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Abstract

Deep generative models have shown significant promise in generating valid 3D
molecular structures, with the GEOM-Drugs dataset serving as a key benchmark.
However, current evaluation protocols suffer from critical flaws, including incor-
rect valency definitions, bugs in bond order calculations, and reliance on force
fields inconsistent with the reference data. In this work, we revisit GEOM-Drugs
and propose a corrected evaluation framework: we identify and fix issues in
data preprocessing, construct chemically accurate valency tables, and introduce a
GFN2-xTB-based geometry and energy benchmark. We retrain and re-evaluate
several leading models under this framework, providing updated performance
metrics and practical recommendations for future benchmarking. Our results un-
derscore the need for chemically rigorous evaluation practices in 3D molecular
generation. Our recommended evaluation methods and GEOM-Drugs processing
scripts will be available at the time of the workshop.

1 Introduction

Generative models for molecules are an emerging paradigm that enables the construction of novel
molecules in 2D or 3D [1, 2]. These AI models learn the patterns and distribution of existing molec-
ular data to generate previously unseen chemical structures. By encoding molecular information
into mathematical representations and then sampling from a learned distribution, these models fa-
cilitate efficient exploration of vast chemical space. The field continues to evolve rapidly and is not
yet mature.

The field of cheminformatics has established fundamental protocols [3, 4] and best practices [5, 6]
for achieving ML models with high statistical rigor and external predictive power [4]. Here, critical
steps such as data preparation, chemical structure curation, outlier detection, dataset balancing, and
rigorous ML model validation must be included into the overall data workflow. Multiple studies
emphasized that chemical structure curation should be treated as a separate and critical component
of any cheminformatics research [6]. Seminal studies showed that accumulated errors and incorrect
processing of chemical structures can significantly reduce the accuracy of ML models [7].

The GEOM data set [8] is one of the most widely used large-scale high-accuracy datasets of molec-
ular conformations. A subset of GEOM containing drug-like molecules, known as GEOM-Drugs,
has become a foundational benchmark for developing 3D molecular generative models. The fre-
quent use of GEOM-Drugs in this field has given rise to a somewhat standardized set of metrics to
evaluate the quality of generative models trained on this dataset. In this work, we identify several
critical issues in how state-of-the-art 3D molecular generative models are evaluated. We believe
these issues mislead the research community and limit progress in the field.

First, we highlight three major problems with the commonly used “molecular stability” metric,
which measures whether atoms have valid valencies. One of the original implementations contained
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a bug. This bug caused chemically implausible valencies to be counted as valid, which inflated sta-
bility scores. This flawed implementation was reused by several follow-up works [9–14], resulting
in a significant body of work with misleading characterizations of model performance.

Second, many recent works lack rigorous and chemically grounded evaluation of 3D structures,
which continues to hinder progress in generative modeling. Common issues include the use of
oversimplified atom–atom distance lookup tables to evaluate the validity of generated 3D struc-
tures [15–20], reliance on distribution-based metrics that are difficult to interpret [10, 14], and the
use of energy evaluations at inappropriate levels of theory, such as MMFF94, which is not suitable
for assessing models trained on GFN2-xTB-optimized data [9, 21].

To address these issues, this paper provides:

1. A refined dataset split of GEOM-Drugs, which excludes molecules where GFN2-xTB cal-
culations fractured the original molecule.

2. An updated molecule stability metric with a chemically accurate valency lookup table that
is derived from this refined dataset.

3. An energy-based evaluation methodology for an accurate and chemically interpretable as-
sessment of generated molecular 3D geometries.

We retrained several widely used generative models on our reprocessed dataset and updated the eval-
uation metrics to address previously observed issues. The relative rankings of the models remained
largely consistent. However, our updates yielded practical improvements. These improvements
highlight the importance of rigorous and accurate evaluation practices in the field.

2 Molecule Stability

Valency in chemistry refers to the combining capacity of an atom or element, describing how many
chemical bonds it can form with other atoms. It is defined as the sum of bond orders of its covalent
bonds. Due to chemical constraints (e.g., the octet rule), atoms of a given element and formal charge
typically exhibit only a few plausible valencies; for instance, neutral carbon almost exclusively has
a valency of 4. Molecules violating these valency constraints are chemically unstable. Thus, gener-
ative models must produce molecules adhering to these rules. A practical evaluation of generative
models involves measuring the fraction of atoms with valid valencies, defined as valencies observed
in the training data. A “lookup table” of valid valencies, consisting of tuples of (element, formal
charge, valency), is created from the training set.

Valency can be computed as the sum of bond orders in a molecule’s Kekulized form1, where bonds
are explicitly represented as single, double, or triple. This approach works reliably for molecules
without aromatic bonds. When aromatic bonds are introduced, however, valency computation be-
comes more complex. In simple cases such as benzene, one can assume each aromatic bond con-
tributes 1.5 to the valency, yielding the correct total (e.g., carbon atoms in benzene are correctly
assigned a valency of 4). But in more complex aromatic systems, this assumption may not hold, and
valency contributions can vary depending on the bonding environment and resonance structures (see
Figure 1).

1Kekulization is the process of generating an alternative structure for a molecule where aromatic bonds are
converted to alternating single and double bonds.
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Figure 1: An example of a molecule where the assumption that aromatic bonds contribute 1.5 to
atomic valency holds only partially. In the aromatic form of triphenylene (a), the green-highlighted
atoms are correctly classified as stable under the 1.5 assumption, while others are misclassified.
In contrast, the Kekulized representation (b) resolves the ambiguity and yields chemically accurate
valency assignments across all atoms. This illustrates the limitations of the 1.5 approximation in
polycyclic aromatic systems.

Hoogeboom et al. [17] first proposed a metric named “molecular stability” to evaluate the correctness
of valencies in the raw output of generative models. The evaluation of “molecule stability” in terms
of valencies became a norm when publishing new de novo molecular generative models. They
noted that traditional validity metrics, defined as the fraction of molecules that can be sanitized with
RDKit, can be misleading, as RDKit may implicitly adjust hydrogen counts or modify aromaticity,
altering the predicted molecule. We generally support the idea of assessing raw valencies, especially
for models that explicitly generate both atoms and bonds because it provides a more chemically
grounded evaluation. Unlike validity, stability captures whether the generated molecules respect
elemental valence constraints without relying on post-processing.

2.1 Identified Issues

We identify multiple critical issues with the valency evaluation methods used in popular molecu-
lar generative models; these issues obscure instances where generative models produce chemically
implausible structures.

One of the pioneering models, MiDi, implemented a valency calculation method in which the va-
lency contributions for all aromatic bonds were rounded to 1 instead of the intended value of 1.5.
Thus, the valency computation for most atoms participating in aromatic bonds is incorrect. More
importantly, it appears that the flawed valency computation was also used to construct the valency
lookup table with which generated atoms are classified as “stable” or not, resulting in a lookup table
with chemically implausible entries. For instance, the lookup table allows for neutral carbon with a
valency of 3 and neutral nitrogen with a valency of 2. Implausible entries in the valency lookup ta-
ble mask failures of the generative model and produce artificially inflated molecular stability values.
Due to widespread reuse of MiDi’s code, this numerical error propagated to several works including
EQGAT-Diff [10], SemlaFlow [9], Megalodon [13], and FlowMol [11, 12]. Other models, such as
JODO [15] and NextMol [22], computed valencies using an alternative approach based on RDKit
kekulization. However, they still relied on an inappropriate lookup table for defining valid valency
ranges.
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Figure 2: Examples of molecules that pass the molecular stability test under commonly used eval-
uation criteria. These flawed metrics erroneously classify chemically invalid configurations as sta-
ble—including cases such as a neutral carbon with three single bonds (a), a neutral nitrogen with
two single bonds (b), and a nitrogen atom with +1 charge bonded via both a triple bond and an
aromatic bond (c).

2.2 Solution

Two key solutions are necessary to correct the aforementioned problems with the molecular stability
metric: fixing the valency computation bug for aromatic bonds and recomputing the valency lookup
table. We quantify the effects of our proposed solutions by re-evaluating models that used the faulty
molecular stability metric in their original publications: EQGAT-Diff [10], Megalodon-quick [13],
SemlaFlow [9], FlowMol2 [12], and Megalodon-flow [13]. The results of these reevaluations are
shown in Table 1. All metrics were computed using 5,000 generated molecules per model.

Correcting the numerical bug that erroneously rounded the contribution of aromatic bonds from 1.5
to 1 (without adjusting the lookup table) causes a dramatic drop in molecular stability. This can be
observed by comparing the first two columns of Table 1. Additionally, this demonstrates that neither
1 nor 1.5 provides a universally reliable estimate for the contribution of an aromatic bond to atomic
valency.

We propose two strategies to address the limitations in molecular stability computation. The first
strategy involves enhancing the valency lookup table by explicitly accounting for aromaticity. In-
stead of the conventional tuples (element, formal charge, valency), we construct a more nuanced
table indexed by (element, number of aromatic bonds, formal charge, valency), with the associated
values representing allowed non-aromatic bond valencies—i.e., total bond order excluding contri-
butions from aromatic bonds (see SI Table 5). In this formulation, each atom’s bonding environment
is described by the tuple (narom, vother), where narom is the number of aromatic bonds and vother is
the total bond order from non-aromatic bonds. For example, a carbon atom in benzene typically ex-
hibits configurations like (2, 1)—two aromatic bonds and one single bond—or (3, 0), as illustrated
in Figure 1. Remarkably, adopting this refined lookup table results in molecular stability scores only
1–3% lower than originally reported using flawed metrics (third column in Table 1). While modest,
this deviation can meaningfully influence the comparative assessment of generative models and may
introduce bias into subsequent benchmark studies if left uncorrected.

An alternative approach involves retraining models on a reprocessed dataset consisting exclusively
of Kekulized molecules, thereby completely removing ambiguity associated with aromaticity in va-
lency computation. We prepared a revised version of the GEOM-Drugs dataset so that all molecules
were Kekulized; there is no explicit modeling of aromatic bonds. As illustrated in Table 1, mod-
els trained on the Kekulized dataset exhibited molecular stability comparable to previously pub-
lished results when valencies were computed correctly. Notably, all models except Megalodon Flow
demonstrated an average 5% improvement in validity. Megalodon Flow did not show similar im-
provements. We hypothesize that this discrepancy arises due to smaller neural network architecture
used for Megalodon Flow, a decision necessitated by limited computational resources available for
this study.

We encountered another issue with GEOM-Drugs: recomputing the valency table on the raw
GEOM-Drugs dataset revealed unusual valencies resulting from rare failure in the GFN2-xTB ge-
ometry optimization step used to produce the dataset. These failures produced fragmented molecules
and unstable valencies such as hydrogen atom with no covalent bonds or neutral carbon with a va-
lency of two. Examples of these instances are shown in Figure 3. We removed molecules from
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GEOM-Drugs that were fragmented into multiple disconnected components due to failed GFN2-
xTB geometry optimization. This led to the exclusion of 0.18% of the dataset; although this is not
enough data to significantly impact model performance, the presence of these molecules alters the
resulting valency lookup table.

To summarize, neither treating aromatic bonds as contributing a valence of 1 nor 1.5 yields chem-
ically accurate results. By correcting the valency table using a refined tuple representation, which
captures the number of aromatic bonds separately, the resulting molecular stability scores decrease
modestly by 1 to 3%. However, since most reported stability values exceed 0.9, even such small
discrepancies can have an outsized influence, potentially skewing model development and encour-
aging optimization against a chemically flawed metric. Notably, retraining models on a reprocessed
dataset with Kekulized molecules, i.e., without explicit aromatic bonds, leads to approximately a 5%
improvement in validity for 4 of 6 evaluated models. Together, these results underscore the critical
importance of chemically sound preprocessing and robust evaluation protocols in the development
of 3D molecular generative models.

We make available in the attached github repository the filtered GEOM-Drugs dataset with
Kekulized molecules, the scripts for producing the filtered dataset from the original GEOM dataset,
and an implementation of the molecular stability metric that does not permit erroneous atomic va-
lencies.

Model MS
Original

MS
1.5 Arom

MS
Arom-Dependent

Valence
V&C MS V&C

EQGAT [10] 0.935±0.007 0.451±0.006 0.899±0.007 0.834±0.009 0.878±0.007 0.891±0.010

JODO [15] 0.981±0.001 0.517±0.012 0.963±0.005 0.879±0.003 *0.940±0.003 *0.923±0.004

Megalodon-quick [13] 0.961±0.003 0.496±0.017 0.944±0.003 0.900±0.007 0.957±0.006 0.962±0.005

SemlaFlow [9] 0.980±0.012 0.608±0.027 0.969±0.012 0.920±0.016 0.974±0.012 0.975±0.008

FlowMol2 [12] 0.959±0.007 0.594±0.009 0.944±0.007 0.746±0.010 0.938±0.005 0.861±0.012

Megalodon-flow [13] 0.990±0.003 0.632±0.011 0.987±0.004 0.948±0.003 **0.958±0.004 **0.949±0.002

Table 1: Comparison of molecular stability (MS) and connected validity (V&C) across models and processing
pipelines. The left section reports results obtained using the original GEOM-Drugs dataset and evaluation code:
“Original” denotes the values from metric implementations published in prior work, “1.5 Arom” reflects scores if
aromatic bonds contribute 1.5 to valency, and “Arom-Dependent Valence” shows scores based on valency computed
as (narom, vother). The right section presents results obtained by retraining on fully Kekulized molecules. V&C (Valid
& Connected) refers to the fraction of molecules that are both chemically valid and consist of a single connected
component.

* JODO was trained with the EQGAT-Diff objective, using categorical diffusion instead of the original Gaussian formulation
for categorical variables.

** Indicates results from a retrained “quick” variant, differing from the original paper which reported results for a larger model.

3 3D Molecule Evaluation

3.1 Challenges in proper and accurate 3D structure assesment

Current 3D molecular generative models face significant challenges in evaluating the geometric
quality of their outputs. In particular, models trained on the GEOM-Drugs dataset often exhibit is-
sues stemming from the evaluation protocols themselves. A widely used approach involves defining
a bond length lookup table and applying fixed thresholds to assess 3D molecular stability [15–20].
However, this method is problematic for GEOM-Drugs. Only 86.5% of atoms meet the specified
atom–atom distances, and just 2.8% of molecules pass the stability criterion.

Our analysis found only 272 fragmented molecules in the dataset. This indicates that GFN2-xTB ge-
ometry optimization converged successfully for most conformers. Thus, the observed bond lengths
reflect the GFN2-xTB energy landscape. These values may differ from those obtained from other
sources, such as the Cambridge Structural Database (CSD). This metric produces implausibly low
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stability rates yet remains widely adopted in new studies. This persistence underscores the need for
a more chemically faithful evaluation standard.

A more recent trend is to assess geometric quality by comparing distributions of bond lengths and
angles using Wasserstein distance between generated and training data [10, 14, 23]. This approach
is more principled. However, distributional metrics are often difficult to interpret, especially outside
the computer science community, which makes it harder to extract chemically meaningful insights.

Other studies have proposed evaluating generated molecules by computing the relaxation energy
using molecular mechanics force fields such as MMFF [9, 21, 24]. However, the choice of force field
is critical. For conformers optimized with GFN2-xTB (as in GEOM-Drugs), the mean relaxation
energy difference ∆Erelax when re-optimized with GFN2-xTB is close to zero, as expected. In
contrast, MMFF evaluation yields a mean ∆Erelax of ≈ 16 kcal/mol. This is consistent with prior
reports of MMFF errors in the 15–20 kcal/mol range relative to higher-level methods[25].

As we will demonstrate, current state-of-the-art generative models can now outperform MMFF pre-
cision on GEOM-Drugs in terms of alignment with GFN2-xTB. This renders MMFF-based compar-
isons unreliable and masks meaningful differences between models. However, MMFF energy can
still serve as a coarse-grained filter to eliminate structurally implausible molecules, similar to its use
in PoseBusters [26] for energy-based outlier detection. Given the widespread reliance on inadequate
metrics, we argue that a GFN2-xTB-based evaluation pipeline is necessary for accurately assessing
the practical performance of 3D molecular generative models.

3.2 GFN2-xTB energy-based geometry benchmark

GEOM-Drugs geometries are optimized using the GFN2-xTB semi-empirical quantum calculation
method. Therefore, it is essential to use the same method to assess the structural integrity of gen-
erated molecules. One approach is to measure of how close a generated structure is to the closest
local minima of the given energy function. To measure this we suggest to assess differences in bond
lengths, bond angles, and torsion angles of generated and optimized counterparts. These quantities
provide clear and interpretable measure of generated molecules for both computer scientists and
computational chemists.

Bond Length Differences For each bond in the molecule, we compute the difference in bond
lengths between the initial (generated) and optimized (relaxed) structures. Let rinit

ij and ropt
ij denote

the distances between atoms i and j in the initial and optimized conformations, respectively. The
bond length difference ∆rij is calculated as:

∆rij =
∣∣rinit

ij − ropt
ij

∣∣
The average difference is reported as a result.

Bond Angle Differences For each bond angle formed by three connected atoms i, j, and k, we
calculate the angle difference between the initial and optimized structures. Let θinit

ijk and θopt
ijk repre-

sent the bond angles at atom j in the initial and optimized conformations, respectively. The bond
angle difference ∆θijk is given by:

∆θijk = min
(∣∣∣θinit

ijk − θopt
ijk

∣∣∣ , 180◦ − ∣∣∣θinit
ijk − θopt

ijk

∣∣∣)
As with bond lengths, the average difference is reported as a result.

Torsion Angle Differences Torsion angles involve four connected atoms i, j, k, and l. We com-
pute the difference in torsion angles between the initial and optimized structures using:

∆ϕijkl = min
(∣∣∣ϕinit

ijkl − ϕopt
ijkl

∣∣∣ , 360◦ − ∣∣∣ϕinit
ijkl − ϕopt

ijkl

∣∣∣)
6
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where ϕinit
ijkl and ϕopt

ijkl are the dihedral angles in the initial and optimized conformations, respec-
tively. This formula accounts for the periodicity of dihedral angles, ensuring the smallest possible
difference is used.

The average difference is reported as a result.

Results We report results for EQGAT, Megalodon-quick, SemlaFlow, FlowMol2, and Megalodon-
flow, including both the median and mean relaxation energy ∆Erelax—the energy difference be-
tween the initial and GFN2-xTB-optimized structures—as well as structural displacement metrics
discussed above (see Table 2). For each model, 5,000 molecules were evaluated, and a randomly
selected subset of 5,000 molecules from GEOM-Drugs was used for baseline comparisons. To
compute confidence intervals, all metrics were calculated across five equal-sized splits of 1,000
molecules each. In Table 2, the row labeled “MMFF → GFN2-xTB” quantifies geometric and
energetic discrepancies between MMFF-optimized structures and their GFN2-xTB-optimized coun-
terparts. These values highlight the structural divergence between force-field and semi-empirical
optimization methods. Diffusion-based models already surpass MMFF in structural precision. Fur-
thermore, we observe a consistent performance gap between flow-matching and diffusion-based
models, even when the architecture is the same. This discrepancy has not been emphasized in prior
literature. Conclusions drawn in prior works may have been influenced by the limited precision of
their evaluation methodologies.

Table 2: Energy relaxation and geometric deviation metrics across generative models. Bond lengths
(Å), angles (degrees), and energies (kcal/mol) are reported for valid molecules only. Diffusion-based
models use 500 steps; flow-matching models use 100 steps. ∆Erelax denotes the energy difference
between the initial and GFN2-xTB-optimized structures (i.e., the generative model’s deviation from
the reference energy landscape). ∆EMMFF

relax denotes the MMFF94 energy difference between the
initial structure and the structure optimized with MMFF94.

Model
Bond

Length
(×10−2)

Bond
Angles Torsions Median

∆Erelax

Mean
∆Erelax

Mean
∆EMMFF

relax

GEOM-Drugs 0.00±0.001 0.001±0.001 0.01±0.01 0.000±0.0001 0.001±0.001 16.4±0.2

MMFF → GFN2-xTB 1.12±0.01 1.22±0.004 4.89±0.10 9.84±0.06 11.4±0.2 0.00±0.05

EQGAT-diff 1.00±0.04 1.15±0.03 8.58±0.11 6.40±0.20 11.1±0.8 28.4±1.2

JODO 0.77±0.01 0.83±0.00 6.01±0.07 4.74±0.15 7.04±0.20 22.1±0.2

Megalodon 0.66±0.02 0.71±0.01 5.58±0.11 3.19±0.12 5.76±0.27 21.6±0.3

SemlaFlow 3.10±0.23 2.06±0.17 6.05±0.56 32.3±3.3 91.0±21.7 69.6±9.2

FlowMol2 1.30±0.04 1.62±0.02 15.0±0.3 17.9±0.5 24.3±0.8 39.4±1.2

Megalodon-flow 2.30±0.02 1.62±0.02 5.58±0.19 20.9±0.8 46.9±8.6 45.5±2.0

4 Conclusion

In this study, we revisited the GEOM-Drugs benchmark and uncovered several issues in current 3D
molecular generative model evaluation pipelines. We demonstrated that widely adopted stability
metrics are affected by code errors, chemically inconsistent valency tables, and reliance on postpro-
cessed molecules, leading to inflated model performance. Furthermore, our findings suggest that
MMFF-based energy benchmarks may no longer be appropriate for evaluating models trained on
GFN2-xTB-optimized structures, as generative models now appear to surpass MMFF in alignment
with the reference energy landscape.

To address these limitations, we proposed a refined evaluation protocol incorporating chemically
sound valency definitions and GFN2-xTB-based energy and geometry assessments. Our experi-
ments demonstrate that these corrections impact reported performance while preserving the relative
rankings of models. Conversely, a high-quality dataset (error-free structures, consistent features,
trustworthy labels) and relevant metrics (e.g. appropriate choice of level of theory or realistic va-
lency lookup table) provide a solid foundation that can markedly improve model performance. We
hope that this study will raise awareness about importance of chemical structure curation and pro-
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cessing. We believe these improvements will foster more reliable, interpretable, and chemically
meaningful progress in 3D molecular generative modeling. Our recommended evaluation methods
and GEOM-Drugs processing scripts will be a vailable at the time of workshop.
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Supplementary Information

4.1 Appendix I: Valency Lookup Tables for Stability Evaluation

To support rigorous evaluation of 3D molecular generative models, we include here a collection of
empirical valency tables derived from the GEOM-Drugs dataset. These tables are used to define
chemically plausible bonding patterns, detect invalid topologies, and serve as standardized refer-
ences for assessing molecular stability in raw generated molecules.

Table 3: Allowed Valencies. This table summarizes the allowed valencies (i.e., number of bonds
including hydrogens) observed in valid GEOM-Drugs structures. It lists configurations by element
and formal charge. These values are used as a reference for atom-level and molecule-level stability
metrics.

Table 4: Legacy and Invalid Valencies. This table contains valencies found in earlier versions
of generative model evaluation pipelines, which include chemically implausible or legacy entries
due to preprocessing bugs or failed optimization. It is frequently used to benchmark the quality
of generated molecules and identify invalid valency assignments. Many recent studies reference or
reuse this table directly.

Table 5: Aromatic Valency Tuples. This table enumerates all observed combinations of aromatic
and non-aromatic bonds per element and charge in the dataset. Each entry is represented as a tuple
, where is the count of aromatic bonds and is the total bond order from non-aromatic bonds. These
tuples capture valency patterns that are otherwise ambiguous under standard counting, especially in
polyaromatic and heterocyclic systems.

Together, these tables offer a robust and chemically grounded framework for interpreting stability
metrics and ensuring consistency in the evaluation of 3D molecule generation pipelines. Table 4 in
particular is widely used in existing benchmarking literature and reproduced here for completeness.

Table 3: Valency configurations derived from the GEOM-Drugs dataset, organized by element and
formal charge. Each cell lists the allowed valencies (including implicit hydrogens) observed for a
given formal charge.

Element Charge −2 Charge −1 Charge 0 Charge +1 Charge +2 Charge +3

H – – 1 – – –
B – 4 3 – – –
C – 3 4 3 – –
N 1 2 3 4 – –
O – 1 2 3 – –
F – – 1 – – –
Si – – 4 5 – –
P – – 3, 5 4 – –
S – 1 2, 3, 6 3 4 2, 5
Cl – – 1 2 – –
Br – – 1 2 – –
I – – 1 2 3 –
Bi – – 3 – 5 –
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Table 4: Historically used but chemically implausible valency configurations by formal charge. This
reference table has been widely used to assess molecular generative models. Values highlighted in
red represent known incorrect or unstable configurations; values highlighted in blue were missing
from historical tables but are observed in the dataset.

Element Charge −2 Charge −1 Charge 0 Charge +1 Charge +2 Charge +3

H – 0 1 0 – –
B – 4 3 – – –
C – 3 3, 4 3 – –
N 1 2 2, 3 2, 3, 4 – –
O – 1 2 3 – –
F – 0 1 – – –
Al – – 3 – – –
Si – – 4 5 – –
P – – 3, 5 4 – –
S – 1, 3 2, 6 2, 3 4 5
Cl – – 1 2 – –
Br – – 1 2 – –
Se – – 2, 4, 6 – – –
I – – 1 2 3 –
Hg – – 1, 2 – – –
Bi – – 3 – 5 –

Table 5: Allowed valency combinations by element and number of aromatic bonds. Each cell shows
normal valencies for a given atom type and number of aromatic neighbours (row) and formal charge
(column). “–” indicates no observed combinations.

Element # Aromatic Charge −2 Charge −1 Charge 0 Charge +1 Charge +2 Charge +3

H 0 – – 1 – – –

B 0 – 4 3 – – –

C
0 – 3 4 3 – –
2 – 1 2, 1 1 – –
3 – 0 0 0 – –

N

0 1 2 3 4 – –
2 – 0 0, 1 0, 1, 2 – –
3 – – 0 0 – –

O 0 – – 2 3 – –
2 – – 0 – – –

F 0 – – 1 – – –

Si 0 – – 4 5 – –

P 0 – – 3, 5 4 – –

S

0 – 1 2, 3, 6 3 4 2,5
2 – – 0 0, 1 – –
3 – – – 0 – –

Cl 0 – – 1 2 – –

Br 0 – – 1 2 – –

I 0 – – 1 2 3 –

Bi 0 – – 3 – 5 –
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4.2 Appendix II: Examples of Fractured Compounds in GEOM-Drugs

Figure 3: Examples from GEOM-Drugs where GFN2-xTB failed and resulted in fractured
molecules. The first row of molecules have neutral carbon with valency 2 and those in the sec-
ond row have a positively charged hydrogen with valency zero.
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