

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 TERRAGEN: A UNIFIED MULTI-TASK LAYOUT GENERATION FRAMEWORK FOR REMOTE SENSING DATA AUGMENTATION

006 **Anonymous authors**

007 Paper under double-blind review

029 Figure 1: Generation results of the TerraGen model and composition of the TerraGen dataset. The
030 main visuals display high-fidelity remote sensing images synthesized by our TerraGen model from
031 given layout conditions. The pie chart in the top-right corner illustrates the five-task distribution of
032 our purpose-built TerraGen dataset.

033 034 035 036 ABSTRACT

037 Remote sensing vision tasks require extensive labeled data across multiple, inter-
038 connected domains. However, current generative data augmentation frameworks
039 are task-isolated, i.e., each vision task requires training an independent gener-
040 ative model, and ignores the modeling of geographical information and spatial
041 constraints. To address these issues, we propose **TerraGen**, a unified layout-to-
042 image generation framework that enables flexible, spatially controllable syn-
043 thesis of remote sensing imagery for various high-level vision tasks, e.g., detection,
044 segmentation, and extraction. Specifically, TerraGen introduces a geographic-
045 spatial layout encoder that unifies bounding box and segmentation mask inputs,
046 combined with a multi-scale injection scheme and mask-weighted loss to explic-
047 itely encode spatial constraints, from global structures to fine details. Also, we
048 construct the first large-scale multi-task remote sensing layout generation dataset
049 containing 45k images and establish a standardized evaluation protocol for this
050 task. Experimental results show that our TerraGen can achieve the best genera-
051 tion image quality across diverse tasks. Additionally, TerraGen can be used as a
052 universal data-augmentation generator, enhancing downstream task performance
053 significantly and demonstrating robust cross-task generalisation in both full-data
and few-shot scenarios.

054

1 INTRODUCTION

056 Deep learning has revolutionized computer vision, yet its success is fundamentally predicated upon
 057 large-scale annotated datasets. This reliance poses a significant bottleneck in remote sensing, where
 058 data acquisition is costly and annotation demands specialized expertise across diverse tasks like ob-
 059 ject detection, segmentation, and change detection. Remote sensing tasks exhibit strong spatial and
 060 semantic correlations, sharing common geographic layouts. However, current research paradigms
 061 are hampered by redundant annotation and isolated task pipelines. A single scene often requires
 062 distinct labels for each task (e.g., bounding boxes and masks), while data augmentation techniques
 063 seldom exploit inter-task consistency.

064 The advent of controllable generative models, such as GLIGEN (Li et al., 2023) and InstanceD-
 065 iffusion (Wang et al., 2024), has established powerful paradigms for image synthesis conditioned
 066 on text and layout. While effective for natural images, their application in remote sensing remains
 067 confined to single-task or single-condition generation, thus lacking flexible multimodal control and
 068 cross-task adaptability.

069 More critically, remote sensing generative models (Zhang et al., 2024b; Zang et al., 2025; Toker
 070 et al., 2024; Tang et al., 2025) lack standardized evaluation benchmarks. Existing approaches are
 071 typically designed for specific tasks without unified multi-task evaluation frameworks, hindering
 072 both technical progress and practical adoption. This limitation is compounded by the unique ge-
 073 ographic constraints in remote sensing imagery—such as road network connectivity, building ar-
 074 rangement patterns, and spatial relationships between land cover types—that are poorly captured by
 075 general-purpose generation methods.

076 The central premise of this paper is that the challenge of task isolation can be overcome by identify-
 077 ing a universal medium. We argue that spatial layout information serves as this universal representa-
 078 tion, bridging different remote sensing vision tasks, while multimodal conditional control enhances
 079 generation flexibility and precision. This premise is built on three key observations: First, spatial
 080 representations across tasks (bounding boxes in detection, pixel masks in segmentation, contours
 081 in instance segmentation) fundamentally describe the same geographic object distribution patterns
 082 with shared geometric and semantic foundations. Second, geographic object layouts follow specific
 083 spatial rules that can be effectively encoded through structured representations. Third, textual de-
 084 scriptions provide semantic details that complement layout conditions, enabling more precise and
 085 diverse generation control, as shown in Figure 1.

086 Based on these insights, we introduce **TerraGen** (from the Latin 'Terra' for Earth), a multi-
 087 conditional generation framework for remote sensing imagery. Our contributions are threefold:

- 088 • We construct the first large-scale multi-task remote sensing layout generation dataset and
 089 establish standardized evaluation protocols, addressing the critical lack of unified bench-
 090 marks in this field.
- 091 • We propose a unified multi-conditional layout generation framework (TerraGen) that in-
 092 tegrates spatial layout information (bounding boxes, segmentation masks) with semantic
 093 textual information through geographic spatial-aware conditional encoding mechanisms,
 094 achieving fine-grained generation control of complex remote sensing scenes.
- 095 • Our TerraGen can serve as a universal data-augmentation engine, markedly boosting
 096 downstream-task accuracy and exhibiting strong generalisation across tasks under both
 097 full-data and few-shot scenarios.

099

2 RELATED WORK

101

2.1 TEXT-TO-IMAGE GENERATION

103 Text-to-image generation has evolved from GAN-based models (Reed et al., 2016) to diffusion mod-
 104 els (Ramesh et al., 2021; 2022; Saharia et al., 2022; Nichol et al., 2021), offering improved stability
 105 and visual quality. Recent methods (Radford et al., 2021; Podell et al., 2023; Esser et al., 2024; Labs
 106 et al., 2025) adopt Multimodal Diffusion Transformers (MM-DiT), treating text as an independent
 107 modality and enhancing synthesis via multimodal attention. However, they underperform on remote
 sensing data due to its unique structures and patterns (Tang et al., 2024).

108
109

2.2 LAYOUT-TO-IMAGE GENERATION

110
111
112
113
114
115
116
117

Layout-to-image generation extends synthesis by introducing fine-grained spatial control, typically through structured inputs like bounding boxes or segmentation masks. In the natural image domain, models like GLIGEN (Li et al., 2023) and LayoutDiffusion (Zheng et al., 2023) achieve impressive results by injecting spatial guidance into the cross-attention layers of pre-trained diffusion models. Recent MM-DiT-based extensions (Zhang et al., 2024a; 2025b;a) further advance this by integrating layout as another input modality, demonstrating strong layout fidelity. Nonetheless, these methods often rely on massive, web-scale datasets (e.g., COCO, LVIS) and still struggle with pixel-level precision for complex, overlapping instances.

118
119
120
121
122
123
124
125
126

In the remote sensing domain, layout-conditioned generation is an emerging but critical area. Early methods like CC-Diff (Zhang et al., 2024b) and AeroGen (Tang et al., 2025) have focused on bounding box-guided generation for object detection, while others like SatSynth (Toker et al., 2024) have explored mask-guided synthesis for segmentation. Despite their progress, these approaches are often task-specific and tend to overlook crucial domain-specific constraints. For instance, they may generate objects that are spatially plausible in isolation but violate geographic rules, such as disconnected road networks, randomly oriented buildings, or illogical land-use adjacencies. Our framework moves beyond this by proposing a unified model that handles multiple layout types and is aware of these geospatial relationships.

127
128

2.3 GENERATIVE AUGMENTATION IN REMOTE SENSING

129
130
131
132
133
134
135

The high cost of expert annotation and the inherent long-tail distribution of objects in remote sensing have motivated the use of generative models for data augmentation. Unlike traditional augmentation (e.g., rotation, scaling), diffusion-based methods can create novel, diverse, and highly realistic image-label pairs. Early successes like DiffuSat (Khanna et al., 2023) and CRS-Diff (Tang et al., 2024) demonstrated the potential of conditional generation to boost the performance of downstream segmentation models. SatSynth (Toker et al., 2024) further validated this approach for both segmentation and detection tasks.

136
137
138
139
140
141
142
143

However, a significant limitation of existing work is its fragmented, task-specific nature. Current pipelines require training separate generative models for detection, segmentation, or other tasks, creating data silos and preventing knowledge transfer. This is inefficient and fails to exploit the rich, shared information across different annotation types. For example, bounding box layouts contain valuable semantic and location information that could regularize and improve a segmentation model. Our work addresses this gap by designing an end-to-end pipeline that not only performs single-task augmentation but also facilitates cross-task knowledge transfer, realizing an "annotate once, benefit multiple tasks" paradigm that is essential for scalable, real-world remote-sensing systems.

144
145
146

3 TERRAGEN

147
148

3.1 PROBLEM FORMULATION

149
150
151
152
153
154
155
156

Remote sensing image generation requires addressing multiple heterogeneous conditions simultaneously, where each generated image must satisfy spatial layout constraints, semantic category information, and geographic contextual descriptions. The fundamental challenge lies in accurately integrating these diverse user-specified conditions—each representing distinct aspects of remote sensing analysis requirements—into geographically consistent and visually realistic images. Current diffusion models in remote sensing primarily focus on single-task scenarios, lacking unified frameworks that can capture geographic relationships across multiple vision tasks. We formally define the multi-task layout-conditioned remote sensing image generation as:

157
158

$$I_g = f(\mathcal{T}, \mathcal{L}, \mathcal{D}), \quad (1)$$

159
160
161

where I_g represents the generated remote sensing image, \mathcal{T} specifies the target task type from our supported task set $\{\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4\}$ corresponding to object detection, semantic segmentation, building extraction, Road Extraction mapping, and flood detection respectively. The layout condition \mathcal{L} provides spatial constraints, while the textual description \mathcal{D} offers semantic context. The

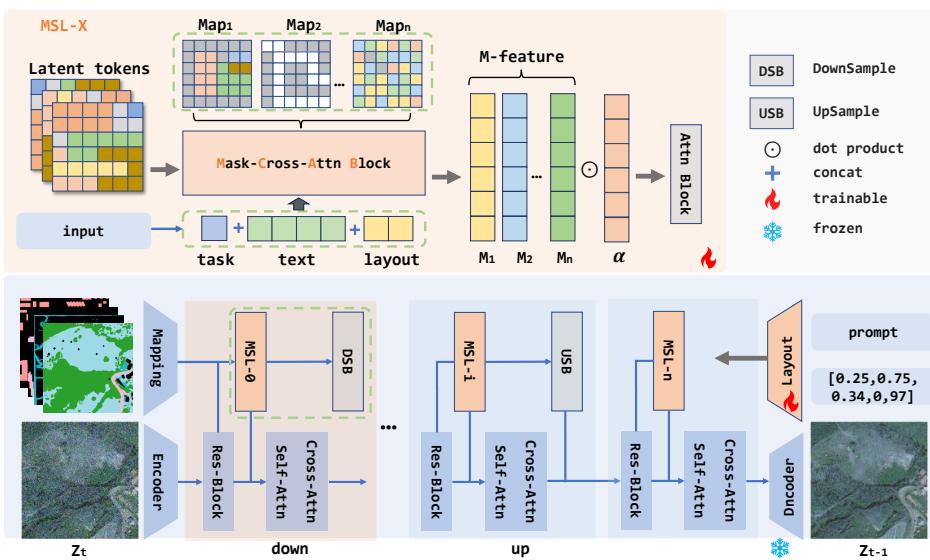


Figure 2: An overview of the TerraGen architecture. TerraGen utilizes a multi-conditional generation framework that integrates geographic-spatial layout encoding with multi-scale injection mechanisms. The system processes task specifications, textual descriptions, and spatial layouts through mask-cross-attention blocks and injects layout guidance at multiple U-Net resolution levels to ensure both global layout consistency and fine-grained spatial accuracy in RS image generation.

layout condition \mathcal{L} comprises n geographic entities, where each entity is characterized by a comprehensive tuple containing semantic, spatial, and attribute information:

$$\mathcal{L} = \{l_i = (c_i, s_i)\}_{i=1}^n, \quad (2)$$

Here, c_i denotes the semantic category (e.g., building, road, water body), and s_i represents the spatial representation, which can be either bounding boxes \mathbf{b}_i for detection tasks or binary masks \mathbf{m}_i for segmentation tasks. This design enables our framework to capture the complex spatial relationships inherent in remote sensing imagery.

To enable effective cross-task knowledge transfer, we establish a unified layout representation that bridges different task types through a task-adaptive transformation function:

$$\mathcal{L}_{unified} = \mathcal{J}(\mathcal{T}\mathcal{L}_{task}). \quad (3)$$

The transformation function $\mathcal{J}(\cdot)$ converts task-specific annotations—bounding boxes $\mathbf{B} = \{\mathbf{b}_i\}_{i=1}^n$ for object detection \mathcal{T}_0 and pixel masks $\mathbf{M} = \{\mathbf{m}_i\}_{i=1}^n$ for segmentation tasks \mathcal{T}_{1-4} —into a standardized layout representation while preserving essential spatial and semantic information.

3.2 MULTI-TASK UNIFIED ARCHITECTURE

Building upon large-scale diffusion models, TerraGen introduces a multi-conditional generation framework specifically designed for remote sensing applications. Our unified architecture effectively handles heterogeneous layout conditions while maintaining robust cross-task compatibility across diverse generation scenarios. An overview of the TerraGen architecture is shown in Figure 2, illustrating the integration of geographic-spatial layout encoding and multi-scale injection mechanisms that enable seamless task-specific generation.

To capture the unique characteristics of remote sensing imagery and achieve precise pixel-level layout guidance, we design an Instance-Spatial Layout Encoder that jointly processes multiple layout modalities through a unified embedding space:

$$\mathbf{E}_{geo} = \psi(\phi_b(\mathbf{B}), \phi_m(\mathbf{M})), \quad (4)$$

where the fusion function $\psi(\cdot)$ integrates complementary spatial representations from the bounding box encoder $\phi_b(\mathbf{B})$ and mask encoder $\phi_m(\mathbf{M})$. Here, $\mathbf{B} = \{\mathbf{b}_i\}_{i=1}^n$ represents the collection of

216 bounding boxes defining coarse spatial regions, and $\mathbf{M} = \{\mathbf{m}_i\}_{i=1}^n$ represents the collection of
 217 masks providing fine-grained pixel-level constraints.

218 The core innovation of TerraGen lies in its multi-conditional layout control mechanism that enables
 219 seamless layout-to-image generation across various remote sensing tasks. To enable task-specific
 220 generation while maintaining our unified architecture, we introduce adaptive task conditioning mod-
 221 ules that dynamically adjust the generation process:

$$\mathbf{c}^t = \theta(\mathcal{T}) \oplus \delta(\mathbf{h}^l, \mathcal{T}). \quad (5)$$

224 The task encoder $\theta(\cdot)$ processes task specifications \mathcal{T} to generate task-aware embeddings, while the
 225 task adapter $\delta(\cdot)$ modulates layout features $\mathbf{h}^l = \{\mathbf{h}_i^l\}_{i=1}^n$ according to specific task requirements,
 226 ensuring optimal generation quality across different remote sensing scenarios.

227 3.3 MULTI-SCALE LAYOUT INJECTION

228 Inspired by adapters like IP-Adapter (Ye et al., 2023) and ControlNet (Zhang et al., 2023), we inject
 229 layout conditions to guide generation. However, conventional methods suffer from progressive detail
 230 loss during downsampling, a critical flaw for pixel-level remote sensing tasks. To address this, we
 231 propose a multi-scale injection strategy that preserves fine-grained spatial information. Our strategy
 232 extends spatial attention with a hierarchical mechanism operating across multiple resolutions

$$235 \text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \sum_{k=1}^K \alpha_k \cdot \text{Softmax} \left(\frac{\mathbf{Q}\mathbf{K}^T \odot \mathbf{M}^{(k)}}{\sqrt{d}} \right) \mathbf{V}, \quad (6)$$

236 where the learnable weights α_k dynamically balance contributions across different scales, and $\mathbf{M}^{(k)}$
 237 represents the attention mask at scale k that enforces spatial constraints at the corresponding resolu-
 238 tion level. Building upon this hierarchical attention mechanism, we inject resolution-specific layout
 239 features into each attention block of the U-Net architecture. This multi-scale injection ensures that
 240 layout guidance is maintained at every resolution level:

$$242 \mathbf{f}_\ell^{out} = \mathbf{f}_\ell^{in} + \zeta(\mathbf{f}_\ell^{in}, \mathbf{h}^{(\ell)}, \mathbf{M}_\ell), \quad (7)$$

243 where ℓ denotes the scale level determining the feature resolution, the cross-attention operation $\zeta(\cdot)$
 244 facilitates seamless feature integration between layout conditions and image features, $\mathbf{h}^{(\ell)}$ provides
 245 scale-specific layout guidance extracted from our Instance-Spatial Layout Encoder, and \mathbf{M}_ℓ serves
 246 as the attention mask that controls spatial focus at the corresponding scale level.

247 This multi-scale injection mechanism enables our framework to maintain both global layout con-
 248 sistency and local detail accuracy, addressing the fundamental limitation of existing methods in
 249 pixel-level remote sensing image generation.

252 3.4 TRAINING AND INFERENCE STRATEGY

253 To provide enhanced layout-guided information injection in the training process, we introduce an
 254 adaptive mask-weighted mechanism that dynamically adjusts loss computation:

$$256 \mathcal{L}_{total} = \mathbf{E}_{t, \mathbf{x}_0, \epsilon} [\|\epsilon - \epsilon_\theta(\mathbf{x}_t, t, \mathbf{c})\|^2 \odot \mathbf{W}^{adapt}]. \quad (8)$$

257 The adaptive weight matrix \mathbf{W}^{adapt} is computed based on both explicit layout constraints and
 258 learned attention distributions:

$$260 \mathbf{W}^{adapt} = \beta \cdot \mathbf{M}_{layout} + (1 - \beta) \cdot \text{Norm} \left(\sum_{i=1}^n \mathbf{A}_i \right), \quad (9)$$

262 where attention maps \mathbf{A}_i for layout entity i are aggregated and normalized, while parameter β con-
 263 trols the balance between explicit mask constraints \mathbf{M}_{layout} and learned attention patterns. During
 264 training, we empirically set $\beta = 0.5$ to achieve optimal balance.

265 During the inference phase, we apply a unified Classifier-Free Guidance (CFG) to all input condi-
 266 tions, treating non-target tasks as negative samples to achieve precise and effective generation:

$$268 \epsilon = \epsilon_\theta(\mathbf{x}_t, t, \emptyset) + s \cdot (\epsilon_\theta(\mathbf{x}_t, t, \mathbf{c}_t) - \epsilon_\theta(\mathbf{x}_t, t, \mathbf{c}_{non})), \quad (10)$$

269 where s is the guidance scale, \mathbf{c}_t represents target task conditions, and \mathbf{c}_{non} denotes non-target task
 270 conditions used as negative guidance.

270

4 DATASET AND BENCHMARK

271
 272 To address the lack of unified multi-task datasets for remote sensing image generation, we construct
 273 the first dataset that supports layout-conditioned generation across five representative vision tasks:
 274 object detection, semantic segmentation, building extraction, road extraction, and flood mapping. It
 275 provides a foundation for multi-task learning and cross-task generalization.
 276

277

4.1 DATASET CONSTRUCTION

278 We follow a multi-stage pipeline to ensure an-
 279 notation quality and task consistency. High-
 280 resolution remote sensing images are collected
 281 from public sources (Shirshmall, 2023; Wang
 282 et al., 2021; Xia et al., 2023; Li et al., 2025;
 283 2020; Maggiori et al., 2017; Ji et al., 2018;
 284 Gupta et al., 2019; Zhu et al., 2021; Demir
 285 et al., 2018; Mnih, 2013b). Annotations for
 286 five tasks are integrated from 12 datasets, and
 287 layout-controllable text prompts are automatic-
 288 ally generated using the multi-modal model
 289 Qwen-VL (Bai et al., 2025).

290 To enhance reliability, we adopt automatic con-
 291 sistency checks for detecting annotation issues such as overlapping boxes, broken road segments,
 292 and semantic conflicts. The final dataset contains 45k high-quality samples with either single-task or
 293 multi-task annotations. A word cloud in Figure 3 illustrates the rich and diverse semantic categories.
 294 Further details on our dataset construction are provided in Appendix D.1.
 295

296

4.2 EVALUATION BENCHMARK

297 To establish standardized evaluation protocols for remote sensing layout generation, we constructed
 298 a comprehensive benchmark dataset specifically designed for assessing generation quality and down-
 299 stream task effectiveness. Our benchmark consists of 1k carefully selected high-quality images that
 300 represent the full spectrum of challenges in remote sensing layout generation, ensuring visual com-
 301 plexity and geographic diversity while avoiding dense, small-scale, and low-quality samples.
 302

303 Each benchmark image is associated with multiple evaluation scenarios, as a single image may cor-
 304 respond to generation quality assessment across different downstream tasks. To address the unique
 305 challenges of evaluating remote sensing layout generation, we introduce specialized metrics tailored
 306 for spatial accuracy and semantic consistency. These metrics encompass both pixel-level fidelity and
 307 structural coherence assessments. Detailed metric calculations are provided in the Appendix D.2.
 308

309 *RS Image Quality (RS-IQ):* We calculate FID scores using an InceptionV3 network (Szegedy et al.,
 310 2016) fine-tuned on remote sensing datasets to better capture domain-specific characteristics.

311 *Content Fidelity:* We employ CLIP-T (Radford et al., 2021) to measure semantic consistency be-
 312 tween generated images and global descriptions, and DINO-I (Zhang et al., 2022) to evaluate visual
 313 feature alignment.

314 *Layout Consistency:* We evaluate generated images using YOLOv8 (Jocher et al., 2023) -based
 315 models trained on remote sensing data, reporting mAP and AP₅₀ for object detection tasks, and Acc
 316 and mIoU for segmentation tasks.

317

5 EXPERIMENTS

318

5.1 EXPERIMENTAL SETUP

319 For model training, we adopt a two-stage configuration to ensure optimal performance and con-
 320 vergence. In the first stage, we train the UNet (Ronneberger et al., 2015) network with additional
 321 constraints on the diffusion process to improve the LDM (Rombach et al., 2022) -based genera-

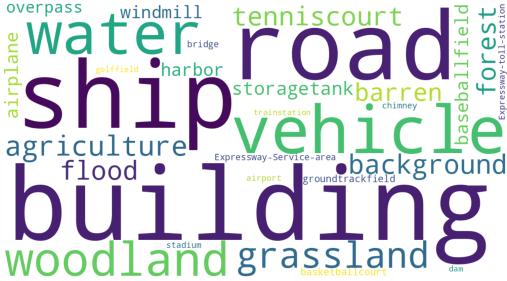


Figure 3: Word cloud of semantic categories cov-
 ered in our dataset.

322

tion capability, using a learning rate of 1e-4 with AdamW (Loshchilov, 2017) optimizer for 100k steps with batch size of 8. We employ cosine annealing scheduling to gradually reduce the learning rate throughout training. The second stage introduces an adaptive mask-weighted loss function to enhance layout consistency and spatial accuracy, incorporating attention mechanisms to better preserve structural details and geometric relationships in the generated outputs. Further implementation details and ablation studies are provided in the Appendix.

5.2 IMAGE QUALITY RESULTS

We compare TerraGen against both remote sensing-specific conditional generation methods and state-of-the-art natural image generation approaches. Our comparison includes remote sensing domain methods: CRS-Diff (Tang et al., 2024), SatSynth (Toker et al., 2024), AeroGen (Tang et al., 2025), and CC-Diff (Zhang et al., 2024b), as well as natural image generation advances: GLIGEN (Li et al., 2023), Uni-ControlNet (Zhao et al., 2023), ControlNet, and InstanceDiffusion (Wang et al., 2024). Due to architectural constraints and fine-tuning methodologies, we did not include DiT model (Peebles & Xie, 2023) comparisons in this evaluation.

Table 1 demonstrates TerraGen’s superior performance across all evaluation metrics. Our method achieves state-of-the-art results in generation quality, Content Fidelity, and layout accuracy, establishing the effectiveness of our framework in generating geographically plausible and layout-consistent remote sensing imagery.

Figure 4 presents visual comparison results under various conditional settings. As a multi-modal controllable generation model, TerraGen demonstrates superior performance in both layout consistency and semantic alignment compared to baseline methods. For object detection tasks, our method enables precise generation of small objects such as vehicles while maintaining excellent background compatibility. For semantic segmentation tasks, TerraGen achieves better road generation quality and demonstrates fine-grained control over multiple conditions simultaneously.

Method	Task	RS-IQ FID↓	Content Fidelity		Mask		BBox	
			CLIP-T↑	DINO-I↑	mIoU↑	Acc↑	AP ₅₀ ↑	mAP↑
Upper Bound (real img)	—	—	30.8	—	68.6	83.5	59.5	42.9
GLIGEN (Li et al., 2023)	OD	42.5	24.8	53.4	—	—	48.7	33.1
CC-Diff (Zhang et al., 2024b)	OD	41.8	25.9	58.2	—	—	48.4	34.8
AeroGen (Tang et al., 2025)	OD	43.7	24.5	59.2	—	—	50.9	34.7
SatSynth (Toker et al., 2024)	Seg	49.6	21.1	48.9	38.2	58.1	—	—
CRS-Diff (Tang et al., 2024)	Seg	36.3	27.7	61.3	42.6	62.8	—	—
Uni-ControlNet (Zhao et al., 2023)	Seg	37.2	26.8	64.2	46.5	65.9	—	—
InstanceDiffusion (Wang et al., 2024)	Uni	40.1	25.5	62.1	41.8	61.3	51.2	35.8
TerraGen (Ours)	Uni	34.6	29.6	64.7	50.8	69.6	52.5	37.1

Table 1: Generation Quality and Consistency Comparison

5.3 DOWNSTREAM TASK ENHANCEMENT

To validate TerraGen’s efficacy as a data enhancement tool, we designed three distinct experimental scenarios evaluating its performance from in-domain application to challenging data-scarce and generalization settings. In each scenario, we started with a baseline model trained on an initial dataset and then measured performance gains after enhancing the training data with synthetic images generated by TerraGen. For a detailed breakdown of the models, datasets, and training configurations used in these experiments, please see Appendix E.

In-Domain Data Augmentation. This experiment tested the core capability of TerraGen to improve performance when the data distribution is consistent. The baseline models were trained and tested on splits from our proposed dataset. The training set was then enhanced by adding synthetic data generated by TerraGen using the original layouts from this same dataset. As shown in Table 2, progressively adding synthetic data (from 1x to 4x the baseline quantity) yielded consistent and significant performance gains across all tasks and models. For instance, SegFormer’s IoU in semantic segmentation improved by a relative 20.8%, demonstrating the direct benefit of same-distribution data enhancement.

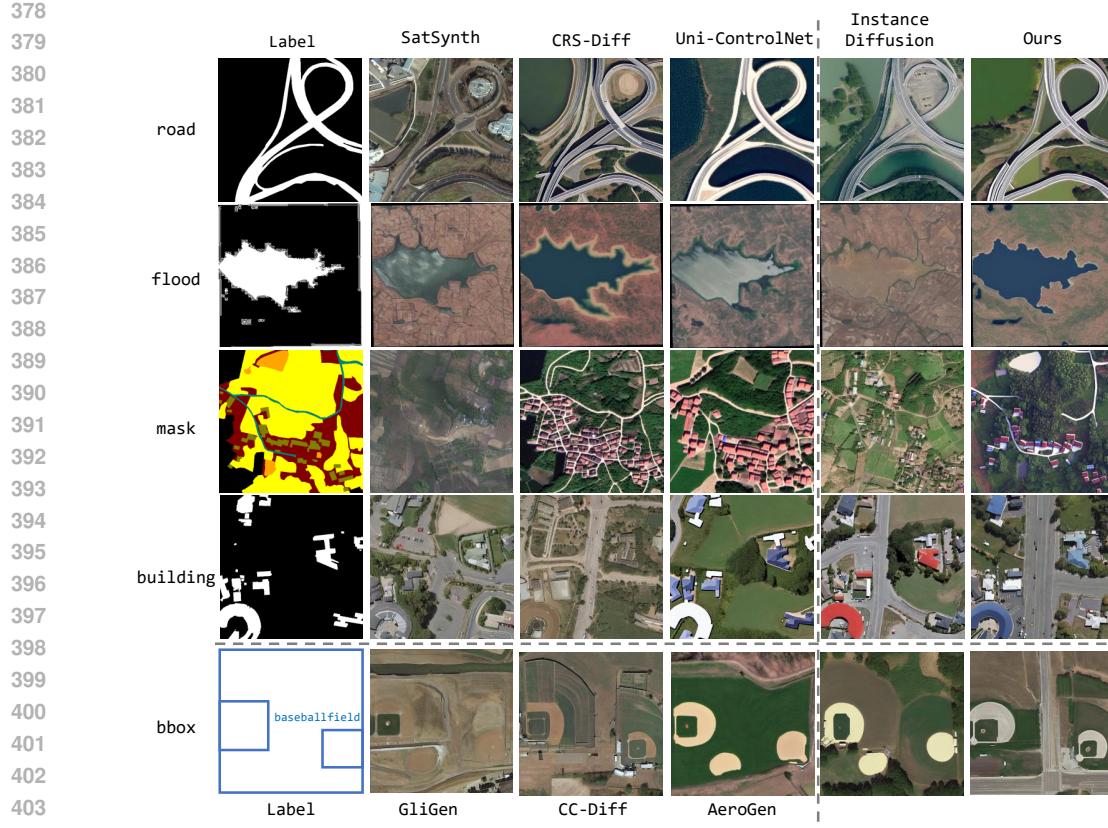


Figure 4: Qualitative comparison for mask-to-image (top four rows) and bbox-to-image (bottom row) generation by various methods.

Task	Object Detection		Semantic Segmentation		Building Extraction		Road Extraction		Flood Detection											
Model	F-RCNN	O-RCNN	SegFormer	U-Net	SegFormer	U-Net	SegFormer	U-Net	SegFormer	U-Net										
Metric	mAP↑	AP ₅₀ ↑	mAP↑	AP ₅₀ ↑	IoU↑	Acc↑	IoU↑	Acc↑	IoU↑	Acc↑										
0x	24.5	46.9	35.0	55.5	41.8	58.9	44.9	62.0	49.3	93.7	53.5	94.6	32.2	95.2	40.2	95.5	66.8	86.9	66.9	86.3
1x	26.2	49.5	35.1	57.2	47.3	64.2	46.1	63.1	52.7	94.5	54.9	95.0	33.8	95.2	48.1	96.4	69.1	87.7	66.3	86.0
2x	26.5	49.9	35.4	57.0	49.0	65.8	47.9	64.7	54.7	94.8	56.9	95.3	38.0	95.6	48.7	96.5	68.9	87.3	67.0	86.4
3x	27.4	51.1	35.8	57.6	50.5	67.1	47.2	64.1	55.0	94.9	56.9	95.4	38.6	95.7	49.0	96.5	69.3	87.5	67.5	86.5
4x	28.4	51.3	35.9	57.4	50.5	67.1	48.5	65.4	56.1	95.1	58.3	95.6	39.6	95.8	49.0	96.6	69.3	87.7	68.1	87.0
vs. Baseline	+15.9%	+9.4%	+2.6%	+3.8%	+20.8%	+13.9%	+8.0%	+5.5%	+13.8%	+1.5%	+9.0%	+1.1%	+23.0%	+0.6%	+21.9%	+1.2%	+3.7%	+0.9%	+1.8%	+0.8%

Table 2: Performance Gains from In-Domain Data Enhancement

Few-Shot Generalization. This experiment simulated data-scarce scenarios to evaluate TerraGen’s ability to generate valuable training data when original samples are extremely limited. The baseline models were trained and tested on small, publicly available datasets (100 training samples each), completely separate from our proposed dataset. The training set was then enhanced with synthetic data generated by TerraGen. Table 3 shows that enhancing these small datasets with synthetic samples led to substantial performance improvements across all tasks, highlighting TerraGen’s effectiveness in low-data regimes.

Enhancement with Transformed Layouts. This experiment assesses TerraGen’s robustness by testing its ability to generate effective data from geometrically transformed layouts. While the baseline setup mirrored the in-domain experiment, the enhancement data was generated using layouts altered by various geometric transformations (e.g., rotation, flipping), detailed in Appendix E. The results in Table 4 confirm the efficacy of this approach, with performance gains across nearly all metrics. This is crucial, demonstrating that TerraGen robustly interprets and renders diverse spatial conditions rather than merely memorizing static layouts.

432	Task	Object Detection				Semantic Segmentation				Building Extraction				Road Extraction				Flood Detection			
		Dataset		NWPU VHR-10		DroneDeploy		Mass. Buildings		RoadNet		FloodNet									
433	Model	F-RCNN	O-RCNN	SegFormer	U-Net	SegFormer	U-Net	SegFormer	U-Net	SegFormer	U-Net	SegFormer	U-Net	SegFormer	U-Net	SegFormer	U-Net				
434	Metric	mAP↑	AP ₅₀ ↑	mAP↑	AP ₅₀ ↑	IoU↑	Acc↑	IoU↑	Acc↑	IoU↑	Acc↑	IoU↑	Acc↑	IoU↑	Acc↑	IoU↑	Acc↑				
435	0x	29.8	66.6	45.7	77.4	43.7	60.8	57.9	73.3	27.4	88.1	33.9	88.4	67.5	94.5	79.8	96.7	51.0	69.5	51.6	74.1
436	1x	30.4	67.2	46.9	80.9	53.5	69.7	59.0	74.2	27.5	88.2	35.7	90.4	69.7	95.2	83.0	97.3	51.3	71.1	52.6	70.5
437	2x	31.1	69.8	48.1	81.9	60.4	75.3	61.0	75.8	29.2	89.1	36.7	90.7	71.0	95.2	83.2	97.4	52.2	70.6	53.4	72.9
438	3x	34.7	71.3	48.0	84.0	59.9	74.9	61.2	75.9	30.8	89.5	37.3	91.0	72.4	95.3	83.2	97.3	52.8	73.2	53.3	72.8
439	vs. Baseline	+16.4%	+7.1%	+5.3%	+8.5%	+38.2%	+23.8%	+5.7%	+3.5%	+12.4%	+1.6%	+10.0%	+2.9%	+7.3%	+0.8%	+4.3%	+0.7%	+3.5%	+5.3%	+3.5%	-1.6%

Table 3: Generalization Performance in Few-Shot Settings

440	Task	Object Detection				Semantic Segmentation				Building Extraction				Road Extraction				Flood Detection			
		Model		F-RCNN	O-RCNN	SegFormer	U-Net	SegFormer	U-Net	SegFormer	U-Net	SegFormer	U-Net	SegFormer	U-Net	SegFormer	U-Net				
441	Metric	mAP↑	AP ₅₀ ↑	mAP↑	AP ₅₀ ↑	mIoU↑	Acc↑	mIoU↑	Acc↑	IoU↑	Acc↑	IoU↑	Acc↑	IoU↑	Acc↑	IoU↑	Acc↑	IoU↑	Acc↑	IoU↑	Acc↑
442	Baseline	32.8	57.4	42.0	63.6	54.2	70.3	51.7	68.2	66.9	96.4	66.7	96.4	51.9	96.6	58.0	97.1	69.5	87.9	68.5	87.4
443	+TerraGen	34.0	57.6	42.6	64.5	54.3	70.4	52.5	68.9	68.2	96.7	68.0	96.6	53.4	96.7	58.2	97.2	69.7	88.0	68.6	87.5

Table 4: Enhancement with Transformed Layouts

5.4 ABLATION STUDIES

We conducted ablation studies to evaluate the impact of layout control, multi-scale injection, and mask-weighted loss on our model’s performance. As shown in Table 5, combining both bounding boxes and masks consistently outperforms using either modality alone, improving the Fréchet Inception Distance (FID) from 38.7 to 34.6 and the mean Intersection over Union (mIoU) from 45.3 to 50.8. The half-scale multi-scale injection strategy offered a good balance between precision and computational efficiency, while the mask-weighted loss further boosted all metrics, achieving the best overall performance. These results confirm the effectiveness of each component in enhancing the quality, spatial accuracy, and consistency of layout-guided remote sensing image generation.

6 CONCLUSION

In this work, we introduce TerraGen, a unified multi-task layout-to-image generation framework designed to overcome the critical challenges of task isolation and the absence of geographic constraints in remote sensing. Our approach features a novel geographic-spatial layout encoder that seamlessly integrates diverse spatial conditions (bounding boxes, masks) with textual descriptions, coupled with a multi-scale injection strategy for precise, controllable synthesis of spatially coherent imagery. To validate our method, we also contribute the first large-scale, multi-task remote sensing layout dataset and establish unified evaluation benchmarks. Extensive experiments demonstrate that our proposed TerraGen can achieve state-of-the-art results across various tasks, including object detection, segmentation, and flood mapping, while proving highly effective for data augmentation in both full-data and few-shot scenarios. Most notably, our framework validates the central premise that spatial layouts can serve as a universal medium to bridge previously isolated remote sensing tasks. We empirically demonstrate that this cross-task knowledge transfer is highly effective, as layouts from detection can be directly utilized to significantly enhance the performance of segmentation models, and vice versa.

Layout Control	MSL	MALoss	FID↓	CLIP-T↑	mIoU↑	
box	mask					
✓	✗	half	✗	38.7	28.2	45.3
✗	✓	half	✗	37.1	28.1	47.8
✓	✓	half	✗	35.2	28.4	49.2
✓	✓	full	✗	35.4	28.3	49.1
✓	✓	full	✓	34.9	29.4	50.5
✓	✓	half	✓	34.6	29.6	50.8

Table 5: Ablation Study: Effect of Layout Control, Multi-Scale Layout (MSL), and Mask-weighted Loss (MALoss).

486 REFERENCES
487

488 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
489 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
490 2025.

491 Gong Cheng, Junwei Han, Peicheng Zhou, and Lei Guo. Multi-class geospatial object detection
492 and geographic image classification based on collection of part detectors. *ISPRS Journal of Photo-*
493 *grammetry and Remote Sensing*, 98:119–132, 2014.

494 Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan Pang, Jing Huang, Saikat Basu, For-
495 est Hughes, Devis Tuia, and Ramesh Raskar. Deepglobe 2018: A challenge to parse the earth
496 through satellite images. In *Proceedings of the IEEE conference on computer vision and pattern*
497 *recognition workshops*, pp. 172–181, 2018.

498 DroneDeploy. Dronedeploy segmentation benchmark, 2019.

499 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
500 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
501 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
502 2024.

503 Ritwik Gupta, Richard Hosfelt, Sandra Sajeev, Nirav Patel, Bryce Goodman, Jigar Doshi, Eric Heim,
504 Howie Choset, and Matthew Gaston. xbd: a dataset for assessing building damage from satellite
505 imagery. *arxiv. arXiv preprint arXiv:1911.09296*, 2019.

506 Shuping Ji, Shiqing Wei, and Meng Lu. Fully convolutional networks for multisource building
507 extraction from an open aerial and satellite imagery data set. *IEEE Transactions on geoscience*
508 *and remote sensing*, 57(1):574–586, 2018.

509 Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics YOLO, January 2023.

510 Samar Khanna, Patrick Liu, Linqi Zhou, Chenlin Meng, Robin Rombach, Marshall Burke, David B
511 Lobell, and Stefano Ermon. Diffusionsat: A generative foundation model for satellite imagery. In
512 *The Twelfth International Conference on Learning Representations*, 2023.

513 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
514 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, et al. Flux. 1 kontext:
515 Flow matching for in-context image generation and editing in latent space. *arXiv preprint*
516 *arXiv:2506.15742*, 2025.

517 Kaiyu Li, Zepeng Xin, Li Pang, Chao Pang, Yupeng Deng, Jing Yao, Guisong Xia, Deyu Meng, Zhi
518 Wang, and Xiangyong Cao. Segearth-r1: Geospatial pixel reasoning via large language model.
519 *arXiv preprint arXiv:2504.09644*, 2025.

520 Ke Li, Gang Wan, Gong Cheng, Liqiu Meng, and Junwei Han. Object detection in optical remote
521 sensing images: A survey and a new benchmark. *ISPRS journal of photogrammetry and remote*
522 *sensing*, 159:296–307, 2020.

523 Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
524 and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In *Proceedings of the*
525 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22511–22521, 2023.

526 Yahui Liu, Jian Yao, Xiaohu Lu, Menghan Xia, Xingbo Wang, and Yuan Liu. Roadnet: Learning to
527 comprehensively analyze road networks in complex urban scenes from high-resolution remotely
528 sensed images. *IEEE Transactions on Geoscience and Remote Sensing*, 57(4):2043–2056, 2018.

529 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

530 Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, and Pierre Alliez. Can semantic la-
531 beling methods generalize to any city? the inria aerial image labeling benchmark. In *IEEE*
532 *International Geoscience and Remote Sensing Symposium (IGARSS)*. IEEE, 2017.

533

540 Volodymyr Mnih. *Machine Learning for Aerial Image Labeling*. PhD thesis, University of Toronto,
 541 2013a.

542

543 Volodymyr Mnih. *Machine learning for aerial image labeling*. University of Toronto (Canada),
 544 2013b.

545

546 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 547 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 548 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

549

550 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

551

552 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 553 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 554 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

555

556 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 557 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 558 models from natural language supervision. In *International conference on machine learning*, pp.
 559 8748–8763. PMLR, 2021.

560

561 Maryam Rahnemoonfar, Tashnim Chowdhury, Argho Sarkar, Debvrat Varshney, Masoud Yari, and
 562 Robin Roberson Murphy. Floodnet: A high resolution aerial imagery dataset for post flood scene
 563 understanding. *IEEE Access*, 9:89644–89654, 2021.

564

565 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 566 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine
 567 learning*, pp. 8821–8831. Pmlr, 2021.

568

569 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 570 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

571

572 Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
 573 Generative adversarial text to image synthesis. In *International conference on machine learning*,
 574 pp. 1060–1069. PMLR, 2016.

575

576 Shaoqing Ren. Faster r-cnn: Towards real-time object detection with region proposal networks.
 577 *arXiv preprint arXiv:1506.01497*, 2015.

578

579 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 580 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 581 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

582

583 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 584 ical image segmentation. In *International Conference on Medical image computing and computer-
 585 assisted intervention*, pp. 234–241. Springer, 2015.

586

587 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 588 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 589 text-to-image diffusion models with deep language understanding. *Advances in neural informa-
 590 tion processing systems*, 35:36479–36494, 2022.

591

592 Shirshmall. Water-body-segmentation-in-Satellite-Images, 2023. Accessed: July 28, 2025.

593

594 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
 595 ing the inception architecture for computer vision. In *Proceedings of the IEEE conference on
 596 computer vision and pattern recognition*, pp. 2818–2826, 2016.

597

598 Datao Tang, Xiangyong Cao, Xingsong Hou, Zhongyuan Jiang, Junmin Liu, and Deyu Meng. Crs-
 599 diff: Controllable remote sensing image generation with diffusion model. *IEEE Transactions on
 600 Geoscience and Remote Sensing*, 2024.

594 Datao Tang, Xiangyong Cao, Xuan Wu, Jialin Li, Jing Yao, Xueru Bai, Dongsheng Jiang, Yin Li,
 595 and Deyu Meng. Aerogen: Enhancing remote sensing object detection with diffusion-driven data
 596 generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 597 3614–3624, 2025.

598 Aysim Toker, Marvin Eisenberger, Daniel Cremers, and Laura Leal-Taixé. Satsynth: Augmenting
 599 image-mask pairs through diffusion models for aerial semantic segmentation. In *Proceedings of
 600 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 27695–27705, 2024.

601 Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zhong. Loveda: A remote sensing
 602 land-cover dataset for domain adaptive semantic segmentation. In J. Vanschoren and S. Yeung
 603 (eds.), *Proceedings of the Neural Information Processing Systems Track on Datasets and Bench-
 604 marks*, volume 1, 2021.

605 Xudong Wang, Trevor Darrell, Sai Saketh Rambhatla, Rohit Girdhar, and Ishan Misra. Instancedif-
 606 fusion: Instance-level control for image generation. In *Proceedings of the IEEE/CVF Conference
 607 on Computer Vision and Pattern Recognition*, pp. 6232–6242, 2024.

608 Junshi Xia, Naoto Yokoya, Bruno Adriano, and Clifford Broni-Bediako. Openearthmap: A bench-
 609 mark dataset for global high-resolution land cover mapping. In *Proceedings of the IEEE/CVF
 610 Winter Conference on Applications of Computer Vision*, pp. 6254–6264, 2023.

611 Enze Xie, Wenhui Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Seg-
 612 former: Simple and efficient design for semantic segmentation with transformers. *Advances in
 613 neural information processing systems*, 34:12077–12090, 2021a.

614 Xingxing Xie, Gong Cheng, Jiabao Wang, Xiwen Yao, and Junwei Han. Oriented r-cnn for object
 615 detection. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 616 3520–3529, 2021b.

617 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 618 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

619 Qi Zang, Jiayi Yang, Shuang Wang, Dong Zhao, Wenjun Yi, and Zhun Zhong. Changediff: A
 620 multi-temporal change detection data generator with flexible text prompts via diffusion model. In
 621 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 9763–9771, 2025.

622 Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung
 623 Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. *arXiv
 624 preprint arXiv:2203.03605*, 2022.

625 Hong Zhang, Zhongjie Duan, Xingjun Wang, Yingda Chen, and Yu Zhang. Eligen: Entity-level
 626 controlled image generation with regional attention. *arXiv preprint arXiv:2501.01097*, 2025a.

627 Hui Zhang, Dexiang Hong, Yitong Wang, Jie Shao, Xinglong Wu, Zuxuan Wu, and Yu-Gang Jiang.
 628 Creatilayout: Siamese multimodal diffusion transformer for creative layout-to-image generation.
 629 *arXiv preprint arXiv:2412.03859*, 2024a.

630 Hui Zhang, Dexiang Hong, Maoke Yang, Yutao Cheng, Zhao Zhang, Jie Shao, Xinglong Wu, Zux-
 631 uan Wu, and Yu-Gang Jiang. Creatidesign: A unified multi-conditional diffusion transformer for
 632 creative graphic design. *arXiv preprint arXiv:2505.19114*, 2025b.

633 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 634 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 635 pp. 3836–3847, 2023.

636 Mu Zhang, Yunfan Liu, Yue Liu, Yuzhong Zhao, and Qixiang Ye. Cc-diff: enhancing contextual
 637 coherence in remote sensing image synthesis. *arXiv preprint arXiv:2412.08464*, 2024b.

638 Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin Bao, Shaozhe Hao, Lu Yuan, and Kwan-
 639 Yee K Wong. Uni-controlnet: All-in-one control to text-to-image diffusion models. *Advances in
 640 Neural Information Processing Systems*, 36:11127–11150, 2023.

648 Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion:
649 Controllable diffusion model for layout-to-image generation. In *Proceedings of the IEEE/CVF*
650 *Conference on Computer Vision and Pattern Recognition*, pp. 22490–22499, 2023.
651
652 Qiqi Zhu, Yanan Zhang, Lizeng Wang, Yanfei Zhong, Qingfeng Guan, Xiaoyan Lu, Liangpei Zhang,
653 and Deren Li. A global context-aware and batch-independent network for road extraction from
654 vhr satellite imagery. *ISPRS Journal of Photogrammetry and Remote Sensing*, 175:353–365,
655 2021.
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A STATEMENT ON LLM USAGE
703

704 We utilized Large Language Models (LLMs), specifically Google’s Gemini Pro and OpenAI’s Chat-
705 GPT, as assistants for writing and code generation during the preparation of this manuscript. Their
706 roles included improving grammar and clarity, formatting LaTeX tables, and structuring paragraphs
707 based on key points provided by the authors. The core scientific contributions, including all ideas,
708 experiments, and analyses, are exclusively the work of the human authors, who take full responsi-
709 bility for the final content.

710
711 B LIMITATIONS
712

713 While TerraGen marks a significant step forward in unified multi-task layout generation for remote
714 sensing, certain limitations and avenues for future work exist. For instance, in object detection data
715 synthesis, its generation quality noticeably degrades when object density becomes excessively high,
716 for example, exceeding 20 instances in a single image. In tasks based on segmentation masks, the
717 internal resizing to a fixed lower dimension, such as 64x64, can reduce quality for large objects
718 or those requiring exceptionally fine-grained details. Furthermore, despite breaking task isolation
719 and generalizing well within trained categories, TerraGen’s semantic understanding is currently rel-
720 atively closed-set, limiting its capacity for open-domain generation of novel or out-of-distribution
721 objects.

722
723 C TERRAGEN IMPLEMENTATION DETAILS
724

725 This section provides detailed implementation specifications for the TerraGen framework, including
726 architectural configurations, training procedures, and inference settings.

727
728 C.1 MODEL ARCHITECTURE
729

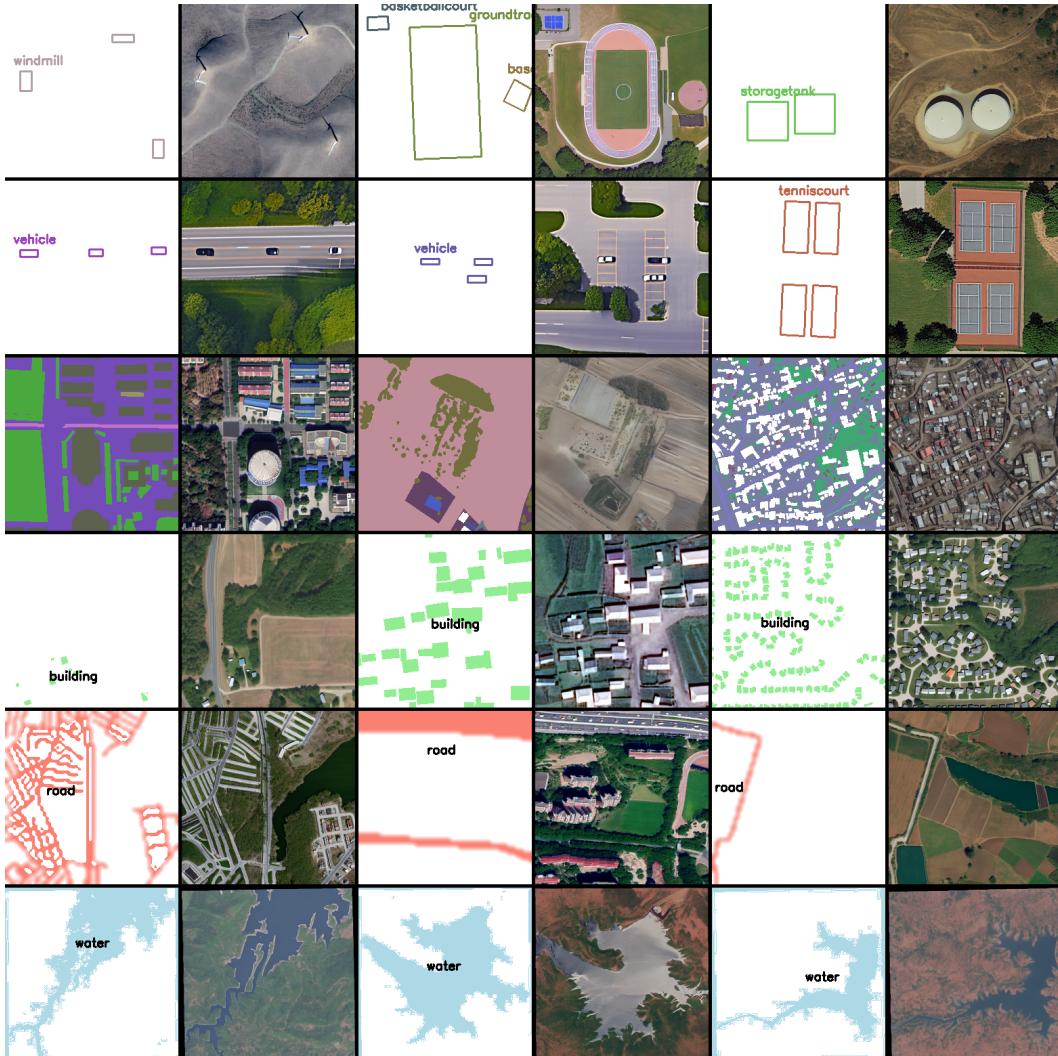
730 TerraGen builds upon Stable Diffusion v1.5 with a UNet backbone consisting of 4 downsampling
731 and 4 upsampling blocks. The model operates on 512x512 resolution images in the latent space
732 using a pre-trained VAE encoder/decoder with 8x compression ratio. The layout encoder consists of
733 two parallel branches. The *Bounding Box Encoder* ϕ_b employs a 2-layer MLP that processes normal-
734 ized box coordinates (x_1, y_1, x_2, y_2) and category embeddings to produce 768-dimensional feature
735 vectors. The *Mask Encoder* ϕ_m utilizes a lightweight CNN with 4 convolutional layers, progress-
736 ing through channels $1 \rightarrow 32 \rightarrow 64 \rightarrow 128 \rightarrow 768$, followed by adaptive average pooling to generate
737 768-dimensional mask features. The fusion function ψ employs cross-attention mechanisms with 8
738 heads and 96-dimensional keys/queries. The final geographic embedding \mathbf{E}_{geo} has dimensionality
739 768 to match the UNet feature channels. Layout features are injected at three resolution levels of
740 the UNet to capture different spatial granularities. High resolution (64x64) captures fine-grained
741 spatial details, medium resolution (32x32) handles mid-level structures, and low resolution (16x16)
742 ensures global layout consistency. At each level ℓ , we use specialized cross-attention blocks with
743 learnable scale weights α_ℓ initialized to 0.1, 0.3, and 0.6 for high, medium, and low resolutions
744 respectively.

745
746 C.2 TRAINING CONFIGURATION
747

748 Our training follows a carefully designed two-stage approach. In Stage 1 (Layout-Free Pre-training),
749 we train the base UNet for text-to-image generation without layout constraints for 50k steps using
750 learning rate 1e-4. Stage 2 (Layout-Guided Fine-tuning) introduces layout encoders and multi-scale
751 injection with adaptive mask-weighted loss for 100k steps using learning rate 5e-5. We employ the
752 AdamW optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.999$, and weight decay 1e-2. The learning rate follows
753 a cosine annealing schedule with warm-up for 1000 steps. Training uses batch size 8 with gradient
754 accumulation to achieve an effective batch size of 32.

756 C.3 INFERENCE CONFIGURATION
757

758 During inference, we use the DDIM scheduler with 50 sampling steps for optimal quality-speed
759 trade-off. The guidance scale is set to $s = 5.5$ for standard generation and $s = 3.0$ for enhanced lay-
760 out control scenarios. Classifier-Free Guidance is applied to all conditions, with 10% uncondi-
761 tional dropout during training to enable this capability. We use fixed seeds for reproducible evalua-
762 tion and random seeds for data augmentation purposes. For different task types \mathcal{T} , we apply adaptive
763 conditioning strategies. Object Detection tasks emphasize bounding box constraints with $\alpha_{box} = 0.8$,
764 while Segmentation Tasks prioritize mask consistency with $\alpha_{mask} = 0.9$. Multi-Modal scenarios
765 employ balanced attention with $\alpha_{box} = \alpha_{mask} = 0.6$.

800 Figure 5: TerraGen Generation Showcase: Images synthesized from conditional layouts.
801
802803 D DATASET CONSTRUCTION AND EVALUATION BENCHMARK
804805 D.1 DATASET CONSTRUCTION
806

807 To support unified layout generation, we constructed a multi-task dataset by integrating high-
808 resolution imagery from 12 public benchmarks (Shirshmall, 2023; Wang et al., 2021; Xia et al.,
809 2023; Li et al., 2025; 2020; Maggiori et al., 2017; Ji et al., 2018; Gupta et al., 2019; Zhu et al., 2021;
Demir et al., 2018; Mnih, 2013b).

The dataset consolidates five remote sensing tasks—Semantic Segmentation, Object Detection, Building Extraction, Flood Detection, and Road Extraction—totaling approximately 44,887 samples with 96,549 annotations across 31 categories. For controllable generation, we used Qwen-VL (Bai et al., 2025) to automatically generate text prompts for each sample. To ensure data quality, we performed automatic consistency checks to detect annotation issues like overlapping bounding boxes and broken road segments. The dataset was further refined by removing samples with overly complex annotations or poor image quality and filtering based on CLIP scores (Radford et al., 2021). This process provides a solid foundation for downstream applications. Categories for multi-class tasks are listed in Table 6, and aggregated statistics are in Table 7. In Semantic Segmentation, the unknown class is retained to improve control over unlabeled masks. The other three tasks are single-category: building, flood, and road.

Semantic Seg.	Object Detection
agriculture	Expressway-Service-area
background	Expressway-toll-station
barren	airplane
building	airport
forest	baseballfield
grassland	basketballcourt
road	bridge
water	chimney
woodland	dam
unknown	golffield
	groundtrackfield
	harbor
	overpass
	ship
	stadium
	storagetank
	tenniscourt
	trainstation
	vehicle
	windmill

Table 6: Categories for multi-class tasks in TerraGen.

Task	Source Dataset	# Samples	# Annotations
Semantic Segmentation	LoveDA (Wang et al., 2021) (23.3%)		
	OpenEarthMap (Xia et al., 2023) (27.7%)	10,846	35,797
	ReasonSeg (Li et al., 2025) (49.0%)		
Object Detection	DIOR (Li et al., 2020) (100.0%)	5,860	32,571
Building Extraction	Inria (Maggiori et al., 2017) (25.6%)		
	WHU_Aerial (Ji et al., 2018) (26.4%)	16,327	16,327
	WHU_SatII (Ji et al., 2018) (23.9%)		
	xBD (Gupta et al., 2019) (24.1%)		
Flood Detection	WBS-SI (Shirshmall, 2023) (100.0%)	2,172	2,172
Road Extraction	CHN6-CUG (Zhu et al., 2021) (24.3%)		
	DeepGlobe (Demir et al., 2018) (64.3%)	9,682	9,682
	Massachusetts (Mnih, 2013b) (11.4%)		

Table 7: Composition of the TerraGen dataset. Percentages in parentheses indicate the proportion of samples from each source dataset.

D.2 EVALUATION BENCHMARK

To rigorously evaluate the performance of layout generation models, we curated a benchmark test set of 1,000 samples, which is independent of the training set. These samples are sourced from the same public datasets to ensure consistent data distribution but with no overlap. The test set is composed of 400 samples for object detection, 200 for flood detection, and another 400 versatile samples designated for multi-class semantic segmentation, building extraction, and road extraction tasks. This composition guarantees comprehensive coverage of all tasks and semantic categories defined in TerraGen.

Below, we detail the calculation methods and specific experimental settings for our proposed evaluation metrics. All experiments were conducted on NVIDIA GeForce RTX 4090 GPUs.

RS Image Quality (RS-IQ): The Fréchet Inception Distance (FID) measures the similarity between the distribution of generated images and real images. It is calculated by fitting multivariate Gaussian distributions to the feature representations extracted by a feature network:

$$\text{FID} = \|\mu_r - \mu_g\|^2 + \text{Tr}(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{1/2})$$

864 where (μ_r, Σ_r) and (μ_g, Σ_g) are the feature statistics for real and generated images. For our RS-
 865 IQ metric, we use an InceptionV3 network (Szegedy et al., 2016) whose weights were pre-trained
 866 on ImageNet and subsequently fine-tuned on a large-scale remote sensing dataset. This ensures the
 867 feature extractor is highly sensitive to domain-specific patterns. In practice, we first use our model to
 868 generate a set of images corresponding to the test prompts. Then, we use the fine-tuned InceptionV3
 869 to extract feature vectors from both the generated images and the real ground-truth images, and
 870 finally compute the FID score.

871 *Content Fidelity*: This metric evaluates the alignment between the generated image and the input
 872 text prompt using two distinct scores.
 873

- 874 • CLIP-T: This score measures semantic consistency. We utilize the official pre-trained
 875 weights of the CLIP ViT-L/14 model (Radford et al., 2021) without any fine-tuning. The
 876 computation involves a simple forward pass to extract embeddings from the generated im-
 877 age and the text prompt, followed by a cosine similarity calculation:

$$878 \quad \text{CLIP-T} = \cos(E_I(I_{gen}), E_T(T_{prompt}))$$

- 879 • DINO-I: This score assesses high-level visual feature alignment. Similarly, we use the
 880 official pre-trained DINOv2 ViT-g/14 model (Zhang et al., 2022) without fine-tuning to
 881 extract embeddings from both the generated image and its real-world counterpart, then
 882 compute their cosine similarity:

$$883 \quad \text{DINO-I} = \cos(E_D(I_{gen}), E_D(I_{real}))$$

885 *Layout Consistency*: This metric uses expert models trained on the TerraGen training set to evaluate
 886 layout adherence. All expert models were trained on an NVIDIA GeForce RTX 4090 GPU until
 887 convergence.

- 888 • For Object Detection, we fine-tune a YOLOv8-det model (Jocher et al., 2023) from COCO
 889 pre-trained weights. This model predicts bounding boxes on generated images, which are
 890 then evaluated using mAP and AP₅₀.
- 891 • For Segmentation, we train a YOLOv8-seg model (Jocher et al., 2023) on the corresponding
 892 TerraGen training splits. The model generates segmentation masks, and their accuracy is
 893 measured against the ground truth using Pixel Accuracy (Acc) and mean Intersection over
 894 Union (mIoU).

896 E DOWNSTREAM TASK ENHANCEMENTS IMPLEMENTATION DETAILS

897 **General Training Configuration.**

900 All downstream models, including
 901 Faster R-CNN (Ren, 2015), Oriented R-
 902 CNN (Xie et al., 2021b), SegFormer (Xie et al.,
 903 2021a), and U-Net (Ronneberger et al., 2015),
 904 were trained on NVIDIA
 905 GeForce RTX 4090
 906 GPUs. To ensure a
 907 fair comparison, all ex-
 908 periments followed a
 909 consistent protocol, which
 910 included an early stopping mechanism that halted training after 10 epochs without validation loss
 911 improvement. Each model was initialized from the same official pre-trained weights in every
 912 experimental run.

913 **Baseline Dataset Configurations.** We designed three distinct settings to comprehensively validate
 914 our data enhancement capabilities. The baseline sample counts for each task in each setting are
 915 detailed below:

Object Detection	Segmentation-based Tasks
Dataset: NWPU VHR-10 (Cheng et al., 2014)	Semantic Segmentation
Categories: airplane, ship, storage tank, baseball diamond, tennis court, basketball court, ground track field, harbor, bridge, vehicle	<i>Dataset:</i> DroneDeploy (DroneDeploy, 2019) <i>Categories:</i> background, vegetation, water, building
	Building Extraction <i>Dataset:</i> Mass. Buildings (Mnih, 2013a)
	Road Extraction <i>Dataset:</i> RoadNet (Liu et al., 2018)
	Flood Detection <i>Dataset:</i> FloodNet (Rahnemoonfar et al., 2021)

Table 8: Datasets and categories used in few-shot generalization experiments.

- **In-Domain Setting:** The baseline for Object Detection utilized 2,000 samples from our proposed dataset’s training split. For other tasks, the splits were smaller: 500 samples for Flood Detection, and 1,000 samples each for Semantic Segmentation, Building, and Road Extraction.
- **Few-Shot Setting:** To simulate a data-scarce environment, we used specialized public datasets with a standardized 100/50/50 train/validation/test split. The datasets and categories used are detailed in Table 8.
- **Setting for Transformed Layouts:** For the experiments involving transformed layouts, we leveraged a larger scale of our proposed dataset to establish the baselines. This involved using 5,860 samples for Object Detection, 3,500 for Semantic Segmentation, 1,000 for Flood Detection, and 8,000 each for Building and Road Extraction.

Enhancement Data Generation. For all scenarios, synthetic data was added in multiples (1x, 2x, etc.) of the baseline training set size.

- For **in-domain and few-shot enhancement**, synthetic images were generated using the original layouts from their respective training sets.
- For **enhancement with transformed layouts**, the layouts from our proposed dataset were first modified by a variety of geometric transformations before being used for generation. Visual examples of these transformations, which include rotation, flipping, scaling, and shearing, are shown in Figure 6.

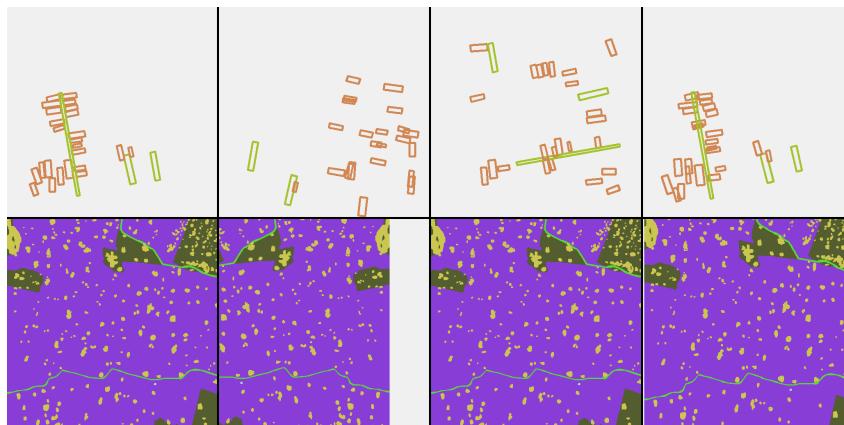


Figure 6: Visual examples of geometric transformations for data augmentation on bounding box (top row) and segmentation mask (bottom row) layouts.