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Abstract

Recently, adversarial attacks have become an important means of gauging the
robustness of natural language models as training and testing set methodology
has proved inadequate. In this paper we explore an evaluation based on human-
in-the-loop adversarial example generation. These adversarial examples aid us
in finding the loopholes in the models and give insights into their working. In
the published work on adversarial question-answering, perturbations are made on
the questions without changing the background context on which the question is
based. In the current work, we examine the complementary idea of perturbing the
background context while keeping the question constant. We analyze the state-of-
the-art language model BERT for the task of question-answering on SQuAD dataset
using novel adversarial examples crafted by humans exposing the weaknesses of
the model. We present the typology of the successful attacks here as a baseline for
stress-testing QA systems.

1 Introduction

Recently, deep transformer architectures [Vaswani et al., 2017] have been applied to a variety of
language tasks with significant success. One of the top-performing systems is BERT, which achieved
very high accuracies on many natural language tasks [Devlin et al., 2018]. Here, we focus on reading
comprehension Question Answering with SQuAD [Rajpurkar et al., 2016], which is one of the most
difficult tasks in Natural Language Understanding.

Research in natural language processing has been headed towards leveraging these state-of-the-art
models for several domains which consist of language data, such as healthcare, robotics, databases,
etc. BERT and its derivatives [HuggingFace, 2019] have also been used widely in tasks which
incorporate both vision and language embeddings. While the performance of these systems has
generally been high as measured in the traditional training-and-testing set paradigm, it is increasingly
becoming clear that they are susceptible to a variety of problems including out-of-sample performance
and adversarial attacks. Deploying such systems even in modestly important applications like call
centers is currently unthinkable.

The goal of the current paper is to advance the state of understanding of question answering systems
like BERT through human-in-the-loop evaluation. We created a HAMLET-like user interface [Nie
et al., 2020]. On our interface, the users see some background context and a question which is
correctly answered by BERT. The users can edit the background context and re-run BERT. The goal
of the users is to change the context in a way that fools BERT while still containing the correct
answer to the same question. We conducted a user study with 15 users, who are active deep learning
practitioners, giving them examples from the SQuAD test dataset. Here is an illustrative example
(from SQuAD) showing BERT’s failure. The question here is: “How are chloroplasts similar to
mitochondria?” (corresponding image in Figure 1). With the original paragraph from SQuAD dataset,
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the model correctly predicts the ground truth. When the sentence that contains the ground truth
(henceforth called "key sentence") is split into two sentences that are placed apart, the prediction
changes to an incorrect answer. On the other hand, the question is easily and correctly answered by
humans given the adversarial paragraph. In Figure 3 we see another example of an adversarial attack
crafted by a user where all the sentences other than the key sentence are ablated.

This raises an important question: Can the model be trusted to answer correctly given the same
question but with different paragraphs which still contain the answer? We dive deeper into this
question with the study. We categorize the user-crafted adversarial paragraphs that are successful in
misdirecting model’s predictions into different types of successful attacks.

Our contributions are as follows: 1) We conduct a “human-as-an-adversary” user study, consisting
of ten different paragraphs having a mix of difficulty and complexity levels. 2) We show, via the
quantitative analysis, that users can come up with multiple adversarial examples that can break the
model and mislead it to make incorrect predictions in a very short span of time. 3) We provide
a detailed qualitative analysis of the collected adversarial samples by clustering the successful
adversarial attacks into different types. A demo of the interface we used in our study is available at
http://165.227.25.235/0.

Figure 1: Adversarial attack example: Split-Reorder attack

2 Related Work

The use of adversarial examples to find weaknesses in deep learning models has been widely studied
for a long time. Recently, there have been a number of techniques for crafting adversarial attacks on
image-based deep learning models [Goodfellow et al., 2015]. While there is limited literature for
such approaches in NLP models, there have been some studies that have exposed the vulnerabilities
of neural networks in text-based tasks like machine translations and question answering.

We draw inspiration from the work by [Jia and Liang, 2017]. In this work, two kinds of adversarial
attacks namely ADD-SENT and ADD-ANY are proposed. In ADD-SENT attack, a distractor
sentence is concatenated to the reading comprehension paragraph. In the ADD-ANY attack, a
sequence of random words regardless of grammar is concatenated to the paragraph. While our work
posed here is along similar lines, the major difference is that we propose a novel categorization of
different text attacks crafted by users in a limited span of time. We present interesting insights from
the user study we conducted for the same.

There has also been question answering focused work [Mudrakarta et al., 2018] wherein an attribution
technique called Integrated Gradients [Sundararajan et al., 2017] is employed to isolate question
words that a deep learning system uses to produce an answer. In this work, integrated gradients are
applied to attribute the model’s predictions to words in the questions. The weaknesses identified in
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the model’s logic, as exposed by the attributions, are leveraged to craft adversarial questions. Our
work is complementary to this work in that, while they perturb questions to craft targeted attacks, we
present patterns in human-generated adversarial paragraphs (instead of questions), which successfully
change model’s behaviour.

The most recent work by [Nie et al., 2020] describes a never-ending learning setting called HAMLET.
In this work, the task of Natural Language Inference is studied. A new large-scale NLI benchmark
dataset is introduced which is collected via an iterative, adversarial human-and-model-in-the-loop
procedure. We are also motivated by this work and while this work focuses on the task of Natural
Language Inference, our work is specifically focused only on the Question-answering task.

There has also been work on generating black-box adversarial examples for text classifiers using
deep reinforced models [Vijayaraghavan and Roy, 2019]. Unlike text classifiers, we focus solely
on question-answering with adversarial testing on context, without changing the question. Another
related work [Ribeiro et al., 2018] discusses rules to generate adversarial questions which are seman-
tically equivalent to the original question for the tasks of sentiment analysis, machine comprehension
and visual question-answering. The recent work on CHECKLIST [Ribeiro et al., 2020] proposes a
task-agnostic methodology for testing NLP models which shares the motivation of robust evaluation
of NLP models with our work.

3 Methodology

User Study We employed fifteen expert users having a background in deep learning including a
graduate level course or some research experience. The users were presented with a context paragraph
along with the corresponding question and its correct answer. Below that, we provided an editable
text-box where the user can input their perturbed custom paragraph. After they are done with editing
the paragraph, they can click PREDICT. When they are successful in their attempt to fool the model,
i.e. when the model predicts an incorrect answer, the user can click on SUBMIT.

Before the start of the study, users were briefly introduced to BERT and the question-answering task.
Each user tested ten different paragraphs and corresponding ten different questions. We set a timer of
four minutes for every paragraph-question. So each user study lasted for forty minutes. We randomly
collected ten different topics from the SQuAD test dataset. One paragraph from each of these topics
was taken for the study. The paragraph too was randomly selected from the list of paragraphs under
the particular topic.

Users were given the freedom to introduce both word-level and sentence-level perturbations. They
were also allowed to submit more than once if they were successful in multiple different attempts
done in the four-minute timespan. The instructions given to the users were as follows:

1. There will be given ten paragraphs with corresponding ten different questions.
2. Each paragraph-question will be given four minutes.
3. Create adversarial custom paragraphs in such a way that the model cannot predict the ground

truth while still keeping the ground truth (i.e. correct answer) inside the paragraph.
4. The button “Predict” should be used to find model’s predictions on the perturbed paragraphs

and it can be used multiple number of times.
5. When the attempt is successful, click on “Submit” to submit the successful adversarial

paragraph. Submissions can be made multiple times within the four minutes time.

If there is still time left and the user wishes to go back to previous examples for the remaining time
(of the current question), they are allowed to do so. So the total time of every user study remained a
constant forty minutes.

To ensure the meaning of the passage was indeed preserved, all the adversarial paragraphs collected
in the user study were examined by a human expert.

4 Results

All the adversarial paragraphs the users created were collected in the data file. The successful
paragraph submissions were also collected separately. Duplicate successful paragraphs and multiple
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Figure 2: An example of the interface used to query the model where a user can make edits to the
context in our question-answer setting.

Table 1: For every paragraph-question pair, % of successful attempts out of total attempts for all users

Task Index 1 2 3 4 5 6 7 8 9 10
Success Proportion 10% 51% 23% 41% 37% 32% 57% 17% 64% 43%

submissions of the same were handled by eliminating all the duplicates and keeping only one. We
analysed both the data files and present some of the interesting insights here. The findings from
this experiment are summarized into two sections as follows: quantitative analysis and qualitative
analysis.

4.1 Quantitative Analysis

We summarize our findings via two aspects. In Table 1, the first row denotes an ID number of the
paragraph-question pair. The second row represents the % of successful attacks out of the total attacks
crafted by all the fifteen users, for each corresponding paragraph-question pair.

We calculated the proportion of successful attempts of total attempts for all participants over all
paragraph-question pairs: the mean success rate was 36.2 % with a standard deviation of 13.32 (and a
variance of 177.36). Table 1 shows the exact success rates for each question answering task. Some
paragraphs were significantly harder to generate an adversarial (such as task 1 and 8), whereas other
paragraphs were successfully attacked by the majority of participants (task 7 and 9). This points to
diversity being an important aspect in the selection process of examples where evaluating models for
adversarial inputs.

4.2 Qualitative Analysis

We collected all the custom paragraphs, i.e., the adversarial paragraphs crafted by the users to
find model predictions. If the model prediction does not match the original ground truth, then the
adversarial attack is a successful attempt. If it does, then the attack is an unsuccessful attempt.
We also evaluated the successful adversarial attacks by users based on human judgements, and
confirmed that the semantics in the paragraph and the ground truth to the presented question is indeed
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preserved inside the paragraph. We found that the perturbations produced by the users affect the
model predictions significantly and are indeed novel and innovative.

We categorize and report all the successful attacks into distinct categories here. These counts of the
attacks denote the number of times it was successful, for entire user population and all ten questions
combined.

Sentence ablation attacks In this attack, the paragraph is reduced at a sentence-level keeping the
ground truth intact. For example, in Figure 3 (below), when the original paragraph is reduced to just
the most important key sentence, the correct prediction changes to an incorrect prediction, but not for
all the examples. This makes the model’s behaviour very unclear as to how much context is actually
required by the model for it to answer questions correctly. These attacks were used a total of 13 times
successfully in the entire study of ten questions with all the users.

Reordering attacks In this attack, the sentences in the paragraph are re-arranged in such a way that
the meaning of the paragraph is still preserved. However, the model is not able to predict the answer
correctly at some times, and at other times, it is. This attack was successful 15 times. So is the order
not important? This could mean that the model picks the answer tokens from the sentence which
most closely match the words of the question. For instance, this attack was used in combination with
the splitting attack in Figure 1.

Splitting key sentence attacks The key sentence (for SQuAD dataset) is the one that contains the
ground truth. If this key sentence is split into two or more sentences, the model predictions take a
hit. This type of attacks were used for a striking 24 times successfully, which is the highest number
of times for any attack type. For example, this attack was used in combination with the re-ordering
attack as shown in Figure 1.

Sentence merging attacks In this attack, the key sentence is merged along with another sentence
within the para forming a long sentence inside the paragraph. This causes a change in model
predictions as well. This attack was used for a total of 4 times successfully. For example, in Figure 2,
if the first two sentences are joined with the conjunction ".. because ..", the prediction changes.

Distractor sentence attacks A distractor sentence is a sentence which has almost all the words
from the question but does not contain the answer. When a distractor sentence is introduced in the
paragraph, the model tends to attend to the trigger words which causes inaccurate predictions. This
attack was used for a total of 19 times successfully. For example in Figure 2, concatenating the
sentence "XYZ didn’t reign over the Ottoman empire when it was at its most powerful." at the start,
gives a wrong prediction.

Figure 3: Adversarial attack example: Ablation attack
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Table 2: Attacks and the counts of their successful use

Sentence ablation 13
Reordering 15
Splitting key sentence 24
Sentence merging 4
Distractor sentence 19
Misspelling 6
Garbage concatenation 2
Paraphrasing 15
Key sentence elongation 6
Synonym replacement 10
Coreference ambiguation 4

Misspelling attacks This is one of the easiest attacks introduced by far. In this, word-level or
sentence-level misspellings can be introduced which fool the model. A special case of misspellings is
adding special characters to the key sentence within the paragraph. Appending or prepending special
characters to the ground truth inside the para also causes the model to not predict anything at all.
Misspelling attack was used for 6 times while the addition of special characters attack was used for 2
times successfully. For instance in Figure 1, if the para is changed to "....Mitochondira contain their
own DNA...", the prediction changes.

Garbage concatenation attacks Garbage, here, means a series of characters that do not make
sense. For instance, when "xxxxx" (garbage value) is added inside the key sentence, the model
predictions take a hit. This attack was used twice successfully. For example, in second paragraph-
question, if the para is changed to "...In macroscopic closed systems, xxxxxxx non-conservative forces
act to change the internal energies...", the prediction changes.

Paraphrase (or rephrase) attacks This is the most tried attack amongst all the users. It is not the
most successful attack though. When the key sentence inside the paragraph is rephrased in a different
way, model predictions change. This attack was used 15 times successfully in the user study. For
example, in Figure 1, if the original sentence is changed to "... Chloroplasts contain their own DNA,
as do mitochondria, which ...", the model gives an incorrect answer.

Key sentence elongation attacks In this attack, context-free phrases are added as suffix or prefix
or in-between the key sentence in the paragraph. Few example phrases are "In reality", "Contrary to
the popular incorrect belief", etc. This attack was used for 6 times successfully.

Synonym replacement attacks In this type of attack, the words in the key sentence which match
with the words in the question are replaced with their synonyms. They can also be replaced with the
negated antonym which will lead to the same meaning, thus preserving the semantics. This attack
was successful for 10 times. For example, replacing the sentence "his father had originally wanted.."
to "his dad had actually envisioned.." changes the model’s prediction.

Coreference ambiguation attacks In this attack, common nouns which are related to the key
nouns in the question are added in the paragraph. The key nouns and the remaining entities in the
paragraph are referenced with respect to the introduced misleading noun. This means that entity
resolution in language tasks still needs more work. This attack was successful 4 times. For example,
changing "...Water on the eastern side flowed toward the Atlantic, while to the west, water flowed
toward the Pacific..." to "...Water flowed towards the eastern and western sides. The former flowed
toward the Atlantic, while the latter flowed..." gives a wrong prediction.

Finally, based on our observations, these attacks work best when they are used in combination with
other attacks described here.
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5 Conclusions

To summarize, we put forward a novel categorization of the kinds of adversarial attacks made on
context paragraphs in question answering tasks based on a study of expert users. The study shows
that the human adversaries are fairly successful in generating a variety of adversarial examples. Our
research provides an alternative method to evaluate and stress-test language models in the question
answering task. In our future work, we will conduct the user study with non-expert users. Future
work will also investigate how to address the weaknesses of the language models through robust
training methods and alternative architectures. Our demo is publicly available on this webpage:
http://165.227.25.235/0.

Broader Impact

Our findings from the experiment suggest that more caution is warranted in evaluating the language
models and in trusting the results based on static datasets. Our research points toward a human-
adversarial evaluation of QA systems which is critical before any deployment of such systems in
critical real world applications.
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