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Abstract

Reconstructing real-world images from fMRI
recordings is a challenging task of great impor-
tance in neuroscience. The current architectures
are bottlenecked because they fail to effectively
capture the hierarchical processing of visual stim-
uli that takes place in the human brain. Moti-
vated by that fact, we introduce a novel neural
network architecture for the problem of neural de-
coding. Our architecture uses Hierarchical Varia-
tional Autoencoders (HVAEs) to learn meaningful
representations of real-world images and lever-
ages their latent space hierarchy to learn voxel-to-
image mappings. By mapping the early stages
of the visual pathway to the first set of latent
variables and the higher visual cortex areas to
the deeper layers in the latent hierarchy, we are
able to construct a latent variable neural decoding
model that replicates the hierarchical visual in-
formation processing. Our model achieves better
reconstructions compared to the state of the art
and our ablation study indicates that the hierarchi-
cal structure of the latent space is responsible for
that performance.

1. Introduction

Decoding visual imagery from brain recordings is a key
problem in neuroscience. This problem aims to reconstruct
the visual stimuli from fMRI recordings taken while the
subject is viewing the stimuli. Even though some of the
excitement is fuelled by science fiction and the difficulty
of the problem (Shen et al., 2019b), the scientific consen-
sus is that neural decoding has real-world, important im-
plications. It is important for understanding how neural
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activity relates to external stimuli (Glaser et al., 2020), for
engineering application such as brain-computer interfaces
(Brandman et al., 2017), for decoding imagery during sleep
(Horikawa et al., 2013), and even for reconstructing video
frames from brain activity (Le et al., 2022). Given its impor-
tance, neuroscience and machine learning researchers have
jointly led the development of sophisticated deep learning
architectures that allows us to design pipelines that map
voxel-based recordings to the corresponding visual stimuli.
Based on the target learning task, visual decoding can be
categorized into stimuli classification, stimuli identification,
and stimuli reconstruction. The former two tasks aim to
predict the object category of the presented stimulus or iden-
tify the stimulus from an ensemble of possible stimuli. The
reconstruction task, which is the most challenging one and
the main focus of this paper, aims to construct a replica of
the presented stimulus image from the fMRI recordings.

Related Work. The proposed methods for the problem of
neural decoding can be broadly classified in three categories:
non-deep learning methods, non-generative deep learning
methods and generative deep learning methods. The non-
deep learning class consists of methods that are based on
primitive linear models and aim in reconstructing low-level
image features (Kay et al., 2008). Such approaches first
extract handcrafted features from real-world images, such
as multi-scale image bases (Miyawaki et al., 2008) or Ga-
bor filters (Yoshida & Ohki, 2020), and then learn a linear
mapping from the fMRI voxel space to the extracted fea-
tures. Due to their simplicity, linear models are not able
to reconstruct complex real-world images and thus their
applicability is restricted to simple images containing only
low-level features.

Methods that use convolutional neural networks as well as
encoder-decoder architectures belong to the non-generative
deep learning class. Horikawa et al. (Horikawa & Kami-
tani, 2017) demonstrated a homology between human and
machine vision by designing an architecture with which
the features extracted from convolutional neural networks
can be predicted from fMRI signals. Based upon those
findings, Shen et al. (Shen et al., 2019b) used a pretrained
VGG-19 model to extract hierarchical features from stim-
uli images and learned a mapping from the fMRI voxels
in the low/high area to the corresponding low/high VGG-
19 features. Beliy et al. (Beliy et al., 2019) designed a
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CNN-based Encoder-Decoder architecture, where the en-
coder learns a mapping from the stimulus images to the
fMRI voxels and the decoder learns the reverse mapping.
By stacking the components back-to-back, the authors train
their network using self-supervision, thereby addressing the
inherent scarcity of fMRI-image pairs. Following up on that
work, Gaziv et al. (Gaziv et al., 2020) improved the recon-
struction quality by training on a perceptual similarity loss
function, which is calculated by first extracting multi-layer
features from both the original and reconstructed images
and comparing the extracted features layer-wise. Such a
perceptual loss is known to be highly effective in assessing
the image similarity and accounts for many nuances in the
human vision (Zhang et al., 2018).

In the generative deep learning class, we have model archi-
tectures, such as generative adversarial networks (GANs)
and variational autoencoders (VAEs). Shen et al. (Shen
et al., 2019b) extended their original method to make the
reconstructions look more natural by conditioning the recon-
structed images to be in the subspace of the images gener-
ated by a GAN. A similar GAN-prior was used by Yves et al.
in (St-Yves & Naselaris, 2018), where the authors also in-
troduced unsupervised training on real-world images. Fang
et al. (Fang et al., 2020) leverage the hierarchical structure
of the information processing in the visual cortex to propose
two decoders, which extract information from the low and
high visual cortex areas, respectively. The output of those
decoders is used as a conditioning variable in a GAN-based
architecture. Shen et al. (Shen et al., 2019a) trained a GAN
using a modified loss function that includes an image-space
and perceptual loss in addition to the standard adversarial
loss. Giigliitiirk et al. (Giigliitiirk et al., 2017) propose a
method to reconstruct perceived faces using a cascade of a
linear transformation combined with maximum a posteriori
estimation and non-linear transformation combined with ad-
versarial training. A line of work by Seeliger et al. (Seeliger
et al., 2018), Mozafari et al. (Mozafari et al., 2020) and
Qiao et al. (Qiao et al., 2020) assumes that there exists a
linear relationship between the brain activity and the GAN
latent space. These methods use the GAN as a real-world
image prior to ensure that the reconstructed image has some
"naturalness" properties. The work by VanRullen et al. (Van-
Rullen & Reddy, 2019) and Ren et al. (Ren et al., 2021)
utilize VAE-GANSs (Larsen et al., 2015), a hybrid model in
which the VAE decoder and GAN generator are combined.
The GAN latent space is used to produce hyperrealistic re-
constructions from fMRI activations. The work by Lin et
al. (Lin et al., 2022) leverages multi-modality and encodes
the fMRI signals into a visual-language latent space and
a contrastive loss function to incorporate low-level visual
features to the schematic pipeline.

Contributions. In this paper, we purpose a novel architec-
ture for the problem of decoding visual imagery from fMRI

recordings. Motivated by the fact that the visual pathway in
the human brain processes stimuli in a hierarchical manner,
we postulate that such a hierarchy can be captured by the
latent space of a deep generative model. More specifically,
we use Hierarchical Variational Autoencoders (HVAE) (Vah-
dat & Kautz, 2020) to learn meaningful representations of
stimuli images and we train a deep neural network to learn
mappings from the voxel space to the HVAE latent spaces.
Voxels originating from the early stages of the visual path-
way (V1, V2, V3) are mapped to the earlier layers of latent
variables, whereas the higher visual cortex areas (LOC, PPA,
FFA) are mapped to the later stages of the latent hierarchy.
Our architecture replicates the natural hierarchy of visual
information processing in the latent space of a variational
model. Our experimental analysis suggests that hierarchi-
cal latent models provide better priors for decoding fMRI
signals and, to the best of our knowledge, this is the first
approach that uses HVAE:s in the context of neural decoding.

2. Visual Information Processing

In this section, we give a brief overview of the visual in-
formation processing in the human brain and describe the
two streams hypothesis, which we use in our experimental
architecture. Visual information received from the retina
of the eye is interpreted and processed in the visual cor-
tex. The visual cortex is located in the posterior part of the
brain, at the occipital lobe, and it is divided into five distinct
areas (V1 to V5) depending on the function and structure
of the area. Visual stimuli received from the retina travel
to the lateral geniculate nucleus (LGN), located near the
thalamus. LGN is a multi-layered structure that receives
input directly from both retinas and sends axons to the pri-
mary visual cortex (V1). VI is the first and main area
of the visual cortex where visual information is received,
segmented, and integrated into other regions of the visual
cortex. Based on the two streams hypothesis (Goodale &
Milner, 1992), following V1, visual stimuli can take the
dorsal pathway or ventral pathway. The dorsal pathway
consists of the secondary visual cortex (V2), the third visual
cortex (V3), and the fifth visual cortex (V5). The dorsal
stream, informally known as the "where" stream, is respon-
sible for visually-guided behaviors and localizing objects in
space. The ventral stream, also known as the "what" stream,
consists of V2 and fourth visual cortex (V4) areas and is
responsible for processing information for visual recogni-
tion and perception. Visual processing occurs hierarchically
at three distinct levels (Groen et al., 2017). The low-level
includes the retina, lateral geniculate nuclei (LGN), and the
primary visual cortex (V1). Low-level processing is the
initial step when interpreting an image and it is the place
where orientation, edges, and lines are perceived. Sequen-
tially, the mid-level processing consists of the secondary
(V2), third (V3) and fourth (V4) which extract shapes, ob-
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Figure 1. Two stream hypothesis of visual information processing
in the human brain.

jects and colors. Finally, the high-level processing consists
of category-selective areas such as the fusiform face area
(FFA), lateral occipital (LOC), parahippocampal area (PPA)
and medial temporal area (MT/VS5). These areas show selec-
tive response to faces, objects/animals, places and motion,
respectively. Despite the evident hierarchical structure of
visual information processing, most current methods for
neural decoding fail to fully exploit that fact. Current meth-
ods take into account the hierarchy of visual information
processing either by mapping the fMRI voxel to hierarchi-
cal CNN-extracted image features via regression models
(Shen et al., 2019b; Wen et al., 2018) or by training an end-
to-end DNN model on a feature loss function (St-Yves &
Naselaris, 2018; Shen et al., 2019a). The major issue with
such approaches is that the hierarchy is taken into account
in the feature space of a CNN model, which is, in general,
complex, high-dimensional space. In this work, we propose
to take into account the aforementioned hierarchy in the
latent space of a deep model. Latent spaces are known to
produce compact, low-dimensional embeddings of the data
and have recently shown impressive performance on image
reconstruction and generation tasks (Vahdat & Kautz, 2020).
Additionally, the early work of Giiclii et al. in (Gliglii & van
Gerven, 2015) and (Giiglii & van Gerven, 2017) reveals a
connection between the cortical hierarchy and the hierarchi-
cal structure of convolutional neural networks. Given these
facts, we postulate that a hierarchical latent space provides
better priors for decoding fMRI signals. The intuition is
that each brain area, being "responsible" for a certain set of
features, better be mapped on a compact, low-dimensional
representation of those features. For example, given that V1
is broadly responsible for encoding low-level features (e.g.,
edges, orientations), it is sensible to map the fMRI voxels
from the V1 region onto a representation of the underly-
ing images features; and this mapping is much easier to be
learned on the latent space, rather than the feature space.

3. Method

Leveraging the aforementioned intuition, we introduce a
neural decoding method that mimics the hierarchical vi-

sual information processing in the latent space. Our archi-
tecture has two main components: a Hierarchical Varia-
tional Autoencoder (HVAE) and a Neural Decoder. The
HVAE is used for learning compact, hierarchical latent rep-
resentations of real-world images and is trained using self-
supervision. The Neural Decoder is used for mapping the
brain signals to the HVAE hierarchical latent space and is
trained via supervision on {fMRI,Image} pairs. In this sec-
tion, we describe each of the components in more detail.
Our architecture is visualized in Fig 2 for the special case
of 2 latent hierarchical layers.

3.1. Hierarchical Variational Autoencoders

To capture the inherent hierarchical structure of visual in-
formation processing, we propose to model images via
a family of probabilistic models known as Hierarchi-
cal Variational Autoencoders (HVAEs). HVAEs extend
the basic Variational Autoencoder (VAEs) by introduc-
ing a hierarchy of latent variables. Formally, let x be
an image and z = {z1,22,...,21} be a set of L la-
tent variables. The generative distribution or decoder
is defined as p(x|z) = po(x|z1) [1,; po(zit1lz:) and
is parametrized by #. The prior distribution is defined
as p(z) = p(z1) HiL;ll p(2zi+1|2;). The posterior p(z|x)
is approximated by the variational distribution or en-
coder qs(zx) = q¢(21]%) [T 4o (2i11]2:), which is
parametrized by ¢. Both the prior and the approximate
posterior are represented by factorial Normal distributions.
The variational principle provides a tractable lower bound,
known as Evidence Lower Bound (ELBO), on the log-
likelihood, as follows

p@(xaz) o x
q¢(Z|X)] _£(03¢a )

= —KL((]¢(Z)‘X||pg(Z)) + Eq¢(z\x) [Inga(X|Z)]ﬂ (1)

logpa (X) > Eq¢(z\x) [log

where KL is the Kullback-Leibler divergence. The encoder
and decoder are implemented by deep neural networks and
their parameters are jointly optimized using gradient descent
on the ELBO criterion. Similarly to standard VAEs, the
reparametrization trick (Kingma & Welling, 2014; Rezende
et al., 2014) is used to allow us to back-propagate the gradi-
ent thought the stochastic sampling involved in the compu-
tation of Eq. 1.

3.2. Neural Decoder

We now leverage the latent space of the HVAE to learn a
set of maps from the fMRI voxel space to the hierarchical
latent variables. In more detail, each region of interest (ROI)
is mapped via a dense neural network to a specific subset
of the latent space. Brain regions in the earlier states of the
visual pathway are mapped to the earlier layers of the la-
tent hierarchy, whereas voxels from the higher visual cortex
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Figure 2. Outline of our method: a) We pretrain a Hierarchical Variational Autoencoder on a large set of images. Two layers of latent
variables z1, z> are inserted after each encoder (EB) and decoder (DB) block. b) We train the Neural Decoder by discarding the encoder
from the previous step and learning a map from the fMRI voxels to the hierarchical latent space. The lower visual cortex (V1, V2, V3) is

mapped to z; and the higher visual cortex (FFA, PPA, LOC) to z».

areas are mapped to the deep layers in the latent hierarchy.
We assume that the HVAE has L groups of latent variables
Z1,Zo, ...z, and that the fMRI voxels are partitioned into L
non-overlapping brain regions of choice, i.e., ¥1,¥2,...YL.
Formally, the Neural Decoder is a set of maps from the i-th
brain region to the i-th group of latent variables. Each of
these maps is represented by a deep neural network with
parameters w;, i.e., z; = ¥y, (yi), ¢ = 1,2,...L. The
reconstruction X is then obtained by passing the latent vari-

ables z = {wwl (Y1)7 wwg (YZ)v te ,l/}’UJL (YL)} through the
decoder model p(x|z) defined in Sec. 3.1.

The loss function used for training the Neural Decoder is an
important design choice. Classic per-pixel measures, such
as Euclidean distance, commonly used for regression prob-
lems, or the related Peak Signal-to-Noise Ratio (PSNR), are
insufficient for images, as they assume pixel-wise indepen-
dence. Therefore, to encourage the Neural Decoder to learn
reconstructions guided by human visual perception, we use
a perceptual loss. Perceptual loss is a class of loss functions
that relies on the fact that CNNs extract hierarchical fea-
tures. More specifically, deep features trained on supervised,
self-supervised and unsupervised objectives are an effective
model of human visual perceptual similarity (Zhang et al.,
2018). For a given image x and its reconstruction X, their
perceptual loss is:

R 1
I(x,%x) = Z H oW Z |1bm © ( i,hw - fi,;bw)H%a
™ m¥Y¥Ym how

@)
where fL, f}( are the layer-wise activations of a given, pre-
trained CNN model, b, € R is a channel-wise scaling
vector. Intuitively, the perceptual loss in Eq. 2 extracts fea-
tures for both the target and reconstructed image and then
compares the features layer-wise using the Euclidean norm.

To ensure that no bias is introduced during learning, it is
important that the CNN used for evaluating Eq. 2 is different
than the one used for the encoder. In our implementation
we use a pretrained AlexNet as well as the code by Zhang
et al. (Zhang et al., 2018) to compute the perceptual loss.

3.3. Model Training

For the encoder part of our HVAE, we use a pretrained
VGG-19 model (Simonyan & Zisserman, 2015). This is
a deep convolutional neural network of 19 convolutional
layers and 3 fully connected layers. We use the weights
from the model pretrained on ImageNet and discard the
fully connected layers. We introduce latent variables by
taking the output of a given convolutional layer, flattening
it, passing it through a fully connected layer and, finally,
through a variational layer which outputs the latent variable.
This latent variable is re-sampled to avoid any dimension
mismatch, and rerouted back to the main block, where it
is aggregated with the output of the convolutional layer.
Depending on how many latent layers we would like to
insert, their exact position may vary. As an empirical design
choice we choose to insert the latent layers equally spaced
and after a convolutional block. A latent layer is always
inserted at the output of the penultimate convolutional block.

The decoder part of our HVAE transforms the hierarchical
latent variables to output images and consists of 4 trans-
posed convolutional layers. The number of decoder filters
are [128, 64,32, 16, 3] and all kernel sizes are set to 5. Each
transposed convolutional layer is followed by a 2d batch
normalization and a ReLU non-linearity. The output of each
transposed convolutional layer is interleaved with the latent
variables. More specifically, each latent variable is initially
passed thought a fully connected layer, re-sampled to avoid
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dimension mismatch and then aggregated with the output
of the corresponding transposed convolution. Similarly to
the encoder, we insert the latent variable such that we en-
sure symmetry and we always insert the penultimate latent
variable before the first transposed convolution.

We start the training process by first deciding the number
and position of the latent layers. The choice is guided by the
type of fMRI data that we have as well as the level of latent
space coarse-graining that we can achieve. For instance,
if our fMRI data contains only the primary (V1) and the
secondary (V2) visual cortex then we have two choices: a)
we can either consolidate all voxels into a single vector and
have a single latent layer in our HVAE or b) we can have two
vectors containing the voxels from each brain area and train
the HVAE such that it has two latent layers z;, zo (example
shown in Fig. 2). Naturally, if our fMRI data are more fine
grain, we can add additional latent layers.

Following this design choice, the training proceeds in two
phases: In the first phase, we pretrain the HVAE via self-
supervision using the ELBO loss function Eq. 1 on a large
ensemble of 50,000 real-world images from the ImageNet
database. These images come from the same categories
as the images shown to the subjects but no test images
are included. This phase gives us meaningful latent rep-
resentations and allows the HVAE decoder to adapt to the
statistics of a large set of real-world images. In the second
phase, the HVAE encoder is discarded, the HVAE decoder
is kept fixed and the Neural Decoder is trained on super-
vised {fMRI, Image} pairs using the perceptual loss func-
tion Eq. 2. In this phase, we essentially learn a map from the
voxels of each brain area to the corresponding latent layer
and then use that latent vector to reconstruct the image.

4. Experimental Results

To evaluate the utility of our method in practice, we carry
out a series of experimental simulations. To measure the
performance of our method, we use both qualitative compar-
isons of the reconstructions as well as quantitative metrics.
In what follows, we give the details of the dataset used, the
metrics implemented and baseline comparisons.

Dataset: We applied our pipeline on a commonly used,
publicly available dataset known as Generic Object
Decoding (GOD). The dataset consists of high-resolution
(500 x 500) stimuli images and their corresponding
fMRI recordings. There exist 1250 (1200 train, 50 test)
stimuli images selected from 200 object categories from
the ImageNet database and the fMRI recording were
obtained while 5 healthy subjects were viewing the stimuli
(presentation experiment). The train- and test-fMRI data
consist of 1 and 35 (repeated recordings) per presented
stimulus image, respectively. We use the post-processed

fMRI data provided by Horikawa et al. (Horikawa &
Kamitani, 2017), which contain voxels from 7 brain areas
(V1,V2,V3,V4,FFA,PPA,LOC). The temporal component
of the fMRI signal is averaged-out and the input to the
model is a high-dimensional voxel vector. Even though
there may be more comprehensive datasets, such as the
BOLD 5000 (Chang et al., 2019) and the NSD (Allen et al.,
2022) datasets (which in fact contain a higher number of
more diverse images), we choose to focus on GOD for two
primary reasons: 1) the dataset provides post-processed
fMRI data, and 2) it has been used in numerous past studies
(Beliy et al., 2019; Shen et al., 2019b; Fang et al., 2020).
Both of these facts facilitate the easy and fair comparison
between different methods.

Ablation Study: We perform an ablation study, with the
number of hierarchical layers and, consecutively, the num-
ber of brain regions, being the ablated parameter. Motivated
by the two stream hypothesis (Sec. 2), we consider the fol-
lowing variants:

1. Naive Baseline (NB): We consider only one latent
layer zyp and all fMRI voxels are mapped to zy 5.
There are approximately 5000 voxels in this variant.

2. Primary-Secondary (PS): We consider 2 latent layers
Zvy1,Zyo and the voxels from V1, V2 are mapped to
the corresponding latent layer. There are approximately
1500 voxels.

3. Dorsal Pathway (DP): We consider the 3 latent lay-
ers zy1,Zys,zy3 and voxels from V1,V2, V3 are
mapped to the corresponding latent. There are ap-
proximately 2500 voxels.

4. Ventral Pathway (VP): We consider 4 latent
layers zy1,zve,Zv4,Z2pr and the voxels from
V1,V2, V4, {FFA, PPA} are mapped to the corre-
sponding latent layer. The voxels from FF'A and
PPA are merged to a single area. There are approxi-
mately 3300 voxels.

We note that by using different ROIs and/or by combining
them to form different latent architectures, it is possible to
obtain different ablated variants. We empirically noticed
that by including the LOC, either concatenated as part of the
latest latent layer of the VP or by creating a new LOC-only
latent layer, there was no further performance improvements,
only losses in terms of computational cost. Therefore, we
restrict our exposition to the aforementioned 4 variants.

Metrics: The reconstruction quality is assessed both sub-
jectively, i.e., by visual inspection of the output test images
and comparison with the ground truth, as well as objectively.
Our quantitative evaluation relies on metrics that encode the
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Figure 3. Qualitative comparison of reconstruction quality.

spatial dependence such as the Pearson Correlation Coef-
ficient (PCC) and the Structural Similarity Index Measure
(SSIM).

Pearson Correlation Coefficient (PCC): This metric is
extensively used in statistics to measure the linear depen-
dence between variables. In the context of image similarity,
PCC is computed on the flattened representations of the
two images. The limitation of PCC is its sensitivity to edge
intensity or misalignment, which makes the metric assign
larger value to blurry images (Beliy et al., 2019).

Structural Similarity Index Measure (SSIM): Wang et
al. proposed SSIM in (Wang et al., 2004) as a metric that
quantifies the characteristics of human vision. Given a pair
of images p, ¢, SSIM is computed as a weighted combina-
tion of luminance, contrast and structure. Assuming equal
contribution of each measure, SSIM is first computed lo-
cally in a common window of size N x N, and then the
global SSIM is computed by averaging the SSIM over all
non-overlapping windows.

These image similarity metrics defined are used for comput-
ing the correct identification rate in an n-way classification
task. Let M € {PCC, SSIM} be a metric of choice, p; be
a reconstructed image and P; be a set containing the ground
truth p; and a set of n — 1 randomly selected target images.
The Correct Identification Rate (CIR) is defined as follows:

N
1
CIR", — ~ E 1(’i = argmaXM(ﬁiapj))v )
i=1 pi€hi

where N is the total number of images and the indicator
function 1(-) has the value of 1 if the argument is true and 0
otherwise. The CI R}, metric is essentially the frequency
at which a reconstructed image can correctly identify the
ground truth among n — 1 randomly selected additional
images. The chance level is 1/n.

Main Results: We compare the performance of our method

against several state of the art methods (SOTA) for the prob-
lem of neural decoding. The competitor methods are: the
encoder-decoder based self-supervised method by Belyi et
al. (Beliy et al., 2019), the end-to-end, GAN-based pipeline
by Shen et al. (Shen et al., 2019a), the GAN-conditioned
method by Shen et al. (Shen et al., 2019b) and the shape-
schematic GAN by Fang et al. Figure 3 shows qualitative
results and compares our method against the aforementioned
competitors. All displayed images were reconstructed from
the test-fMRI dataset. To improve the signal-to-noise ra-
tio, the test fMRI test samples are averaged across trials.
The results shown were obtained using the Ventral Pathway
variant, which gave the best performance. We directly use
the reconstructions reported in the respective papers by the
authors. Our method tends to consistently produce more
faithful reconstructions. Note that, even though the GAN-
based decoders tend to produce more natural images, the
reconstructions may deviate significantly from the stimu-
lus image. This is because the GAN is introduced as an
imaged prior, as noted by Belyi et al. (Beliy et al., 2019).
On the contrary, our method reconstructs the stimuli more
faithfully, albeit the reconstructions appearing as a noisier
version of the ground truth. (Fang et al., 2020).

Identification accuracy (%)
100
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0

2-way 5-way 10-way

mOurs m Belyietal. Shen et al. Shen et al. 2

Figure 4. Correct identification ratio.

The qualitative comparison highlights a trade-off between
the naturalness of the reconstructed stimuli and the pixel-
wise noise introduced in the reconstructions. To resolve
the ambiguity, we perform an additional quantitative com-
parison using the C'I R™ metric. For this part we compare
against the method by Belyi et al. (Beliy et al., 2019) as
well as the two variants of the method by Shen et al. (Shen
et al., 2019b). We directly compare against the results as
reported by the authors of (Beliy et al., 2019). The results
are shown in Fig. 4. For our method, we report the cor-
rect identification rate obtained using the Ventral Pathway
variant and we average across the metrics (CIR% . and
CIR%g;,)- We observe that our method consistently out-
performs the competitors and, particularly in the 5-way and
10-way case, by a substantial margin. Additionally, we ob-
serve our method shows a small performance drop as we
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Figure 5. Qualitative comparison for different pathways.

increase n, i.e, from 90% in the 2-way case to 79% in the
10-way case, whereas the performance loss for the com-
petitor method is substantially higher. This performance is
due to the following fact: Even though our method gives
noisier reconstructions than the competitors, the high-level
features such as color, texture and shapes are retained and,
therefore, the task of identifying the correct ground truth
from the reconstruction is easier. In contrast, please observe
in Fig. 3 that the competitor methods may substantially alter
the color or texture of the image, therefore leading to more
frequent ground truth misidentification.

In the next experiment, we evaluate the decoding perfor-
mance of different visual pathways. The results are shown
on Fig. 5. Qualitatively, the ventral stream seems to be
producing the best reconstructions, which is expected from
a neuroscience perspective, given that this pathway’s pur-
pose is for visual perception and contains high level areas
(FFA-PPA) for object recognition. Interestingly enough,
even though the Naive Baseline contains all the available
brain areas, the reconstruction quality is inferior, especially
in the 2nd and 3rd images, which are far more complex.

The V1-V2, Dorsal and Ventral variants essentially partition
the brain areas into (progressively finer) segments and map
the voxels from each area onto the hierarchical latent space
of the HVAE decoder. Even though the increased perfor-
mance among these variants may be partially explained by
the fact that the number of voxels increases, the main point
of comparison should be against the Naive Baseline. The
three models, PS, DP, and VP, are hierarchical, whereas
the naive baseline includes all data but has no hierarchy.
Simply the fMRI responses from two regions, V1 and V2
and discarding all other voxels we are able to achieve better
performance than simply mapping all voxels in a big latent
vector. This suggests that the hierarchy is far more impor-
tant than the amount of data that we fed to the model. This
is in line with previous studies which concluded that models
trained on the whole visual cortex perform slightly worse
than those trained on separate areas (Fang et al., 2020).

Additionally, since the Naive Baseline essentially learns a
map from all voxels to a single latent layer, it is natural to
assume that is fails due to massively overfitting. However,
if overfitting is indeed the only reason for that failure, we
would expect the reconstruction performance to decrease
as we add more voxels to the model input. However, the
figure shows the exact opposite: the performance increases
as we add more voxels. This suggests that overfitting is
not the only reason for the Naive model’s failure and that
the the hierarchical structure of the visual information pro-
cessing needs to be explicitly taken into account. However,
one may hypothesize that the performance increase in the
Ventral Pathway model may come from the partitioning of
the ROIs and that the hierarchical structure has little impact.
To test this, it is prudent to include a variant in which the
VP ROIs are randomly shuffled to assess whether the hierar-
chical structure or the partitioning of the voxels drives the
performance. We call this variant VP Permutations and it
supplements the previous 4 variants.

Following that, we present quantitative results on Table 1.
On this table we give the the n-way correct identification
rate C'IR™ for n = 2,5, 10, for all ablated variants and the
VP Permutations for both metrics (PCC and SSIM). The
results on this table validate the aforementioned qualitative
observations. The identification accuracy is progressively in-
creasing as we partition the brain into more fine areas and as
we add hierarchical layers in the HVAE onto which the brain
areas are mapped. Additionally, we observe that the newly
introduced VP Permutations variant leads to performance
degradation, which suggests that the hierarchy and not the
partitioning drives the performance result. However, we do
note that we have a slight performance increase compared to
the Naive Baseline, which indicates that merely partitioning
the brain regions is beneficial, albeit not as beneficial as
accounting for the hierarchy.

CIR%ce CIRce CIRY:

CIRsim CIRSsim CIRS

Figure 6. Learning curves for CIR};, n = 2,5,10 and M €
{PCC,SSIM?} across all subjects. The horizontal axis is the
number of epochs. Subject 3 is marginally outperforming the other
subjects and Subject 1 gives the worst performance (figure best
viewed in color).

To verify that our method can be successfully applied to
all subjects and study potential inter-subject variation of
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‘ CIR%DCC ‘ CIR%SUW ‘ C(IR‘IEDCC’ ‘ CIR%SI]W ‘ C(IR}DOC'C ‘ OIR}S(‘)SIM

Naive Baseline 0.77 0.78
Primary-Secondary 0.80 0.82
Dorsal Pathway 0.88 0.90
Ventral Pathway 0.91 0.92
VP Permutations 0.79 0.80

0.64 0.66 0.57 0.58
0.72 0.73 0.65 0.67
0.81 0.80 0.75 0.75
0.84 0.85 0.79 0.79
0.65 0.66 0.60 0.58

Table 1. The n-way correct identification rate (n = 2, 5, 10) for all ablated variants using the Pearson Correlation Coefficient (PCC)
and the Structural Similarity Index Measure (SSIM) as a selection criterion. We report the mean across subjects. The results for VP
Permutations are averaged across 4 permutations. The inter-subject deviation was in the range of 0.02 — 0.05. The chance levels are

0.5,0.25,0.10, respectively.

the results, we show in Fig. 6 the learning curves for all
5 subjects and for all metrics CIR%,, n = 2,5,10 and
M € {PCC,SSIM}. The metrics were calculated us-
ing the test samples and the ventral pathway variant. Even
though the metrics appear similar across subject, after care-
ful examination of the curves some subtle discrepancies and
trends can be observed. Subject 1 is consistently performing
approximately 5% worse across all metrics whereas Sub-
ject 3 is marginally outperforming the other subjects by 2%.
The fact that the Subject 3 gives the best reconstructions has
been verified in previous studies (Gaziv et al., 2020) and is
attributed to differences in the signal-to-noise ratio across
subjects. Finally, Fig. 6 allows us to study how training pro-
gresses and validate that no overfitting occurs. We observe
that, in all cases, the metrics saturate at about 800 epochs,
which gives us an empirical estimate of how many iterations
our model needs to achieve good performance.

5. Conclusion

We addressed the problem of neural decoding from fMRI
recordings and proposed a novel architecture inspired by
neuroscience. More specifically, motivated by the fact that
the human brain processes visual stimuli in a hierarchical
fashion, we postulated that this structure can be captured
by latent space of a hierarchical variational autoencoder
(HVAE). Our HVAE serves as a proxy to learning mean-
ingful latent representations of stimuli images and can be
pretrained on a large dataset of high-resolution images. Fol-
lowing that, we train our Neural Decoder to learn a map
from the fMRI voxel space to the HVAE latent space. Our
architecture replicates the visual information processing in
the human brain in the sense that earlier visual cortex areas
(e.g., primary-secondary visual cortex) are mapped to the
earlier latent layers, whereas voxels from the higher visual
cortex (e.g., PPA, FFA areas) are mapped to the later latent
layers. We validated our approach using fMRI recordings
from a visual presentation experiment involving 5 subjects
and compared against other methods. Our work paves the
way to constructing better models to replicate human per-
ception and understanding the nuances of human visual

reconstruction, both of which could utilized to better un-
derstand the brain, assist people with visual disabilities and
perhaps in decoding imagery during sleep.
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