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ABSTRACT

Tabular data remains central to many scientific and industrial applications. Re-
cently, deep learning models are emerging as a powerful tool for tabular data
prediction, outperforming traditional methods such as Gradient Boosted Decision
Trees (GBDTs). Despite this success, the fundamental challenge of feature het-
erogeneity still remains. Unlike in image or text modalities where features are
semantically homogeneous, each tabular feature often carries a distinct seman-
tic meaning and distribution. A common strategy to address the heterogeneity is
to project features into a shared high-dimensional vector space. Among the var-
ious feature types in tabular data, categorical features are effectively embedded
via embedding bags, which assign a learnable vector to each unique category. In
contrast, effective embeddings for numerical features remain underexplored. In
this paper, we argue that piecewise-linear functions are well suited to modeling
the irregular and high-frequency patterns often found in tabular data, provided
that breakpoints are carefully chosen. To this end, we propose GBDT-Guided
Piecewise-Linear (GGPL) embeddings, a method comprising breakpoints initial-
ization using GBDT split thresholds, stable breakpoint optimization using repa-
rameterization, and stochastic regularization via breakpoints deactivation. Thor-
ough evaluation on 46 datasets shows that applying GGPL to a range of state-of-
the-art tabular models consistently improves baseline models, demonstrating its
effectiveness and versatility. The code is available in the supplementary material.

1 INTRODUCTION

Tabular data, characterized by its structured format of rows and columns, remains the most common
data modality in a vast array of scientific and industrial domains, from healthcare and finance to
e-commerce and climate science (Shwartz-Ziv & Armon, 2022} Somvanshi et al} [2024). Its prac-
tical importance across numerous domains has established predicting a target column from a set
of observed features as a central problem within the field of machine learning, attracting extensive
research (Gorishniy et al., 2021} [Lee et al.| 2024} |Eo et al., [2025; Hollmann et al., 2025} [Lee et al.|
20255 Ye et al., [2025)).

Deep learning architectures for tabular data (Yan et al., 2023} |Gorishniy et al., |2025; [Hollmann
et al.l 2025} |Ye et al.| 2025)) are increasingly outperforming Gradient Boosted Decision Trees (GB-
DTs; (Chen & Guestrin, [2016; [Ke et al., 2017} [Prokhorenkova et al.l 2018) on many benchmarks,
which have long been the dominant approach in the field. This shift is driven by the ability of deep
models to capture complex, non-linear feature interactions, reducing the dependence on manual fea-
ture engineering. In real-world applications with large and diverse datasets, deep learning models
stand out for their high prediction accuracy and efficient inference.

Nevertheless, effectively handling heterogeneous tabular features remains a key challenge for deep
models (Gorishniy et al.,[2021)). Unlike images or text, where features (e.g., pixels or words) are se-
mantically homogeneous, tabular columns often represent fundamentally different concepts whose
scales and distributions can vary widely. A common strategy to address this heterogeneity is to
map features into a shared high-dimensional vector space, allowing subsequent layers to function
effectively (e.g., matrix multiplication in an MLP or the attention mechanism in a Transformer).
Moreover, this projection into a high-dimensional space empowers the network to learn complex,
non-linear feature interactions. While there is a well-established practice for categorical features us-
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ing embedding bags (Mikolov et al., 2013} |Guo et al.,[2017), a standard methodology for embedding
numerical features has yet to emerge.

Embedding a numerical feature can be viewed as learning a continuous mapping from R to R
A variety of approaches have been explored for this purpose, including Multi-Layer Perceptrons
(MLPs; (Gorishniy et al., 2022; |Wu et al., 2024), Fourier features (Gorishniy et al., 2022; Sergazi-
nov et al., [2025), and piecewise-linear functions (Gorishniy et al.l 2022). Among these, we find
piecewise-linear functions well suited for embedding tabular data. Real-world tabular datasets often
exhibit irregular and non-smooth feature—target relationships. A key aspect of these relationships is
the presence of high-frequency components, which are critical for accurate prediction (Grinsztajn
et al.l 2022). However, MLPs exhibit a spectral bias that prevents them from effectively captur-
ing such high-frequency target functions (Rahaman et al., 2019). Although Fourier features have
addressed this limitation in computer vision (Tancik et al., [2020; Mildenhall et al.| [2021)), their ef-
fectiveness is reduced in the tabular domain. Accurate modeling with Fourier features requires an
appropriate choice of frequency components, but the heterogeneity of tabular data implies that a
different set of frequencies may be optimal for each feature. While the expressiveness of piecewise-
linear functions in modeling irregular and high-frequency patterns also depends critically on the
appropriate placement of breakpoints (Hastie et al., [2009), our method addresses this challenge by
effectively selecting suitable breakpoints for each numerical feature.

In this paper, we address the challenge of breakpoints by proposing the GBDT-Guided Piecewise-
Linear (GGPL) embedding that focuses on three essential components: initialization, optimization,
and regularization. The properties of tabular data and their target functions make each of these
components important. Effectively modeling the irregular and non-smooth function requires precise
breakpoint placement, which makes both effective initialization and stable optimization essential.
Additionally, the task of tabular prediction exhibits an inherent tendency to overfit (Kadra et al.,
2021) and lacks the inherent invariances (e.g., spatial invariance in images) that facilitate data aug-
mentation. This makes robust regularization essential. To address these challenges, we propose the
following contributions, which are described in detail in SectionE}

1. We initialize the breakpoints using the split thresholds of the largest gains from an XGBoost
model, effectively leveraging the well-established strength of GBDT.

2. We reparameterize the optimization of breakpoints into a stable process by optimizing the
ratios of piece lengths on a probability simplex, which guarantees valid breakpoint posi-
tions throughout training.

3. We propose a regularization technique that stochastically deactivates breakpoints during
training, encouraging similarity between adjacent linear pieces to prevent overfitting.

In practice, we train a default XGBoost once to obtain the split thresholds, which minimizes training
overhead and shows no statistically significant difference from a hyperparameter-tuned one. In ad-
dition, all proposed methods are training-only and not applied at inference, so there is no additional
inference-time overhead compared with prior piecewise-linear embedding methods.

We validate our proposed method through extensive experiments on the 46 datasets from |Gorishniy
et al.[(2025)), spanning a wide range of sizes and domains. Our embedding demonstrates statistically
significant improvements in two settings: (i) when applied to state-of-the-art deep tabular mod-
els (Yan et al [2023; |Gorishniy et al.l 2025} [Ye et al.| [2025)) and (ii) when compared with existing
numerical embedding methods (Gorishniy et al., 2022} Li et al.,2024). Notably, our best-performing
model achieves the top average rank across all datasets. Moreover, on small-sized datasets where
tabular foundation models are available, our GGPL-enhanced models perform competitively, some-
times surpassing TabPFN (Hollmann et al., |2025). The detailed experimental setup and results are
presented in Sectiond] A subsequent analysis, including ablation studies, statistical tests, and per-
formance analysis across dataset characteristics, is provided in Section [5]

2 RELATED WORK

2.1 TABULAR PREDICTION MODELS

GBDTs like XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et all 2017), and Cat-
Boost (Prokhorenkova et al., [2018)) have long been the state-of-the-art. They build an ensemble
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of weak decision trees sequentially and are known for their ability to handle sparse, heterogeneous
data and capture complex feature interactions. However, their performance is being surpassed by
deep learning architectures, which can be largely classified into two main categories: foundation
models and task-specific models.

Foundation models like TabPFN (Hollmann et al.,2025)) can be applied to various downstream tasks
without further parameter tuning, demonstrating remarkable performance on small-scale problems.
This is achieved by pre-training a large model on millions of synthetic datasets and leveraging in-
context learning at inference-time. However, their quadratic time complexity with respect to the
number of training samples restricts their applicability to large-scale datasets.

Task-specific models, while chronologically preceding foundation models, remain a crucial and
practical type as they are free from the scalability issues of foundation models. To improve the
performance of task-specific models, various approaches have been explored, such as improving
backbone architectures, enhancing embedding methods, and incorporating the strengths of GBDTs.

2.2  IMPROVEMENTS IN TASK-SPECIFIC MODELS

One primary line of research is designing specialized backbone architectures. These include MLP-
based models, which have shown that even simple architectures can achieve top-tier performance
when combined with proper regularization and ensemble techniques (Kadra et al., 2021} [Holzmiiller,
et al.,|2024; |Gorishniy et al., |2025); Transformer-based models that adapt the self-attention mecha-
nism to learn complex interactions among heterogeneous features (Gorishniy et al.l|2021;|Yan et al.,
2023); and retrieval-based models that make predictions by retrieving similar instances from the
training set (Gorishniy et al.| [2024; |Ye et al.| [2025).

Another key line of research involves improving embedding methods for input features. MLP-based
embedding methods apply a feature-specific MLP to map each scalar value to an embedding vec-
tor (Guo et al.,|2017; \Gorishniy et al.,|2022; Wu et al.| 2024). However, MLPs have a spectral bias
towards learning smooth functions (Rahaman et al.l 2019), which may not be optimal for the of-
ten irregular relationships in tabular data. Inspired by their success in computer vision (Mildenhall
et al., [2021), Fourier embeddings have also been used for numerical embeddings (Gorishniy et al.,
2022; [Sergazinov et al. [2025)), but their effectiveness is limited in the tabular domain due to fea-
ture heterogeneity, which makes it difficult to find suitable frequency components for all features.
Piecewise-linear embedding methods partition a feature’s range into a set of bins and learn a linear
function within each bin. |Gorishniy et al.[(2022) introduce piecewise-linear embedding and propose
two methods for initializing breakpoints: a quantile-based approach, which places breakpoints based
on the input distribution, and a target-aware approach, which trains a decision tree for each input
feature to predict the target and uses the resulting thresholds. However, these breakpoints are fixed
and not optimized during training. Further, the feature-wise decision tree-based approach prevents
considering complex feature interactions when placing breakpoints.

A third line of work incorporates the strengths of GBDTs into deep learning models. Some meth-
ods introduce modules to mimic the thresholding behavior of decision trees within a neural net-
work (Popov et al.| [2020; Katzir et al) 2021). Another method uses GBDTs to calculate feature
frequencies to determine the selection ratio of feature gates (Li et al., [2024). Our approach, rather
than mimicking GBDTs, leverages their efficiency and accuracy to initialize the breakpoints of the
piecewise-linear embedding using split thresholds with the largest score gain.

3 PROPOSED METHOD

3.1 BACKGROUND: PIECEWISE-LINEAR ENCODING

To enhance the representational capacity of tabular models, prior work has proposed embedding
scalar numerical features into higher-dimensional vector spaces using piecewise-linear encoding
(PLE; |Gorishniy et al., 2022). Formally, for i-th numerical feature z; € R, the input range is

partitioned into K;+1 disjoint intervals [t,(f)7 t;j}rl) fork =0, ..., K;, and the encoding is computed
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as PLE(z;) = [, ..., eld] € REH1;

0, x; < t;ci) and k > 0
e =11 i 2 t,(gl and k < K; "
§ O .
7, otherwise
tk+1_tk

The conditions on k& (k > 0 and k£ < K;) handle linear extrapolation when input values x; fall
outside the range. This encoding produces a continuous and order-aware vector representation of
scalar inputs, which can serve as an effective replacement for the original input value in downstream
architectures. However, prior implementations of PLE use fixed breakpoints (e.g., quantile or target-
aware), which remain static during training. We instead initialize breakpoints using GBDT splits
and jointly optimize them via a differentiable reparameterization. This enables the embedding to
adapt to high-frequency or irregular patterns. We further apply stochastic regularization to improve
generalization.

3.2 GBDT-GUIDED PIECEWISE-LINEAR EMBEDDING

The embedding function in a tabular neural network, ¢; : R — R?, maps i-th feature to a shared
high-dimensional space. In this paper, we use PLE to model ¢, (z;) through a piecewise-linear curve
as follows.

)
o et 4
di(w) = [wi wi® W] | [ +p® )
)

¢i(x;) maps each scalar input to a point on a continuous piecewise-linear curve in R, Specifically,

when z; = tff), the embedding becomes a vertex of the curve given by V,(f) = b + Zf;é W§i).

When z; € [t,(f), t,@rl), the embedding lies on the line segment connecting vl(f) and v,@rl. When

z; < tgi) or r; > tg? +1- the embedding extrapolates linearly based on the first or last segment,

respectively. An example of ¢;(z;) is illustrated in Figure
The main challenge is to determine the optimal positions of t,(:) and their corresponding v,(f), which
are defined by W](:) and b(), The GGPL embedding tackles this through three components:

1. GBDT-guided initialization which determines the initial values of ¢ ,

2. simplex-based reparameterization for stable optimization of t(i),

3. stochastic breakpoint regularization to mitigate overfitting.

All parameters including w,(j) and b(") are optimized via standard backpropagation.

Figure 1: A piecewise-linear embedding that maps a scalar feature into a high-dimensional space,
defined by a set of breakpoints (¢, € R) and their corresponding embedding vectors (v;, € R%).
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3.3 GBDT-GUIDED BREAKPOINT INITIALIZATION

Our initialization method determines the initial values of t,(;) using GBDTs trained on the data.
Specifically, we adopt the feature threshold values used for splitting nodes in the GBDT as the ini-
tial locations for the breakpoints. By leveraging GBDTSs’ well-established strength, this approach
identifies the most effective splits based on their gain scores. This process allocates fewer break-
points to less important features, reducing the risk of overfitting by saving parameters. Algorithmic
details are provided in Appendix

In practice, we train XGBoost once with default hyperparameters to obtain the split thresholds,
because the default XGBoost-based initialization achieves comparable performance with minimal
training overhead. Additionally, given that XGBoost is used only to initialize breakpoints, there is
no inference-time overhead. We compare a single-run default XGBoost with a tuned one obtained
via a 100-trial hyperparameter search using Optuna (Akiba et al.,|2019). Across the 46 datasets, the
tuned variant does not show statistically significant performance improvement (stratified Wilcoxon
signed-rank test; p ~ 0.07). Further details are shown in Appendix [A.2]

3.4 STABLE SIMPLEX-BASED OPTIMIZATION

Directly training tg’) may break ordering constraints (t,(jll < tfj)) and is prone to division-by-zero
errors. To optimize t,(j) stably, we reparameterize the problem as the following.

We first normalize the position of each t,(j) as r,(j) = ( ,(f) — min(X;))/(max(X;) — min(Xj;)),
where X; is the set of values for ¢-th feature in the training set. Then, we define the k-th proportion

,(:) = r,(j) 21. The vector of proportions 7)) = [x{"), ... ,7r§2 1] forms a point on the

K;-dimensional probability simplex (A%+), which is the output of the softmax function.

(
as -

w0 = softmax(z") 3)

Optimizing unconstrained logits z() € R*:*1 instead of tg) guarantees that the breakpoints remain
ordered and prevents them from collapsing within the feature’s range.

3.5 STOCHASTIC BREAKPOINT REGULARIZATION

Since there are no smoothness constraints between adjacent embedding vectors, the learned func-
tion exhibits high tortuosity, which increases the risk of overfitting. To mitigate this, we introduce
a regularization technique analogous to dropout that encourages similarity between adjacent em-

bedding vectors. During each training forward pass, we randomly deactivate a fraction of tg) for
k=1,..., K; with probability p.

Figure [2| provides a visual example of the stochastic regularization technique. When t,(f) is deacti-
vated, its corresponding v,(j) isignored, and a new linear piece is formed between v,(jzl and v,(jJ)rl (or
the nearest active breakpoints if multiple consecutive breakpoints are deactivated). The embedding
should remain consistent even if some breakpoints are deactivated. This encourages the model to
learn a smoother function. However, as classification tasks often benefit from sharp decision bound-
aries, we apply this regularization only to regression tasks. At inference-time, all breakpoints are
activated (p = 0), and unlike dropout, no scaling of the embeddings is required.

4 EXPERIMENTS

4.1 DATASETS

We conduct a comprehensive evaluation on the benchmark of 46 datasets previously used in |Gor-
1shniy et al.[(2025). These datasets span a wide range of tabular tasks, with sample sizes from a few
thousand to over a million and feature counts up to nearly a thousand—reflecting the scale and com-
plexity of real-world applications. The characteristics of these datasets are summarized in Table [T}
with further details available in Appendix
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Table 1: Overview of the 46 benchmark datasets, categorized by task, sample size, and feature-to-
sample ratio.

Category Criteria Count
Total 46
Classification 18

Task Regression 28
Sample size Small (< 30k) 24
P Large (> 30k) 22

. High (> 0.001) 21

Feature-to-sample ratio Low (< 0.001) 25

4.2 BASELINE MODELS

To evaluate the effectiveness and versatility of our GGPL embedding, we integrate it into three state-
of-the-art deep tabular models and a baseline MLP, with each representing a different architectural
paradigm. For each model, we then compare the performance of the original version against its
GGPL-enhanced counterpart. The selected models are MLP, T2G-Former, ModernNCA, and TabM,
and we provide detailed descriptions of these four models in Appendix [C.I.1]

In addition, we include 10 additional models, including GBDTs (Chen & Guestrinl [2016; Ke et al.}
2017; |Klambauer et al., 2017; |Prokhorenkova et al., 2018} (Gorishniy et al.| [2021; |Somepalli et al.,
2021; Wang et al.| [2021}; [Chen et al., 2023} |2024; |Gorishniy et al.l [2024) for comparison purposes
without incorporating our proposed method. TabPFN (Hollmann et al., [2025)) is also included in
the comparison only on small-scale datasets that meet its constraints. Detailed descriptions of these
baseline models are in Appendix [C.1.2]

4.3 IMPLEMENTATION DETAILS

For TabM, we use the official implementation from |Gorishniy et al.| (2025)), while our implementa-
tions of T2G-Former and ModernNCA are based on the code from|Liu et al.|(2024). To ensure a fair
comparison, we follow the training protocol of |Gorishniy et al.| (2025).

With some exceptions, we apply a slightly modified version of the quantile transform from scikit-
learn (Pedregosa et al.,2011)) to numerical features. We use cross-entropy loss for classification and
mean squared error loss for regression. The proposed stochastic breakpoint regularization is applied
only to regression tasks, as it leads to smooth embeddings. In classification tasks, this smoothness
may hinder modeling the sharp decision boundaries. All models are trained using the AdamW opti-
mizer (Loshchilov & Hutter, 2019) with an early stopping patience of 16 epochs. Hyperparameters
are tuned using Optuna (Akiba et al., 2019) over 100 trials (50 for large datasets). Further details
are provided in Appendix [C.2]

Figure 2: The effect of stochastic breakpoint regularization. When the middle breakpoints are deac-
tivated (dashed circle), a new, linear piece is formed directly between its neighbors (solid circle).
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Table 2: Average ranks across 46 datasets (lower is better). The numbers in parentheses indicate the
rank improvement from applying GGPL.

Model All Tasks () Regression () Classification () Num. Embedding
GBDT models

LightGBM 9.48 8.86 10.44 -

XGBoost 9.00 8.93 9.11 -

CatBoost 8.04 7.64 8.67 -

Deep learning models (without numerical embedding)

DCN2 16.04 15.93 16.22 -

SNN 15.20 15.61 14.56 -

Deep learning models (with numerical embedding)

ExcelFormer 13.61 13.86 13.22 GLU

SAINT 12.46 13.07 11.50 MLP
FT-Transformer 11.70 12.25 10.83 Linear
Trompt 10.63 10.39 11.00 Linear

MLP 10.28 10.32 10.22 Periodic
T2G-Former 9.02 9.14 8.83 Linear

TabR 7.98 8.32 7.44 Periodic
ModernNCA 7.70 8.82 5.94 Periodic
TabM-mini 3.61 3.00 4.56 Piecewise-linear
Deep learning models (with GGPL embedding)

MLP-GGPL 8.28 (-2.00) 7.64 (-2.68) 9.28 (-0.94) GGPL (Ours)
T2G-Former-GGPL  7.80 (-1.22) 7.07 (-2.07) 8.94 (+0.11) GGPL (Ours)
ModernNCA-GGPL  7.09 (-0.61) 8.07 (-0.75) 5.56 (-0.38) GGPL (Ours)
TabM-mini-GGPL 2.96 (-0.65) 2.04 (-0.96) 4.39 (-0.17) GGPL (Ours)

4.4 RESULTS

For each dataset, we evaluate model performance using accuracy for classification and root mean
squared error (RMSE) for regression, averaging the results over 15 random seeds. To aggregate
performance across datasets, we compute the average rank of each model based on these scores.
Detailed results for each dataset can be found in Appendix

Main Results

We present the main results in Table 2] which shows the average ranks of our GGPL-enhanced
models against various baselines across all 46 datasets, as well as separate ranks for regression
and classification tasks. The results consistently show that applying our GGPL embedding leads to
performance improvements across all four backbone architectures with diverse design paradigms.
For instance, GGPL provides a substantial boost to MLP on regression tasks, improving its average
rank by 2.68. Overall, TabM-mini-GGPL emerges as the best-performing model, achieving the top
average rank of 2.96 across all tasks. This demonstrates that our proposed embedding is not only
effective but also versatile, enhancing the capabilities of diverse model architectures.

Comparison on Small-Scale Datasets

To motivate our focus on task-specific models, we compare GGPL-enhanced variants against the
foundation model TabPFN (Hollmann et al.l |2025). This comparison uses 23 small-scale datasets
from the full benchmark of 46 datasets that satisfy TabPFN’s constraints (< 10 classes, < 500
features, and < 10000 samples). As shown in TableE], our GGPL-enhanced models are competitive
with both TabPFN and CatBoost, even on small-scale datasets where these models are presumed to
excel. Notably, TabM-mini-GGPL surpasses TabPFN to achieve the top overall rank. These results
highlight that task-specific models can attain state-of-the-art performance without the scalability
constraints of foundation models.
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Table 3: Comparison with TabPFN on 23 small- Table 4: Ablation study on the components

scale datasets. of GGPL. Performance is measured by the
average rank on all 46 datasets using the

Model All(}) Reg.(}) Cls.(}) MLP backbone.
LightGBM 10.91 10.40 11.88
XGBoost 10.70 10.80 10.50 Embedding Method  Average Rank
MLP 10.96 11.60 9.75
T2G-Former 1022 987 1088 Base 9.76
ModernNCA 939 1073  6.88 Base+I 8.91 (-0.85)
MLP-GGPL 9.04 8.53 10.00 Base+I+O 8.52 (-0.39)
T2G-Former-GGPL ~ 8.57 7.20 11.13 Base+I+O+R (GGPL) 8.28 (-0.24)
CatBoost 8.00 7.93 8.13
ModernNCA-GGPL  7.52 8.13 6.38
TabPFN 5.96 6.93 4.13
TabM-mini 4.57 3.47 6.63

TabM-mini-GGPL 3.30 2.47 4.88

5 ANALYSIS

5.1 ABLATION STUDY

To isolate the contribution of each of our proposed components—Initialization (I), Optimization
(O), and Regularization (R)—we conduct an ablation study on the MLP backbone. Starting from
a piecewise-linear embedding where breakpoints are initialized uniformly (Base), we incrementally
add I, O, and R. The results in Table |4| demonstrate that each component consistently improves
performance, validating our design choices.

5.2 STATISTICAL TESTING OF GGPL AGAINST OTHER EMBEDDINGS

To evaluate the effectiveness of our proposed GGPL embedding, we conduct two comparisons:
(i) against existing numerical embeddings on the MLP backbone and (ii) as a drop-in replace-
ment within other architectures (e.g., T2G, MNCA, TabM), replacing their native numerical em-
beddings. The baseline embeddings on the MLP backbone include no embedding, periodic encod-
ing, and piecewise-linear embeddings with both initialization methods (quantile-based and target-
aware; (Gorishniy et al., 2022); additionally, we compare against the tree-based T2V method (L1
et al.,[2024)) on the 16 binary classification tasks.

We apply a stratified Wilcoxon signed-rank test to assess statistical significance across datasets with
multiple random seeds: each dataset is treated as a stratum, seed-level paired differences are com-
puted within each dataset, and the stratum-specific statistics are aggregated into a single p-value.
As shown in Tables [5) and [| GGPL demonstrates consistent and statistically significant improve-
ments—over all numerical embedding baselines on MLP and over the native numerical embeddings
on other architectures.

5.3 PERFORMANCE ANALYSIS BY DATASET CHARACTERISTICS

To better understand where GGPL provides the most significant benefits, we analyze its performance
improvement across different dataset characteristics in Table[/] A few general trends emerge from
the data. First, we observe that the performance gains are consistently more pronounced in regres-
sion tasks than in classification. In contrast to classification tasks, where precise modeling near
decision boundaries is important, regression tasks require global accuracy. This result suggests that
our approach is particularly effective for regression tasks, as it helps model the entire feature—target
relationship with high fidelity. Second, with the exception of MLP on feature-to-sample ratio, our
method tends to yield greater improvements on datasets with small sample sizes and high feature-
to-sample ratios. This indicates that GGPL provides a valuable inductive bias that is effective in
preventing overfitting, where training data is limited or feature dimensionality is high.
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Table 6: GGPL vs native numerical em-
beddings across models using stratified
Wilcoxon signed-rank test.

Table 5: GGPL vs other numerical embeddings
on the MLP backbone using stratified Wilcoxon
signed-rank test.

Baseline Method Z-statistics p-value Model Z-statistics p-value
No Embedding 17.0 < 10710 MLP 3.38 7.15 x 1074
T2V 10.6 < 10710 T2G 4.90 9.74 x 1077
Periodic 3.38 7.15 x 107* MNCA 2.37 1.79 x 102
Piecewise-linear 422 2,43 x 10-5 TabM 4.47 7.66 x 1076
(quantile-based)

Piecewise-linear 432 1.58 % 105

(target-aware)

Table 7: Average rank improvement of GGPL across different dataset characteristics.

Characteristic

MLP

T2G-Former

ModernNCA

TabM-mini

Regression task
Classification task

10.32 — 7.64 (-2.68)
10.22 — 9.28 (-0.94)

9.14 — 7.07 (-2.07)
8.83 — 8.94 (+0.11)

8.82 — 8.07 (-0.75)
5.94 — 5.56 (-0.38)

3.00 — 2.04 (-0.96)
4.56 — 4.39 (-0.17)

Small sample size
Large sample size

10.58 — 8.21 (-2.37)
9.95 — 8.36 (-1.59)

9.38 — 8.04 (-1.34)
8.64 — 7.55 (-1.09)

8.25 — 6.75 (-1.50)
7.09 — 7.45 (+0.36)

3.75 — 2.92 (-0.83)
3.45 — 3.00 (-0.45)

High feature-to-sample ratio
Low feature-to-sample ratio

10.19 — 8.52 (-1.67)
10.36 — 8.08 (-2.28)

9.05 — 7.67 (-1.38)
9.00 — 7.92 (-1.08)

9.10 — 7.62 (-1.48)
6.52 — 6.64 (+0.12)

3.90 — 3.24 (-0.66)
3.36 — 2.72 (-0.64)

5.4 ANALYSIS OF STOCHASTIC BREAKPOINT REGULARIZATION

We investigate the effect of stochastic breakpoint regularization by varying its deactivation ratio (p)
using the MLP-GGPL model on the House 16H dataset (Gorishniy et al., |2024). While holding all
other hyperparameters constant, we vary p from 0.0 to 0.95 in increments of 0.05, averaging results
over 100 random seeds. We evaluate model performance and embedding complexity, where the
latter is measured by tortuosity (ratio of curve length to distance between its ends).

Figure[3ashows that RMSE is minimized at p = 0.60, indicating that an appropriate level of regular-
ization is essential for the best performance. Figure[3b|shows that tortuosity decreases monotonically
with p, confirming that the regularization smooths the embedding function as intended.
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(b) Tortuosity: Embedding function tortuosity as a
function of the deactivation ratio (p).

(a) RMSE: Model performance (RMSE) as a func-
tion of the deactivation ratio (p).

Figure 3: The effect of the deactivation ratio (p) in stochastic breakpoint regularization.

6 CONCLUSION

In this paper, we addressed the challenge of numerical feature embedding for deep tabular models.
To this end, we proposed GGPL, a piecewise-linear embedding method built on three components:
GBDT-guided initialization, stable optimization on a probability simplex, and stochastic breakpoint
regularization. Our analysis confirms that all three components are essential for the method’s effec-
tiveness. With their synergy, GGPL significantly boosts various state-of-the-art models to achieve
the top average rank in extensive experiments. Our method demonstrates particular strength in data-
scarce settings, indicating it provides a valuable inductive bias to promote better generalization for
deep tabular models.
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DISCLOSURE OF LLM ASSISTANCE

This paper benefited from assistance by a large language model (LLM) to improve its grammar.

A ALGORITHMIC DETAILS

A.1 GBDT-GUIDED BREAKPOINT INITIALIZATION

Given a trained GBDT, we collect node split thresholds and aggregate their gains to find a small set
of informative breakpoints for each numerical feature, as described in Algorithm [T}

Algorithm 1 Breakpoint Selection from GBDT

Input: S = [(4,t,9)]: A list of node split information from the trained GBDT model, representing
feature index, threshold, and gain for each node.
X: The training data, to extract min/max values.
K: Total number of internal breakpoints.
Nypum: Set of numerical feature indices.
Output: 7': A dictionary mapping numerical features to their sorted list of breakpoints.
G + defaultdict(float)
T < defaultdict(list)
for (i,t,9) € S:
G[(i,t)] +=g¢ > Aggregate gain of thresholds
G + topk(G, K) > Select top K splits
for (i,t) € keys(G):
T'[i].append (¥) > Map thresholds to features
for i € Nyum:
T'[i].extend([min(X [z]), max(X[i])])
T'i].sort() > Add boundaries and sort thresholds
return T’

—_ =
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Table 8: Effect of XGBoost hyperparameters on the initializer.

Comparison Z-statistic  p-value  Win/ Tie / Loss
Default vs Tuned (100-trials) —1.82 0.067 8/23/15

A.2 SENSITIVITY TO XGBOOST HYPERPARAMETERS

In practice, we initialize breakpoints by training a default XGBoost once per dataset. This approach
keeps the pipeline simple with negligible computational overhead while yielding competitive perfor-
mance. To examine the impact of XGBoost hyperparameters, we compare the default model against
a tuned one obtained through a 100-trial hyperparameter search using Optuna (Akiba et al. |2019),
both applied to the MLP-GGPL backbone. All other training settings are kept identical except the
XGBoost hyperparameters.

To assess the effect of tree hyperparameters, we conduct a stratified Wilcoxon signed-rank test,
where each dataset is treated as a stratum with 15 random seeds per dataset as paired samples. As
shown in Table [8] the test statistic is Z = —1.82 with p = 0.067, indicating that the model with
default hyperparameters does not exhibit a statistically significant degradation relative to the tuned
one at the conventional a = 0.05 level.

B DATASET DETAILS

B.1 PREPROCESSING

To ensure a fair comparison and reproducibility, we follow the preprocessing used in|Gorishniy et al.
(2025)), from which we adopt the benchmark datasets. Our preprocessing follows their methodology
without any modifications. The key procedures are summarized below.

* Numerical features: By default, a slightly modified version of the quantile transform from
scikit-learn (Pedregosa et al., 2011) is applied, which adds a small Gaussian noise (mean:
0, std: 1e-5) before calculating the distribution. For exceptions where quantile transform is
detrimental, standard normalization or identical mapping is used.

» Categorical features: All categorical features are processed using one-hot encoding.

* Binary features: Features with only two distinct values are mapped to {0, 1}.

Please refer to the config files on the source code in the supplementary materials for dataset-specific
details.

B.2 DATASET CHARACTERISTICS

We provide a detailed overview of the 46 datasets used in our evaluation in Table[d] This benchmark,
originally used by|Gorishniy et al.|(2025), is composed of datasets from three sources: 28 from Grin-
sztajn et al.| (2022), 10 from |Gorishniy et al.|(2024), and 8 from [Rubachev et al.| (2025)). The table
summarizes key characteristics for each dataset, including its size, feature composition (numerical,
binary, and categorical), task type, and its corresponding reference within the benchmark.

C EXPERIMENTAL DETAILS

C.1 BASELINE MODEL DETAILS

C.1.1 BACKBONE MODELS FOR GGPL

We integrated our proposed GGPL embedding into four backbone models. For each model, the
original component for processing numerical features was replaced by GGPL.

* MLP: A standard multi-layer perceptron, often used as a deep learning baseline due to its
small and lightweight architecture. |Gorishniy et al.|(2022) compare various numerical em-
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beddings on MLPs and find that piecewise-linear and periodic embeddings yield substantial
performance improvements. We use a standard MLP as a primary backbone for evaluating
GGPL and the base model for our in-depth analyses.

e T2G-Former: T2G-Former (Yan et al.,|2023)) is a Transformer-based architecture for tabu-
lar data that uses a T2G module to model feature interactions. We replace its original linear
embedding layer for numerical features with GGPL.

* ModernNCA: ModernNCA (Ye et al., 2025) is a retrieval-augmented model that learns a
distance metric for nearest-neighbor-based prediction. Its original numerical embedding,
based on periodic functions, is replaced with GGPL.

» TabM: TabM (Gorishniy et al.,|2025) is an MLP-based model with parameter-efficient en-
sembling. Among its variants, TabM-mini with a piecewise-linear embedding achieves the
best performance. In our experiments, we employ the TabM-mini and replace the original
quantile-based embedding with fixed breakpoints with GGPL.

C.1.2 OTHER BASELINE MODELS FOR COMPARISON

To establish a comprehensive performance benchmark, we compare our GGPL-enhanced models
against the following groups of baseline models.

* GBDT models: These models represent the traditional machine learning methods for tab-
ular data.

XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost (Prokhorenkova
et al.,[2018)

* Other Deep Learning Models: These models represent diverse advancements in deep
learning architectures for tabular data.

SNN (Klambauer et al.,[2017), FT-Transformer (Gorishniy et al.,2021), SAINT (Somepalli
et al., 2021), DCN2 (Wang et al.| [2021)), Trompt (Chen et al.| [2023)), ExcelFormer (Chen
et al.,[2024)), TabR (Gorishniy et al., 2024)

* Foundation Model: TabPFN is a pre-trained foundation model that can perform inference
on unseen tasks without any parameter tuning, although its application is limited by dataset
size constraints.

TabPEN (Hollmann et al.l 2025)

C.2 IMPLEMENTATION DETAILS
C.2.1 HARDWARE ENVIRONMENT

Our experiments were conducted on servers equipped with Intel(R) Xeon(R) Gold 6240 CPUs @
2.60GHz and NVIDIA RTX 3090 GPUs. While most experiments were run on a single GPU,
training on large datasets required up to 8 GPUs to meet GPU memory demands, particularly for
models with high memory consumption (T2G-Former|Yan et al., 2023, ModernNCA |Ye et al.,[2025).

C.2.2 HYPERPARAMETER SEARCH SPACES

All hyperparameters were tuned using Optuna (Akiba et al.,|2019) with the TPE sampler over 100
trials for most datasets, and 50 trials for large ones.

For our GGPL-enhanced backbone models (MLP, T2G-Former, ModernNCA, and TabM), the
search spaces for all non-GGPL hyperparameters were kept identical to those in|Liu et al.| (2024) for
T2G-Former and ModernNCA and those in (Gorishniy et al.|(2025) for MLP and TabM. We provide
the detailed search spaces in Tables[T0]to

For all baseline models, including GBDTs and other deep learning methods, the hyperparameter
search spaces were kept identical to those defined in |Gorishniy et al| (2025). We refer to their
original paper for the details.
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D DETAILED EXPERIMENTAL RESULTS

Tables [14] and [I3] provide the detailed performance metrics for all models across all 46 datasets,
including the mean and standard deviation over 15 random seeds. For the baseline models, we
report the performance scores directly from the original benchmark publication by (Gorishniy et al.
(2025)), as our experimental setup is identical to theirs.

Table 9: Detailed characteristics of the 46 benchmark datasets.

Dataset #Samples #Feat. #Num #Bin #Cat Task # Classes Reference

Adult 48842 14 6 1 7 cls. 2 Gorishniy et al. (2024)
Black_Friday 166821 9 4 1 4 reg. - Gorishniy et al. (2024)
California_Housing 20640 8 8 0 0 reg. - Gorishniy et al. (2024)
Churn_Modelling 10000 11 7 3 1 cls. 2 Gorishniy et al. (2024)
Covertype 581012 15 10 4 1 cls. 7 Gorishniy et al. (2024)
Diamond 53940 9 6 0 3 reg. - Gorishniy et al. (2024)
Higgs_Small 98049 28 28 0 0 cls. 2 Gorishniy et al. (2024)
House_16H 22784 16 16 0 0 reg. - Gorishniy et al. (2024)
Microsoft 1200192 136 131 5 0 reg. - Gorishniy et al. (2024)
Otto_Group_Products 61878 93 93 0 0 cls. 9 Gorishniy et al. (2024)
Ailerons 13750 33 33 0 0 reg. - Grinsztajn et al. (2022)
analcatdata_supreme 4052 7 2 5 0 reg. - Grinsztajn et al. (2022)
bank-marketing 10578 7 7 0 0 cls. 2 Grinsztajn et al. (2022)
Brazilian_houses 10692 11 8 2 1 reg. - Grinsztajn et al. (2022)
cpu_act 8192 21 21 0 0 reg. - Grinsztajn et al. (2022)
credit 16714 10 10 0 0 cls. 2 Grinsztajn et al. (2022)
elevators 16599 16 16 0 0 reg. - Grinsztajn et al. (2022)
fifa 18063 5 5 0 0 reg. - Grinsztajn et al. (2022)
house_sales 21613 17 15 2 0 reg. - Grinsztajn et al. (2022)
isolet 7797 613 613 0 0 reg. - Grinsztajn et al. (2022)
jannis 57580 54 54 0 0 cls. 2 Grinsztajn et al. (2022)
kdd_ipums_la_97-small 5188 20 20 0 0 cls. 2 Grinsztajn et al. (2022)
KDDCup09_upselling 5032 49 34 1 14 cls. 2 Grinsztajn et al. (2022)
MagicTelescope 13376 10 10 0 0 cls. 2 Grinsztajn et al. (2022)
medical_charges 163065 3 3 0 0 reg. - Grinsztajn et al. (2022)
Mercedes_Benz 4209 359 0 356 3 reg. - Grinsztajn et al. (2022)
MiamiHousing2016 13932 13 13 0 0 reg. - Grinsztajn et al. (2022)
MiniBooNE 72998 50 50 0 0 cls. 2 Grinsztajn et al. (2022)
nyc-taxi-green 581835 16 9 3 4 reg. - Grinsztajn et al. (2022)
OnlineNewsPopularity 39644 59 45 14 0 reg. - Grinsztajn et al. (2022)
particulate-matter-ukair 394299 6 3 0 3 reg. - Grinsztajn et al. (2022)
phoneme 3172 5 5 0 0 cls. 2 Grinsztajn et al. (2022)
pol 15000 26 26 0 0 reg. - Grinsztajn et al. (2022)
road-safety 111762 32 29 0 3 cls. 2 Grinsztajn et al. (2022)
superconduct 21263 79 79 0 0 reg. - Grinsztajn et al. (2022)
wine 2554 11 11 0 0 cls. 2 Grinsztajn et al. (2022)
wine_quality 6497 11 11 0 0 reg. - Grinsztajn et al. (2022)
year 515345 90 90 0 0 reg. - Grinsztajn et al. (2022)
Cooking_Time 319986 192 186 3 3 reg. - Rubachev et al. (2025)
Delivery_ETA 350516 220 218 1 1 reg. - Rubacheyv et al. (2025)
Ecom_Offers 160057 110 104 6 0 cls. 2 Rubacheyv et al. (2025)
Homecredit_Default 381664 677 593 2 82 cls. 2 Rubacheyv et al. (2025)
Homesite_Insurance 260753 298 252 23 23 cls. 2 Rubachev et al. (2025)
Maps_Routing 279945 986 984 0 2 reg. - Rubacheyv et al. (2025)
Sberbank_Housing 28321 392 365 17 10 reg. - Rubacheyv et al. (2025)
Weather 189963 99 96 3 0 reg. - Rubacheyv et al. (2025)
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Table 10: Hyperparameter search spaces for MLP-GGPL.

Hyperparameter

Search Space

Learning rate
Weight decay

# layers
Width
Dropout

Embedding dim. (d)
Total breakpoints (K)
Deactivation Prob. (p)

LogUniform: [3e-5, 0.001]
{0, LogUniform: [0.0001, 0.1]}

Int: [1, 5]
Int: [64, 1024, 16]
{0, Uniform: [0.0, 0.5]}

Int: [8, 32, 4]
Int: [2x1len(N,um), 48 x1len(Npum )]
{0, Uniform: [0.0, 0.3]}

Table 11: Hyperparameter search spaces for T2G-Former-GGPL.

Hyperparameter

Search Space

Learning rate
Weight decay

# layers

Token width
Residual dropout
Attention dropout
FFN dropout

FFN expansion rate
Frozen switch
Activation

Num heads

Embedding dim. (d)
Total breakpoints (K)
Deactivation Prob. (p)

LogUniform: [1e-5, 0.001]
LogUniform: [1e-6, 0.001]

Int: [1, 4]

Categorical: {8, 16, 32, 64, 128}
{0, Uniform: [0.0, 0.2]}
Uniform: [0.0, 0.5]

Uniform: [0.0, 0.5]

Uniform: [0.67, 2.67]
Categorical: {true, false}

reglu

8

Identical to the token width
Int: [2x1len(N,um), 48 x1len(Npum )]
{0, Uniform: [0.0, 0.3]}

Table 12: Hyperparameter search spaces for ModernNCA-GGPL.

Hyperparameter

Search Space

Learning rate
Weight decay

# MLP layers
MLP width
Projection Dim.
Dropout
Sample rate
Temperature

Embedding dim. (d)

Total breakpoints (K)
Deactivation Prob. (p)

LogUniform: [1e-5, 0.1]
{0, LogUniform: [1e-6, 0.001]}

{0, Int: [0, 2]}

Int: [64, 1024]

Int: [64, 1024]
Uniform: [0.0, 0.5]
Uniform: [0.05, 0.6]
1.0

Int: [8, 32, 4]

Int: [2x1len(N,um), 48 x1len(Nyum )]
{0, Uniform: [0.0, 0.3]}

16



Under review as a conference paper at ICLR 2026

Table 13: Hyperparameter search spaces for TabM-mini-GGPL.

Hyperparameter Search Space

Learning rate LogUniform: [0.0001, 0.003]
Weight decay {0, LogUniform: [0.0001, 0.1]}
# layers Int: [1, 4]

Width Int: [64, 1024, 16]

Dropout {0, Uniform: [0.0, 0.5]}

# ensembles 32

Embedding dim. (d) Int: [8, 32, 4]
Total breakpoints (K)  Int: [2x1en(Nyym ), 48 x1len(Nyym )]
Deactivation Prob. (p) {0, Uniform: [0.0, 0.3]}
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