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Figure 1: Generation results of the TerraGen model and composition of the TerraGen dataset. The
main visuals display high-fidelity remote sensing images synthesized by our TerraGen model from
given layout conditions. The pie chart in the top-right corner illustrates the five-task distribution of
our purpose-built TerraGen dataset.

ABSTRACT

Remote sensing vision tasks require extensive labeled data across multiple, inter-
connected domains. However, current generative data augmentation frameworks
are task-isolated, i.e., each vision task requires training an independent gener-
ative model, and ignores the modeling of geographical information and spatial
constraints. To address these issues, we propose TerraGen, a unified layout-to-
image generation framework that enables flexible, spatially controllable synthe-
sis of remote sensing imagery for various high-level vision tasks, e.g., detection,
segmentation, and extraction. Specifically, TerraGen introduces a geographic-
spatial layout encoder that unifies bounding box and segmentation mask inputs,
combined with a multi-scale injection scheme and mask-weighted loss to explic-
itly encode spatial constraints, from global structures to fine details. Also, we
construct the first large-scale multi-task remote sensing layout generation dataset
containing 45k images and establish a standardized evaluation protocol for this
task. Experimental results show that our TerraGen can achieve the best genera-
tion image quality across diverse tasks. Additionally, TerraGen can be used as a
universal data-augmentation generator, enhancing downstream task performance
significantly and demonstrating robust cross-task generalisation in both full-data
and few-shot scenarios.
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1 INTRODUCTION

Deep learning has revolutionized computer vision, yet its success is fundamentally predicated upon
large-scale annotated datasets. This reliance poses a significant bottleneck in remote sensing, where
data acquisition is costly and annotation demands specialized expertise across diverse tasks like ob-
ject detection, segmentation, and change detection. Remote sensing tasks exhibit strong spatial and
semantic correlations, sharing common geographic layouts. However, current research paradigms
are hampered by redundant annotation and isolated task pipelines. A single scene often requires
distinct labels for each task (e.g., bounding boxes and masks), while data augmentation techniques
seldom exploit inter-task consistency.

The advent of controllable generative models, such as GLIGEN (Li et al., 2023) and InstanceD-
iffusion (Wang et al., 2024), has established powerful paradigms for image synthesis conditioned
on text and layout. While effective for natural images, their application in remote sensing remains
confined to single-task or single-condition generation, thus lacking flexible multimodal control and
cross-task adaptability.

More critically, remote sensing generative models (Zhang et al., 2024b; Zang et al., 2025; Toker
et al., 2024; Tang et al., 2025) lack standardized evaluation benchmarks. Existing approaches are
typically designed for specific tasks without unified multi-task evaluation frameworks, hindering
both technical progress and practical adoption. This limitation is compounded by the unique ge-
ographic constraints in remote sensing imagery—such as road network connectivity, building ar-
rangement patterns, and spatial relationships between land cover types—that are poorly captured by
general-purpose generation methods.

The central premise of this paper is that the challenge of task isolation can be overcome by identify-
ing a universal medium. We argue that spatial layout information serves as this universal representa-
tion, bridging different remote sensing vision tasks, while multimodal conditional control enhances
generation flexibility and precision. This premise is built on three key observations: First, spatial
representations across tasks (bounding boxes in detection, pixel masks in segmentation, contours
in instance segmentation) fundamentally describe the same geographic object distribution patterns
with shared geometric and semantic foundations. Second, geographic object layouts follow specific
spatial rules that can be effectively encoded through structured representations. Third, textual de-
scriptions provide semantic details that complement layout conditions, enabling more precise and
diverse generation control, as shown in Figure 1.

Based on these insights, we introduce TerraGen (from the Latin ’Terra’ for Earth), a multi-
conditional generation framework for remote sensing imagery. Our contributions are threefold:

• We construct the first large-scale multi-task remote sensing layout generation dataset and
establish standardized evaluation protocols, addressing the critical lack of unified bench-
marks in this field.

• We propose a unified multi-conditional layout generation framework (TerraGen) that in-
tegrates spatial layout information (bounding boxes, segmentation masks) with semantic
textual information through geographic spatial-aware conditional encoding mechanisms,
achieving fine-grained generation control of complex remote sensing scenes.

• Our TerraGen can serve as a universal data-augmentation engine, markedly boosting
downstream-task accuracy and exhibiting strong generalisation across tasks under both
full-data and few-shot scenarios.

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION

Text-to-image generation has evolved from GAN-based models (Reed et al., 2016) to diffusion mod-
els (Ramesh et al., 2021; 2022; Saharia et al., 2022; Nichol et al., 2021), offering improved stability
and visual quality. Recent methods (Radford et al., 2021; Podell et al., 2023; Esser et al., 2024; Labs
et al., 2025) adopt Multimodal Diffusion Transformers (MM-DiT), treating text as an independent
modality and enhancing synthesis via multimodal attention. However, they underperform on remote
sensing data due to its unique structures and patterns (Tang et al., 2024).

2
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2.2 LAYOUT-TO-IMAGE GENERATION

Layout-to-image generation extends synthesis by introducing fine-grained spatial control, typically
through structured inputs like bounding boxes or segmentation masks. In the natural image domain,
models like GLIGEN (Li et al., 2023) and LayoutDiffusion (Zheng et al., 2023) achieve impressive
results by injecting spatial guidance into the cross-attention layers of pre-trained diffusion models.
Recent MM-DiT-based extensions (Zhang et al., 2024a; 2025b;a) further advance this by integrating
layout as another input modality, demonstrating strong layout fidelity. Nonetheless, these methods
often rely on massive, web-scale datasets (e.g., COCO, LVIS) and still struggle with pixel-level
precision for complex, overlapping instances.

In the remote sensing domain, layout-conditioned generation is an emerging but critical area. Early
methods like CC-Diff (Zhang et al., 2024b) and AeroGen (Tang et al., 2025) have focused on bound-
ing box-guided generation for object detection, while others like SatSynth (Toker et al., 2024) have
explored mask-guided synthesis for segmentation. Despite their progress, these approaches are of-
ten task-specific and tend to overlook crucial domain-specific constraints. For instance, they may
generate objects that are spatially plausible in isolation but violate geographic rules, such as discon-
nected road networks, randomly oriented buildings, or illogical land-use adjacencies. Our frame-
work moves beyond this by proposing a unified model that handles multiple layout types and is
aware of these geospatial relationships.

2.3 GENERATIVE AUGMENTATION IN REMOTE SENSING

The high cost of expert annotation and the inherent long-tail distribution of objects in remote sensing
have motivated the use of generative models for data augmentation. Unlike traditional augmenta-
tion (e.g., rotation, scaling), diffusion-based methods can create novel, diverse, and highly realistic
image-label pairs. Early successes like DiffuSat (Khanna et al., 2023) and CRS-Diff (Tang et al.,
2024) demonstrated the potential of conditional generation to boost the performance of downstream
segmentation models. SatSynth (Toker et al., 2024) further validated this approach for both segmen-
tation and detection tasks.

However, a significant limitation of existing work is its fragmented, task-specific nature. Current
pipelines require training separate generative models for detection, segmentation, or other tasks,
creating data silos and preventing knowledge transfer. This is inefficient and fails to exploit the rich,
shared information across different annotation types. For example, bounding box layouts contain
valuable semantic and location information that could regularize and improve a segmentation model.
Our work addresses this gap by designing an end-to-end pipeline that not only performs single-task
augmentation but also facilitates cross-task knowledge transfer, realizing an ”annotate once, benefit
multiple tasks” paradigm that is essential for scalable, real-world remote-sensing systems.

3 TERRAGEN

3.1 PROBLEM FORMULATION

Remote sensing image generation requires addressing multiple heterogeneous conditions simultane-
ously, where each generated image must satisfy spatial layout constraints, semantic category infor-
mation, and geographic contextual descriptions. The fundamental challenge lies in accurately inte-
grating these diverse user-specified conditions—each representing distinct aspects of remote sensing
analysis requirements—into geographically consistent and visually realistic images. Current diffu-
sion models in remote sensing primarily focus on single-task scenarios, lacking unified frameworks
that can capture geographic relationships across multiple vision tasks. We formally define the multi-
task layout-conditioned remote sensing image generation as:

Ig = f(T ,L,D), (1)

where Ig represents the generated remote sensing image, T specifies the target task type from our
supported task set {T0, T1, T2, T3, T4} corresponding to object detection, semantic segmentation,
building extraction, Road Extraction mapping, and flood detection respectively. The layout con-
dition L provides spatial constraints, while the textual description D offers semantic context. The
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Figure 2: An overview of the TerraGen architecture. TerraGen utilizes a multi-conditional genera-
tion framework that integrates geographic-spatial layout encoding with multi-scale injection mech-
anisms. The system processes task specifications, textual descriptions, and spatial layouts through
mask-cross-attention blocks and injects layout guidance at multiple U-Net resolution levels to en-
sure both global layout consistency and fine-grained spatial accuracy in RS image generation.

layout condition L comprises n geographic entities, where each entity is characterized by a compre-
hensive tuple containing semantic, spatial, and attribute information:

L = {li = (ci, si)}ni=1, (2)

Here, ci denotes the semantic category (e.g., building, road, water body), and si represents the spatial
representation, which can be either bounding boxes bi for detection tasks or binary masks mi for
segmentation tasks. This design enables our framework to capture the complex spatial relationships
inherent in remote sensing imagery.

To enable effective cross-task knowledge transfer, we establish a unified layout representation that
bridges different task types through a task-adaptive transformation function:

Lunified = J (T Ltask). (3)

The transformation function J (·) converts task-specific annotations—bounding boxes B = {bi}ni=1
for object detection T0 and pixel masks M = {mi}ni=1 for segmentation tasks T1−4—into a stan-
dardized layout representation while preserving essential spatial and semantic information.

3.2 MULTI-TASK UNIFIED ARCHITECTURE

Building upon large-scale diffusion models, TerraGen introduces a multi-conditional generation
framework specifically designed for remote sensing applications. Our unified architecture effec-
tively handles heterogeneous layout conditions while maintaining robust cross-task compatibility
across diverse generation scenarios. An overview of the TerraGen architecture is shown in Figure 2,
illustrating the integration of geographic-spatial layout encoding and multi-scale injection mecha-
nisms that enable seamless task-specific generation.

To capture the unique characteristics of remote sensing imagery and achieve precise pixel-level lay-
out guidance, we design an Instance-Spatial Layout Encoder that jointly processes multiple layout
modalities through a unified embedding space:

Egeo = ψ(ϕb(B), ϕm(M)), (4)

where the fusion function ψ(·) integrates complementary spatial representations from the bounding
box encoder ϕb(B) and mask encoder ϕm(M). Here, B = {bi}ni=1 represents the collection of
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bounding boxes defining coarse spatial regions, and M = {mi}ni=1 represents the collection of
masks providing fine-grained pixel-level constraints.

The core innovation of TerraGen lies in its multi-conditional layout control mechanism that enables
seamless layout-to-image generation across various remote sensing tasks. To enable task-specific
generation while maintaining our unified architecture, we introduce adaptive task conditioning mod-
ules that dynamically adjust the generation process:

ct = θ(T )⊕ δ(hl, T ). (5)
The task encoder θ(·) processes task specifications T to generate task-aware embeddings, while the
task adapter δ(·) modulates layout features hl = {hl

i}ni=1 according to specific task requirements,
ensuring optimal generation quality across different remote sensing scenarios.

3.3 MULTI-SCALE LAYOUT INJECTION

Inspired by adapters like IP-Adapter (Ye et al., 2023) and ControlNet (Zhang et al., 2023), we inject
layout conditions to guide generation. However, conventional methods suffer from progressive detail
loss during downsampling, a critical flaw for pixel-level remote sensing tasks. To address this, we
propose a multi-scale injection strategy that preserves fine-grained spatial information. Our strategy
extends spatial attention with a hierarchical mechanism operating across multiple resolutions

Attn(Q,K,V) =

K∑
k=1

αk · Softmax
(
QKT ⊙M(k)

√
d

)
V, (6)

where the learnable weights αk dynamically balance contributions across different scales, and M(k)

represents the attention mask at scale k that enforces spatial constraints at the corresponding resolu-
tion level. Building upon this hierarchical attention mechanism, we inject resolution-specific layout
features into each attention block of the U-Net architecture. This multi-scale injection ensures that
layout guidance is maintained at every resolution level:

foutℓ = f inℓ + ζ(f inℓ ,h(ℓ),Mℓ), (7)
where ℓ denotes the scale level determining the feature resolution, the cross-attention operation ζ(·)
facilitates seamless feature integration between layout conditions and image features, h(ℓ) provides
scale-specific layout guidance extracted from our Instance-Spatial Layout Encoder, and Mℓ serves
as the attention mask that controls spatial focus at the corresponding scale level.

This multi-scale injection mechanism enables our framework to maintain both global layout con-
sistency and local detail accuracy, addressing the fundamental limitation of existing methods in
pixel-level remote sensing image generation.

3.4 TRAINING AND INFERENCE STRATEGY

To provide enhanced layout-guided information injection in the training process, we introduce an
adaptive mask-weighted mechanism that dynamically adjusts loss computation:

Ltotal = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t, c)∥2 ⊙Wadapt

]
. (8)

The adaptive weight matrix Wadapt is computed based on both explicit layout constraints and
learned attention distributions:

Wadapt = β ·Mlayout + (1− β) · Norm

(
n∑

i=1

Ai

)
, (9)

where attention maps Ai for layout entity i are aggregated and normalized, while parameter β con-
trols the balance between explicit mask constraints Mlayout and learned attention patterns. During
training, we empirically set β = 0.5 to achieve optimal balance.

During the inference phase, we apply a unified Classifier-Free Guidance (CFG) to all input condi-
tions, treating non-target tasks as negative samples to achieve precise and effective generation:

ϵ = ϵθ(xt, t, ∅) + s · (ϵθ(xt, t, ct)− ϵθ(xt, t, cnon)), (10)
where s is the guidance scale, ct represents target task conditions, and cnon denotes non-target task
conditions used as negative guidance.

5
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4 DATASET AND BENCHMARK

To address the lack of unified multi-task datasets for remote sensing image generation, we construct
the first dataset that supports layout-conditioned generation across five representative vision tasks:
object detection, semantic segmentation, building extraction, road extraction, and flood mapping. It
provides a foundation for multi-task learning and cross-task generalization.

4.1 DATASET CONSTRUCTION

Figure 3: Word cloud of semantic categories cov-
ered in our dataset.

We follow a multi-stage pipeline to ensure an-
notation quality and task consistency. High-
resolution remote sensing images are collected
from public sources (Shirshmall, 2023; Wang
et al., 2021; Xia et al., 2023; Li et al., 2025;
2020; Maggiori et al., 2017; Ji et al., 2018;
Gupta et al., 2019; Zhu et al., 2021; Demir
et al., 2018; Mnih, 2013b). Annotations for
five tasks are integrated from 12 datasets, and
layout-controllable text prompts are automat-
ically generated using the multi-modal model
Qwen-VL (Bai et al., 2025).

To enhance reliability, we adopt automatic con-
sistency checks for detecting annotation issues such as overlapping boxes, broken road segments,
and semantic conflicts. The final dataset contains 45k high-quality samples with either single-task or
multi-task annotations. A word cloud in Figure 3 illustrates the rich and diverse semantic categories.
Further details on our dataset construction are provided in Appendix D.1.

4.2 EVALUATION BENCHMARK

To establish standardized evaluation protocols for remote sensing layout generation, we constructed
a comprehensive benchmark dataset specifically designed for assessing generation quality and down-
stream task effectiveness. Our benchmark consists of 1k carefully selected high-quality images that
represent the full spectrum of challenges in remote sensing layout generation, ensuring visual com-
plexity and geographic diversity while avoiding dense, small-scale, and low-quality samples.

Each benchmark image is associated with multiple evaluation scenarios, as a single image may cor-
respond to generation quality assessment across different downstream tasks. To address the unique
challenges of evaluating remote sensing layout generation, we introduce specialized metrics tailored
for spatial accuracy and semantic consistency. These metrics encompass both pixel-level fidelity and
structural coherence assessments. Detailed metric calculations are provided in the Appendix D.2.

RS Image Quality (RS-IQ): We calculate FID scores using an InceptionV3 network (Szegedy et al.,
2016) fine-tuned on remote sensing datasets to better capture domain-specific characteristics.

Content Fidelity: We employ CLIP-T (Radford et al., 2021) to measure semantic consistency be-
tween generated images and global descriptions, and DINO-I (Zhang et al., 2022) to evaluate visual
feature alignment.

Layout Consistency: We evaluate generated images using YOLOv8 (Jocher et al., 2023) -based
models trained on remote sensing data, reporting mAP and AP50 for object detection tasks, and Acc
and mIoU for segmentation tasks.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

For model training, we adopt a two-stage configuration to ensure optimal performance and con-
vergence. In the first stage, we train the UNet (Ronneberger et al., 2015) network with additional
constraints on the diffusion process to improve the LDM (Rombach et al., 2022) -based genera-

6
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tion capability, using a learning rate of 1e-4 with AdamW (Loshchilov, 2017) optimizer for 100k
steps with batch size of 8. We employ cosine annealing scheduling to gradually reduce the learning
rate throughout training. The second stage introduces an adaptive mask-weighted loss function to
enhance layout consistency and spatial accuracy, incorporating attention mechanisms to better pre-
serve structural details and geometric relationships in the generated outputs. Further implementation
details and ablation studies are provided in the Appendix.

5.2 IMAGE QUALITY RESULTS

We compare TerraGen against both remote sensing-specific conditional generation methods and
state-of-the-art natural image generation approaches. Our comparison includes remote sensing do-
main methods: CRS-Diff (Tang et al., 2024), SatSynth (Toker et al., 2024), AeroGen (Tang et al.,
2025), and CC-Diff (Zhang et al., 2024b), as well as natural image generation advances: GLIGEN
(Li et al., 2023), Uni-ControlNet (Zhao et al., 2023), ControlNet, and InstanceDiffusion (Wang
et al., 2024). Due to architectural constraints and fine-tuning methodologies, we did not include DiT
model (Peebles & Xie, 2023) comparisons in this evaluation.

Table 1 demonstrates TerraGen’s superior performance across all evaluation metrics. Our method
achieves state-of-the-art results in generation quality, Content Fidelity, and layout accuracy, es-
tablishing the effectiveness of our framework in generating geographically plausible and layout-
consistent remote sensing imagery.

Figure 4 presents visual comparison results under various conditional settings. As a multi-modal
controllable generation model, TerraGen demonstrates superior performance in both layout consis-
tency and semantic alignment compared to baseline methods. For object detection tasks, our method
enables precise generation of small objects such as vehicles while maintaining excellent background
compatibility. For semantic segmentation tasks, TerraGen achieves better road generation quality
and demonstrates fine-grained control over multiple conditions simultaneously.

Method Task RS-IQ Content Fidelity Mask BBox

FID↓ CLIP-T↑ DINO-I↑ mIoU↑ Acc↑ AP50↑ mAP↑
Upper Bound (real img) – – 30.8 – 68.6 83.5 59.5 42.9
GLIGEN (Li et al., 2023) OD 42.5 24.8 53.4 – – 48.7 33.1
CC-Diff (Zhang et al., 2024b) OD 41.8 25.9 58.2 – – 48.4 34.8
AeroGen (Tang et al., 2025) OD 43.7 24.5 59.2 – – 50.9 34.7

SatSynth (Toker et al., 2024) Seg 49.6 21.1 48.9 38.2 58.1 – –
CRS-Diff (Tang et al., 2024) Seg 36.3 27.7 61.3 42.6 62.8 – –
Uni-ControlNet (Zhao et al., 2023) Seg 37.2 26.8 64.2 46.5 65.9 – –

InstanceDiffusion (Wang et al., 2024) Uni 40.1 25.5 62.1 41.8 61.3 51.2 35.8
TerraGen (Ours) Uni 34.6 29.6 64.7 50.8 69.6 52.5 37.1

Table 1: Generation Quality and Consistency Comparison

5.3 DOWNSTREAM TASK ENHANCEMENT

To validate TerraGen’s efficacy as a data enhancement tool, we designed three distinct experimental
scenarios evaluating its performance from in-domain application to challenging data-scarce and gen-
eralization settings. In each scenario, we started with a baseline model trained on an initial dataset
and then measured performance gains after enhancing the training data with synthetic images gen-
erated by TerraGen. For a detailed breakdown of the models, datasets, and training configurations
used in these experiments, please see Appendix E.

In-Domain Data Augmentation. This experiment tested the core capability of TerraGen to im-
prove performance when the data distribution is consistent. The baseline models were trained and
tested on splits from our proposed dataset. The training set was then enhanced by adding synthetic
data generated by TerraGen using the original layouts from this same dataset. As shown in Table 2,
progressively adding synthetic data (from 1x to 4x the baseline quantity) yielded consistent and sig-
nificant performance gains across all tasks and models. For instance, SegFormer’s IoU in semantic
segmentation improved by a relative 20.8%, demonstrating the direct benefit of same-distribution
data enhancement.

7
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Label SatSynth Uni-ControlNetCRS-Diff
Instance
Diffusion Ours

Label GliGen AeroGenCC-Diff

baseballfield

road

flood

mask

building

bbox

Figure 4: Qualitative comparison for mask-to-image (top four rows) and bbox-to-image (bottom
row) generation by various methods.

Task Object Detection Semantic Segmentation Building Extraction Road Extraction Flood Detection

Model F-RCNN O-RCNN SegFormer U-Net SegFormer U-Net SegFormer U-Net SegFormer U-Net

Metric mAP↑ AP50↑ mAP↑ AP50↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑
0x 24.5 46.9 35.0 55.5 41.8 58.9 44.9 62.0 49.3 93.7 53.5 94.6 32.2 95.2 40.2 95.5 66.8 86.9 66.9 86.3
1x 26.2 49.5 35.1 57.2 47.3 64.2 46.1 63.1 52.7 94.5 54.9 95.0 33.8 95.2 48.1 96.4 69.1 87.7 66.3 86.0
2x 26.5 49.9 35.4 57.0 49.0 65.8 47.9 64.7 54.7 94.8 56.9 95.3 38.0 95.6 48.7 96.5 68.9 87.3 67.0 86.4
3x 27.4 51.1 35.8 57.6 50.5 67.1 47.2 64.1 55.0 94.9 56.9 95.4 38.6 95.7 49.0 96.5 69.3 87.5 67.5 86.5
4x 28.4 51.3 35.9 57.4 50.5 67.1 48.5 65.4 56.1 95.1 58.3 95.6 39.6 95.8 49.0 96.6 69.3 87.7 68.1 87.0

vs. Baseline +15.9% +9.4% +2.6% +3.8% +20.8% +13.9% +8.0% +5.5% +13.8% +1.5% +9.0% +1.1% +23.0% +0.6% +21.9% +1.2% +3.7% +0.9% +1.8% +0.8%

Table 2: Performance Gains from In-Domain Data Enhancement

Few-Shot Generalization. This experiment simulated data-scarce scenarios to evaluate TerraGen’s
ability to generate valuable training data when original samples are extremely limited. The baseline
models were trained and tested on small, publicly available datasets (100 training samples each),
completely separate from our proposed dataset. The training set was then enhanced with synthetic
data generated by TerraGen. Table 3 shows that enhancing these small datasets with synthetic sam-
ples led to substantial performance improvements across all tasks, highlighting TerraGen’s effec-
tiveness in low-data regimes.

Enhancement with Transformed Layouts. This experiment assesses TerraGen’s robustness by
testing its ability to generate effective data from geometrically transformed layouts. While the base-
line setup mirrored the in-domain experiment, the enhancement data was generated using layouts
altered by various geometric transformations (e.g., rotation, flipping), detailed in Appendix E. The
results in Table 4 confirm the efficacy of this approach, with performance gains across nearly all
metrics. This is crucial, demonstrating that TerraGen robustly interprets and renders diverse spatial
conditions rather than merely memorizing static layouts.
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Task Object Detection Semantic Segmentation Building Extraction Road Extraction Flood Detection

Dataset NWPU VHR-10 DroneDeploy Mass. Buildings RoadNet FloodNet

Model F-RCNN O-RCNN SegFormer U-Net SegFormer U-Net SegFormer U-Net SegFormer U-Net

Metric mAP↑ AP50↑ mAP↑ AP50↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑
0x 29.8 66.6 45.7 77.4 43.7 60.8 57.9 73.3 27.4 88.1 33.9 88.4 67.5 94.5 79.8 96.7 51.0 69.5 51.6 74.1
1x 30.4 67.2 46.9 80.9 53.5 69.7 59.0 74.2 27.5 88.2 35.7 90.4 69.7 95.2 83.0 97.3 51.3 71.1 52.6 70.5
2x 31.1 69.8 48.1 81.9 60.4 75.3 61.0 75.8 29.2 89.1 36.7 90.7 71.0 95.2 83.2 97.4 52.2 70.6 53.4 72.9
3x 34.7 71.3 48.0 84.0 59.9 74.9 61.2 75.9 30.8 89.5 37.3 91.0 72.4 95.3 83.2 97.3 52.8 73.2 53.3 72.8

vs. Baseline +16.4% +7.1% +5.3% +8.5% +38.2% +23.8% +5.7% +3.5% +12.4% +1.6% +10.0% +2.9% +7.3% +0.8% +4.3% +0.7% +3.5% +5.3% +3.5% -1.6%

Table 3: Generalization Performance in Few-Shot Settings

Task Object Detection Semantic Segmentation Building Extraction Road Extraction Flood Detection

Model F-RCNN O-RCNN SegFormer U-Net SegFormer U-Net SegFormer U-Net SegFormer U-Net

Metric mAP↑ AP50↑ mAP↑ AP50↑ mIoU↑ Acc↑ mIoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑ IoU↑ Acc↑
Baseline 32.8 57.4 42.0 63.6 54.2 70.3 51.7 68.2 66.9 96.4 66.7 96.4 51.9 96.6 58.0 97.1 69.5 87.9 68.5 87.4

+TerraGen 34.0 57.6 42.6 64.5 54.3 70.4 52.5 68.9 68.2 96.7 68.0 96.6 53.4 96.7 58.2 97.2 69.7 88.0 68.6 87.5

Table 4: Enhancement with Transformed Layouts

5.4 ABLATION STUDIES

Layout Control MSL MALoss FID↓ CLIP-T↑ mIoU↑
box mask

✓ ✗ half ✗ 38.7 28.2 45.3
✗ ✓ half ✗ 37.1 28.1 47.8
✓ ✓ half ✗ 35.2 28.4 49.2

✓ ✓ full ✗ 35.4 28.3 49.1
✓ ✓ full ✓ 34.9 29.4 50.5

✓ ✓ half ✓ 34.6 29.6 50.8

Table 5: Ablation Study: Effect of Layout Control, Multi-
Scale Layout (MSL), and Mask-weighted Loss (MALoss).

We conducted ablation studies to
evaluate the impact of layout con-
trol, multi-scale injection, and mask-
weighted loss on our model’s per-
formance. As shown in Table 5,
combining both bounding boxes and
masks consistently outperforms us-
ing either modality alone, improving
the Fréchet Inception Distance (FID)
from 38.7 to 34.6 and the mean Inter-
section over Union (mIoU) from 45.3
to 50.8. The half-scale multi-scale in-
jection strategy offered a good bal-
ance between precision and computa-
tional efficiency, while the mask-weighted loss further boosted all metrics, achieving the best overall
performance. These results confirm the effectiveness of each component in enhancing the quality,
spatial accuracy, and consistency of layout-guided remote sensing image generation.

6 CONCLUSION

In this work, we introduce TerraGen, a unified multi-task layout-to-image generation framework
designed to overcome the critical challenges of task isolation and the absence of geographic con-
straints in remote sensing. Our approach features a novel geographic-spatial layout encoder that
seamlessly integrates diverse spatial conditions (bounding boxes, masks) with textual descriptions,
coupled with a multi-scale injection strategy for precise, controllable synthesis of spatially coherent
imagery. To validate our method, we also contribute the first large-scale, multi-task remote sensing
layout dataset and establish unified evaluation benchmarks. Extensive experiments demonstrate that
our proposed TerraGen can achieve state-of-the-art results across various tasks, including object de-
tection, segmentation, and flood mapping, while proving highly effective for data augmentation in
both full-data and few-shot scenarios. Most notably, our framework validates the central premise
that spatial layouts can serve as a universal medium to bridge previously isolated remote sensing
tasks. We empirically demonstrate that this cross-task knowledge transfer is highly effective, as lay-
outs from detection can be directly utilized to significantly enhance the performance of segmentation
models, and vice versa.
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A STATEMENT ON LLM USAGE

We utilized Large Language Models (LLMs), specifically Google’s Gemini Pro and OpenAI’s Chat-
GPT, as assistants for writing and code generation during the preparation of this manuscript. Their
roles included improving grammar and clarity, formatting LaTeX tables, and structuring paragraphs
based on key points provided by the authors. The core scientific contributions, including all ideas,
experiments, and analyses, are exclusively the work of the human authors, who take full responsi-
bility for the final content.

B LIMITATIONS

While TerraGen marks a significant step forward in unified multi-task layout generation for remote
sensing, certain limitations and avenues for future work exist. For instance, in object detection data
synthesis, its generation quality noticeably degrades when object density becomes excessively high,
for example, exceeding 20 instances in a single image. In tasks based on segmentation masks, the
internal resizing to a fixed lower dimension, such as 64x64, can reduce quality for large objects
or those requiring exceptionally fine-grained details. Furthermore, despite breaking task isolation
and generalizing well within trained categories, TerraGen’s semantic understanding is currently rel-
atively closed-set, limiting its capacity for open-domain generation of novel or out-of-distribution
objects.

C TERRAGEN IMPLEMENTATION DETAILS

This section provides detailed implementation specifications for the TerraGen framework, including
architectural configurations, training procedures, and inference settings.

C.1 MODEL ARCHITECTURE

TerraGen builds upon Stable Diffusion v1.5 with a UNet backbone consisting of 4 downsampling
and 4 upsampling blocks. The model operates on 512×512 resolution images in the latent space
using a pre-trained VAE encoder/decoder with 8× compression ratio. The layout encoder consists of
two parallel branches. The Bounding Box Encoder ϕb employs a 2-layer MLP that processes normal-
ized box coordinates (x1, y1, x2, y2) and category embeddings to produce 768-dimensional feature
vectors. The Mask Encoder ϕm utilizes a lightweight CNN with 4 convolutional layers, progress-
ing through channels 1→32→64→128→768, followed by adaptive average pooling to generate
768-dimensional mask features. The fusion function ψ employs cross-attention mechanisms with 8
heads and 96-dimensional keys/queries. The final geographic embedding Egeo has dimensionality
768 to match the UNet feature channels. Layout features are injected at three resolution levels of
the UNet to capture different spatial granularities. High resolution (64×64) captures fine-grained
spatial details, medium resolution (32×32) handles mid-level structures, and low resolution (16×16)
ensures global layout consistency. At each level ℓ, we use specialized cross-attention blocks with
learnable scale weights αℓ initialized to 0.1, 0.3, and 0.6 for high, medium, and low resolutions
respectively.

C.2 TRAINING CONFIGURATION

Our training follows a carefully designed two-stage approach. In Stage 1 (Layout-Free Pre-training),
we train the base UNet for text-to-image generation without layout constraints for 50k steps using
learning rate 1e-4. Stage 2 (Layout-Guided Fine-tuning) introduces layout encoders and multi-scale
injection with adaptive mask-weighted loss for 100k steps using learning rate 5e-5. We employ the
AdamW optimizer with β1 = 0.9, β2 = 0.999, and weight decay 1e-2. The learning rate follows
a cosine annealing schedule with warm-up for 1000 steps. Training uses batch size 8 with gradient
accumulation to achieve an effective batch size of 32.
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C.3 INFERENCE CONFIGURATION

During inference, we use the DDIM scheduler with 50 sampling steps for optimal quality-speed
trade-off. The guidance scale is set to s = 5.5 for standard generation and s = 3.0 for enhanced lay-
out control scenarios. Classifier-Free Guidance is applied to all conditions, with 10% unconditional
dropout during training to enable this capability. We use fixed seeds for reproducible evaluation and
random seeds for data augmentation purposes. For different task types T , we apply adaptive con-
ditioning strategies. Object Detection tasks emphasize bounding box constraints with αbox = 0.8,
while Segmentation Tasks prioritize mask consistency with αmask = 0.9. Multi-Modal scenarios
employ balanced attention with αbox = αmask = 0.6.

Figure 5: TerraGen Generation Showcase: Images synthesized from conditional layouts.

D DATASET CONSTRUCTION AND EVALUATION BENCHMARK

D.1 DATASET CONSTRUCTION

To support unified layout generation, we constructed a multi-task dataset by integrating high-
resolution imagery from 12 public benchmarks (Shirshmall, 2023; Wang et al., 2021; Xia et al.,
2023; Li et al., 2025; 2020; Maggiori et al., 2017; Ji et al., 2018; Gupta et al., 2019; Zhu et al., 2021;
Demir et al., 2018; Mnih, 2013b).
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Semantic Seg. Object Detection
agriculture Expressway-Service-area
background Expressway-toll-station
barren airplane
building airport
forest baseballfield
grassland basketballcourt
road bridge
water chimney
woodland dam
unknown golffield

groundtrackfield
harbor
overpass
ship
stadium
storagetank
tenniscourt
trainstation
vehicle
windmill

Table 6: Categories for multi-class tasks in Terra-
Gen.

The dataset consolidates five remote sensing
tasks—Semantic Segmentation, Object Detec-
tion, Building Extraction, Flood Detection,
and Road Extraction—totaling approximately
44,887 samples with 96,549 annotations across
31 categories. For controllable generation, we
used Qwen-VL (Bai et al., 2025) to automat-
ically generate text prompts for each sample.
To ensure data quality, we performed automatic
consistency checks to detect annotation issues
like overlapping bounding boxes and broken
road segments. The dataset was further refined
by removing samples with overly complex an-
notations or poor image quality and filtering
based on CLIP scores (Radford et al., 2021).
This process provides a solid foundation for
downstream applications. Categories for multi-
class tasks are listed in Table 6, and aggregated
statistics are in Table 7. In Semantic Segmenta-
tion, the unknown class is retained to improve
control over unlabeled masks. The other three tasks are single-category: building, flood, and road.

Task Source Dataset # Samples # Annotations

Semantic Segmentation
LoveDA (Wang et al., 2021) (23.3%)

10,846 35,797OpenEarthMap (Xia et al., 2023) (27.7%)
ReasonSeg (Li et al., 2025) (49.0%)

Object Detection DIOR (Li et al., 2020) (100.0%) 5,860 32,571

Building Extraction

Inria (Maggiori et al., 2017) (25.6%)

16,327 16,327WHU Aerial (Ji et al., 2018) (26.4%)
WHU SatII (Ji et al., 2018) (23.9%)
xBD (Gupta et al., 2019) (24.1%)

Flood Detection WBS-SI (Shirshmall, 2023) (100.0%) 2,172 2,172

Road Extraction
CHN6-CUG (Zhu et al., 2021) (24.3%)

9,682 9,682DeepGlobe (Demir et al., 2018) (64.3%)
Massachusetts (Mnih, 2013b) (11.4%)

Table 7: Composition of the TerraGen dataset. Percentages in parentheses indicate the proportion of
samples from each source dataset.

D.2 EVALUATION BENCHMARK

To rigorously evaluate the performance of layout generation models, we curated a benchmark test
set of 1,000 samples, which is independent of the training set. These samples are sourced from
the same public datasets to ensure consistent data distribution but with no overlap. The test set is
composed of 400 samples for object detection, 200 for flood detection, and another 400 versatile
samples designated for multi-class semantic segmentation, building extraction, and road extraction
tasks. This composition guarantees comprehensive coverage of all tasks and semantic categories
defined in TerraGen.

Below, we detail the calculation methods and specific experimental settings for our proposed evalu-
ation metrics. All experiments were conducted on NVIDIA GeForce RTX 4090 GPUs.

RS Image Quality (RS-IQ): The Fréchet Inception Distance (FID) measures the similarity between
the distribution of generated images and real images. It is calculated by fitting multivariate Gaussian
distributions to the feature representations extracted by a feature network:

FID = ||µr − µg||2 + Tr(Σr +Σg − 2(ΣrΣg)
1/2)
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where (µr,Σr) and (µg,Σg) are the feature statistics for real and generated images. For our RS-
IQ metric, we use an InceptionV3 network (Szegedy et al., 2016) whose weights were pre-trained
on ImageNet and subsequently fine-tuned on a large-scale remote sensing dataset. This ensures the
feature extractor is highly sensitive to domain-specific patterns. In practice, we first use our model to
generate a set of images corresponding to the test prompts. Then, we use the fine-tuned InceptionV3
to extract feature vectors from both the generated images and the real ground-truth images, and
finally compute the FID score.

Content Fidelity: This metric evaluates the alignment between the generated image and the input
text prompt using two distinct scores.

• CLIP-T: This score measures semantic consistency. We utilize the official pre-trained
weights of the CLIP ViT-L/14 model (Radford et al., 2021) without any fine-tuning. The
computation involves a simple forward pass to extract embeddings from the generated im-
age and the text prompt, followed by a cosine similarity calculation:

CLIP-T = cos(EI(Igen), ET (Tprompt))

• DINO-I: This score assesses high-level visual feature alignment. Similarly, we use the
official pre-trained DINOv2 ViT-g/14 model (Zhang et al., 2022) without fine-tuning to
extract embeddings from both the generated image and its real-world counterpart, then
compute their cosine similarity:

DINO-I = cos(ED(Igen), ED(Ireal))

Layout Consistency: This metric uses expert models trained on the TerraGen training set to evaluate
layout adherence. All expert models were trained on an NVIDIA GeForce RTX 4090 GPU until
convergence.

• For Object Detection, we fine-tune a YOLOv8-det model (Jocher et al., 2023) from COCO
pre-trained weights. This model predicts bounding boxes on generated images, which are
then evaluated using mAP and AP50.

• For Segmentation, we train a YOLOv8-seg model (Jocher et al., 2023) on the corresponding
TerraGen training splits. The model generates segmentation masks, and their accuracy is
measured against the ground truth using Pixel Accuracy (Acc) and mean Intersection over
Union (mIoU).

E DOWNSTREAM TASK ENHANCEMENTS IMPLEMENTATION DETAILS

Object Detection Segmentation-based Tasks
Dataset: NWPU VHR-10 (Cheng et al., 2014)
Categories:
airplane, ship, storage tank, baseball diamond,
tennis court, basketball court, ground track field,
harbor, bridge, vehicle

Semantic Segmentation
Dataset: DroneDeploy (DroneDeploy, 2019)
Categories: background, vegetation, water,
building
Building Extraction
Dataset: Mass. Buildings (Mnih, 2013a)

Road Extraction
Dataset: RoadNet (Liu et al., 2018)

Flood Detection
Dataset: FloodNet (Rahnemoonfar et al., 2021)

Table 8: Datasets and categories used in few-shot generalization exper-
iments.

General Training Con-
figuration. All down-
stream models, including
Faster R-CNN (Ren,
2015), Oriented R-
CNN (Xie et al., 2021b),
SegFormer (Xie et al.,
2021a), and U-Net (Ron-
neberger et al., 2015),
were trained on NVIDIA
GeForce RTX 4090
GPUs. To ensure a
fair comparison, all ex-
periments followed a
consistent protocol, which
included an early stopping mechanism that halted training after 10 epochs without validation loss
improvement. Each model was initialized from the same official pre-trained weights in every
experimental run.

Baseline Dataset Configurations. We designed three distinct settings to comprehensively validate
our data enhancement capabilities. The baseline sample counts for each task in each setting are
detailed below:
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• In-Domain Setting: The baseline for Object Detection utilized 2,000 samples from our
proposed dataset’s training split. For other tasks, the splits were smaller: 500 samples for
Flood Detection, and 1,000 samples each for Semantic Segmentation, Building, and Road
Extraction.

• Few-Shot Setting: To simulate a data-scarce environment, we used specialized public
datasets with a standardized 100/50/50 train/validation/test split. The datasets and cate-
gories used are detailed in Table 8.

• Setting for Transformed Layouts: For the experiments involving transformed layouts, we
leveraged a larger scale of our proposed dataset to establish the baselines. This involved
using 5,860 samples for Object Detection, 3,500 for Semantic Segmentation, 1,000 for
Flood Detection, and 8,000 each for Building and Road Extraction.

Enhancement Data Generation. For all scenarios, synthetic data was added in multiples (1x, 2x,
etc.) of the baseline training set size.

• For in-domain and few-shot enhancement, synthetic images were generated using the
original layouts from their respective training sets.

• For enhancement with transformed layouts, the layouts from our proposed dataset were
first modified by a variety of geometric transformations before being used for generation.
Visual examples of these transformations, which include rotation, flipping, scaling, and
shearing, are shown in Figure 6.

Figure 6: Visual examples of geometric transformations for data augmentation on bounding box
(top row) and segmentation mask (bottom row) layouts.
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