
Distributionally Robust Performative Optimization

Zhuangzhuang Jia1, Yijie Wang2, Roy Dong1, Grani A. Hanasusanto1

1Department of Industrial and Enterprise Systems Engineering
University of Illinois Urbana–Champaign

2School of Economics and Management, Tongji University
{zj12,roydong,gah}@illinois.edu, yijiewang@tongji.edu.cn

Abstract

In performative stochastic optimization, decisions can influence the distribution of
random parameters, rendering the data-generating process itself decision-dependent.
In practice, decision-makers rarely have access to the true distribution map and
must instead rely on imperfect surrogate models, which can lead to severely subop-
timal solutions under misspecification. Data scarcity or costly collection further
exacerbates these challenges in real-world settings. To address these challenges,
we propose a distributionally robust framework for performative optimization
that explicitly accounts for ambiguity in the decision-dependent distribution. Our
framework introduces three modeling paradigms that capture a broad range of ap-
plications in machine learning and decision-making under uncertainty. This latter
setting has not previously been explored in the performative optimization literature.
To tackle the intractability of the resulting nonconvex objectives, we develop an
iterative algorithm named repeated robust risk minimization, which alternates be-
tween solving a decision-independent distributionally robust optimization problem
and updating the ambiguity set based on the previous decision. This decoupling
ensures computational tractability at each iteration while enhancing robustness to
model uncertainty. We provide reformulations compatible with off-the-shelf solvers
and establish theoretical guarantees on convergence and suboptimality. Extensive
numerical experiments in strategic classification, revenue management, and port-
folio optimization demonstrate significant performance gains over state-of-the-art
baselines, highlighting the practical value of our approach.

1 Introduction

Decision-makers’ actions often have a ripple effect on the external environment, which can lead
to changes in the distribution of uncertain parameters. For instance, in the realm of portfolio
management, institutional investors’ decisions can have a profound effect on stock prices. This
is partly due to their substantial capital, which can propel stock prices to rise (or fall) when they
are buying (or selling) [57], and partly because their actions shape market sentiment towards those
particular stocks [2]. Similarly, in revenue management, airlines often make forecasts and design
pricing strategies based on the historical patterns of passenger behavior. However, passengers are not
static; they often modify their behaviors in reaction to the new pricing strategies of airlines, which in
turn shifts the overall pattern of consumer behavior [11].

When the solution of a stochastic optimization problem affects the distribution of the uncertain
parameters, we call such a problem performative [40, 15]. The primary goal of the decision maker
within such a dynamic environment is to find a decision that minimizes the expected risk after the
environment has reacted to its deployment. A natural way of introducing this decision-dependent
uncertainty is to construct a distributional map from the set of decisions to the space of distributions.
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However, the true underlying map is typically unknown in reality. Consequently, practitioners
usually rely on a nominal or reference distribution map constructed from historical observations
or domain expertise. While methods grounded in the reference distribution map might perform
satisfactorily on the observed samples, they often fail to achieve acceptable performance in out-of-
sample circumstances.

This paper aims to tackle this core deficiency by leveraging the ideas of Distributionally Robust
Optimization. Unlike traditional approaches that assume a single distribution map, distributionally
robust performative optimization (DRPO) adopts a more flexible strategy: it establishes an ambiguity
set of plausible distributions centered at the reference distribution. Next, the objective of the decision
maker is to derive an optimal decision that minimizes the worst-case expected risk, where the worst
case is taken over all distribution maps from within this ambiguity set. By optimizing against this
adversarial perspective within a neighborhood of the reference map, it mitigates the overfitting issue
and improves the out-of-sample performance.

The difficulty in solving DRPO stems from the dependence of the distribution map on the decision,
which prohibits the direct use of existing solution schemes from the robust and distributionally robust
optimization literature. For instance, even under the simplest setting where the loss function is
linear and the distribution map is linear in decisions, the resultant problem is a nonconvex bilinear
program. We address this challenge by designing a repeated robust risk minimization algorithm.
Specifically, the decision maker repeatedly obtains an optimal decision that minimizes DRPR risk
using the reference distribution from the previous iteration. Finally, we conduct a theoretical analysis
of the algorithm, providing convergence and sub-optimality guarantees. Our main contributions can
be summarized as follows:

1. General DRPO Framework: We propose a distributionally robust framework based on Wasser-
stein distance for performative optimization. This approach enables safe decision-making when
we lack full information about the underlying decision-dependent distributions and only have
access to some reference distributions. It encompasses a wide class of loss functions and can be
applied to numerous machine learning and decision-making problems. As a byproduct of our
reformulations, we identify a relatively general setting where the distributionally robust model is
equivalent to Tikhonov regularization.

2. Repeated Robust Risk Minimization Algorithm: We develop a repeated robust risk minimization
algorithm for the problem that effectively mitigates the intractability of decision-dependent
uncertainty. Our approach decouples the decisions associated with the ambiguity set from the
expected loss, optimizing the latter while fixing the former to the previous decision in each iteration.
This transforms the challenging DRPO problem into a sequence of tractable conic programs,
rendering the framework computationally feasible and amenable to solutions via off-the-shelf
solvers.

3. Rigorous Theoretical Guarantees: We provide convergence results of the repeated robust risk
minimization algorithm to the stable solutions for our proposed models. To our knowledge, the
convergence of such an algorithm has not previously been established in the distributionally
robust settings. Our results show that, in general, the distributionally robust models lead to faster
convergence than non-robust schemes. We further prove that our stable solutions are near to the
robust performatively optimal ones.

1.1 Related Work

Stochastic Optimization: Our study closely relates to a body of research delving into endogenous
uncertainty in stochastic optimization. Early examples include production planning problems with
decision-dependent production costs [24] and oil planning problem with decision-dependent informa-
tion discovery [18]. Their solution entails constructing a scenario-tree-based stochastic programming
model and implementing a decomposition algorithm for resolution. Building on this, a subsequent
study [19] extends the methodology to the multi-stage setting, focusing on production scheduling that
minimizes costs while fulfilling diverse product demands. More broadly, [54] explore general multi-
stage stochastic optimization problems beset with endogenous uncertainty, devising a conservative
solution framework by leveraging piecewise linear decision rule approximations.

Robust Optimization: In robust optimization, decision-dependent uncertainty is usually imposed
directly on the uncertainty set. Specific applications include customized endogenous uncertainty
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sets for software partitioning [50] and robust scheduling, where the uncertainty set is constructed
as a decision-dependent combination of simpler sets [56]. Decision-dependent sets have also been
designed for primitive uncertainties in control systems [63]. The complexity analysis of the robust
selection problem with decision-dependent information discovery is studied by [33], where they
present polynomial complexity results for two special cases. For general settings, [37] show the
problem is NP-complete and demonstrate the benefit of using endogenous uncertainty sets via
a shortest-path problem. Algorithmic approaches have been developed, including exact nested
decomposition schemes for two-stage problems [38] and approximation methods based on decision
rules for the multistage setting [62].

Distributionally Robust Optimization: Our research expands upon the conventional framework
of distributionally robust optimization by incorporating the influence of decision-making on the
probability distribution. However, due to the problem difficulty, decision-dependent ambiguity sets
generally lead to intractable reformulations, which could be computationally intensive for large
instances. [61] study a broad class of distributionally robust optimization problems with decision-
dependent moment ambiguity sets and conduct stability analysis. For the two stage setting, [31]
analyze a wide range of decision-dependent ambiguity sets and establish non-convex semi-infinite
reformulations and [23] explore decision-dependent information discovery using the K-adaptability
approximation scheme. In multistage settings, [59] focus on moment-based ambiguity sets and derive
a mixed-integer semidefinite programming reformulation. This decision-dependent DRO framework
has been applied to a wide range of operations management problems, including nurse staffing [47],
facility location [5], and retrofitting planning [14]. In contrast to the existing approaches that require
an explicit specification of the ambiguity set, our scheme relies only on reference distributions at
finitely many decisions.

Performative Supervised Learning: Our study also belongs to an emerging class of research on
performative supervised learning, where algorithmic predictions can actively mold the surrounding
environment and alter the underlying distributions of uncertain parameters [15, 20, 34, 40, 32]. The
origins of performative learning can be traced back to studies on supervised learning under distribution
drifts [3, 4, 16]. The foundational framework of performative prediction was introduced by [40], who
designed a retraining algorithm and analyze the convergence behaviors to stochastic performatively
stable points. Unfortunately, the convergence results do not extend to the robust settings, as taking
worst-case expectations introduces non-smoothness into the objective function. Gradient-based
methods have been developed in [40, 32, 15] for non-robust formulations, but they are inapplicable in
robust settings due to the intractability of computing gradients of worst-case expectations. [28] has
extended the scope of performative prediction to decision-making via performative omniprediction.
We refer readers who are interested in performative learning to a comprehensive review [21].

Finally, we would like to highlight the difference between our paper and two related works on distri-
butionally robust performative prediction. [39] propose a distributionally robust performative model
to promote machine learning fairness. However, their robust smoothness assumption on the objective
and robust sensitivity assumption on the worst-case distributions are unrealistic. Additionally, unlike
the Wasserstein ambiguity set adopted in our paper, their phi-divergence ambiguity set precludes
any continuous distribution, so it cannot ensure true probability distribution coverage guarantee.
[58] study distributionally robust performative prediction based on a KL-divergence ambiguity set.
Similar to [39], such an ambiguity set may fail to provide sufficient protections against distributions
whose scenarios do not coincide with those in the reference distribution. In the paper, the authors
develop an alternating minimization (coordinate descent) algorithm to solve the distributionally robust
model. Unfortunately, such an algorithm may fail to converge, and the paper also does not provide
any convergence guarantee. The algorithm also assumes the existence of a solver that can solve
performative risk-sensitive minimization problems; however, to our knowledge, there is no existing
literature that studies such problems and provides convergent algorithms.

1.2 Notation and Terminology

We use R+ and R++ to denote the sets of nonnegative and strictly positive real numbers, respectively.
The identity matrix is denoted by I. For any n ∈ N, we define [n] as the index set {1, . . . , n}. The
Dirac measure concentrating unit mass at ξ ∈ Ξ is denoted by δξ. For any real-valued matrix A, its
Schatten-q norm is defined as ∥A∥q = (tr(A⊤A)q/2)q . Random variables are designated with tilde
signs (e.g., z̃), while their realizations are denoted by the same symbols without tildes (e.g., z).
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2 Preliminaries

In stochastic optimization, the goal of the decision maker is to find a decision θ ∈ Θ ⊆ Rd that
minimizes the risk

R(θ) = EP[ℓ(z̃,θ)], (1)

where the vector z̃ ∈ Z ⊆ Rm comprises the random parameters, and P denotes the underlying
distribution. We assume that the loss function is convex in θ for any fixed z ∈ Z . When the solution
of a stochastic optimization problem affects the distribution of the uncertain parameters, we call such
problem performative [40, 15]. A natural way of introducing this decision-dependent uncertainty is
through a map P(·) from the set of decisions to the space of distributions. Hence, in performative
stochastic optimization problems, the objective of the decision maker is to obtain a decision θ that
minimizes the performative risk

PR(θ) = EP(θ)[ℓ(z̃,θ)], (2)

where P(θ) is the distribution of uncertain parameters z̃ given the choice of the decision θ. Unfor-
tunately, the true underlying distribution map P(θ) is unknown to the decision makers and usually
approximated using the reference distribution P̂(θ) =

∑
s∈[S] p̂s(θ)δẑs(θ), where {ẑs(θ)}s∈[S]

represent plausible scenarios and {p̂s(θ)}s∈[S] are their respective probabilities. This reference
distribution could be derived from observations or expert knowledge elicitation.

Although methods based on a reference distribution may perform well when the true distribution
closely aligns with it, their performance often deteriorates when this assumption is violated. Distri-
butionally robust optimization has proven effective in addressing such distributional ambiguity in
non-performative stochastic optimization settings. Unlike traditional approaches that assume a single
distribution map, distributionally robust optimization adopts a more flexible strategy: it establishes an
ambiguity set B(P̂(θ)) of distributions that are close to the reference distribution. In this paper, we
construct this ambiguity set based on the Wasserstein distance. A formal definition of the Wasserstein
distance is as follows.

Definition 1 (Wasserstein metric). For any r ≥ 1, letM(Z) be the space of all probability distri-
butions Q supported on Z satisfying EQ[c(z̃, z0)

r] =
∫
Ξ
c(z, z0)

rQ(dz) < ∞, where z0 ∈ Z is
some reference point and c(z, z0) is a non-negative, continuous and thus lower semi-continuous [55]
reference metric on Z . The type-r (1 ≤ r) Wasserstein distance between two distributions Q1 and
Q2 is defined as

Wr(Q1,Q2) = inf
π∈Π(Q1,Q2)

(∫
Z×Z

c(z1, z2)
r π(dz1,dz2)

) 1
r

,

where Π(Q1 ×Q2) is the set of all joint probability distributions of random vectors z1 and z2 with
marginals Q1 and Q2, respectively.

The Wasserstein metric offers a natural way of comparing two distributions when one is derived from
the other by small perturbations. The decision variable π can be interpreted as a transportation plan
for moving a mass distribution denoted by Q1 to another one denoted by Q2, where the transportation
cost between two points z1 and z2 is given by c(z1, z2). Therefore, the r-Wasserstein distance can
be viewed as the r-th root of the minimum transportation cost between Q1 and Q2. An important
advantage of the Wasserstein distance is its ability to handle distributions with non-overlapping
supports, i.e., even when Q1 and Q2 have different supports, the Wasserstein distance provides a
finite, meaningful value. By contrast, measures like KL-divergence become undefined under such
scenarios. We now consider the following Wasserstein ambiguity set

B(P̂(θ)) =
{
Q ∈M(Ξ) : Wr(Q, P̂(θ)) ≤ ρ

}
, (3)

which is a neighborhood around the reference distribution P̂(θ). The Wasserstein ambiguity set
contains all the distributions whose r-Wasserstein distance from P̂(θ) is less than or equal to ρ.

Equipped with the Wasserstein ambiguity set, the decision maker minimizes the distributionally
robust performative risk

DRPR(θ) := sup
Q∈B(P̂(θ))

EQ ℓ(z̃,θ), (4)
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where Q is a distribution from within the prescribed ambiguity set B(P̂(θ)). In other words, the
model optimizes the expected risk over the worst-case distribution map, thereby mitigating overfitting
to the reference distribution and improving generalization performance to other plausible distributions.
We now introduce the following concepts regarding the optimality and stability of the solutions.

Definition 2 (Robust performative optimality). A decision θRPO is robust performatively optimal if
the following relationship holds:

θRPO ∈ argmin
θ∈Θ

sup
Q∈B(P̂(θ))

EQ ℓ(z̃,θ).

Definition 3 (Robust performative stability). A decision θRPS is robust performatively stable if the
following relationship holds:

θRPS ∈ argmin
θ∈Θ

sup
Q∈B(P̂(θRPS))

EQ ℓ(z̃,θ).

While distinct from the robust performatively optimal solution, a robust performatively stable solution
constitutes a fixed point of the problem and is optimal with respect to the worst-case expected loss
over the ambiguity set it induces.

Definition 4 (Robust decoupled performative risk). We define

Jη(θ) := sup
Q∈B(P̂(η))

EQ ℓ(z̃,θ)

as the robust decoupled performative risk, separating the decision η associated with the ambiguity
set and the decision θ associated with the risk; then, θRPS ∈ argminθ JθRPS

(θ).

3 Repeated Robust Risk Minimization Algorithm

In this section, we introduce the repeated robust risk minimization algorithm for solving the distribu-
tionally robust performative risk minimization problem and investigate its fundamental properties.
The algorithm starts with an initial solution θ0, and for every t ≥ 0, the subsequent θt+1 can be
obtained by solving the following robust risk minimization problem:

min
θ∈Θ

Jθt
(θ). (RRMP)

The algorithm addresses the computational challenges posed by decision-dependent distributions by
constructing the ambiguity set using the reference distribution based on the optimal decision from
the previous iteration. Thus, it effectively decouples the current decision from the ambiguity set,
simplifying the optimization process.

3.1 Models and Their Tractable Reformulations

We present three models that cover a broad spectrum of problems in machine learning and decision-
making under uncertainty. We first consider the case where the loss function is given by the
composition of a Lipschitz continuous function and a quadratic function. This class of problems is
particularly relevant in machine learning and robust statistics, as it captures many commonly used
models such as linear regression [36], logistic regression [22], and certain types of support vector
machines [48].

Model 1. Assume that the loss function is defined as

ℓ(Z,θ) = L(θ⊤Y θ + 2z⊤θ + z0), (5)

where Z̃ = (Ỹ , z̃, z̃0) includes random variables Ỹ ∈ SN , z̃ ∈ Rd and z̃0 ∈ R. The function L(·)
is assumed to be L-Lipschitz continuous.

We consider the 1-Wasserstein ball, where the ground cost function c is given by the Schatten-∞
norm. Under this setting, (RRMP) is equivalent to the Tikhonov regularized problem

inf
θ∈Θ

EP̂(θt)

[
L
(
θ⊤Ỹ θ + 2z̃⊤θ + z̃0

)]
+ ρL∥(θ, 1)∥22.
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This result demonstrates that, under mild assumptions, (RRMP) can be reformulated as a regularized
risk minimization problem. This substantially generalizes the findings of [30], who established an
equivalence to Tikhonov regularization for strongly convex quadratic loss functions and martingale-
constrained Wasserstein ambiguity sets. Our result reveals that Tikhonov regularization can be
obtained for a broader class of loss functions without requiring complicating martingale constraints,
thereby sharpening the theoretical understanding of the connection between distributional robustness
and regularization.

The following model provides a general formulation that is typically considered in the distributionally
robust optimization literature [43, 44]. This model is pertinent to many applications in decision-
making under uncertainty, including in inventory management [29] and and energy systems [27]. To
the best of our knowledge, such a formulation has not previously been proposed in the performative
optimization literature, which mainly focuses on prediction problems. Note that if the L-lipschitz
continuous function L in (5) is piecewise linear, then this model constitutes a generalization.
Model 2. Assume that the loss function is defined as

ℓ(Z,θ) = max
j∈[J]

Qj(Z,θ),

where Z̃ = (Ỹ , z̃, z̃0) includes random variables Ỹ ∈ SN , z̃ ∈ Rd and z̃0 ∈ R. Each component
Qj(Z,θ) is a quadratic function of the form

Qj(Z,θ) = aj(θ)
⊤Y aj(θ) + 2bj(θ)

⊤z + cj(θ)z
0,

with parameter-dependent coefficients given by affine functions aj(θ) = aj + Ajθ, bj(θ) =

bj +Bjθ, and cj(θ) = cj0 + c⊤j θ for all j ∈ [J ], where aj , bj ∈ RN , cj0 ∈ R,Aj ,Bj ∈ RN×d,
and cj ∈ Rd.

Consider the 1-Wasserstein ball with the Schatten-∞ norm ground cost. Then, the optimal value of
the following exponential conic program provides an arbitrarily tight conservative approximation
for (RRMP).

inf
∑
s∈[S]

p̂s(θt)ts + tS+1

s. t. θ ∈ Θ, ts ∈ R ∀s ∈ [S + 1]
ζs,j , rs,j ∈ R, (rs,j , µ, ζs,j − ts) ∈ Kexp ∀s ∈ [S + 1] j ∈ [J ]

θ⊤A
⊤
j Ŷ sAjθ + (2a⊤

j Ŷ sAj + 2ẑ⊤
s Bj + ẑ0sc

⊤
j )θ

+a⊤
j Ŷ saj + 2b

⊤
j ẑs + ẑ0scj0 ≤ ζs,j ∀s ∈ [S + 1] j ∈ [J ]∑

j∈J

rs,j ≤ µ ∀s ∈ [S + 1].

(6)

where Ŷ S+1 = ρI, ẑS+1 = 0, ẑ0S+1 = ρ, and µ ∈ R+ is the smoothing parameter.

The formulation (6) relies on the exponential smoothing techniques described in [7, Section 2.2].
The primary motivation for this approach lies in the need to handle the nonsmoothness incurred
by the inner maximization over quadratic functions, which will hinder the convergence of our
proposed algorithm. To address this challenge, we apply a log-sum-exp smoothing approximation
with smoothing parameter µ > 0, which yields a smoothed robust decoupled performative risk,
denoted as Jµθt

. And problem (6) is equivalent to infθ∈Θ Jµθt
(θ) (see details in Appendix D).

As is standard in exponential smoothing, the smoothed objective serves as a uniform upper bound to
the original nonsmooth function: Jθt(θ) ≤ Jµθt

(θ) ∀θ ∈ Θ, which ensures that optimization over
the smooth surrogate does not underestimate the original objective. Importantly, Jµθt

epi-converges to
Jθt

as the smoothing parameter µ ↓ 0 [46, Theorem 7.17], which ensures convergence of optimal
solutions whenever Θ is compact [46, Theorem 7.33].

Finally, inspired by minimax [52] and adversarially robust optimization literature [49], we turn to the
setting where the loss function is convex-concave. In this setting, we exploit the 2-Wasserstein ambi-
guity set to ensure the convergence of the repeated risk minimization algorithm. This model further
allows one to impose additional structural support information that may reduce the overconservatism
of the distributionally robust solutions. The following theorem provides a convex reformulation for
the model, leveraging convex conjugate representations and support functions.
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Model 3. Let Z ⊆ Rm be a nonempty, convex and closed set, and consider the 2-Wasserstein ball,
where the ground cost c is given by the Euclidean norm on Rd. Suppose that for every θ, the function
ℓ(z,θ) is proper, concave, and upper-semicontinuous in z. Then, the optimal value of the following
finite convex program provides an arbitrarily tight conservative approximation for (RRMP):

inf
∑
s∈[S]

p̂s(θt)

(
[−ℓ]∗(rs − ζs,θ) + σZ(ζs)− r⊤s ẑs +

1

4λ
∥rs∥22

)
+ ρ2λ+ τλ2

s. t. θ ∈ Θ, λ ∈ R+, rs ∈ Rm ∀s ∈ [S], ζs ∈ Rm ∀s ∈ [S]

(7)

where τ ∈ R++ is a constant, [−ℓ]∗(ξ,θ) = supz∈Rm ξ⊤z − [−ℓ(z,θ)] denotes the conjugate of
−ℓ with respect to z, and σZ(ξ) = supz∈Z ξ⊤z is the support function of Z ∈ Rm.

Note that in problem (7), the loss function ℓ(z,θ) and the support set Z enter the formulation through
the convex conjugate of the negative loss [−ℓ]∗(·,θ), and the support function σZ(·), respectively.
Both transformations yield convex functions under the assumptions stated in Model 3. Furthermore,
the term (1/4λ) ∥rs∥22 is jointly convex in (λ, rs) [9, section 3.2.6]. Consequently, all objective and
constraint functions in problem (7) are convex, and the overall optimization problem is manifestly
convex.

The reformulation in Model 3 introduces the dual variable λ, which appears alongside the decision
variable θ. This motivates the use of an augmented vector θ = (θ, λ) ∈ Θ× R+ = Θ. To ensure
strong convexity in the joint variable θ which is important for the convergence guarantees of the R3M
algorithm, we introduce a regularization term τλ2, where τ > 0. This leads to the regularized robust
decoupled performative risk, denoted by Jτθt

(θ). And problem (7) is equivalent to infθ∈Θ Jτθt
(θ).

Notice that for any θ ∈ Θ, infλ≥0 Jτθt
(θ, λ) converges to Jθt

(θ) as τ ↓ 0. If ℓ(z,θ) is lower
semicontinuous in θ, then so is Jθt

. Hence, infλ≥0 Jτθt
(·, λ), epi-converges to Jθt

(·) [46, Theorem
7.17], and the minimizer θ̂ of (7) converges to a minimizer of (RRMP) whenever Θ is compact [46,
Theorem 7.33].

3.2 Convergence Analysis

We now establish convergence guarantees for the RRRM algorithm when applied to the reformulations
introduced in Models 1, 2, and 3. As noted earlier, we employ the smoothed objective Jµθt

(θ)

for (RRMP) in Model 2 and the regularized objective Jτθt
(θ) in Model 3. Each model requires

specific assumptions to ensure contraction of the risk map and hence convergence:

(A1) Model 1: The loss function satisfies the γ-strong convexity (B1) and β-smoothness (B2).

(A2) Model 2: For all j ∈ [J ], A
⊤
j Aj ≻ 0 and let α = 2minj∈[J] λmin(A

⊤
j Aj). In addition, the

feasible set Θ and the support of P̂(θt) are bounded.
(A3) Model 3: The loss function satisfies the γ-strong convexity (B1) and β-jointly smoothness (B2).

Additionally the support Z has a finite diameter D <∞.

Under these respective conditions, the algorithm converges linearly to a stable point.
Theorem 1. Suppose the loss functions in Models 1, 2, and 3 satisfy Assumptions (A1), (A2), and (A3)
respectively, and that the distribution map P̂(·) satisfies the ϵ-sensitivity condition (B3). Then:

(a) ∥θt+1 − θ′
t+1∥2 ≤ ϵκ∥θt − θ′

t∥2 for all θt,θ
′
t ∈ Θ.

(b) if ϵκ < 1, the iterate θt of (RRMP) converges linearly to a unique performatively stable
point θRPS:

∥θt − θRPS∥2 ≤ ∆ for t ≥ (1− ϵκ)
−1

log (∥θ0 − θRPS∥2/∆) .

where ∆ > 0 is a predefined tolerance level. The fixed point θRPS depends on the model
and is denoted θµ

RPS under Model 2, and θτ
RPS under Model 3.

Here, κ = β/(γ + 2ρL) for Model 1, κ = Jdk3

(
k1k2

µ + 1
)
/ρα for Model 2, and κ = (β +

4D)/min{2τ, γ} for Model 3, where k1, k2, k3 <∞ are model-dependent constants.
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This convergence result highlights several compelling advantages of our DRPO framework, particu-
larly when contrasted with traditional approaches to performative optimization that necessitate strong
convexity and smoothness for convergence. First, our DRPO framework establishes convergence
guarantees for loss functions that are convex but not necessarily strongly convex. Additionally,
our exponential smoothing tricks applied in Model 2 enable the RRRM algorithm to converge
for non-smooth loss functions. Finally, our DRPO framework accelerates the convergence rate
compared with its non-robust counterpart. These advancements significantly broadens the scope
of problems amenable to performative optimization and enhance the computational efficiency in
practical problems.

3.3 Suboptimality Guarantees

Our next result demonstrates that the robust performatively stable solution θRPS is close to the robust
performatively optimal solution θRPO whenever the ϵ-sensitivity of the distribution map is small, the
loss function has a large strong convexity parameter γ, or the distributionally robust model induces a
regularization with large strong convexity parameter ρ.
Theorem 2. Suppose all conditions in Theorem 1 hold. Additionally, assume that the loss function is
Lz-Lipschitz in z for both models, and Lθ-Lipschitz in θ for Model 3. Then, the suboptimality gap
between the robust performatively stable solution and the optimal solution under the true distribution
is bounded as follows:

(a) Model 1: JθRPS
(θRPS)− JθRPO

(θRPO) ≤ 2ϵ2L2
z

γ+2ρL .

(b) Model 2: Jµ
θµ
RPS

(θµ
RPS)− JθRPO

(θRPO) ≤ 2(ϵLz+2µ′ log J)2

ρα .

(c) Model 3: Jτθτ
RPS

(θ
τ

RPS)− JθRPO
(θRPO) ≤ τλ

2
+ (2τλ+ρ2+D2+Lθ+ϵLz)2ϵLz

min(γ,2τ) .

Here, µ′ ∈ [0, 1] is a constant that satisfies µ ≤ µ′∥θµ
RPS − θRPO∥2, and λ is the upper bound on

the optimal λ as given in Lemma F.1.
The suboptimality bound for Model 2 also highlights the advantages of our DRPO framework
alongside the smoothing tricks. For non-smooth, convex but not strongly-convex functions, the
suboptimality bound under the traditional performative prediction framework can be arbitrarily large
(as ρ→ 0, µ→ 0) as suggested by our result.

4 Experiments

In this section, we present numerical experiments to evaluate the performance of our proposed models
across three applications: strategic classification, revenue management, and portfolio optimization.
All experiments were conducted on a laptop equipped with a 6-core, 2.3 GHz Intel Core i7 CPU and
16 GB of RAM. The optimization problems were implemented in Python 3.11.

4.1 Strategic Classification

We consider a simulated strategic classification problem from [40] using a class-balanced subset of a
Kaggle credit scoring dataset [25]. The dataset contains features x̃ ∈ RP about borrowers, such as
their ages and the number of open loans. The outcomes ỹ ∈ {−1, 1} are equal to 1 if the individual
defaulted on a loan and −1 otherwise. The institution’s objective is to predict whether an individual
will default on their debt.

Under the strategic classification setting, individuals respond to the institution’s classifier by altering
their features to increase their likelihood of receiving a favorable classification. The institution
employs logistic regression for classification, with z̃ = x̃ỹ, and the loss function is given by
log(1 + exp(−x⊤θy)). This setting aligns with Theorem 1, where L represents the logloss function
with Lipschitz constant L = 1, and the quadratic function θ⊤Y θ + 2z⊤θ + z0 simplifies to the
affine function z⊤θ. See Appendix G for additional details.

We compare the performance of our robust models (with type-1 and type-2 Wasserstein ambiguity
sets) against the alternating minimization algorithm under KL divergence ambiguity set (AMKL)
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from [58]. Additionally, we include a non-robust model as a baseline for comparison. The training
set is fixed at 200 samples, while approximately 3,600 data points are used for out-of-sample testing.
This setup reflects realistic scenarios where data collection is costly or limited. In credit scoring, for
example, obtaining labeled data often requires expensive evaluations, expert assessments, or lengthy
observation periods. All models are trained for 40 iterations, with the robust parameter set to 0.1 for
all robust variants.
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Figure 1: Out of sample performance of different approaches

Figure 1 displays the box plots of 50 independent trials. As shown, our robust models outperform
the AMKL algorithm, which performs quite poorly. This may be due to its susceptibility to local
optima, as well as the limitations of the KL divergence ambiguity set, which may not sufficiently
guard against distributional shifts that are not well represented in the reference distribution. All
robust models significantly outperform the non-robust baseline, highlighting the effectiveness of
distributional robustness. Finally, we find that the robust model with a type-2 Wasserstein ambiguity
set outperforms the one with a type-1 Wasserstein ambiguity set. This arises primarily due to the
geometry of the ambiguity set. As discussed in [10], selecting the optimal radius ρ is challenging,
and the 2-Wasserstein ball often provides better performance because it offers a wider range of radius
values for which the robust solution outperforms its non-robust counterpart.

4.2 Revenue Management
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Figure 2: Out-of-sample performance of pricing schemes

In this experiment, we address the rev-
enue management problem where the
decision-maker determines the unit
price θ ≥ 0 for a fixed quantity of
perishable products q ∈ Z++, such
as hotel rooms or airplane seats, un-
der uncertain demand z̃ ∼ P(θ),
with higher prices inducing lower de-
mand [1, 13, 42].

Following [41], we model the price-
dependent demands using an additive
function z̃(θ) = −aθ + b + ϵ̃. Here,
unknown parameters a > 0 and b > 0 capture a deterministic linear demand curve, and ϵ̃ is a random
variable with a bounded support that is characterized by an unknown density function. Instead of the
true model, we only have access to a surrogate model −āθ + b̄, which deviates from the true model
as the parameters ā and b̄ do not accurately represent their counterparts. Under this additive demand
setting, the associated loss function becomes a piecewise quadratic function in θ, allowing us to apply
Model 2 to formulate a robust version of the revenue management problem, which can be efficiently
solved within seconds using an off-the-shelf commercial solver as it is a convex problem.

Figure 2 compares the out-of-sample performance of our robust scheme (orange) with benchmarks.
Due to the non-smoothness of the loss function, the AMKL approach is not applicable in this setting.
As shown in [41], when the true distribution map is available, the optimal price (green) can be derived
in closed form, achieving the highest expected profit for each fixed quantity q in the left subplot.
Similarly, the non-robust price (blue) can be obtained by treating the surrogate model as the true
model. The confidence region in the left subplot, representing the 10th-90th percentile range of 100
independent tests, and the smaller optimality gap relative to the mean profit induced by the optimal
price in the right subplot show that our robust price consistently outperforms the benchmark.
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4.3 Demand Response Portfolio Optimization

We evaluate our robust scheme in a power system application, focusing on demand response (DR)
portfolio optimization [51, 60]. In electricity markets, consumers capable of lowering electricity
consumption during certain periods are called DR resources. In this experiment, we consider a DR
aggregator (decision-maker) managing n DR resources over a planning horizon of T periods. The
goal is to maximize the expected profit by determining commitment level θt ∈ Rn

+ to meet a required
deterministic demand reduction Dt at each time t ∈ [T ].

The challenge lies in the uncertainty of DR resource’s performance, where the scheduled commitment
level θt may significantly differ from the actual reduction level θ̃t due to random noise z̃t. This
noise is decision-dependent, as larger commitments lead to higher variability. In this experiment, we
model the actual reduction of each resource i as θ̃t,i = θt,iz̃t,i for all i ∈ [n]. Here, the multiplicative
noise follows a beta distribution whose parameters α and β depend linearly on the commitment level:
z̃t,i ∼ 2 · Beta(α = β = aiθt,i + bi) with ai < 0. This beta distribution has a support of [0, 2] and
a mean of 1, regardless of the value of aiθt,i + bi. Therefore, the decision θt,i only influences the
distribution shape, with higher commitment levels leading to heavier tails, hence, higher variability
of the actual reduction level θ̃t,i.
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Figure 3: Out-of-sample performance of
DR scheduling

We consider three DR resources with distinct character-
istics: Resource 1 has high revenue but large variability,
Resource 2 has low revenue but high predictability, and
Resource 3 offers a balanced trade-off between the two.
We follow the experiment setup in [12], including the loss
function and the values of unit revenue, over-commitment
cost, and under-commitment penalty. As their loss func-
tion is piecewise-linear, the resulting optimization problem
can be formulated using Model 2 and efficiently solved.
For further details, we refer the reader to the original paper.
We conduct two out-of-sample tests: low and high demand
loads over the planning horizon, corresponding to small
Dt and large Dt, respectively. Figure 3 compares the mean profits of our robust scheme (orange)
and the non-robust scheme (blue), showing that the robust approach outperforms the non-robust one.
Notably, under high demand, the non-robust scheme often performs significantly poorly, resulting in
losses in some cases.

5 Concluding Remarks

We have presented the first Wasserstein distributionally robust optimization framework for performa-
tive optimization. In contrast to existing approaches, our framework accommodates a broader class of
problems in decision-making under uncertainty, thereby extending the original scope of performative
prediction. We proposed an efficient algorithm and established its convergence and suboptimality
guarantees. To our knowledge, these theoretical results have not been previously established in the
literature on robust performative prediction. Our experimental results demonstrate the superiority of
our approach over existing methods on the standard strategic classification benchmark, as well as in
two decision-making applications: revenue management and demand response portfolio optimization.

Notably, as the ambiguity set radius ρ approaches zero, the robust objective coincides with the
non-robust counterpart, which more directly targets the performative risk. This observation suggests a
possible direction: designing algorithms that gradually shrink the ambiguity set over time, potentially
trading robustness for improved approximation of the true performative risk as more information
becomes available. Another promising direction is contextual performative optimization, where
incorporating side information could further improve decision quality by enabling more accurate
modeling of uncertainty.

Broader impacts. Our framework extends the scope of performative prediction beyond its original
focus, enabling its application to a wider range of decision-making problems. In high-stakes settings,
adopting a distributionally robust optimization perspective allows our approach to prioritize safe and
reliable deployment in the presence of uncertainty and potential adversarial conditions.
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Technical Appendices and Supplementary Material

A Preliminary Definitions

Definition 5 (Generalized strong convexity). We say that a loss function ℓ(z,θ) is γ-strongly convex
in θ if

ℓ(z,θ) ≥ ℓ(z,θ′) +∇θℓ(z,θ
′)⊤(θ − θ′) +

γ

2

∥∥θ − θ′∥∥2
2
, (B1)

for all θ,θ′ ∈ Θ and z ∈ Z . If γ = 0, this condition reduces to the standard definition of convexity.
We will also use the following equivalent definition of strong convexity. A loss function ℓ(z,θ) is
γ-strongly convex in θ if the function

f(z,θ) = ℓ(z,θ)− γ

2
∥θ∥22 (B1’)

is convex for all z ∈ Z .
Definition 6 (Smoothness). We say that a loss function ℓ(z,θ) is β-smooth if the gradient∇θℓ(z,θ)
is β-Lipschitz in z, that is

∥∇θℓ(z,θ)−∇θℓ(z
′,θ)∥2 ≤ β ∥z − z′∥2 , (B2)

for all z, z′ ∈ Z .
Definition 7 (ϵ-sensitivity). We say that a distribution map P(·) is ϵ-sensitive if for all θ, θ′ ∈ Θ

W1

(
P(θ),P(θ′)

)
≤ ϵ∥θ − θ′∥2, (B3)

whereW1 denotes the 1-Wasserstein metric.

B Background on Exponential Smoothing

Let Z = {z1, . . . , zn} denote a finite support set. Given a loss function ℓ : Θ × Z → R and
a distribution p̂ ∈ ∆n, where ∆n denotes the probability simplex. We define the exponentially
smoothed objective as:

fµ(θ) := µ · log

(
n∑

i=1

p̂i · exp
(
ℓ(θ, zi)

µ

))
,

where µ > 0 is a smoothing parameter.

This function, also known as the log-sum-exp function, is a widely used smooth approximation to
the pointwise maximum function and has well-established properties in convex analysis [Bertsekas,
2015; Section 2.2]. This function provides a smooth approximation to maxi ℓ(θ, zi) whenever p̂i > 0
for all i.

Properties. The function fµ(θ) satisfies the following:

• Approximation Bounds: The approximation error can be precisely quantified:

max
i

ℓ(θ, zi) ≤ fµ(θ) ≤ max
i

ℓ(θ, zi) + µ · log
(

1

mini p̂i

)
,

provided p̂i > 0 for all i. Thus, as µ → 0, the smoothed objective fµ(θ) approaches the
exact maximum, with the error vanishing linearly in µ up to a logarithmic multiplicative
factor.

• Convexity and Differentiability: If each function ℓ(θ, zi) is convex in θ, then fµ(θ) is also
convex, as it is a composition of convex functions closed under nonnegative weighted
log-sum-exp operations. Moreover, fµ(θ) is continuously differentiable for all µ > 0, with
gradient:

∇θfµ(θ) =

n∑
i=1

πµ(zi; θ) · ∇θℓ(θ, zi),

where the weight vector πµ(·; θ) ∈ ∆n defines a softmax distribution:

πµ(zi; θ) :=
p̂i · exp (ℓ(θ, zi)/µ)∑n

j=1 p̂j · exp (ℓ(θ, zj)/µ)
.
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This smoothing mechanism not only ensures differentiability but also facilitates efficient computation
of gradients for robust optimization objectives involving maxima.

C Auxiliary Lemmas

Lemma C.1 (First-order optimality condition; Section 4.2.3 in [9]). Let f be a convex function and
let Ω be a closed convex set on which f is differentiable, then

x⋆ ∈ argmin
x∈Ω

f(x)

if and only if
∇f(x⋆)T (y − x⋆) ≥ 0 ∀y ∈ Ω.

Lemma C.2 ([26]). A distribution map P(·) is ϵ-sensitive if and only if for all θ,θ′ ∈ Θ, we have

sup
g∈L

∣∣∣EP(θ)[g(z̃)]− EP(θ′)[g(z̃)]
∣∣∣ ≤ ϵL∥θ − θ′∥2,

where

L = {g : Rp → R | |g(z)− g(z′)| ≤ L∥z − z′∥2 ∀z, z′ ∈ Z}

is the space of all L-Lipschitz continuous functions.

Lemma C.3. If ℓ(z,θ) is γ-strongly convex, then the worst case expectation

Jη(θ) = sup
Q∈B(P̂(η))

EQ[ℓ(z̃,θ)]

is γ-strongly convex in θ.

Proof. By the equivalent definition of γ-strong convexity in (B1’), we have that ℓ(z,θ)− γ
2 ∥θ∥

2 is
convex in θ. Hence, the worst-case expectation

sup
Q∈B(P̂(η))

EQ

[
ℓ(z̃,θ)− γ

2
∥θ∥22

]
is convex in θ since the expectation and the pointwise supremum operations preserve convexity. Thus,
we have

Jη(θ) = sup
Q∈B(P̂(η))

EQ

[
ℓ(z̃,θ)− γ

2
∥θ∥22

]
+

γ

2
∥θ∥22

is γ-strongly convex in θ by the definition (B1’).

Lemma C.4. Let x ∈ RJ and define the smooth maximum function

fµ(x) = µ log

∑
j∈[J]

exj/µ


for any µ > 0. Then the following bounds hold:

max
j∈[J]

xj ≤ fµ(x) ≤ max
j∈[J]

xj + µ log J.

Proof. Let M := maxj∈[J] xj . Then for each j ∈ [J ], we have xj ≤M , and hence:∑
j∈[J]

exj/µ ≤
∑
j∈[J]

eM/µ = JeM/µ.

Taking logarithms and multiplying by µ, we obtain the upper bound:

fµ(x) = µ log

∑
j∈[J]

exj/µ

 ≤ µ log
(
JeM/µ

)
= µ log J +M. (8)
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For the lower bound, observe that ∑
j∈[J]

exj/µ ≥ eM/µ

since at least one term in the sum equals eM/µ. Thus:

fµ(x) = µ log

∑
j∈[J]

exj/µ

 ≥ µ log
(
eM/µ

)
= M (9)

Combining both bounds in (8) and (9), we have the desired result:

max
j∈[J]

xj ≤ fµ(x) ≤ max
j∈[J]

xj + µ log J.

D Deferred Proofs Related to Reformulations

D.1 Proof of Reformulation for Model 1

Proof. We begin by rewriting the random parameters Z̃ as

Z̃ =

[
Ỹ z̃
z̃⊤ z̃0

]
∈ SN+1.

Next, we introduce the matrix variable

Γ =

[
θθ⊤ θ

θ⊤ 1

]
, (10)

which allows us to rewrite the loss function as ℓ(Z,θ) = L(⟨Γ,Z⟩). According to [8, Remark 1],
the worst-case expected loss over a 1-Wasserstein ambiguity set B(P̂(θt)), with cost induced by the
Schatten-∞ norm, is given by:

sup
Q∈B(P̂(θt))

EQ[ℓ(Z̃,θ)] = inf
λ∈R+

ρλ+ EP̂(θt)

[
sup

Z∈SN+1

L(⟨Γ,Z⟩)− λ∥Z − Z̃∥∞
]
.

By applying [48, Lemma 47], the inner maximization problem can be simplified as:

sup
Z∈SN+1

L(⟨Γ,Z⟩)− λ∥Z − Ẑ∥∞ =

{
L(⟨Γ, Ẑ⟩) if L∥Γ∥1 ≤ λ
+∞ otherwise.

Hence, the worst-case expectation reduces to

sup
Q∈B(P̂(θt))

EQ[ℓ(Z̃,θ)] = ρL∥Γ∥1 + EP̂(θt)
[L(⟨Γ, Z̃⟩)].

To conclude, we observe that

∥Γ∥1 =

∥∥∥∥[θθ⊤ θ

θ⊤ 1

]∥∥∥∥
1

= tr

([
θθ⊤ θ

θ⊤ 1

])
= ∥(θ, 1)∥22.

This completes the proof.

D.2 Proof of Reformulation for Model 2

Proof. Rewriting the random parameters Z̃ as

Z̃ =

[
Ỹ z̃
z̃⊤ z̃0

]
∈ SN+1,

and introducing the matrix variable

Γj =

[
aj(θ)aj(θ)

⊤ bj(θ)
bj(θ)

⊤ cj(θ)

]
, (11)
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allow us to rewrite Qj(Z,θ) as ⟨Γj ,Z⟩. By [35, Remark 6.6], the robust decoupled performative
risk can be expressed as

Jθt
(θ) = sup

Q∈B(P̂(θt))

EQ[ℓ(Z̃,θ)] =
∑
s∈[S]

p̂s(θt)

[
max
j∈[J]

Qj(Ẑs,θ)

]
+max

j∈[J]
ρ∥Γj∥1,

where

∥Γj∥1 =

∥∥∥∥[aj(θ)aj(θ)
⊤ bj(θ)

bj(θ)
⊤ cj(θ)

]∥∥∥∥
1

= tr

([
aj(θ)aj(θ)

⊤ bj(θ)
bj(θ)

⊤ cj(θ)

])
= aj(θ)

⊤aj(θ) + cj(θ).

Applying the exponential smoothing techniques described in [7, Section 2.2], we obtain the following
smooth approximation of Jη(θ);

Jµθt
(θ) = µ

∑
s∈[S]

p̂s(θt) log

∑
j∈[J]

eQj(Ẑs,θ)/µ

+ µ log

∑
j∈[J]

eρ∥Γj∥1/µ

 , (12)

where µ ∈ R++ is smoothing parameter. Introducing epigraphical variables, we reformulate the
objective function as the optimal value of the convex program

inf
∑
s∈[S]

p̂s(θt)ts + tS+1

s. t. ts ∈ R ∀s ∈ [S + 1]
ζs,j ∈ R ∀s ∈ [S + 1] j ∈ [J ]
ρ∥Γj∥1 ≤ ζS+1,j ∀j ∈ [J ]

Qj(Ẑs,θ) ≤ ζs,j ∀s ∈ [S + 1] j ∈ [J ]

µ log

∑
j∈[J]

eζs,j/µ

 ≤ ts ∀s ∈ [S + 1].

(13)

The last constraint of (13) is equivalent to
∑

j∈[J] µe
ζs,j/µ−ts/µ ≤ µ and can be reformulated using

the exponential cone: ∑
j∈[J]

rs,j ≤ µ, (rs,j , µ, ζs,j − ts) ∈ Kexp ∀j ∈ [J ]

where the exponential cone Kexp is defined as

Kexp = {(x1, x2, x3) : x1 ≥ x2e
x3/x2 , x2 > 0} ∪ {(x1, 0, x3) : x1 ≥ 0, x3 ≤ 0}.

To complete the proof, we substitute the expressions for ∥Γj∥1 ∀j ∈ [J ] with

θ⊤A
⊤
j Ajθ + (2a⊤

j Aj + c⊤j )θ + a⊤
j aj + cj0,

and for Qj(Ẑs,θ) ∀s ∈ [S] j ∈ [J ] with

θ⊤A
⊤
j Ŷ sAjθ + (2a⊤

j Ŷ sAj + 2ẑ⊤
s Bj + ẑ0sc

⊤
j )θ + a⊤

j Ŷ saj + 2b
⊤
j ẑs + ẑ0scj0.

This completes the proof.

D.3 Proof of Reformulation for Model 3

Proof. By using Definition 1, the robust decoupled performative risk Jθt
(θ) can be rewritten as

Jθt
(θ) = sup

Q∈B(P̂(θt))

EQ[ℓ(z̃,θ)]

=


sup

Qs∈M(Z)

∑
s∈[S]

p̂s(θt)

∫
Z
ℓ(z,θ)Qs(dz)

s. t.
∑
s∈[S]

p̂s(θt)

∫
Z
∥z − ẑs∥22Qs(dz) ≤ ρ2.
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where M(Z) denotes the space of all probability distributions Q supported on Z satisfying
EQ[∥z∥22] =

∫
Z ∥z∥

2
2Q(dz) < ∞. This reformulation follows from the law of total probabil-

ity, where Qs represents the conditional distribution of z̃ given that the scenario ẑs(θt) is realized.
Using the Lagrangian, we have

Jθt
(θ) = sup

Qs∈M(Z)

inf
λ∈R+

∑
s∈[S]

p̂s(θt)

∫
Z
ℓ(z,θ)Qs(dz)

+ λ

ρ2 −
∑
s∈[S]

p̂s(θt)

∫
Z
∥z − ẑs∥22Qs(dz)

 .

By the minimax theorem [53], which is valid under the assumption that ℓ is upper-semicontinuous
and concave in z, and the support set Z is convex, we can exchange the supremum and infimum to
obtain:

Jθt(θ) = inf
λ∈R+

sup
Qs∈M(Z)

ρ2λ+
∑
s∈[S]

p̂s(θt)

∫
Z

(
ℓ(z,θ)− λ∥z − ẑs∥22

)
Qs(dz).

From the fact that the spaceM(Z) contains all the Dirac distributions supported on Z , we have

Jθt
(θ) = inf

λ∈R+

ρ2λ+
∑
s∈[S]

p̂s(θt) sup
z∈Z

(ℓ(z,θ)− λ∥z − ẑs∥22).

Adding a regularized term τλ2 where τ ∈ R++ is a positive constant, we have

Jθt
(θ) ≤ inf

λ∈R+

∑
s∈[S]

p̂s(θt) sup
z∈Z

(ℓ(z,θ)− λ∥z − ẑs∥22 + ρ2λ+ τλ2).

Therefore, minimizing the right-hand side provides an upper bound on Jθt
(θ). Next, we introduce

auxiliary variables ts ∀s ∈ [S], which yields the equivalent formulation for the right hand side of the
above inequality

inf
∑
s∈[S]

p̂s(θt)ts + ρ2λ+ τλ2

s. t. λ ∈ R+, ts ∈ R ∀s ∈ [S]
sup
z∈Z

(ℓ(z,θ)− λ∥z − ẑs∥22) ≤ ts ∀s ∈ [S].

(14)

By the definition of conjugate functions, we have

sup
z∈Z

(ℓ(z,θ)− λ∥z − ẑs∥22) = [−ℓ+ χZ + λ∥z − ẑs∥22]∗(0),

where χZ denotes the characteristic function of Z . Based on results from [35, Theorem 4.2], [46,
Theorem 11.23], and [64, Lemma B.8], the conjugate functions of infimal convolutions and 2-norm
balls is given by

[−ℓ+ χZ + λ∥z − ẑs∥22]∗(0) = inf
rs,ζs

([−ℓ]∗(rs − ζs,θ) + σZ(ζs) + [λ∥z − ẑs∥22]∗(−rs)).

with

[λ∥z − ẑs∥22]∗(−rs) = sup
vs

(−r⊤s vs − λ∥z − ẑs∥22) = −r⊤s ẑs +
1

4λ
∥rs∥22 ,

Substituting this back into the formulation (14), we thus obtain that Jθt(θ) is upper bounded by the
optimal value of the following convex program:

inf
∑
s∈[S]

p̂s(θt)

(
[−ℓ]∗(rs − ζs,θ) + σZ(ζs)− r⊤s ẑs +

1

4λ
∥rs∥22

)
+ ρ2λ+ τλ2

s. t. λ ∈ R+, ts ∈ R ∀s ∈ [S], rs ∈ Rm ∀s ∈ [S], ζs ∈ Rm ∀s ∈ [S].

Combining with outer minimization over θ ∈ Θ completes the proof.
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E Deferred Proofs Related to Convergence

Lemma E.1. Consider the loss function defined in Model 2 and assume Θ is bounded. We define the
smoothed loss function

ℓµ(Z,θ) = µ log

∑
j∈[J]

eQj(Z,θ)/µ

 , (15)

where Z ∼ P̂(θt) satisfies and ∥Z∥2 ≤ k1 for some constant k1 < ∞. Then the gradient

∇θℓµ(Z,θ) is β-Lipschitz in Z for β = Jdk3

(
k1k2

µ + 1
)

for some constants k2, k3 <∞ defined
below.

Proof. Since the coefficients aj(θ), bj(θ), and cj(θ) are affine for all j ∈ [J ] and Θ is bounded,
there exist some constants k2, k3 <∞ such that

• ∥Γj∥2 ≤ k2 for all j ∈ [J ],

• ∥∇θiΓj∥2 ≤ k3 for all i ∈ [d], j ∈ [J ].

By definition, we have the gradient of the smoothed loss (15):

∇θℓµ(Z,θ) =
∑
j∈[J]

wj(Z,θ)∇θQj(Z,θ)

where the softmax weights are

wj(Z,θ) =
eQj(Z,θ)/µ∑

i∈[J] e
Qi(Z,θ)/µ

,

and the gradient of Qj with respect to θ is given by

∇θQj(Z,θ) = 2A
⊤
j Y Ajθ + 2A

⊤
j Y

⊤aj + 2B
⊤
j z + z0cj .

To prove that ∇θℓµ is Lipschitz in Z, we examine ∥∇θℓµ(Z1,θ) − ∇θℓµ(Z2,θ)∥2. We first
decompose the difference and apply the triangle inequality∥∥∥∥∥∥

∑
j∈[J]

wj(Z1,θ)∇θQj(Z1,θ)−
∑
j∈[J]

wj(Z2,θ)∇θQj(Z2,θ)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑
j∈[J]

wj(Z1,θ)∇θQj(Z1,θ)−
∑
j∈[J]

wj(Z2,θ)∇θQj(Z1,θ)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑
j∈[J]

wj(Z2,θ)∇θQj(Z1,θ)−
∑
j∈[J]

wj(Z2,θ)∇θQj(Z2,θ)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
j∈[J]

(wj(Z1,θ)− wj(Z2,θ))∇θQj(Z1,θ)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑
j∈[J]

(∇θQj(Z1,θ)−∇θQj(Z2,θ))

∥∥∥∥∥∥
2

.

(16)
Next, we bound the terms involved:
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• Weight difference:

∥wj(Z1,θ)− wj(Z2,θ)∥2 =

∥∥∥∥∥ eQj(Z1,θ)/µ∑
i∈[J] e

Qi(Z1,θ)/µ
− eQj(Z2,θ)/µ∑

i∈[J] e
Qi(Z2,θ)/µ

∥∥∥∥∥
2

(a)

≤ 1

µ
∥Qj(Z1,θ)−Qj(Z2,θ)∥2

=
1

µ
∥⟨Γj ,Z1⟩ − ⟨Γj ,Z2⟩∥2

(b)

≤ 1

µ
∥Γj∥2 ∥Z1 −Z2∥2

≤ k2
µ
∥Z1 −Z2∥2 ,

where (a) comes from the Lipschitz continuity of the softmax function [17], and (b) uses the
Cauchy–Schwarz inequality.

• Gradient:

∥∇θQj(Z,θ)∥2 =
∑
i∈[d]

∥⟨∇θiΓj ,Z⟩∥2
(a)

≤
∑
i∈[d]

∥∇θiΓj∥2 ∥Z∥2
(b)

≤ k1k3d,

where ∇θiΓj is a matrix whose (i1, i2)-th matrix slice is the gradient of the (i1, i2)-th
component of the matrix with respect to θi.

• Gradient difference:

∥∇θQj(Z1,θ)−∇θQj(Z2,θ)∥2 ≤ d ∥∇θiΓj∥2 ∥Z1 −Z2∥2 ≤ dk3∥Z1 −Z2∥2.

Substituting the above bounds into (16), we obtain

∥∇θℓµ(Z1,θ)−∇θℓµ(Z2,θ)∥2 ≤ Jdk3

(
k1k2
µ

+ 1

)
∥Z1 −Z2∥2 .

Thus, the claim follows.

Lemma E.2. Consider the loss function defined in Model 2, and assume that A
⊤
j Aj ≻ 0 for all

j ∈ [J ]. Define the smoothed loss function

ℓreg
µ (θ) = µ log

∑
j∈[J]

eρ∥Γj∥1/µ

 , (17)

where Γj is defined in (11). Then ℓreg
µ (θ) is ρα-strongly convex in θ where

α = 2 min
j∈[J]

λmin(A
⊤
j Aj).

Proof. By definition, the gradient of the smoothed loss (17) is given by

∇θℓ
reg
µ (θ) = ρ

∑
j∈[J]

wj(θ)∇θΓj(θ),

where the softmax weights are defined as

wj(θ) =
eρΓj(θ)/µ∑

i∈[J] e
ρΓi(θ)/µ

∀j ∈ [J ],

and the gradient of Γj with respect to θ is given by

∇θΓj(θ) = 2A
⊤
j Ajθ + 2A

⊤
j aj + cj .
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Using the product rule and softmax identity:

∇2
θℓ

reg
µ (θ) = ρ

∑
j∈[J]

wj(θ)∇2
θΓj(θ) +

ρ2

µ

∑
j∈[J]

wj(θ) [∇θΓj(θ)− ḡ] [∇θΓj(θ)− ḡ]
⊤

= 2ρ
∑
j∈[J]

wj(θ)A
⊤
j Aj +

ρ2

µ

∑
j∈[J]

wj(θ) [∇θΓj(θ)− ḡ] [∇θΓj(θ)− ḡ]
⊤
,

where

ḡ = ρ
∑
j∈[J]

wj(θ)∇θΓj(θ).

Notice that the first term is a convex combination of positive definite matrices A
⊤
j Aj , so it is positive

definite. The second term is a Gram matrix, hence positive semidefinite. Therefore, the minimum
eigenvalue of the Hessian is lower bounded by the minimum eigenvalue of the first term and we have

∇2
θℓ

reg
µ (θ) ⪰ 2ρ min

j∈[J]
λmin(A

⊤
j Aj)I.

Thus, the claim follows.

Corollary E.1. Consider the setting of Model 2, and define the following smoothed loss function

g(Z,θ) = ℓµ(Z,θ) + ℓregµ (θ)

where ℓµ(Z,θ) is the smoothed loss function defined in (15), and ℓregµ (θ) is defined in (17). Sup-

pose that A
⊤
j Aj ≻ 0 for all j ∈ [J ]. Then g(Z,θ) is ρα-strongly convex in θ with α =

2minj∈[J] λmin(A
⊤
j Aj), and the gradient∇θg(Z,θ) is β-Lipschitz in Z for β = Jdk3

(
k1k2

µ + 1
)

for some constants k1, k2, k3 <∞.

Proof. By a standard result in convex analysis, the function ℓµ(Z,θ) is convex in θ, as the log-
sum-exp operator preserves convexity when applied to a collection of convex functions. Further-
more, Lemma E.2 establishes that ℓregµ (θ) is ρα-strongly convex, where

α = min
j

λmin(A
⊤
j Aj).

As the sum of a convex function and a strongly convex function is strongly convex, g(Z,θ) is
ρα-strongly convex.

The dependence of g on Z comes only through ℓµ(Z,θ). Therefore, the Lipschitz continuity of
the gradient∇θg(Z,θ) with respect to Z follows from Lemma 2, which provides the bound on the
Lipschitz constant β. This concludes the proof.

Lemma E.3. Assume that the loss function ℓ(z,θ) is concave in z, and that the set Z has a finite
diameter D = supz,z′∈Z ∥z − z′∥2 <∞. Define the function

g(v, (θ, λ)) = sup
z∈Z

ℓ(z,θ)− λ∥z − v∥22 + ρ2λ+ τλ2.

Then the function g is α-strongly convex in (θ, λ) where

α = min(γ, 2τ),

and the gradient ∇(θ,λ)g(v, (θ, λ)) is (β + 4D)-Lipschitz in v.

Proof. Define
ϕ((θ, λ),v, z) = ℓ(z,θ)− λ∥z − v∥22 + ρ2λ+ τλ.2

Then we have
g(v, (θ, λ)) = sup

z∈Z
ϕ((θ, λ),v, z).
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Since ϕ((θ, λ),v, ·) is 2λ-strongly concave in v, the maximizer
z∗((θ, λ),v) = argmax

z∈Z
ϕ((θ, λ),v, z)

is unique. By Danskin’s theorem [6, Section 6.11], the function g is differentiable, and its gradient
with respect to (θ, λ) is

∇(θ,λ)g(v, (θ, λ)) = ∇(θ,λ)ϕ((θ, λ),v, z
∗)

=

[
∇θℓ(z

∗,θ)
−∥z∗ − v∥22 + ρ2 + 2τλ

]
,

where z∗ = z∗((θ, λ),v). The Hessian is

∇2
(θ,λ)g(v, (θ, λ)) = ∇2

(θ,λ)ϕ((θ, λ),v, z
∗)

=

[
∇2

θℓ(z
∗,θ) 0

0 2τ

]
⪰ αI. (18)

where α = min(γ, 2τ). This proves strong convexity in (θ, λ).

Before we move to the Lipschitz smoothness, we first prove several inequalities. Fix z1, z2 ∈ Z , we
have ∥∥∥z∗((θ, λ),v2)− v2∥22 − ∥z∗((θ, λ),v1)− v1∥22

∥∥
2

(a)
= | (∥z∗((θ, λ),v2)− v2∥2 + ∥z∗((θ, λ),v1)− v1∥2)
× (∥z∗((θ, λ),v2)− v2∥2 − ∥z∗((θ, λ),v1)− v1∥2) |

(b)

≤ 2D∥z∗((θ, λ),v2)− z∗((θ, λ),v1)∥2 + 2D∥v2 − v1∥2

(19)

where (a) uses the difference of squares, and (b) uses the triangular inequality and the boundness of
Z . Next we prove z∗((θ, λ),v) is 1-Lipschitz continuous in v as follows.

2λ∥z∗((θ, λ),v1)− z∗((θ, λ),v2)∥22
(a)

≤⟨−∇zϕ((θ, λ),v2, z
∗((θ, λ),v2)) +∇zϕ((θ, λ),v2, z

∗((θ, λ),v1)),

z∗((θ, λ),v2)− z∗((θ, λ),v1)⟩
(b)

≤⟨∇zϕ((θ, λ),v2, z
∗((θ, λ),v1)), z

∗((θ, λ),v2)− z∗((θ, λ),v1)⟩
(c)

≤⟨∇zϕ((θ, λ),v2, z
∗((θ, λ),v1))−∇zϕ((θ, λ),v1, z

∗((θ, λ),v1)),

z∗((θ, λ),v2)− z∗((θ, λ),v1)⟩
(d)

≤2λ∥v1 − v2∥∥z∗((θ, λ),v2)− z∗((θ, λ),v1)∥
where (a) uses strong concavity of ϕ((θ, λ),v, ·), (b) and (c) come from the first order optimality
conditions for z∗((θ, λ),v1)) and z∗((θ, λ),v2)):

⟨∇zϕ((θ, λ),v, z
∗((θ, λ),v)), z − z∗((θ, λ),v)⟩ ≤ 0,

and (d) uses Cauchy-Schwarz inequality. Hence,
∥z∗((θ, λ),v1)− z∗((θ, λ),v2)∥2 ≤ ∥v1 − v2∥ (20)

Finally we show∇(θ,λ)g(v, (θ, λ)) is Lipschitz in v, consider the gradient difference

∥∇(θ,λ)g(v1, (θ, λ))−∇(θ,λ)g(v2, (θ, λ))∥2
=

∥∥∥∥[∇θℓ(z
∗((θ, λ),v1),θ)−∇θℓ(z

∗((θ, λ),v2),θ)
∥z∗((θ, λ),v2)− v2∥22 − ∥z∗((θ, λ),v1)− v1∥22

]∥∥∥∥
2

(a)

≤ ∥∇θℓ(z
∗((θ, λ),v1),θ)−∇θℓ(z

∗((θ, λ),v2),θ)∥2
+
∥∥∥z∗((θ, λ),v2)− v2∥22 − ∥z∗((θ, λ),v1)− v1∥22

∥∥
2

(b)

≤ β∥z∗((θ, λ),v1)− z∗((θ, λ),v2)∥2+
2D∥z∗((θ, λ),v2)− z∗((θ, λ),v1)∥2 + 2D∥v2 − v1∥2

(c)

≤ (β + 4D)∥v2 − v1∥2
where (a) comes from the triangular inequality, (b) uses the β-jointly smoothness of ℓ(z,θ) and 19,
and (c) uses 20. Hence the gradient∇θ,λg(v, (θ, λ)) is (β + 4D)-Lipschitz in v.
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E.1 Proof of Theorem 1

Proof. Let G(θt) denote an optimal solution of (RRMP) at iteration t, i.e.,

θt+1 = G(θt) ∈ argmin
θ∈Θ

Jθt
(θ).

where θt is the current solution and θt+1 ∈ Θ denotes the optimal solution for next iteration.

We first prove the convergence result for Model 1. Observe that

Jθt
(θ) = EP̂(θt)

[g(Z,θ)]

where g(Z,θ) = ℓ(Z,θ) + ρL∥(θ, 1)∥22.

Fix η,η′ ∈ Θ. Since Jη(·) is (γ+2ρL)-strongly convex, where 2ρL comes from the strong convexity
of the regularization term ρL∥(θ, 1)∥22. we have

Jη(G(η))− Jη(G(η′)) ≥ (G(η)−G(η′))⊤∇Jη(G(η′)) +
γ + 2ρL

2
∥G(η)−G(η′)∥22 ,

Jη(G(η′))− Jη(G(η)) ≥ γ + 2ρL

2
∥G(η)−G(η′)∥22 ,

where the second inequality follows from the fact that

(G(η′)−G(η))⊤∇Jη(G(η)) ≥ 0

in view of the first-order optimality condition in Lemma C.1 since G(η) ∈ argminθ∈Θ Jη(θ).
Combining the two inequalities, we obtain

(γ + 2ρL)∥G(η)−G(η′)∥22 ≤ −(G(η)−G(η′))⊤∇Jη(G(η′))
≤ (G(η)−G(η′))⊤[∇Jη′(G(η′))−∇Jη(G(η′))],

(21)

where the second inequality follows from the fact that (G(η)−G(η′))⊤∇Jη′(G(η′)) ≥ 0 in view of
the first-order optimality condition of G(η′). Next, we will upper bound (21) using Cauchy-Schwarz
inequality, as follows:

(G(η)−G(η′))⊤[∇Jη′(G(η′))−∇Jη(G(η′))]

≤∥(G(η)−G(η′))∥2∥∇Jη′(G(η′))−∇Jη(G(η′))∥2
(a)
=∥(G(η)−G(η′))∥2

∥∥∥EP̂(η′)[∇g(Z̃;G(η′))]− EP̂(η)[∇g(Z̃;G(η′))]
∥∥∥
2

(b)

≤∥G(η)−G(η′)∥2 · ϵβ∥η − η′∥2.
Here, (a) follows from the representation of the loss function, while (b) uses the Kantorovich-
Rubinstein Lemma C.2 since the loss function is β-jointly smooth from Lemma E.3 and the map
P̂(θ) is ϵ-sensitive. Combining this bound with (21), we get

∥G(η)−G(η′)∥2 ≤
ϵβ

γ + 2ρL
∥η − η′∥2.

Our claim (a) is then established by simply performing the change of variables η ← θ and η′ ← θ′.

To prove claim (b), we observe that θt = G(θt−1) by the definition of (RRMP), and θRPS =
G(θRPS) by the definition of stability. Applying the result of the claim (a) yields

∥θt − θRPS∥2 ≤
ϵβ

γ + 2ρL
∥θt−1 − θRPS∥2 ≤

(
ϵβ

γ + 2ρL

)t

∥θ0 − θRPS∥2.

Setting the right-hand side expression to be at most δ and solving for t completes the proof for Model 1.

For Model 2. Observe that

Jµθt
(θ) = EP̂(θt)

[g(Z,θ)],

where g(Z,θ) = ℓµ(Z,θ) + ℓregµ (θ). Here ℓµ(Z,θ) is the smoothed loss function defined in (15),
and ℓregµ (θ) is defined in (17). From Corollary E.1, we know that g(Z,θ) is ρα-strongly convex

24



in θ with α = 2minj∈[J] λmin(A
⊤
j Aj), and the gradient ∇θg(Z,θ) is β-Lipschitz in Z for β =

Jdk3

(
k1k2

µ + 1
)

for some constants k1, k2, k3 < ∞. Using the same techniques as in the proof
of Model 1, we can therefore establish the desired result for Model 2.

Finally, for Model 3, one can observe that

Jτθt
(θ) = EP̂(θt)

[g(Z,θ)],

where
g(Z,θ) = sup

z∈Z
ℓ(z,θ)− λ∥z −Z∥22 + ρ2λ+ τλ2.

From Lemma E.3, we know that g(Z,θ) is α-strongly convex in θ with α = min(γ, 2τ), and that its
gradient∇θg(Z,θ) is (β+4D)-Lipschitz continuous in Z. Hence, by applying the same arguments
as in the preceding analysis, we obtain the desired result.

F Deferred Proofs Related to Sub-optimality Guarantees

F.1 Proof of Sub-optimality Guarantee for Model 1

Theorem 3. Suppose the loss function in Model 1 is γ-strongly convex in θ (B1) and is β-smooth (B2).
Furthermore, assume that the loss function ℓ(z,θ) is Lz-Lipschitz in z. Then, the following subopti-
mality bound holds:

JθRPS(θRPS)− JθRPO(θRPO) ≤
2ϵ2L2

z

γ + 2ρL
.

Proof. Since JθRPS
(θ) is (γ + 2ρL)-strongly convex in θ, we have

γ + 2ρL

2
∥θRPO − θRPS∥22 ≤ JθRPS(θRPO)− JθRPS(θRPS)

since (θRPO − θRPS)
⊤∇JθRPS(θRPS) ≥ 0 by the optimality of θRPS. Using the fact that

JθRPS(θRPS) ≥ JθRPO(θRPO), we can further upper bound the right-hand side

JθRPS
(θRPO)− JθRPS

(θRPS) ≤ JθRPS
(θRPO)− JθRPO

(θRPO)
≤ ϵLz∥θRPS − θRPO∥2, (22)

where the second inequality holds due the ϵ-sensitivity of the distribution map P̂(·) and the Lz-
Lipschitz continuity of the loss function in z. In summary, we obtain

∥θRPS − θRPO∥2 ≤
2ϵLz

γ + 2ρL
. (23)

Next, we derive a bound on the suboptimality of the robust performatively stable solution θRPS. We
have

JθRPS
(θRPS)− JθRPO

(θRPO) ≤ JθRPS
(θRPO)− JθRPO

(θRPO)

≤ ϵLz∥θRPS − θRPO∥2

≤ 2ϵ2L2
z

γ + 2ρL
,

where the first inequality follows from the suboptimality of θRPO in JθRPS
(θ), the second inequality

is from (22), and the last inequality is from (23). This completes the proof.

F.2 Proof of Sub-optimality Guarantee for Model 2

Theorem 4. Consider the loss function ℓ(Z,θ) from Model 2. Suppose that A
⊤
j Aj ≻ 0 for all

j ∈ [J ], and that Y s ⪰ 0 for all s ∈ [S]. Additionally, assume that ℓ(Z,θ) is Lz-Lipschitz in Z.
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Then, the suboptimality of the stable point θµ
RPS of the smoothed robust objective satisfies:

Jµ
θµ
RPS

(θµ
RPS)− JθRPO

(θRPO) ≤
2(ϵLz + 2µ′ log J)2

ρα
. (24)

where α = 2minj∈[J] λmin(A
⊤
j Aj), µ′ ∈ [0, 1] is a constant that satisfies µ ≤ µ′∥θµ

RPS−θRPO∥2,
Jµθt

(θ) is the smoothed robust objective defined in (12), and θRPO denotes the minimizer of the
original robust objective Jθt

(θ).

Proof. By Lemma C.4, we have for any θ,

Jθt
(θ) ≤ Jµθt

(θ) ≤ Jθt
(θ) + 2µ log J. (25)

Additionally, from Corollary E.1, the function Jµθt
(θ) is ρα-strongly convex, with α =

2minj∈[J] λmin(A
⊤
j Aj). By the definition of strong convexity, we have:
ρα

2
∥θRPO − θµ

RPS∥
2

2 ≤ Jµ
θµ
RPS

(θRPO)− Jµ
θµ
RPS

(θµ
RPS), (26)

where the inequality follows from the first-order optimality condition of θµ
RPS, i.e.,

(θRPO − θµ
RPS)

⊤∇Jµ
θµ
RPS

(θµ
RPS) ≥ 0.

We next bound the right-hand side of (26). Using the fact that JθRPO
(θRPO) ≤ Jθµ

RPS
(θµ

RPS) ≤
Jµ
θµ
RPS

(θµ
RPS), we have

Jµ
θµ
RPS

(θRPO)− Jµ
θµ
RPS

(θµ
RPS) ≤ Jµ

θµ
RPS

(θRPO)− JθRPO(θRPO)

≤ Jθµ
RPS

(θRPO)− JθRPO(θRPO) + 2µ log J
≤ ϵLz∥θµ

RPS − θRPO∥2 + 2µ log J.

(27)

where the second inequality comes from (25), and the last inequality holds due to the Lipschitz
continuity of ℓ(Z,θ) in Z. Substituting (27) into the strong convexity inequality (26) gives:

ρα

2
∥θRPO − θµ

RPS∥
2

2 ≤ ϵLz∥θµ
RPS − θRPO∥2 + 2µ log J. (28)

Assuming µ ≤ µ′∥θµ
RPS− θRPO∥2 where µ′ ∈ [0, 1], we can divide both sides by ∥θµ

RPS− θRPO∥2
to obtain:

∥θµ
RPS − θRPO∥2 ≤

2(ϵLz + 2µ′ log J)

ρα
. (29)

Finally, we derive a bound on the suboptimality of the robust performatively stable solution θµ
RPS:

Jµ
θµ
RPS

(θµ
RPS)− JθRPO(θRPO) ≤ Jµ

θµ
RPS

(θRPO)− JθRPO(θRPO)

≤ (ϵLz + 2µ′ log J)∥θµ
RPS − θRPO∥2

≤ 2(ϵLz + 2µ′ log J)2

ρα
,

where the first inequality uses suboptimality of θRPO in Jµ
θµ
RPS

(θ), the second follows from (27), and
the last inequality uses the bound in (29). This concludes the proof.

F.3 Proof of Sub-optimality Guarantee for Model 3

Theorem 5. Suppose that Z has a finite diameter D = supz,z′∈Z ∥z − z′∥2 < ∞ and Θ is
bounded. Assume that the loss function ℓ(z,θ) in Theorem (3) is Lθ Lipschitz continuous in θ and
Lz-Lipschitz in z. Let Jτθt

(θ) denote the objective defined in problem (7), and let θ
τ

RPS denote a
robust performative stable point under this objective. Then the following suboptimality bound holds:

Jτθτ
RPS

(θ
τ

RPS)− JθRPO(θRPO) ≤ τλ
2
+

(2τλ+ ρ2 +D2 + Lθ + ϵLz)2ϵLz

α
. (30)

where α := min(γ, 2τ) is the strong convexity parameter, and λ is the upper bound on the optimal λ
as given in Lemma F.1.
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Proof. From Lemma E.3, the objective function Jτθt
(θ) is α-strongly convex in θ = (θ, λ) with

α = min(γ, 2τ). Applying the strong convexity inequality, we obtain:

α

2

∥∥∥θτ

RPO − θ
τ

RPS

∥∥∥2
2
≤ Jτθτ

RPS
(θ

τ

RPO)− Jτθτ
RPS

(θ
τ

RPS),

where the inequality follows from (θ
τ

RPO − θ
τ

RPS)
⊤∇Jτθτ

RPS
(θ

τ

RPS) ≥ 0 by the optimality of θ
τ

RPS.

Using the fact that Jτθτ
RPO

(θ
τ

RPO) ≤ Jτθτ
RPS

(θ
τ

RPS), we can further upper bound the right-hand side

Jτθτ
RPS

(θ
τ

RPO)− Jτθτ
RPS

(θ
τ

RPS) ≤ Jτθτ
RPS

(θ
τ

RPO)− Jτθτ
RPO

(θ
τ

RPO)

≤ ϵLz∥θτ
RPS − θτ

RPO∥2
≤ ϵLz∥θ

τ

RPS − θ
τ

RPO∥2,
(31)

where the second inequality holds due the ϵ-sensitivity of the distribution map P̂(·) and the Lz-
Lipschitz continuity of the loss function in z. In summary, we obtain

∥θτ

RPS − θ
τ

RPO∥2 ≤
2ϵLz

α
. (32)

Now consider the suboptimality decomposition:

Jτθτ
RPS

(θ
τ

RPS)− JθRPO(θRPO)

=
[
Jτθτ

RPS
(θ

τ

RPS)− Jτθτ
RPO

(θ
τ

RPO)
]
+
[
Jτθτ

RPO
(θ

τ

RPO)− JθRPO(θRPO)
]
.

(33)

We now bound each term:

1. First term. Before we start, we first provide a bound on Jτθτ
RPS

(θ
τ

RPS) − Jτθτ
RPS

(θ
τ

RPO).

From Lemma (F.2), the function f(Z,θ) is Lipschitz in θ. Hence:

Jτθτ
RPS

(θ
τ

RPS)− Jτθτ
RPS

(θ
τ

RPO)

=EP̂(θτ
RPS)

[τλ2
RPS + f(Z,θ

τ

RPS)]− EP̂(θτ
RPS)

[τλ2
RPO + f(Z,θ

τ

RPO)]

=τ |(λRPS + λRPO)(λRPS − λRPO)|+ EP̂(θτ
RPS)

[f(Z,θ
τ

RPS)− f(Z,θ
τ

RPO)]

≤(2τλ+ ρ2 +D2)|λRPS − λRPO|+ Lθ∥θτ
RPS − θτ

RPO∥2.

(34)

where λ is the upper bound on the optimal λ defined in (38). Now we provide a bound on
the first term, using the decomposition:

Jτθτ
RPS

(θ
τ

RPS)− Jτθτ
RPO

(θ
τ

RPO)

= Jτθτ
RPS

(θ
τ

RPS)− Jτθτ
RPS

(θ
τ

RPO) + Jτθτ
RPS

(θ
τ

RPO)− Jτθτ
RPO

(θ
τ

RPO)

≤ (2τλ+ ρ2 +D2)|λRPS − λRPO|+ Lθ∥θτ
RPS − θτ

RPO∥2 + ϵLz∥θτ
RPS − θτ

RPO∥2
= (2τλ+ ρ2 +D2)|λRPS − λRPO|+ (Lθ + ϵLz)∥θτ

RPS − θτ
RPO∥2

≤ (2τλ+ ρ2 +D2 + Lθ + ϵLz)2ϵLz

α
(35)

where the first inequality comes from (31) and (34), the last inequality holds because of (32).

2. Second term. Using the fact that Jτη(θ) augments Jη(θ) by τλ2:

Jτθτ
RPO

(θ
τ

RPO)− JθRPO
(θRPO) ≤ JτθRPO

(θRPO)− JθRPO
(θRPO) ≤ τλ

2
(36)

Substituting these into (33) , we obtain

Jτθτ
RPS

(θ
τ

RPS)− JθRPO(θRPO) ≤τλ
2
+

(2τλ+ ρ2 +D2 + Lθ + ϵLz)2ϵLz

α
.

This concludes the proof.
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Lemma F.1. Suppose thatZ has a finite diameter D = supz,z′∈Z ∥z−z′∥2 <∞ and Θ is bounded.
Assume that the loss function ℓ(z,θ) is Lθ Lipschitz continuous in θ and Lz-Lipschitz in z. Then
there exist ℓ, ℓ̄ ∈ R such that for all (z,θ) ∈ Z ×Θ,

ℓ ≤ ℓ(z,θ) ≤ ℓ̄.

Consider the following univariate minimization problem

inf
λ∈R+

ρ2λ+ τλ2 + EP̂(θt)
[ℓc(z,θ, λ)] (37)

where

ℓc(ẑs,θ, λ) = sup
z∈Z

(ℓ(z,θ)− λ∥z − ẑs∥22).

Then, the problem (37) admits a minimizer λ∗ ≤ λ, where

λ =

√
ρ4 + 4τ(ℓ̄− ℓ)− ρ2

2τ
. (38)

Proof. First, we observe that for fixed (θ, ẑs), the function ℓc(z,θ, λ) is convex and lower semi-
continuous in λ, as it is the supremum of functions affine in λ. Since lower semi-continuity is
preserved under expectation over a discrete distribution P̂(θt), the objective function in (37) is convex
and lower semi-continuous in λ.

Next, we establish a lower bound. Note that for all λ ≥ 0,

ℓc(ẑs,θ, λ) ≥ ℓ(ẑs,θ) ≥ ℓ,

since the supremum is attained at z = ẑs. Hence, we can bound the objective from below:

ρ2λ+ τλ2 + EP̂(θt)
[ℓc(ẑs,θ, λ)] ≥ ρ2λ+ τλ2 + ℓ.

Thus, the infimum of problem (37) is attained for some λ∗ ∈ [0,+∞). By optimality of λ∗, we then
have:

ρ2λ∗ + τλ∗2 + EP̂(θt)
[ℓ(ẑs,θ)] ≤ρ2λ∗ + τλ∗2 + EP̂(θt)

ℓc(ẑs,θ, λ)

≤EP̂(θt)
[ℓc(ẑs,θ, 0)]

≤EP̂(θt)
[sup
z∈Z

ℓ(z,θ)] ≤ ℓ̄,

where the second inequality comes from evaluating the objective at λ = 0. Rearranging the inequality,
we obtain:

ρ2λ∗ + τλ∗2 ≤ ℓ̄− EP̂(θt)
[ℓ(ẑs,θ)] ≤ ℓ̄− ℓ.

Solving the quadratic inequality yields the upper bound

λ∗ ≤ λ =

√
ρ4 + 4τ(ℓ̄− ℓ)− ρ2

2τ
.

This concludes the proof.

Lemma F.2. Suppose Z has a finite diameter D = supz,z′∈Z ∥z − z′∥2 <∞ and the loss function
ℓ(z,θ) is Lθ Lipschitz in θ. For ẑs ∈ Z , define the function

f(ẑs,θ) = sup
z∈Z

h(z, ẑs,θ), (39)

where θ := (θ, λ) ∈ Θ× R+ := Θ, and

h(z, ẑs,θ) = ℓ(z,θ)− λ∥z − ẑs∥22 + ρ2λ.

Then for any θ,θ
′ ∈ Θ, the function f satisfies the Lipschitz bound:

|f(ẑs,θ)− f(ẑs,θ
′
)| ≤ (ρ2 +D2)|λ− λ′|+ Lθ∥θ − θ′∥2.
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Proof. We start with the absolute difference between the two evaluations of f :

|f(ẑs,θ)− f(ẑs,θ
′
)| = max{f(ẑs,θ)− f(ẑs,θ

′
), f(ẑs,θ

′
)− f(ẑs,θ)}.

Next, we bound the first term; the second is symmetric. Let

∆ = f(ẑs,θ)− f(ẑs,θ
′
) = sup

z∈Z
h(z, ẑs,θ)− sup

z′∈Z
h(z′, ẑs,θ

′
).

Using the inequality

sup
z

a(z)− sup
z

b(z) ≤ sup
z
(a(z)− b(z)),

we obtain

∆ ≤ sup
z∈Z

[
h(z, ẑs,θ)− h(z, ẑs,θ

′
)
]

= sup
z∈Z

[
ℓ(z,θ)− ℓ(z,θ′)− (λ− λ′)∥z − ẑs∥2 + ρ2(λ− λ′)

]
≤ sup

z∈Z
|ℓ(z,θ)− ℓ(z,θ′)|+ sup

z∈Z
|(ρ2 − ∥z − ẑs∥22)(λ− λ′)|

For the first term, since ℓ is Lθ-Lipschitz in θ:

|ℓ(z,θ)− ℓ(z,θ′)| ≤ Lθ∥θ − θ′∥2.

For the second term, observe that ∥z − ẑs∥2 ≤ D implies

|ρ2 − ∥z − ẑs∥22| ≤ ρ2 +D2.

Thus,

|(ρ2 − ∥z − ẑs∥22)(λ− λ′)| ≤ (ρ2 +D2)|λ− λ′|.

By symmetry, the same bound holds for f(ẑs,θ
′
)− f(ẑs,θ). This concludes the proof.

F.4 Proof of Theorem 2

The proof of Theorem 2 follows directly from the results of Theorem 3, Theorem 4 and Theorem 5.

G Experiment Details

G.1 Strategic Classification

Following [40, 32], we assume that individuals have linear utilities u(θ, x̃) = −θ⊤x̃ and quadratic
costs c(x̃′, x̃) = − 1

2ϵ∥x̃
′ − x̃∥22, where ϵ is a positive constant regulating the cost of altering features

and thus the sensitivity of the distribution map. In other words, individuals aim to minimize their
assigned probability of default but are unable to change their true outcome ỹ. We select S ⊆ [P − 1]
strategic features, such as the number of open credit lines. Each time an individual manipulates their
strategic features as depicted in [40, Section 5], the best response for an individual results in the
update

x̃′
S = x̃S − ϵθS

where x̃′
S , x̃S ,θS ∈ R|S|.

Robust type-1. Consider the 1-Wasserstein ball, it follows from Theorem (1), at each time t, we
can solve the following Tikhonov regularization problem

Jθt
(θ) = inf

θ∈Θ
EP̂(θt)

[
log
(
1 + exp(−x⊤θŷ)

)]
+ ρL∥(θ, 1)∥22.
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Robust type-2. Consider the 2-Wasserstein ball, it follows from Proposition (1), at each time t, we
can solve the following problem

Jθt
(θ) = inf

λ∈R+

1

S

∑
s∈[S]

sup
α∈(−1,0)

{
αx̂⊤

s θŷs +
α2

4λ
θ⊤θ − h(α)

}
+ ρ2λ,

where h(α) = (α+ 1) log(1 + α)− α log(−α).
Next, we introduce auxiliary variables ts ∀s ∈ [S] and combine with outer minimization over θ ∈ Θ,
which yield the equivalent formulation for the right hand side of the above inequality

inf
1

S

∑
s∈[S]

ts + ρ2λ

s. t. θ ∈ Θ, λ ∈ R+, ts ∈ R ∀s ∈ [S]

sup
α∈(−1,0)

{
αx̂⊤

s θŷs +
α2

4λ
θ⊤θ − h(α)

}
≤ ts ∀s ∈ [S].

(40)

To handle the last constraints, we discretize over some finite set Sα, i.e.,

αx̂⊤
s θŷs +

α2

4λ
θ⊤θŷ2s − h(α) ≤ ts ∀α ∈ Sα ∀s ∈ [S].

For the experiment we choose Sα = {−0.9,−0.8, . . . ,−0.1}.
Proposition 1. Consider the logistic loss

ℓ(z,θ) = log
(
1 + exp(−x⊤θŷ)

)
,

with z = (x, ŷ) and θ ∈ Rd. Consider the 2-Wasserstein ball, where the ground cost c is given by
the Euclidean norm on Rd. Assume the support set X is convex and closed, then we have

Jθt(θ) = inf
λ∈R+

1

S

∑
s∈[S]

sup
α∈(−1,0)

{
αx̂⊤

s θŷs +
α2

4λ
θ⊤θ − h(α)

}
+ ρ2λ,

where h(α) = (α+ 1) log(1 + α)− α log(−α).

Proof. We follow the argument in the proof of Theorem (3). For fixed θt, we have

Jθt
(θ) = inf

λ∈R+

1

S

∑
s∈[S]

sup
z∈Z

[
ℓ(z,θ)− λ∥z − ẑs∥22 + ρ2λ

]
.

where ẑ = x̂ŷs. Note that label ŷs is fixed, we can simplify the inner supremum

sup
x∈X

[
ℓ(xŷs,θ)− λ∥x− x̂s∥22 + ρ2λ

]
Next, substitute the logistic loss

ℓ(xŷs,θ) = log
(
1 + exp(−x⊤θŷs)

)
.

Using the Fenchel conjugate dual formulation [45] of the logistic loss:

log(1 + e−u) = sup
α∈(−1,0)

{αu− h(α)}, where h(α) = (α+ 1) log(1 + α)− α log(−α),

we rewrite the inner supremum as:

sup
x∈X

log(1 + exp(−x⊤θŷs))− λ∥x− x̂s∥22

= sup
x∈X

sup
α∈(−1,0)

{
αx⊤θŷs − h(α)− λ∥x− x̂s∥22

}
= sup

α∈(−1,0)

{
sup
x∈X

(
αx⊤θŷs − λ∥x− x̂s∥22

)
− h(α)

}
.
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We now compute the inner supremum over x. For fixed α, ŷs, and θ, the expression

αx⊤θŷs − λ∥x− x̂s∥22
is a concave quadratic in x. The optimum is achieved at:

x∗ = x̂s +
α

2λ
θŷs.

Substituting x∗ back in yields:

αx̂⊤
s θŷs +

α2

4λ
θ⊤θ.

Therefore, the robust objective becomes:

Jθt(θ) = inf
λ∈R+

1

S

∑
s∈[S]

sup
α∈(−1,0)

{
αx̂⊤

s θŷs +
α2

4λ
θ⊤θ − h(α)

}
+ ρ2λ.

Alternative minimization under KL divergence ambiguity set (AMKL) Consider the Kull-
back–Leibler (KL) divergence ambiguity set. According to [58, Proposition 3.1], the distributionally
robust optimization problem under KL divergence can be reformulated as:

min
θ

inf
µ≥0

{
µ logEP̂(θt)

[(
1 + exp(−x⊤θŷ)

)1/µ]
+ µρ

}
,

where ρ > 0 is the radius of the ambiguity set. To solve this optimization problem, [58] propose an
alternating minimization approach, which we refer to as AMKL. The procedure alternates between
the following two steps:

1. θ-step: Fix the robustness parameter µ, and minimize the objective with respect to θ.
2. µ-step: Fix the model parameter θ, and minimize the objective with respect to µ.

This iterative process is repeated until convergence. In the θ-step, we apply the repeated risk
minimization algorithm, following the suggestion in [58] that this subproblem can be addressed using
any suitable performative risk minimization algorithm.

G.2 Impact of the Robust Parameter ρ

We investigate the impact of the robust parameter ρ on out-of-sample performance. Specifically, we
consider the revenue management problem described in section (4.2) under different quantities of
perishable products, q ∈ {200, 300, 500}.
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Figure 4: Out-of-sample performance as a function of the robust parameter ρ and estimated on the
basis of 100 simulations.

Figure 4 illustrates the optimal mean profit as a function of ρ, averaged over 100 independent simula-
tion runs. We observe that the out-of-sample performance improves as ρ increases up to a critical
Wasserstein radius ρ∗, beyond which it begins to deteriorate. Notably, the robust model outperforms
the non-robust counterpart over a wide range of ρ values. This pattern was consistently observed
across all simulation settings and provides an empirical justification for adopting a distributionally
robust approach.
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We present experiments on the standard strategic classification benchmark, as well as
two decision-making problems in revenue management and demand response portfolio
optimization.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theoretical results have been proven rigorously with assumptions clearly
stated.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The main algorithm and the formulations have been clearly described. The
details for experiments are included in the main text and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data is from a public dataset [25] or generated synthetically (see details in
Section 4). The code is available upon request.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental details have been discussed in the Experiments section as well
as in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide box plots for the out-of-sample performances.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computational resources are provided in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and acknowledged the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss societal impacts in the conclusion. Our framework extends the
scope of performative prediction beyond its original focus, enabling its application to a wider
range of decision-making problems. In high-stakes settings, adopting a distributionally ro-
bust optimization perspective allows our approach to prioritize safe and reliable deployment
in the presence of uncertainty and potential adversarial conditions.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No data or models are released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators of the existing dataset are properly credited in Section 4 and in
the reference [25]. We have cited the benchmark algorithms in the Experiments section.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not use LLMs for important, original, or non-standard compo-
nent of the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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