
Encode Errors: Representational Retrieval of In-Context Demonstrations
for Multilingual Grammatical Error Correction

Anonymous ACL submission

Abstract001

Grammatical Error Correction (GEC) involves002
detecting and correcting incorrect usage of003
grammar. While large language models004
(LLMs) with in-context learning (ICL) capa-005
bilities have shown significant progress on var-006
ious natural language processing (NLP) tasks,007
their few-shot performance on GEC remains008
suboptimal. This is mainly due to the challenge009
of retrieving suitable in-context demonstrations010
that capture error patterns instead of seman-011
tic similarity. In this paper, we demonstrate012
that LLMs can inherently capture information013
related to grammatical errors through their in-014
ternal states. We extract from these states the015
Grammatical Error Representation (GER), an016
informative and semantically neutral encod-017
ing of grammatical errors. Our novel GER-018
based retrieval method significantly boosts per-019
formance in ICL settings on multilingual GEC020
datasets, improving the precision of correction.021
For high-resource languages, our results on022
8B-sized open-source models match those of023
closed-source models such as Deepseek2.5 and024
GPT-4o-mini. For low-resource languages, our025
F0.5 scores surpass the baseline by a factor of026
1.25. This method provides a more precise027
and resource-efficient solution for multilingual028
GEC, offering a promising direction for inter-029
pretable GEC research. The code will be avail-030
able upon acceptance.031

1 Introduction032

Grammatical Error Correction (GEC) is an impor-033

tant research field in natural language processing034

(NLP), as it requires language models to under-035

stand the syntax, semantics, and pragmatics un-036

derlying the subtle structures of natural sentences037

(Bryant et al., 2023). Initially considered a spe-038

cific case of machine translation (Yuan and Briscoe,039

2016; Junczys-Dowmunt et al., 2018), GEC has040

evolved with two dominant approaches. Text-041

to-text methods (Katsumata and Komachi, 2020;042

Input: She has swim for 14 hours. 
Prediction: She has swum for fourteen hours.

Input: 
John has 
traveled for 
about a week.
Label: 
John has been 
traveling for 
about a week.

Input: 
Legend with 
a history of 
500 years
Label: 
A legend with 
a history of 
500 years

Input: She has swim for 14 hours. 
Prediction: She has been swimming for 14 hours.
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Figure 1: A minimal working example demonstrating
the workflow of representational retrieval. Given an
erroneous input with predictions containing both under-
correction (marked in red) and over-correction (marked
in blue), we first transform the error information de-
tected by the model into Grammatical Error Represen-
tation (GER). Then, we retrieve GER-adjacent demon-
strations from the database, which exhibit similar error
patterns to the input. These demonstrations guide the
model to make more precise corrections and alleviate
over-corrections.

Sun et al., 2021; Ingólfsdóttir et al., 2023) con- 043

struct pairs of erroneous input and corrected out- 044

put sentences and train encoder-decoder models, 045

while text-to-edit approaches (Stahlberg and Ku- 046

mar, 2020; Omelianchuk et al., 2020) rely on the 047

encoder’s capabilities to identify errors and make 048

corrections. 049

As Large Language Models (LLMs) come to 050

prominence, they have achieved considerable re- 051

sults in GEC (Maeng et al., 2023; Zeng et al., 052

2024). However, LLMs that are not specifically 053

adapted for GEC tasks face two main challenges: 054

misalignment and over-correction (Loem et al., 055

2023). These models often produce corrections 056

misaligned with human-annotated labels, and they 057

may over-correct error-free parts, rewriting them 058

into more fluent forms. This behavior violates the 059
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minimum edit distance principle (Nagata and Sak-060

aguchi, 2016).061

Since few-shot inference is widely used to bridge062

alignment gaps in downstream tasks through in-063

context learning (ICL), LLM-based GEC systems064

have leveraged correction examples from databases065

to improve performance and interpretability (Davis066

et al., 2024; Song et al., 2024). However, vanilla067

retrieval methods based on sentence embedding068

or k-nearest neighbors (kNN) struggle to meet the069

unique needs of grammatical error selection (Vas-070

selli and Watanabe, 2023). Grammatical errors are071

typically localized structural issues that are inde-072

pendent of word meanings, but model embeddings073

combine syntax and semantics into a single vector,074

making it difficult to retrieve samples with similar075

error patterns.076

In this paper, we argue that despite the align-077

ment problem in GEC tasks, language-proficient078

models can smoothly distinguish wrong from right079

and identify error patterns. This suggests that we080

should focus less on the generation capabilities081

of LLMs, but more on their internal knowledge082

about grammatical errors. We probe for two key083

questions: How does a language model encode084

grammatical errors internally? and can we extract085

grammatical error representations that are disen-086

tangled from semantics?087

In this paper, we introduce a novel method088

to extract the Grammatical Error Representations089

(GER), a precise and interpretable representation090

of grammatical errors with less semantic noise, for091

guiding the retrieval of in-context demonstrations.092

Specifically, we compute error vectors (EV) by093

applying PCA to the difference between the hid-094

den states of erroneous and correct tokens. We095

then project the hidden states of errors onto the096

EV to obtain the GER. As shown in Figure 1, our097

GER preserves the proximity of fine-grained errors:098

during retrieval, each detected error aligns with099

similar error patterns. Additionally, over-corrected100

tokens are queried for similar over-correction cases101

in the database, improving the precision of the cor-102

rection process. During inference, the number of103

retrieved examples dynamically adjusts based on104

the detected errors in the sentence, allowing for105

more efficient use of computational resources.106

We conduct extensive experiments to demon-107

strate our consistent outperformance on GEC108

datasets across five languages. Without addi-109

tional training or generation, we obtain high-quality110

and interpretable demonstrations for ICL. Our re-111

sults surpass state-of-the-art (SOTA) GEC retrieval 112

methods, increasing F0.5 by up to 9 points for high- 113

resource languages like English, and by a factor of 114

1.25 for low-resource languages like Estonian. On 115

open-source 8B-sized models, our approach yields 116

results comparable to contemporary closed-source 117

LLMs like Deepseek2.5 (Liu et al., 2024a) and 118

GPT-4o-mini (Achiam et al., 2023). 119

Our contributions are summarized as follows: 120

• We introduce a novel method to disentangle 121

grammatical errors from semantic information 122

and into grammatical error representations 123

(GER), a high-quality encoding for grammati- 124

cal errors. 125

• We develop an effective retriever to query 126

examples with similar error patterns based 127

on GER, enabling powerful ICL with LLMs 128

across multilingual datasets. 129

• To the best of our knowledge, we are the first 130

to explore the relationship between grammati- 131

cal errors and LLM representations, offering 132

new insights for utilizing LLMs’ representa- 133

tions to guide GEC tasks. 134

2 Related Works 135

2.1 Grammatical Error Correction 136

Grammatical Error Correction (GEC) systems have 137

wide applications in proofreading, education, and 138

second language acquisition (Kaneko et al., 2022; 139

Caines et al., 2023; Liang et al., 2023). Re- 140

search has primarily focused on two Transformer- 141

based approaches: sequence-to-sequence genera- 142

tion (Yuan and Briscoe, 2016; Junczys-Dowmunt 143

et al., 2018; Li et al., 2022) and sequence-to-edit 144

tagging (Awasthi et al., 2019; Omelianchuk et al., 145

2020). Given the local and sparse nature of gram- 146

matical errors, researchers often generate synthetic 147

data (Stahlberg and Kumar, 2024), incorporate ad- 148

ditional information (Zhang et al., 2022; Fei et al., 149

2023), or add extra processing steps during infer- 150

ence (Lai et al., 2022; Zhou et al., 2023; Zhang 151

et al., 2023; Li and Wang, 2024) to boost per- 152

formance. Recent work also explores LLMs for 153

GEC, either through direct correction generation 154

(Loem et al., 2023) or instruction tuning (Fan et al., 155

2023). Despite challenges like over-correction and 156

misalignment in LLMs (Vasselli and Watanabe, 157

2023), human evaluations often rate their correc- 158

tions highly (Zeng et al., 2024). 159
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2.2 Interpretable Representations in LLMs160

Although LLMs are often seen as black boxes due161

to their vast number of parameters, recent research162

has shown that they develop emergent structures163

within their representations (Elhage et al., 2021;164

Zou et al., 2023). In the simplest case, a single165

dimension within the model is sufficient to char-166

acterize a specific behavior (Arditi et al., 2024;167

Sheng et al., 2024); more complex circuits may in-168

volve dozens of neurons distributed across different169

layers interacting to form meaningful components170

(Wang et al., 2023). These interpretable compo-171

nents can be understood and controlled through172

techniques like adding, deleting, replacing, or tun-173

ing (Liu et al., 2024b; Wu et al., 2024). Our work174

is the first to explore and utilize LLMs’ representa-175

tions related to grammatical errors.176

2.3 In-Context Learning in GEC177

LLMs have demonstrated the ability to align their178

generated results to the knowledge domain and179

style of several in-context examples (Brown et al.,180

2020; Saakyan and Muresan, 2024). The few-shot181

inference paradigm avoids the additional param-182

eters and computational costs of fine-tuning with183

downstream tasks.184

The selection of examples in the prompt largely185

affects the performance of ICL. Researchers have186

increased retrieval results by filtering the data, (He187

et al., 2021; Peng et al., 2023) or optimizing query188

encodings and retrieval algorithms (Li and Qiu,189

2023; Wang et al., 2024). The most helpful exam-190

ples usually share similar encodings to the query,191

along with sufficient diversity to increase informa-192

tion entropy. However, for GEC tasks, the selection193

goal is hard to achieve. Due to the entanglement194

of syntax and semantics, the error encodings tend195

to retrieve examples with similar meanings instead196

of analogous error types (Vasselli and Watanabe,197

2023; Song et al., 2024). Recent works tackle198

this entanglement by having models write error199

explanations, which are then used to retrieve er-200

rors based on the explanation embeddings (Li et al.,201

2025). Despite the improved retrieval performance,202

these methods still suffer from coarse sentence-203

level granularity and the semantic noise introduced204

by generated explanations. Moreover, no work has205

yet addressed the issue of over-correction.206

3 Methods 207

In this section, we describe a novel method for 208

extracting vectors that characterize grammatical 209

error information and using them to create seman- 210

tically neutral grammatical error representations 211

(GER). GER from the training dataset is stored in 212

a database, where each error is associated with its 213

original and corrected texts. During inference, the 214

model retrieves similar correction examples based 215

on GER to guide corrections, with the flexibility 216

to dynamically adjust the number of examples de- 217

pending on the complexity of the input sentence. 218

The final GEC prediction is generated by combin- 219

ing the retrieved examples with a correction tem- 220

plate. 221

3.1 Extraction of Error Vectors 222

Given a GEC dataset S = {(x(k), y(k))}Nk=1, each 223

sample consists of a potentially erroneous text x 224

and its parallel corrected text y. x is prompted with 225

an initial correction prompt, which can be zero- 226

shot or filled with random initial demonstrations 1. 227

During the generation of the initial prediction ŷ, we 228

extract the hidden state at the i-th position from the 229

t-th layer of the model, denoted as h(t)
i , obtaining 230

the set H(t). The choice of the specific layer t is 231

discussed in 5.2. For simplicity, the subsequent 232

formulas omit the layer index. 233

ŷ = LLM
(
promptinit(x)

)
(1) 234

H(t) =
{
h
(t)
i | ∀i ∈ {1, . . . , |ŷ|}

}
(2) 235

By comparing x and ŷ, we identify all edits made 236

by the LLM and collect the set of edited positions 237

E and unedited positions U . The corresponding 238

hidden states, HE and HU , contain the information 239

necessary for the model to decide whether to cor- 240

rect. The difference between these sets captures 241

the directions that guide the model from copying 242

the original text to making corrections - precisely 243

the information related to grammatical errors. We 244

multiply this difference by a random sign variable 245

αe,u ∈ {−1, 1}, which randomly changes the sign 246

to enhance the weight of the error-related directions 247

in the principal components. 248

E = {i | Align(x, ŷ)[i] = Edited}|ŷ|i=1

U = {i | Align(x, ŷ)[i] = Unedited}|ŷ|i=1

(3) 249

1The selection of examples in the initial prompt is dis-
cussed in Section 5.3.
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Input: John has traveled for over a week. 
Pred: John has been traveling for over one week.

Decoder Block t

PCA
EV Projector

Grammatical Error 
Reprsentation

(GER)

Key

Value
Input: John has traveled for over a week.

Label: John has been traveling for over a week.

Error
DB

Top-K Error Samples

Your job is to fix grammatical mistakes, awkward phrases,
spelling errors, etc. ...
<Error sample 1> …<Error sample K> ...
<Input> She has swum for 14 hours. </Input>

Pred: She has been swimming for 14 hours.

Error
DB

Input: She has swim for 14 hours.
Pred: She has swum for fourteen hours.

Error Vector
(EV)

Decoder Block t

EV Projector

Representation Construction Representation-based Retrieval

Query

Figure 2: The pipeline for proposed representational retrieval for few-shot GEC. Left: The hidden states that
best reflect the error information are extracted and transformed through PCA to obtain error vectors (EV). The
projections onto EV, denoted as grammatical error representations (GER), are stored as keys in the database. Right:
During inference, GER of the test input serves as the query to retrieve similar error patterns to aid correction.

HE = {hi | ∀i ∈ E}
HU = {hi | ∀i ∈ U}

(4)250

∆H = {αe,u(he − hu) | ∀e ∈ E , ∀u ∈ U} (5)251

We apply Principal Component Analysis (PCA)252

to the difference ∆H, yielding a set of principal253

components R. As shown in Section 5.1, R encap-254

sulates information related to grammatical errors,255

with the first principal component r1 representing256

the simplicity of the error, indicating how easy it257

can be corrected. The first two principal compo-258

nents are sufficient for encoding simple error types259

disentangled from the text’s meaning. We desig-260

nate R as the error vectors (EV) of the model.261

∆H = UΣR⊤ (6)262

3.2 Construction of GER Database263

For each correction e ∈ E , we average the differ-264

ence between he and all corresponding hu ∈ HU in265

the same sentence, canceling out noise from token266

meanings and positional embeddings. We then ap-267

ply PCA, projecting onto m principal components2268

2The choice of dimensions for GER is discussed in Sec-
tion 5.1.3.

to obtain the grammatical error representation 269

(GER) p(m)
e . We omit dimension labeling where it 270

is not necessary. GER serves as the key, with the 271

corresponding pair (x, y) as the label, to construct 272

the GER database D. 273

∆h̄e =
1

|U|
∑
u∈U

(he − hu) (7) 274

p(m)
e =

[
r1, r2, ..., rm

]⊤
∆h̄e, ∀e ∈ E (8) 275

D = {(pe → (x, y)) | ∀(x, y) ∈ S, ∀e ∈ E} (9) 276

3.3 Retrieval of In-Context Demonstrations 277

During inference, the test input x̃ ∈ S̃ undergoes 278

the pipeline from Equation (1)-Equation (5) to ob- 279

tain GER for every edit, which is then used as the 280

query qe to retrieve the Ke nearest neighbors from 281

D. 282

N (qe) =
{
(pe → (x, y))(j)

}Ke

j=1
⊆ D (10) 283

Thanks to the fine-grained error encoding, we dy- 284

namically allocate the number of retrieved demon- 285

strations Ks based on the complexity of each sen- 286

tence’s errors. Sentences deemed error-free by the 287
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model are not assigned examples, saving compu-288

tational resources for sentences with more errors.289

We further reveal in Section 5.1 that the magnitude290

of the first dimension of GER |p(1)
e | correlates with291

the simplicity of the error. Therefore, we prioritize292

retrieval for errors that have small |p(1)
e |, further293

optimizing resource allocation.294

The retrieved examples are concatenated and295

combined with a few-shot correction template to296

prompt the final GEC prediction. The inference297

pipeline is illustrated in Figure 2. and the prompts298

used are listed in Appendix A.3.299

4 Experiments300

4.1 Datasets, Models, and Metrics301

We evaluate the proposed method on five GEC302

datasets across four languages to testify to GER’s303

ability to encode and retrieve errors. Following the304

multilingual setup in Li et al. (2025), we process305

the training dataset and use LlamaIndex (Liu, 2022)306

to construct the database and retriever.307

For high-resource English (EN), we use the308

W&I+LOCNESS (Bryant et al., 2019) as the train-309

ing dataset, and the CoNLL-14 (Ng et al., 2013)310

and BEA-19 (Bryant et al., 2019) datasets for test-311

ing. For medium-resource German (DE), we use312

the Falko-Merlin (Boyd, 2018) dataset for both313

training and testing. To showcase the generalizabil-314

ity of our method, we also include low-resource315

Romanian (RO) and Estonian (ET). For Romanian,316

we choose the RONACC (Cotet et al., 2020) train-317

ing and test datasets; for Estonian, we use the Tartu318

L2 learner corpus (Rummo and Praakli, 2017) as319

the database and the L1 as the test data.3320

Since GER requires the model’s internal states,321

all experiments are conducted using recent open-322

source multilingual LLMs, including Meta’s323

Llama-3.1-8B-Instruct (Dubey et al., 2024) and324

Qwen2.5-7B-Instruct (Yang et al., 2024) by Tongyi.325

We use the ERRANT toolkit (Bryant et al., 2017)326

to align edits between initial and final predictions327

and evaluate using precision, recall, and F0.5 with328

M2Scorer (Dahlmeier and Ng, 2012).329

Our method is compared with the following base-330

lines:331

• Random: Random selection of in-context332

demonstrations from the database;333

3The detailed statistics of GEC datasets are placed in Ap-
pendix A.1.

• Semantic: kNN retrieval based on input text 334

embeddings (Khandelwal et al., 2021); 335

• BM25: A term-based ranking function widely 336

used in information retrieval (Robertson et al., 337

2009); 338

• Explanation: Retrieval based on the similarity 339

of LLM-generated explanations for erroneous 340

sentences (Li et al., 2025). 341

All experiments are conducted in an 8-shot set- 342

ting. For all baseline methods, we retrieve 4 erro- 343

neous and 4 correct examples, following Li et al. 344

(2025). Since our method dynamically determines 345

the number of examples needed for each sentence, 346

we retrieve 4 examples for each error and ensure 347

that the average demonstration number is 8. 348

4.2 Main Results 349

During preliminary experiments, we found that the 350

number of examples in the initial promptinit-n sig- 351

nificantly impacts results. Thus, we present results 352

in two configurations: "GER0" refers to generating 353

the initial predictions using 0-shot initial prompt 354

promptinit-0, and "GER8" add 8 randomly chosen 355

examples into the initial prompt promptinit-8. 356

As Table 1 demonstrates, our GER-based re- 357

trieval methods consistently outperform other base- 358

line methods in both prompt settings. In the GER8 359

setting, our method exceeds the explanation-based 360

SOTA by 4.36 and 4.56 points on the English 361

CoNLL-14 and German Falko-Merlin datasets, re- 362

spectively. Moreover, the BEA-19 dataset achieves 363

a 9.15 higher F0.5 than the semantic SOTA, nearly 364

a 20% improvement. GER0 still results in an im- 365

provement of around 3-5.6 points above SOTA, tes- 366

tifying to the effectiveness of our GER extraction 367

and retrieval process. 368

On low-resource languages, GER retrieval yields 369

even better results. For Romanian, the F0.5 score 370

improves by 4.33 points, while Estonian shows a 371

3.06 points improvement (nearly 25%). In GER0, 372

results are about 1 point lower but still surpass 373

the SOTA. We hypothesize that low-resource lan- 374

guages benefit more from examples to help the 375

model grasp syntax and generate corrections, as 376

discussed in Section 5.3. 377

On the Qwen2.5 model, the results follow a sim- 378

ilar trend to Llama3.1, confirming the generaliz- 379

ability of our approach across models. However, 380

the advantage is slightly lower for low-resource lan- 381
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Model Method
English German Romanian Estonian

CoNLL-14 BEA-19 Falko-Merlin RONACC Tartu-L1
P R F0.5 P R F0.5 P R F0.5 P R F0.5 P R F0.5

Llama3.1
(8B)

Random 54.02 52.60 53.73 44.20 63.43 47.05 59.62 54.53 58.53 45.38 43.87 45.07 10.34 21.10 11.52
Semantic 55.21 51.56 54.44 45.51 62.84 48.17 60.03 54.15 58.75 49.16 46.73 48.65 11.04 22.61* 12.30

BM25 54.58 51.58 53.95 44.18 62.95 46.98 59.65 58.53 58.80 50.50 48.70* 50.13 - - -
Explanation 55.00 53.04 54.60 45.24 63.26 47.97 60.35 54.79 59.15 47.75 43.66 46.87 11.45 24.52 12.81*

GER0 58.60* 55.33 57.92* 47.86* 65.67* 53.75* 66.39 55.88 62.46* 54.00* 49.51 53.04* 14.25* 18.94 15.00*
GER8 60.11 54.75* 58.96 55.63 67.28 57.63 65.54 57.34* 63.71 56.26 48.28 54.46 15.07 20.12 15.87

Qwen2.5
(7B)

Random 54.43 53.50 54.24 44.84 63.62 47.65 55.25 48.06 53.65 32.85 28.25 31.81 6.21 17.67 7.14
Semantic 55.27 52.65 54.73 45.48 63.40 48.21 57.81 48.57 55.76 37.97 34.59 37.24 6.41 18.36 7.37

BM25 54.11 52.25 53.73 44.67 63.89* 47.53 57.21 50.18* 55.65 39.28 35.52* 38.46 - - -
Explanation 55.67 51.60 54.81 47.22 62.31 49.62 57.33 47.63 55.08 33.64 30.23 32.90 6.54 18.21* 7.50

GER0 55.78 56.94 56.00* 49.12* 63.24 51.41* 61.09* 48.15 57.97* 41.47 30.60 38.72* 7.29* 11.75 7.89*
GER8 57.53 55.62 57.13 52.37 67.37 54.81 60.31 51.90 58.42 41.34* 35.56 40.04 8.27 14.10 9.01

Table 1: Results on multilingual GEC datasets by different retrieval methods. "Random" refers to retrieval baseline
by random selection; "Semantic", "BM25", and "Explanation" retrieve demonstrations based on text embedding,
BM25 matching, and LLM-generated explanations, respectively. "GER" refers to our representation-based retrieval
methods, "GER0" and "GER8" refers to different initial prompts. The best results are marked in bold and the
second-best results are marked with an asterisk (*).

Backbone Method Lang EN DE ET
F0.5

Fine-tuned GEC Single Model
gT5 xxl Rothe et al. (2021) Mono 65.7 76.0 -
NLLB Luhtaru et al. (2024) Multi 65.2 73.9 63.2
BART Zhou et al. (2023) Mono 69.6 - -

Inference of LLMs
GPT-3.5-Turbo Davis et al. (2024) - 57.2 - -
GPT-3.5-Turbo Tang et al. (2024) - 58.8 - -
Deepseek2.5 Li et al. (2025) - 59.4 63.4 22.7
GPT-4o-mini Li et al. (2025) - 58.7 65.6 19.9*
Llama3.1 (8B) Ours - 59.0* 63.7* 15.9

Table 2: The comparison of state-of-the-art (SOTA)
models on multilingual GEC datasets. "EN", "DE", and
"ET" stand for the CoNLL-14, Falko-Merlin, and Tartu-
L1 datasets, respectively. Fine-tuned language models
are labeled with their training data in the "Lang" column,
where the "Mono" models are tuned separately for each
language, and the "Multi" with multilingual mixed data.
The best results are marked in bold and the second-best
results are marked with an asterisk (*).

guages, likely due to Qwen2.5’s smaller pre-trained382

corpus for these languages.383

4.3 Comparison with SOTA384

Current datasets reveal a persistent performance385

disparity in GEC tasks: while fine-tuned special-386

ist models achieve state-of-the-art (SOTA) results387

across multilingual benchmarks (see Table 2), in-388

context learning (ICL) with LLMs exhibits signifi-389

cant accuracy gaps. Our representational retrieval390

method manages to achieve results comparable to391

some closed-source models on high-resource En-392

glish and German, including Deepseek2.5 (Liu393

et al., 2024a) and GPT-4o-mini (Achiam et al.,394

2023). These promising results demonstrate the po-395

tential of utilizing interpretable components within396

the model to better align with human concepts and397

annotations of grammatical errors.398

5 Analysis 399

5.1 Encoding Capacity of GER 400

The different principle components calculated by 401

PCA, referred to as error vectors (EVs), capture 402

various levels of error-related information in nat- 403

ural sentences. Our preliminary exploration of 404

the first few EVs shows that the first EV repre- 405

sents the model’s recognition and difficulty rank- 406

ing of grammatical errors, while the second EV 407

captures simple information about error types such 408

as tense issues. In the following analysis section, 409

unless stated otherwise, we use the GER8 setup 410

with Llama3.1-8B. 411

5.1.1 The First EV: Error Detector 412

We illustrate the first component of GER (first 413

GER) obtained from the English training dataset 414

in Figure 3. The figure presents a clear boundary 415

between erroneous and correct tokens along the 416

direction of the first EV, proving that the first GER 417

can serve as an effective error detector. 418

Moreover, the magnitude of the first GER re- 419

flects the simplicity of errors in a relatively quanti- 420

tative way. We classify the predicted tokens based 421

on the confusion matrix, and plot the distribution 422

of True Positive (TP), False Positive (FP), True 423

Negative (TN), and False Negative (FN) in Fig- 424

ure 3. Those cases with larger first GER are more 425

likely to be precise corrections, while those with 426

smaller values tend to be over-corrected. Hence, 427

we construct the dynamic demonstration selection 428

method, sparing the demonstration quota on errors 429

with large values of the first GER, to save more 430

computational resources for errors that are difficult 431

and need to be corrected by referring to the exam- 432
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Figure 3: Distribution of the first GER component
with respect to error/correct (up) and confusion matrix
(down).

Method EN DE ET
P R F0.5 P R F0.5 P R F0.5

Dynamic 60.1 54.8 59.0 65.5 57.3 63.7 15.1 20.1 15.9
Random 59.8 52.6 58.2 64.1 55.5 62.2 13.9 20.0 14.8
Reverse 60.7 50.3 58.3 65.2 54.6 62.8 14.4 17.8 15.0

Table 3: Ablation of different demonstration selection
methods of GER.

ples. We ablate the selection method by randomly433

selecting retrieved examples (Random) and priori-434

tizing retrieval for errors that have large first GER435

(Reverse) in Table 3, validating the usefulness of436

dynamic selection.437

5.1.2 The Second EV: Simple Error Classifier438

On the first EV, we can distinguish between the439

wrong and the correct, but one dimension fails to440

provide detailed information. Introducing the sec-441

ond EV enables recognition of basic grammatical442

patterns. To validate this progression, we create a443

specialized test set4 containing:444

• Sport-domain sentences with present perfect445

progressive (ppp) tense errors;446

• Art-domain sentences with simple past (sp)447

tense errors.448

Cross-domain probes are designed as:449

• Art-domain samples with ppp errors;450

• Sport-domain samples with sp errors.451

4Specific samples of the test set are placed in Appendix B.
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Figure 4: Distribution of different encoding methods
on a manually created test set. "sport"/"art" refers to
sentences in the sport/art domain, and "ppp"/"sp" refers
to present perfect progressive / simple past tense errors.
Cross-domain probes are marked as stars.

Dim. EN DE ET
P R F0.5 P R F0.5 P R F0.5

128 59.5 54.5 58.4 65.2 57.3 63.4 14.4 19.4 15.2
256 59.7 53.6 58.4 65.2 57.2 63.4 15.1 20.1 15.9
512 59.8 54.3 58.6 65.5 57.3 63.7 14.7 20.1 15.5

1024 60.1 54.8 59.0 65.4 57.4 63.6 14.9 20.4 15.8
2048 60.0 54.4 58.7 65.1 56.9 63.3 14.3 20.7 15.2

Table 4: Results across different dimensional configura-
tions of GER.

Figure 4 shows that while semantic embeddings re- 452

trieve semantic-similar but error-mismatched exam- 453

ples, our 2-dimensional GER successfully clusters 454

analogous errors across domains, demonstrating 455

the proximity and semantic neutrality of GER. 456

5.1.3 Dimensionality Trade-offs in GER 457

Increasing the dimensionality of GER (m in p
(m)
e ) 458

enhances its ability to encode fine-grained error 459

patterns, but simultaneously amplifies the semantic 460

noise it contains, causing GER to extract exam- 461

ples with semantic similarities over those sharing 462

similar error types. Experimental results across 463

different dimensional configurations are presented 464

in Table 4: the more resources the model has about 465

a particular language, the more dimensions it needs 466

to encode errors in that language. At reduced di- 467

mensions, GER fails to distinguish complex errors; 468

on the other hand, when the dimensions are too 469

large, GER can identify some nuanced error cases 470

but introduce more error-irrelevant samples, result- 471

ing in higher recall and lower precision. 472

5.2 Layer Selection 473

We select the layer used to extract GER based on 474

the performance of grammatical error detection. 475

The error detection performance with respect to 476

each layer of the model is juxtaposed with the ex- 477

plained variance ratio of the first principal com- 478

ponent in PCA (first EVR) in Figure 5. From the 479
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upper figures, a spike of the first EVR is clearly480

depicted, coinciding with the most accurate layer481

in the lower images. The specific choice of layer482

differs with each model but maintains high consis-483

tency within the model across all languages, and484

all in the medium of the model (the 21st layer for485

32-layer Llama3.1, and the 12th layer for 28-layer486

Qwen2.5). This suggests to us that there are spe-487

cific components within the layer that are responsi-488

ble for understanding and processing grammatical489

error information. We leave further research to490

future work.491

5.3 Demonstration Selection for Initial492

Prompt493

As observed in Section 4.2, even randomly se-494

lected examples in the initial prompt significantly495

improve results, although they affect the initial pre-496

diction and not the final output. We attribute this497

improvement to two factors: first, the few-shot498

initial prompt helps activate the model’s correc-499

tion capability and aligns the generate outputs with500

the example format. This alignment is particu- 501

larly noticeable in low-resource languages such 502

as Estonian, where zero-shot predictions usually 503

include English tokens, introducing noise that hin- 504

ders the PCA process for extracting EV. Second, 505

from within the model, the initial prompt aligns EV 506

inside the model toward the actual error space. Fig- 507

ure 6 reveals that the first explained variance ratio 508

(EVR) increases as more initial examples are added, 509

indicating that the model is refining its error space 510

with each new demonstration. This suggests that 511

the examples selected by GER may help the model 512

better characterize the error space, which can be 513

used iteratively in another round of generation to 514

optimize EV. We leave this iterative approach for 515

future work. 516

6 Conclusion 517

In this paper, we delve into the internals of LLMs 518

and develop a novel method for extracting precise 519

and interpretable grammatical error representations 520

(GER) with less semantic noise. The effectiveness 521

of GER in encoding fine-grained error patterns en- 522

ables retrieval of high-quality error demonstrations, 523

improving the few-shot performance of LLMs on 524

GEC across diverse language settings. 525

Our preliminary exploration and successful uti- 526

lization of LLMs’ internal states highlight the po- 527

tential of utilizing the model’s inherent knowledge 528

to strengthen GEC performance, alignment, and 529

interpretability, all without the need for additional 530

components or training resources. 531
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Limitations532

Our work explores and leverages the knowledge re-533

lated to error correction within large models. How-534

ever, the few-shot GEC capabilities of LLMs are535

far from fully realized. The later dimensions of536

our proposed error vectors contain detailed, fine-537

grained knowledge about error classification and538

correction, but they are difficult to separate, vi-539

sualize, and utilize effectively. In addition, we540

did not address the scenario where long sentences541

with multiple errors outpace the utility of the 8-542

shot examples. In such cases, slicing the long543

sentence into smaller segments may yield better544

performance.545

While we have encoded errors and used them for546

example retrieval in this work, the error informa-547

tion could be applied more broadly in the model’s548

prediction pipeline, such as in controlling the de-549

coding process. Future work could investigate sim-550

pler ways of representing error information, or de-551

velop methods to comprehensively combine and552

summarize this information for more effective ma-553

nipulation of model-generated grammatical error554

corrections.555
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A Experimental Settings 962

A.1 Dataset Statistics 963

Our dataset usage is shown in Table 5. The training 964

data samples used to construct the database are 965

initially filtered by length with a minimum of 10 to 966

ensure quality. 967

A.2 Model Settings 968

We utilize open-source LLMs such as Llama-3.1- 969

8B-Instruct and Qwen2.5-7B-Instruct to implement 970

representation extraction and demonstration re- 971

trieval. 972

To ensure reproducibility, we applied determin- 973

istic decoding (with temperature set to 0 and top_p 974

set to 1.0) during inference. For the "Random" 975

baseline, samples were selected using three differ- 976

ent random seeds, and the results were averaged. 977

A.3 Prompt Settings 978

Throughout the entire experiment pipeline, we use 979

the same prompt for GEC task as prior works (Tang 980
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Training Dataset (As Database) Test Dataset
Language Name #Erroneous #Correct Name #Total

English W&I+LOCNESS 20185 6839
CoNLL-14 1312
BEA-19 4477

German Falko-Merlin 11801 1916 Falko-Merlin 2337
Romanian RONACC 6974 108 RONACC 1519
Estonian Tartu-L2-Corpus 7156 4 Tartu-L1-Corpus 1453

Table 5: The statistics of GEC dataset used in experiments. For the training datasets, #Erroneous represents the
number of erroneous samples, and #Correct refers to the number of correct samples. For the test datasets, Total
indicates the total number of samples.

You are a language expert who is responsible for grammatical, lexical, and orthographic error corrections given an input sentence. Your job is to
fix grammatical mistakes, awkward phrases, spelling errors, etc. following standard written usage conventions, but your corrections must be
conservative. Please keep the original sentence (words, phrases, and structure) as much as possible. The ultimate goal of this task is to make the
given sentence sound natural to native speakers without making unnecessary changes. Corrections are not required when the sentence is already
grammatical and sounds natural.
There is an erroneous sentence between ‘<erroneous sentence>‘ and ‘</erroneous sentence>‘. Then grammatical errors in the erroneous sentence
will be corrected. The corrected version will be between ‘<corrected sentence>‘ and ‘</corrected sentence>‘.
<erroneous sentence>text</erroneous sentence>
<corrected sentence>label</corrected sentence>
...
<erroneous sentence>text</erroneous sentence>
<corrected sentence>label</corrected sentence>
<erroneous sentence>source</erroneous sentence>
<corrected sentence>

Table 6: The prompts for the proposed method. {text} and {label} means the input text and correct sentence (label)
for labeled GEC data. {source} represents the test input text.

et al., 2024; Davis et al., 2024; Li et al., 2025), to981

form a fair comparison. The correction prompt is982

shown in Table 6.983

B Cross-domain demonstration set984

In Section 5.1.2, we used the web version of985

Deepseek-v3 to build 100 sport-domain sentences986

with present perfect progressive (ppp) tense errors,987

and 100 art-domain sentences with simple past (sp)988

tense errors. We then created cross-domain probes989

such as art-domain samples with ppp errors and990

sport-domain samples with sp errors to show the991

proximity and semantic neutrality of our GER. The992

created cases are demonstrated in Table 7.993
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Domain Error Type Case

Sport ppp Input: I have jogged along the riverbank for 45 minutes.
Label: I have been jogging along the riverbank for 45 minutes.

sp Input: Yesterday, she try to hold her breath underwater.
Label: Yesterday, she tried to hold her breath underwater.

Art ppp Input: Marcel Duchamp submits a urinal to an art show in 1917.
Label: Marcel Duchamp submitted a urinal to an art show in 1917.

sp Input: For the entire week, Georgia O’Keeffe has painted her first giant flower close-up.
Label: For the entire week, Georgia O’Keeffe has been painting her first giant flower close-up.

Table 7: The showing cases of manually constructed test set used in Section 5.1.2.
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