also exhibited the largest (yet still significant) p-value of 1.79×10−2.
Taken together, the Elo and Wilcoxon analyses confirm that replacing native numerical embeddings
with GGPL yields consistent and statistically meaningful improvements across architectures. Fur-
ther details of the Elo rating and plots of all models are provided in Appendix E.1.

MLP
T2G-Former

ModernNCA
TabM-mini

1,000

1,200

1,400

E
lo

ra
tin

g

Native embedding GGPL embedding

Figure 3: Elo ratings for each backbone with its native numerical embedding (solid bars) and with
GGPL (hatched bars). MLP with native embedding is used as baseline (1000). Error bars indicate
95% confidence intervals.

5.3 PERFORMANCE ANALYSIS BY DATASET CHARACTERISTICS

To better understand where GGPL provides the most significant benefits, we analyze its performance
improvement across different dataset characteristics in Table 7. A few general trends emerge from
the data. First, we observe that the performance gains are consistently more pronounced in regres-
sion tasks than in classification. In contrast to classification tasks, where precise modeling near
decision boundaries is important, regression tasks require global accuracy. This result suggests that
our approach is particularly effective for regression tasks, as it helps model the entire feature–target
relationship with high fidelity. Second, with the exception of MLP on feature-to-sample ratio, our
method tends to yield greater improvements on datasets with small sample sizes and high feature-
to-sample ratios. This indicates that GGPL provides a valuable inductive bias that is effective in
preventing overfitting, where training data is limited or feature dimensionality is high.
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Table 7: Average rank improvement of GGPL across different dataset characteristics.

Characteristic MLP T2G-Former ModernNCA TabM-mini
Regression task 10.32 → 7.64 (-2.68) 9.14 → 7.07 (-2.07) 8.82 → 8.07 (-0.75) 3.00 → 2.04 (-0.96)
Classification task 10.22 → 9.28 (-0.94) 8.83 → 8.94 (+0.11) 5.94 → 5.56 (-0.38) 4.56 → 4.39 (-0.17)

Small sample size 10.58 → 8.21 (-2.37) 9.38 → 8.04 (-1.34) 8.25 → 6.75 (-1.50) 3.75 → 2.92 (-0.83)
Large sample size 9.95 → 8.36 (-1.59) 8.64 → 7.55 (-1.09) 7.09 → 7.45 (+0.36) 3.45 → 3.00 (-0.45)

High feature-to-sample ratio 10.19 → 8.52 (-1.67) 9.05 → 7.67 (-1.38) 9.10 → 7.62 (-1.48) 3.90 → 3.24 (-0.66)
Low feature-to-sample ratio 10.36 → 8.08 (-2.28) 9.00 → 7.92 (-1.08) 6.52 → 6.64 (+0.12) 3.36 → 2.72 (-0.64)

5.4 ANALYSIS OF STOCHASTIC BREAKPOINT REGULARIZATION

We investigate the effect of stochastic breakpoint regularization by varying its deactivation ratio (p)
using the MLP-GGPL model on the House 16H dataset (Gorishniy et al., 2024). While holding all
other hyperparameters constant, we vary p from 0.0 to 0.95 in increments of 0.05, averaging results
over 100 random seeds. We evaluate model performance and embedding complexity, where the
latter is measured by tortuosity. Further details about tortuosity are provided in Appendix E.2.

Figure 4a shows that RMSE is minimized at p = 0.60, indicating that an appropriate level of regular-
ization is essential for the best performance. Figure 4b shows that tortuosity decreases monotonically
with p, confirming that the regularization smooths the embedding function as intended.
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(a) RMSE: Model performance (RMSE) as a func-
tion of the deactivation ratio (p).
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(b) Tortuosity: Embedding function tortuosity as a
function of the deactivation ratio (p).

Figure 4: The effect of the deactivation ratio (p) in stochastic breakpoint regularization.

5.5 EFFECT SIZE ANALYSIS

Finally, we aggregate effect sizes across datasets by normalizing each dataset so that the best-
performing model scores 1 and the worst scores 0. We then use these normalized scores to com-
pute, for each architecture and task, the mean and standard deviation of the gap between the base-
line and its GGPL-enhanced variant. In addition, we plot histograms of the baseline and GGPL-
normalized scores to visualize the distributional shifts; detailed statistics and figures are provided in
Appendix E.3. On regression tasks, the GGPL distributions tend to shift toward 1 and the mean gains
are consistently positive across architectures, whereas on classification tasks the two histograms al-
most overlap. These results indicate that GGPL improves (on regression) or at least matches (on
classification) the native numerical embeddings of several state-of-the-art tabular architectures, sup-
porting our goal of providing a practical default numerical embedding that can be plugged into
diverse models with minimal overhead.

6 CONCLUSION

In this paper, we addressed the challenge of numerical feature embedding for deep tabular models.
To this end, we proposed GGPL, a piecewise-linear embedding method built on three components:
GBDT-guided initialization, stable optimization on a probability simplex, and stochastic breakpoint
regularization. Our analysis confirms that all three components are essential for the method’s effec-
tiveness. With their synergy, GGPL significantly boosts various state-of-the-art models to achieve
the top average rank in extensive experiments. Our method demonstrates particular strength in data-
scarce settings, indicating it provides a valuable inductive bias to promote better generalization for
deep tabular models.
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David Holzmüller, Léo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned mlps and
boosted trees on tabular data. Advances in Neural Information Processing Systems, 37:26577–
26658, 2024.

11

https://arxiv.org/abs/2506.16791
https://arxiv.org/abs/2506.16791
https://openreview.net/forum?id=Sd4wYYOhmY
https://www.nature.com/articles/s41586-024-08328-6
https://www.nature.com/articles/s41586-024-08328-6


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. Advances in neural information processing systems, 34:23928–23941, 2021.

Liran Katzir, Gal Elidan, and Ran El-Yaniv. Net-{dnf}: Effective deep modeling of tabular data. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=73WTGs96kho.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. Advances in neural information processing systems, 30, 2017.

Kyungeun Lee, Ye Seul Sim, Hye-Seung Cho, Moonjung Eo, Suhee Yoon, Sanghyu Yoon, and
Woohyung Lim. Binning as a pretext task: Improving self-supervised learning in tabular domains.
arXiv preprint arXiv:2405.07414, 2024.

Kyungeun Lee, Moonjung Eo, Hye-Seung Cho, Dongmin Kim, Ye Seul Sim, Seoyoon Kim,
Min-Kook Suh, and Woohyung Lim. Multitab: A comprehensive benchmark suite for multi-
dimensional evaluation in tabular domains. arXiv preprint arXiv:2505.14312, 2025.

Xuan Li, Yun Wang, and Bo Li. Tree-regularized tabular embeddings. arXiv preprint
arXiv:2403.00963, 2024.

Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, and Han-Jia Ye. Talent: A tabular analytics and learning
toolbox. arXiv preprint arXiv:2407.04057, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositionality. Advances in neural information processing
systems, 26, 2013.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for
deep learning on tabular data. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=r1eiu2VtwH.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information
processing systems, 31, 2018.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Ivan Rubachev, Nikolay Kartashev, Yury Gorishniy, and Artem Babenko. Tabred: Analyzing pitfalls
and filling the gaps in tabular deep learning benchmarks. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
L14sqcrUC3.

Renat Sergazinov, Jing Wu, and Shao-An Yin. Random at first, fast at last: Ntk-guided fourier
pre-processing for tabular dl. arXiv preprint arXiv:2506.02406, 2025.

12

https://openreview.net/forum?id=73WTGs96kho
https://openreview.net/forum?id=73WTGs96kho
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=r1eiu2VtwH
https://openreview.net/forum?id=L14sqcrUC3
https://openreview.net/forum?id=L14sqcrUC3


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

Shriyank Somvanshi, Subasish Das, Syed Aaqib Javed, Gian Antariksa, and Ahmed Hossain. A
survey on deep tabular learning. arXiv preprint arXiv:2410.12034, 2024.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In Proceedings of the web conference 2021, pp. 1785–1797, 2021.

Yuqian Wu, Hengyi Luo, and Raymond ST Lee. Deep feature embedding for tabular data. arXiv
preprint arXiv:2408.17162, 2024.

Jiahuan Yan, Jintai Chen, Yixuan Wu, Danny Z Chen, and Jian Wu. T2g-former: organizing tabular
features into relation graphs promotes heterogeneous feature interaction. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 10720–10728, 2023.

Han-Jia Ye, Huai-Hong Yin, De-Chuan Zhan, and Wei-Lun Chao. Revisiting nearest neighbor
for tabular data: A deep tabular baseline two decades later. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=JytL2MrlLT.

DISCLOSURE OF LLM ASSISTANCE

This paper benefited from assistance by a large language model (LLM) to improve its grammar.

A ALGORITHMIC DETAILS

A.1 GBDT-GUIDED BREAKPOINT INITIALIZATION

Given a trained GBDT, we collect node split thresholds and aggregate their gains to find a small set
of informative breakpoints for each numerical feature, as described in Algorithm 1.

A.2 SENSITIVITY TO THE CHOICE OF GBDT INITIALIZER

In practice, we initialize breakpoints by training a default XGBoost model once per dataset. This
choice keeps the pipeline simple with negligible computational overhead while already yielding
competitive performance. To examine the sensitivity to the choice of GBDT initializer, we compare
this default XGBoost against several alternatives on the MLP-GGPL backbone: a tuned XGBoost
obtained via a 100-trial hyperparameter search using Optuna (Akiba et al., 2019), a default Light-
GBM model, and XGBoost variants with fewer trees (nestimators). All other training settings are kept
identical except for the GBDT initializer.

As summarized in Table 8, the tuned XGBoost tends to perform better than the default, but the
difference is not statistically significant at the conventional α = 0.05 level. Likewise, default Light-
GBM and a moderately shallower XGBoost yield performance that is statistically indistinguishable
from the default XGBoost initializer, whereas only an extremely small XGBoost (with very few
trees) shows a clear degradation. Overall, these results suggest that our default XGBoost initial-
izer is a reasonable trade-off between simplicity and performance, while more aggressive tuning or
alternative GBDTs can be used when additional performance gains are desired.
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Algorithm 1 Breakpoint Selection from GBDT

Input: S = [(i, t, g)]: A list of node split information from the trained GBDT model, representing
feature index, threshold, and gain for each node.
X: The training data, to extract min/max values.
K: Total number of internal breakpoints.
Nnum: Set of numerical feature indices.

Output: T : A dictionary mapping numerical features to their sorted list of breakpoints.
1: G← defaultdict(float)
2: T ← defaultdict(list)
3: for (i, t, g) ∈ S:
4: G[(i, t)] += g ▷ Aggregate gain of thresholds
5: G← top k(G,K) ▷ Select top K splits
6: for (i, t) ∈ keys(G):
7: T [i].append(t) ▷ Map thresholds to features
8: for i ∈ Nnum:
9: T [i].extend([min(X[i]),max(X[i])])

10: T [i].sort() ▷ Add boundaries and sort thresholds
11: return T

Table 8: Comparison of the default XGBoost initializer with alternative GBDT initializers.

Comparison Z-statistic p-value

vs XGBoost (tuned, 100 trials) −1.82 0.067
vs LightGBM (default) 0.88 0.375
vs XGBoost (nestimators = 10) 0.56 0.571
vs XGBoost (nestimators = 1) 4.14 3.34× 10−5

A.3 EFFECT OF STOCHASTIC BREAKPOINT REGULARIZATION

We quantify the effect of stochastic breakpoint regularization by comparing MLP-GGPL models
trained with and without the regularizer, separately for regression and classification tasks. For each
dataset, we use identical hyperparameters except for the regularization switch (p > 0 vs. p = 0),
evaluate 15 random seeds, and apply a stratified Wilcoxon signed-rank test over seed-level paired
differences.

Table 9: Stratified Wilcoxon signed-rank tests for stochastic breakpoint regularization (on vs. off)
on MLP-GGPL across 46 datasets.

Task Z-statistic p-value

Regression 1.36 0.17
Classification −0.17 0.87

For regression, the positive Z-statistic with a moderate p-value suggests a weak trend that the reg-
ularized variant tends to perform better than its unregularized counterpart. For classification, the
test statistic is slightly negative with a large p-value (p ≈ 0.87), indicating that the regularization
does not help for classification. Consistent with these observations, we enable stochastic breakpoint
regularization only for regression tasks and disable it for classification.

B DATASET DETAILS

B.1 PREPROCESSING

To ensure a fair comparison and reproducibility, we follow the preprocessing used in Gorishniy et al.
(2025), from which we adopt the benchmark datasets. Our preprocessing follows their methodology
without any modifications. The key procedures are summarized below.
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• Numerical features: By default, a slightly modified version of the quantile transform from
scikit-learn (Pedregosa et al., 2011) is applied, which adds a small Gaussian noise (mean:
0, std: 1e-5) before calculating the distribution. For exceptions where quantile transform is
detrimental, standard normalization or identical mapping is used.

• Categorical features: All categorical features are processed using one-hot encoding.

• Binary features: Features with only two distinct values are mapped to {0, 1}.

Please refer to the config files on the source code in the supplementary materials for dataset-specific
details.

B.2 DATASET CHARACTERISTICS

We provide a detailed overview of the 46 datasets used in our evaluation in Table 10. This bench-
mark, originally used by Gorishniy et al. (2025), is composed of datasets from three sources: 28
from Grinsztajn et al. (2022), 10 from Gorishniy et al. (2024), and 8 from Rubachev et al. (2025).
The table summarizes key characteristics for each dataset, including its size, feature composition
(numerical, binary, and categorical), task type, and its corresponding reference within the bench-
mark.

C EXPERIMENTAL DETAILS

C.1 BASELINE MODEL DETAILS

C.1.1 BACKBONE MODELS FOR GGPL

We integrated our proposed GGPL embedding into four backbone models. For each model, the
original component for processing numerical features was replaced by GGPL.

• MLP: A standard multi-layer perceptron, often used as a deep learning baseline due to its
small and lightweight architecture. Gorishniy et al. (2022) compare various numerical em-
beddings on MLPs and find that piecewise-linear and periodic embeddings yield substantial
performance improvements. We use a standard MLP as a primary backbone for evaluating
GGPL and the base model for our in-depth analyses.

• T2G-Former: T2G-Former (Yan et al., 2023) is a Transformer-based architecture for tabu-
lar data that uses a T2G module to model feature interactions. We replace its original linear
embedding layer for numerical features with GGPL.

• ModernNCA: ModernNCA (Ye et al., 2025) is a retrieval-augmented model that learns a
distance metric for nearest-neighbor-based prediction. Its original numerical embedding,
based on periodic functions, is replaced with GGPL.

• TabM: TabM (Gorishniy et al., 2025) is an MLP-based model with parameter-efficient en-
sembling. Among its variants, TabM-mini with a piecewise-linear embedding achieves the
best performance. In our experiments, we employ the TabM-mini and replace the original
quantile-based embedding with fixed breakpoints with GGPL.

C.1.2 OTHER BASELINE MODELS FOR COMPARISON

To establish a comprehensive performance benchmark, we compare our GGPL-enhanced models
against the following groups of baseline models.

• GBDT models: These models represent the traditional machine learning methods for tab-
ular data.
XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost (Prokhorenkova
et al., 2018)

• Other Deep Learning Models: These models represent diverse advancements in deep
learning architectures for tabular data.
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Table 10: Detailed characteristics of the 46 benchmark datasets.

Dataset # Samples # Feat. # Num # Bin # Cat Task # Classes Reference
Adult 48842 14 6 1 7 cls. 2 Gorishniy et al. (2024)
Black Friday 166821 9 4 1 4 reg. - Gorishniy et al. (2024)
California Housing 20640 8 8 0 0 reg. - Gorishniy et al. (2024)
Churn Modelling 10000 11 7 3 1 cls. 2 Gorishniy et al. (2024)
Covertype 581012 15 10 4 1 cls. 7 Gorishniy et al. (2024)
Diamond 53940 9 6 0 3 reg. - Gorishniy et al. (2024)
Higgs Small 98049 28 28 0 0 cls. 2 Gorishniy et al. (2024)
House 16H 22784 16 16 0 0 reg. - Gorishniy et al. (2024)
Microsoft 1200192 136 131 5 0 reg. - Gorishniy et al. (2024)
Otto Group Products 61878 93 93 0 0 cls. 9 Gorishniy et al. (2024)

Ailerons 13750 33 33 0 0 reg. - Grinsztajn et al. (2022)
analcatdata supreme 4052 7 2 5 0 reg. - Grinsztajn et al. (2022)
bank-marketing 10578 7 7 0 0 cls. 2 Grinsztajn et al. (2022)
Brazilian houses 10692 11 8 2 1 reg. - Grinsztajn et al. (2022)
cpu act 8192 21 21 0 0 reg. - Grinsztajn et al. (2022)
credit 16714 10 10 0 0 cls. 2 Grinsztajn et al. (2022)
elevators 16599 16 16 0 0 reg. - Grinsztajn et al. (2022)
fifa 18063 5 5 0 0 reg. - Grinsztajn et al. (2022)
house sales 21613 17 15 2 0 reg. - Grinsztajn et al. (2022)
isolet 7797 613 613 0 0 reg. - Grinsztajn et al. (2022)
jannis 57580 54 54 0 0 cls. 2 Grinsztajn et al. (2022)
kdd ipums la 97-small 5188 20 20 0 0 cls. 2 Grinsztajn et al. (2022)
KDDCup09 upselling 5032 49 34 1 14 cls. 2 Grinsztajn et al. (2022)
MagicTelescope 13376 10 10 0 0 cls. 2 Grinsztajn et al. (2022)
medical charges 163065 3 3 0 0 reg. - Grinsztajn et al. (2022)
Mercedes Benz 4209 359 0 356 3 reg. - Grinsztajn et al. (2022)
MiamiHousing2016 13932 13 13 0 0 reg. - Grinsztajn et al. (2022)
MiniBooNE 72998 50 50 0 0 cls. 2 Grinsztajn et al. (2022)
nyc-taxi-green 581835 16 9 3 4 reg. - Grinsztajn et al. (2022)
OnlineNewsPopularity 39644 59 45 14 0 reg. - Grinsztajn et al. (2022)
particulate-matter-ukair 394299 6 3 0 3 reg. - Grinsztajn et al. (2022)
phoneme 3172 5 5 0 0 cls. 2 Grinsztajn et al. (2022)
pol 15000 26 26 0 0 reg. - Grinsztajn et al. (2022)
road-safety 111762 32 29 0 3 cls. 2 Grinsztajn et al. (2022)
superconduct 21263 79 79 0 0 reg. - Grinsztajn et al. (2022)
wine 2554 11 11 0 0 cls. 2 Grinsztajn et al. (2022)
wine quality 6497 11 11 0 0 reg. - Grinsztajn et al. (2022)
year 515345 90 90 0 0 reg. - Grinsztajn et al. (2022)

Cooking Time 319986 192 186 3 3 reg. - Rubachev et al. (2025)
Delivery ETA 350516 220 218 1 1 reg. - Rubachev et al. (2025)
Ecom Offers 160057 110 104 6 0 cls. 2 Rubachev et al. (2025)
Homecredit Default 381664 677 593 2 82 cls. 2 Rubachev et al. (2025)
Homesite Insurance 260753 298 252 23 23 cls. 2 Rubachev et al. (2025)
Maps Routing 279945 986 984 0 2 reg. - Rubachev et al. (2025)
Sberbank Housing 28321 392 365 17 10 reg. - Rubachev et al. (2025)
Weather 189963 99 96 3 0 reg. - Rubachev et al. (2025)

SNN (Klambauer et al., 2017), FT-Transformer (Gorishniy et al., 2021), SAINT (Somepalli
et al., 2021), DCN2 (Wang et al., 2021), Trompt (Chen et al., 2023), ExcelFormer (Chen
et al., 2024), TabR (Gorishniy et al., 2024)

• Foundation Model: TabPFN is a pre-trained foundation model that can perform inference
on unseen tasks without any parameter tuning, although its application is limited by dataset
size constraints.
TabPFN (Hollmann et al., 2025)

C.2 IMPLEMENTATION DETAILS

C.2.1 HARDWARE ENVIRONMENT

Our experiments were conducted on servers equipped with Intel(R) Xeon(R) Gold 6240 CPUs @
2.60GHz and NVIDIA RTX 3090 GPUs. While most experiments were run on a single GPU,
training on large datasets required up to 8 GPUs to meet GPU memory demands, particularly for
models with high memory consumption (T2G-Former Yan et al., 2023, ModernNCA Ye et al., 2025).
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C.2.2 HYPERPARAMETER SEARCH SPACES

All models are trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with an early
stopping patience of 16 epochs, and hyperparameters were tuned using Optuna (Akiba et al., 2019)
with the TPE sampler over 100 trials for most datasets, and 50 trials for large ones.

For our GGPL-enhanced backbone models (MLP, T2G-Former, ModernNCA, and TabM), the
search spaces for all non-GGPL hyperparameters were kept identical to those in Liu et al. (2024) for
T2G-Former and ModernNCA and those in Gorishniy et al. (2025) for MLP and TabM. We provide
the detailed search spaces in Tables 11 to 14.

For all baseline models, including GBDTs and other deep learning methods, the hyperparameter
search spaces were kept identical to those defined in Gorishniy et al. (2025). We refer to their
original paper for the details.

D DETAILED EXPERIMENTAL RESULTS

Tables 15 and 16 provide the detailed performance metrics for all models across all 46 datasets,
including the mean and standard deviation over 15 random seeds. For the baseline models, we
report the performance scores directly from the original benchmark publication by Gorishniy et al.
(2025), as our experimental setup is identical to theirs.

Table 11: Hyperparameter search spaces for MLP-GGPL.

Hyperparameter Search Space
Learning rate LogUniform: [3e-5, 0.001]
Weight decay {0, LogUniform: [0.0001, 0.1]}
# layers Int: [1, 5]
Width Int: [64, 1024, 16]
Dropout {0, Uniform: [0.0, 0.5]}
Embedding dim. (d) Int: [8, 32, 4]
Average number of breakpoints (K) Int: [2, 48]
Deactivation Prob. (p) {0, Uniform: [0.0, 0.3]}

Table 12: Hyperparameter search spaces for T2G-Former-GGPL.

Hyperparameter Search Space
Learning rate LogUniform: [1e-5, 0.001]
Weight decay LogUniform: [1e-6, 0.001]

# layers Int: [1, 4]
Token width Categorical: {8, 16, 32, 64, 128}
Residual dropout {0, Uniform: [0.0, 0.2]}
Attention dropout Uniform: [0.0, 0.5]
FFN dropout Uniform: [0.0, 0.5]
FFN expansion rate Uniform: [0.67, 2.67]
Frozen switch Categorical: {true, false}
Activation reglu
Num heads 8

Embedding dim. (d) Identical to the token width
Average number of breakpoints (K) Int: [2, 48]
Deactivation Prob. (p) {0, Uniform: [0.0, 0.3]}
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Table 13: Hyperparameter search spaces for ModernNCA-GGPL.

Hyperparameter Search Space
Learning rate LogUniform: [1e-5, 0.1]
Weight decay {0, LogUniform: [1e-6, 0.001]}
# MLP layers {0, Int: [0, 2]}
MLP width Int: [64, 1024]
Projection Dim. Int: [64, 1024]
Dropout Uniform: [0.0, 0.5]
Sample rate Uniform: [0.05, 0.6]
Temperature 1.0

Embedding dim. (d) Int: [8, 32, 4]
Average number of breakpoints (K) Int: [2, 48]
Deactivation Prob. (p) {0, Uniform: [0.0, 0.3]}

Table 14: Hyperparameter search spaces for TabM-mini-GGPL.

Hyperparameter Search Space
Learning rate LogUniform: [0.0001, 0.003]
Weight decay {0, LogUniform: [0.0001, 0.1]}
# layers Int: [1, 4]
Width Int: [64, 1024, 16]
Dropout {0, Uniform: [0.0, 0.5]}
# ensembles 32

Embedding dim. (d) Int: [8, 32, 4]
Average number of breakpoints (K) Int: [2, 48]
Deactivation Prob. (p) {0, Uniform: [0.0, 0.3]}
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E DETAILED ANALYSIS

E.1 ELO EVALUATION DETAILS

We use an Elo-based evaluation Elo (1967) to summarize the relative performance of multiple archi-
tectures across heterogeneous datasets and tasks that differ in both evaluation metrics and difficulty.
We include all 18 models considered in our main experiments (Table 2). These consist of each
backbone (MLP, T2G-Former, ModernNCA, TabM-mini) with its native numerical embedding and
with the proposed GGPL embedding, together with additional baselines such as GBDTs. The Elo
evaluation is computed jointly over all 46 datasets (classification and regression), using the same
metrics as in the main experiments (accuracy for classification and RMSE for regression).

Following TabArena (Erickson et al., 2025), we use a stable Bradley-Terry implementation to com-
pute Elo scores and 200 bootstrapping rounds to approximate 2.5%-97.5% confidence interval. We
also adopt the 400-point Elo gap. The expected win rate of i-th model with Elo ratings of Ri against
Rj is

Ei =
1

1 + 10(Rj−Ri)/400
,

Finally, unlike TabArena, we calibrate 1000 Elo to the performance of native MLP model.

Figure 5 summarizes the resulting Elo ratings and confidence intervals for all 18 models. GGPL-
enhanced variants consistently achieve higher Elo scores than their native counterparts, confirming
the improvements reported in the main text.

E.2 DEFINITION OF EMBEDDING TORTUOSITY

We quantify the complexity of a learned numerical embedding (ϕ) by measuring its tortuosity. For
a given numerical feature i, let t(i)1 < t

(i)
2 < · · · < t

(i)
Ki

denote the breakpoints that are initial-
ized from GBDT (e.g., XGBoost) splits and subsequently optimized by backpropagation, and let
v
(i)
1 , . . . ,v

(i)
Ki
∈ Rd be the corresponding embedding vectors. As formulated in Eq. 4, we define the

tortuosity of ϕi as the ratio of the piecewise-linear curve length to the Euclidean distance between
its start and end points. A higher value indicates a more complicated function, while a value closer
to 1 signifies a smoother path.

Tortuosity(ϕi) =

∑Ki

k=0

∥∥∥[v(i)
k+1; t

(i)
k+1]− [v

(i)
k ; t

(i)
k ]

∥∥∥
2∥∥∥[v(i)

Ki+1; t
(i)
Ki+1]− [v

(i)
0 ; t

(i)
0 ]

∥∥∥
2

(4)

E.3 EFFECT SIZE DETAILS

We aggregate effect sizes across datasets by normalizing each dataset so that the best-performing
model attains a score of 1 and the worst-performing model a score of 0. For each backbone and task,
we then define the normalized-score gain ∆ as the difference between the GGPL-enhanced variant
and its baseline (native) numerical embedding, and summarize this gain via its mean and standard
deviation over all datasets and seeds.

Figure 6 shows histograms of these normalized scores for regression (left) and classification (right)
across all datasets and seeds for the four backbones (TabM-mini, ModernNCA, T2G-Former, MLP).
For each architecture, we compare the native numerical embedding (Baseline) and GGPL, along
with the mean µ(∆) and standard deviation σ(∆) of ∆. On regression tasks, all backbones exhibit
positive mean gains, and the GGPL histograms are shifted toward 1 relative to their baselines, indi-
cating consistent improvements in performance. On classification tasks, the two histograms overlap.
Table 2 and Figure 6 confirm that GGPL consistently improves regression performance and yields
slightly improved, at least comparable performance on classification.
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Figure 5: Elo ratings with 95% confidence intervals for all 18 models considered in Table 2.
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Figure 6: Histograms of normalized scores for regression (left) and classification (right) across
all datasets and seeds for four backbones (TabM-mini, ModernNCA, T2G-Former, MLP). For each
architecture we compare the native numerical embedding (Baseline) and GGPL, and report the mean
µ(∆) and standard deviation σ(∆) of the normalized-score gain ∆.
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