

ELIMINATING INDUCTIVE BIAS IN REWARD MODELS WITH INFORMATION-THEORETIC GUIDANCE

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Reward models (RMs) are crucial in reinforcement learning from human feedback (RLHF) to align large language models (LLMs) with human values. However, RM training data is commonly recognized as low-quality, always containing preference conflicts and inductive biases, such as response length or speaking style, which can easily lead to reward overfitting and hacking. A few recent RM debiasing methods either target merely a single specific type of preference bias or only address simple linear bias relations such as Pearson coefficients. To mitigate more complicated inductive bias of reward modeling, inspired by the information bottleneck, we introduce a novel information-theoretic debiasing method called **Debiasing via Information optimization for RM** (DIR). More specifically, our method trains RMs by maximizing the mutual information (MI) between preference prediction and input response pairs, while minimizing the MI between RM outputs and biased attributes of preference inputs. With the theoretical justification of information theory, DIR can handle different types of bias with more comprehensive non-linear correlations, enlarging its real-world application scenarios. In experiments, we verify the effectiveness of DIR with three types of inductive biases: response length, sycophancy, and format. Based on the numerical results, we discover that DIR can not only effectively diminish target inductive biases but also improve RLHF performances on various benchmarks with better generalization abilities.

1 INTRODUCTION

Aligning Large Language Models (LLMs) (OpenAI, 2024; Touvron et al., 2023; Yang et al., 2024) with human values is paramount for ensuring their safe and reliable deployment, especially in open-domain conversational applications, where models must be helpful and harmless (Ouyang et al., 2022b). To this end, reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022b; Rafailov et al., 2024b; DeepSeek-AI, 2025) has become the fundamental technique for encouraging LLM behavior toward human preferences, which operates by first training a reward model (RM) on a collection of human preference judgments, and then using this RM as a proxy for human values to guide the policy LLM’s optimization via reinforcement learning (RL). However, the robustness and efficacy of RLHF have been continuously challenged by reward hacking, a phenomenon where the policy model exploits vulnerabilities in the reward model (RM) to achieve high rewards without satisfying the intended human objectives (Skalse et al., 2025; Gao et al., 2023; Amodei et al., 2016).

The vulnerabilities of RMs are commonly derived from the low quality of the human feedback annotation, which contains various toxic *inductive biases*. For example, annotators have always been instructed to choose more informative responses, whereas more detailed responses usually have longer response lengths. Learning on this biased human feedback dataset can lead the reward model to ignore the true response quality and only favor responses with longer lengths (Singhal et al., 2023). Besides the response length bias, stylistic and format patterns (Zhang et al., 2025), and sycophantic phrasing (Sharma et al., 2023; Denison et al., 2024) have been gradually recognized as typical inductive bias in reward modeling, which critically hinders reliability and safety of RLHF (Gao et al., 2023; Coste et al., 2023).

To mitigate inductive biases in reward modeling, recent studies have made some preliminary explorations. Bu et al. (2025), Chen et al. (2024) and Zhang et al. (2025) consider Pearson Coefficient (Benesty et al., 2009) as the bias measurement and minimize it jointly with the reward modeling loss. However, the Pearson Coefficient only captures the simplest linear correlation between RM

and the bias attributes, which are not sufficiently applicable in more general scenarios. Shen et al. (2023) adds another RM head to predict response length score, which lacks theoretical justification, and is only applicable with scalar types of inductive biases. Wang et al. (2025a) imposes overly-restrictive external constraints, such as enforcing distributional invariance via Maximum Mean Discrepancy (MMD) (Gretton et al., 2012), risk distorting the reward landscape by collapsing the scores of functionally disparate response groups. On the other hand, approaches relying on unreliable indirect internal compression, like the standard information bottleneck (Tishby et al., 2000) used in InfoRM (Miao et al., 2024), offer no guarantee of discarding a bias attribute, especially when it is strongly correlated with the true preference signal.

To address the inductive biases of RM generally with theoretical guarantees, we proposed an information-theoretic bias-disentangling framework called **Debiasing via Information optimization for RM (DIR)**. More specifically, we model the complicated inductive biases in human feedback with the concept of mutual information (MI) from the perspective of information theory (Kullback, 1997). Then we maximize the mutual information between the RM prediction and the preference data inputs, and minimize the mutual information between the bias attributes and the RM scores, simultaneously. To make the above objective tractable, we employ a dual-bound optimization strategy: a variational lower bound preserves essential preference information, while another variational upper bound actively suppresses information related to the bias. Furthermore, to ensure broad applicability, we design a comparative regularizer that operates on relative bias attributes between response pairs, rather than absolute values. This unique design allows DIR to robustly handle diverse and complex biases without distorting the underlying reward landscape, leading to a debiased RM that demonstrates better generalization and performance in downstream RLHF tasks. We summarize our contributions as follows:

1. We propose a novel, explicit information-theoretic framework that transforms debiasing from an indirect hope into a direct, supervised optimization objective, offering a more principled and targeted solution.
2. We design a practical and generalizable implementation that is computationally efficient and can be seamlessly adapted to mitigate diverse forms of bias without requiring architectural modifications to the base RM.
3. Extensive experiments demonstrate that our method significantly outperforms existing approaches in reducing reward hacking, leading to more robustly aligned LLMs that achieve better performance on both academic and preference-based benchmarks.

2 BACKGROUND

Reinforcement Learning from Human Feedback (RLHF) has become the essential training process to align LLMs with human values (Ouyang et al., 2022a). With a well-learned reward model (RM) $r_\phi(\mathbf{x}, \mathbf{y})$ scoring the degree of human preference of generated response $\mathbf{y} \in \mathcal{Y}$ given input prompt $\mathbf{x} \in \mathcal{X}$, RLHF optimizes the LLM policy $\pi_\theta(\mathbf{y}|\mathbf{x})$ with the follow objective:

$$\mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_\theta(\cdot|\mathbf{x})} \left[r(\mathbf{x}, \mathbf{y}) - \beta \cdot \text{KL}[\pi_\theta(\mathbf{y}|\mathbf{x}) \parallel \pi_{\text{ref}}(\mathbf{y}|\mathbf{x})] \right], \quad (1)$$

where $\pi_{\text{ref}}(\mathbf{y}|\mathbf{x})$ is the initial model policy served as a reference, $\beta > 0$ controls the strength of a Kullback-Leibler (KL) divergence (Csiszár, 1975) between the reference model $\pi_{\text{ref}}(\mathbf{y}|\mathbf{x})$ and the current policy $\pi_\theta(\mathbf{y}|\mathbf{x})$. To train LLMs with the above objective, Proximal Policy Optimization (PPO) (Schulman et al., 2017) has been recognized as the mainstream optimization approach. Group Relative Policy Optimization (GRPO) further removes the critic model in PPO and uses a simplified group-related advantage approximation instead, which has shown competitive performance with practically simpler infrastructures (Shao et al., 2024).

Reward Modeling targets learning the human preference distribution via a parameterized reward model (RM) $r_\phi : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$, where $r_\phi(\mathbf{x}, \mathbf{y})$ is the predicted reward score of the input prompt \mathbf{x} and the corresponding response \mathbf{y} . For every input \mathbf{x} , given a pair of response $(\mathbf{y}, \bar{\mathbf{y}})$, we can calculate the “preference” by comparing the reward scores: if $r(\mathbf{x}, \mathbf{y}) > r(\mathbf{x}, \bar{\mathbf{y}})$, then \mathbf{y} is predicted as a more “preferred” response than $\bar{\mathbf{y}}$ (denote as $\mathbf{y} \succ \bar{\mathbf{y}}$) and vice versa. We use a binary indicator $\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}}$ to representation the event of “human preference”: $\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}} = 1$, if $\mathbf{y} \succ \bar{\mathbf{y}}$; and $\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}} = 0$, if

108 $\mathbf{y} \prec \bar{\mathbf{y}}$. Then reward model predicts the preference $\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}}$ as a conditional Bernoulli variable:
 109

$$110 \quad q_\phi(\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}} = 1 | \mathbf{x}, \mathbf{y}, \bar{\mathbf{y}}) = \frac{\exp(r_\phi(\mathbf{x}, \mathbf{y}))}{\exp(r_\phi(\mathbf{x}, \mathbf{y})) + \exp(r_\phi(\mathbf{x}, \bar{\mathbf{y}}))} = \sigma(r_\phi(\mathbf{x}, \mathbf{y}) - r_\phi(\mathbf{x}, \bar{\mathbf{y}})), \quad (2)$$

112 where $\sigma(\cdot)$ is a Sigmoid function. Note that the ground-truth human preference distribution
 113 $p^*(\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}} | \mathbf{x}, \mathbf{y}, \bar{\mathbf{y}})$ is unknown. Instead, we can maximize the log-likelihood of q_ϕ with a group
 114 of human preference data $\mathcal{D}_{\text{Pref}} = \{(\mathbf{x}_i, \mathbf{y}_i^w, \mathbf{y}_i^l)\}_{i=1}^N$, where each $\mathbf{y}^w \succ \mathbf{y}^l$ is annotated by human
 115 judgment w.r.t. the response quality:
 116

$$117 \quad \mathcal{L}_{\text{RM}}(\phi) = -\mathbb{E}_{\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}} \sim p^*} [\log q_\phi(\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}} | \mathbf{x}, \mathbf{y}, \bar{\mathbf{y}})] \approx -\frac{1}{N} \sum_{i=1}^N [\log q_\phi(\mathbf{y}_i^w \succ \mathbf{y}_i^l | \mathbf{x}_i, \mathbf{y}_i^w, \mathbf{y}_i^l)] \\ 118 \quad = -\frac{1}{N} \sum_{i=1}^N [\log \sigma(r_\phi(\mathbf{x}_i, \mathbf{y}_i^w) - r_\phi(\mathbf{x}_i, \mathbf{y}_i^l))]. \quad (\text{by equation 2}) \quad (3)$$

123 Equation 3 is commonly recognized as the Bradley-Terry (Bradley & Terry, 1952) ranking loss.
 124

125 **Information-theoretic Methods** optimize deep models from the perspective of information theory (Chen et al., 2016; Hjelm et al., 2019; Yuan et al., 2021; Cheng et al., 2021). The core methodology
 126 of information-theoretic methods is to regard the feed-forward process of neural networks as an
 127 information channel transmission, where the correlation between different neural embeddings is
 128 measured by mutual information (MI) as:
 129

$$130 \quad I(\mathbf{x}; \mathbf{y}) = \mathbb{E}_{p(\mathbf{x}, \mathbf{y})} \left[\log \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x})p(\mathbf{y})} \right] = \text{KL} \left[p(\mathbf{x}, \mathbf{y}) \middle\| p(\mathbf{x})p(\mathbf{y}) \right], \quad (4)$$

132 where $p(\mathbf{x}, \mathbf{y})$ is the joint distribution, and $p(\mathbf{x})$ and $p(\mathbf{y})$ are the marginal distributions. Due to its
 133 general ability to capture arbitrary non-linear correlations, MI has achieved considerable success as a
 134 learning objective in various deep learning tasks (Chen et al., 2016; Belghazi et al., 2018; Hjelm et al.,
 135 2019). However, the exact MI value in equation 4 is challenging to compute, due to the intractable
 136 expectation w.r.t. $p(\mathbf{x}, \mathbf{y})$, especially when only samples from $p(\mathbf{x}, \mathbf{y})$ are provided. To address this,
 137 several approximation methods have been proposed to estimate MI from samples using tractable
 138 variational bounds (Oord et al., 2018; Cheng et al., 2020; Belghazi et al., 2021). Barber-Agakov (BA)
 139 bound (Barber & Agakov, 2004) provides a simple lower bound approximation of MI, by introducing
 140 a variational approximation $q_\theta(\mathbf{y}|\mathbf{x})$:

$$141 \quad I(\mathbf{x}; \mathbf{y}) \geq \mathbb{E}_{p(\mathbf{x}, \mathbf{y})} [\log q_\theta(\mathbf{y}|\mathbf{x})] + H[p] =: I_{\text{BA}}(\mathbf{x}; \mathbf{y}), \quad (5)$$

143 where $H[p]$ is the entropy of the ground-truth distribution $p(\mathbf{x}, \mathbf{y})$. Besides, Cheng et al. (2020)
 144 proposed a variational contrastive log-ratio upper bound (CLUB) also utilizing the variational
 145 approximation $q_\theta(\mathbf{y}|\mathbf{x})$:

$$146 \quad I(\mathbf{x}; \mathbf{y}) \leq \mathbb{E}_{p(\mathbf{x}, \mathbf{y})} [\log q_\theta(\mathbf{y}|\mathbf{x})] - \mathbb{E}_{p(\mathbf{x})p(\mathbf{y})} [\log q_\theta(\mathbf{y}|\mathbf{x})] =: I_{\text{CLUB}}(\mathbf{x}; \mathbf{y}), \quad (6)$$

147 By minimizing equation 6, the amount of information between \mathbf{x} and \mathbf{y} is effectively reduced. We
 148 give the proof of BA bound and CLUB in Appendix B.1 and Appendix B.1, respectively.
 149

150 A well-known application of information-theoretic methods is the *information bottleneck* (IB) (Tishby
 151 et al., 2000), which aims to learn a compressed but informative representation \mathbf{h} of an input \mathbf{x} to the
 152 output \mathbf{y} as a trade-off between two MI terms:
 153

$$154 \quad \min I(\mathbf{x}; \mathbf{h}) - \lambda \cdot I(\mathbf{h}; \mathbf{y}), \quad (7)$$

155 where hyperparameter $\lambda > 0$ controls the balance between compressing the input \mathbf{x} and retaining
 156 relevant information for the prediction \mathbf{y} . IB has been recognized as a powerful tool for representation
 157 learning and widely applied to diverse deep learning scenarios (Saxe et al., 2019; Wan et al., 2021;
 158 Federici et al., 2020).

159 3 METHODOLOGY

160 We begin by revisiting reward modeling from a perspective of information theory. Motivated by the
 161 information bottleneck, our core idea is learning a reward model $r_\phi(\mathbf{x}, \mathbf{y})$ parameterized by ϕ that is

maximally informative compressed about the true preference relation, while simultaneously being minimally informative about an inductive bias with a pre-defined bias attribute \mathbf{b} . Formally, we define our objective as follows:

$$\max_{\phi} \underbrace{I(\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}}; \mathbf{x}, \mathbf{y}, \bar{\mathbf{y}})}_{\text{Preference Term}} - \lambda \cdot \underbrace{I(\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}}; \mathbf{b})}_{\text{Debias Term}}, \quad (8)$$

where λ is a hyperparameter balancing the trade-off between preference learning and debiasing. Ideally, minimizing this objective should encourage the reward model r_{ϕ} to capture the true performance signal from the input triplet $(\mathbf{x}, \mathbf{y}, \bar{\mathbf{y}})$, while decreasing the reliance on the bias attribute \mathbf{b} . However, directly optimizing this mutual information-based objective is computationally intractable due to the difficulty in estimating mutual information in high-dimensional spaces.

3.1 PRACTICAL IMPLEMENTATION WITH DIFFERENTIABLE LOSSES

To render equation 8 tractable, we derive differentiable surrogate losses that approximate its constituent terms. Specifically, we minimize a total loss $\mathcal{L}_{\text{total}}$ composed of a preference loss $\mathcal{L}_{\text{pref}}$ and a debiasing loss $\mathcal{L}_{\text{debias}}$.

Preference Term. Instead of directly maximizing $I(\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}}; \mathbf{x}, \mathbf{y}, \bar{\mathbf{y}})$, we can use its lower bound approximation by introducing a BA estimator of equation 5 as follows:

$$\max I(\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}}; \mathbf{x}, \mathbf{y}, \bar{\mathbf{y}}) \geq \max \mathbb{E}_{p^*(\mathbf{x}, \mathbf{y}, \bar{\mathbf{y}}, \mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}})} [\log q_{\phi}(\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}} | \mathbf{x}, \mathbf{y}, \bar{\mathbf{y}})] + H[p^*], \quad (9)$$

which is guaranteed by the non-negative nature of the KL term, and $H[p^*]$ is a constant of the ground-truth human preference distribution p^* . By equation 3, we know the other term is exactly the RM BT ranking loss. Therefore, by minimizing the RM BT ranking loss, we actually maximize the mutual information between the preference variable $\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}}$ and the input triplet $(\mathbf{x}, \mathbf{y}, \bar{\mathbf{y}})$, encouraging the reward model r_{ϕ} to assign a higher score to the preferred response \mathbf{y} . Therefore, we have $\mathcal{L}_{\text{pref}} = -\frac{1}{B} \sum_{i=1}^B [\log \sigma(r_{\phi}(\mathbf{x}_i, \bar{\mathbf{y}}_i) - r_{\phi}(\mathbf{x}_i, \bar{\mathbf{y}}_i))]$ with B samples.

Debiasing Term. For maximizing the debias term $-I(\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}}; \mathbf{b})$, since $(\mathbf{y}, \bar{\mathbf{y}})$ contains sufficient information to determine bias \mathbf{b} , we notice that $\mathbf{b} \rightarrow (\mathbf{x}, \mathbf{y}, \bar{\mathbf{y}}) \rightarrow \mathbf{H} \rightarrow \mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}}$ is a Markov Chain, where $\mathbf{H} = [\mathbf{h}(\mathbf{x}, \mathbf{y}), \mathbf{h}(\mathbf{x}, \bar{\mathbf{y}})]$ is the last hidden state of the reward model transformer architecture. According to the data processing inequality (DPI) and the CLUB upper bound estimator, we have

$$I(\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}}; \mathbf{b}) \leq I(\mathbf{H}; \mathbf{b}) \leq I_{\text{CLUB}}(\mathbf{H}; \mathbf{b}), \quad (10)$$

where

$$I_{\text{CLUB}}(\mathbf{H}; \mathbf{b}) \approx \frac{1}{B} \sum_{i=1}^B \left[\log q_{\psi}(\mathbf{b}_i | \mathbf{H}_i) - \frac{1}{B} \sum_{j=1}^B \log q_{\psi}(\mathbf{b}_j | \mathbf{H}_i) \right]. \quad (11)$$

This allows us to minimize a tighter upper bound, $I_{\text{CLUB}}(\mathbf{H}; \mathbf{b})$, shifting the debiasing pressure to the information-rich representation \mathbf{H} . Therefore, minimizing I_{CLUB} serves an effective approximation of maximizing $-I(\mathbf{1}_{\mathbf{y} \succ \bar{\mathbf{y}}}; \mathbf{b})$, which minimizes mutual information by training a variational network $q_{\psi}(\mathbf{b} | \mathbf{H})$ ¹ in an adversarial manner, encouraging the reward model r_{ϕ} to produce representations \mathbf{H} that are statistically independent of the bias attribute \mathbf{b} , thus the final predicted preference relation should be non-predictive of the \mathbf{b} . Moreover, as proved in Cheng et al. (2020), the better $q_{\psi}(\mathbf{b}_i | \mathbf{H}_i)$ approximates real $p(\mathbf{b}_i | \mathbf{H}_i)$, the more accurate I_{CLUB} serves as the MI upper bound. Therefore, we also maximize the log-likelihood of $q_{\psi}(\mathbf{b}_i | \mathbf{H}_i)$ with samples $\{(\mathbf{H}_i, \mathbf{b}_i)\}_{i=1}^B$ in addition.

A Unified Comparative Framework for Debiasing. To make the debiasing mechanism more targeted and align it with the comparative nature of preference learning, we introduce a unified comparative framework, which also handles various types of biases in a consistent and unified manner. Note that the preference task itself relies on the *difference* in rewards, which stems from the difference in representations. Therefore, instead of using the concatenated representation \mathbf{H} , which may contain redundant information from the shared prompt \mathbf{x} , we focus on the representation

¹Practically, we find a simple Linear-ReLU-Linear network is enough to serve as q_{ψ} that is detailed in Appendix C.

216 **Algorithm 1:** Our DIR Training Process Within Mini-Batch.
217

218 **Input** :RM Dataset $\mathcal{D}_{\text{Pref}} = \{(\mathbf{x}_i, \mathbf{y}_i^w, \mathbf{y}_i^l)\}_{i=1}^N$, hyper-parameter λ , pre-defined bias attribute \mathbf{b} .
 219 **Output** :Trained reward model r

220 1 Initialize a reward model r with parameters ϕ ;
 221 2 Initialize a variational model q with parameters ψ ;
 222 3 **while** each training iteration **do**
 223 4 Sample a mini-batch of triplets $\{(\mathbf{x}_i, \mathbf{y}_i^w, \mathbf{y}_i^l)\}_{i=1}^B \sim \mathcal{D}_{\text{Pref}}$;
 224 5 Encode each $(\mathbf{x}_i, \mathbf{y}_i^w)$ and $(\mathbf{x}_i, \mathbf{y}_i^l)$ into embeddings $\mathbf{h}_i^w = r_{\phi_{\text{base}}}(\mathbf{x}_i, \mathbf{y}_i^w)$, $\mathbf{h}_i^l = r_{\phi_{\text{base}}}(\mathbf{x}_i, \mathbf{y}_i^l)$;
 225 6 Calculate each representation difference $\Delta\mathbf{h}_i = \mathbf{h}_i^w - \mathbf{h}_i^l$ and obtain $\mathbf{b}_i^{\text{rel}}$ through $(\mathbf{y}_i^w, \mathbf{y}_i^l)$ with \mathbf{b} ;
 226 7 Update the variational approximation $q_\psi(\mathbf{b}_i^{\text{rel}} | \Delta\mathbf{h}_i)$ by maximizing log-likelihood with $\{(\Delta\mathbf{h}_i, \mathbf{b}_i^{\text{rel}})\}$;
 227 8 Calculate $\mathcal{L}_{\text{debias}}$ with $q_\psi(\mathbf{b}^{\text{rel}} | \Delta\mathbf{h})$ and $\{(\Delta\mathbf{h}_i, \mathbf{b}_i^{\text{rel}})\}_{i=1}^B$, and $\mathcal{L}_{\text{pref}}$ with $\{(\mathbf{x}_i, \mathbf{y}_i^w, \mathbf{y}_i^l)\}_{i=1}^B$;
 228 9 Learning loss $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{pref}} + \lambda \cdot \mathcal{L}_{\text{debias}}$;
 229 10 Update reward model r and variational network q by gradient descent with respect to $\mathcal{L}_{\text{total}}$;
 230 11 **end**

231 difference, $\Delta\mathbf{h} = \mathbf{h}(\mathbf{x}, \mathbf{y}) - \mathbf{h}(\mathbf{x}, \bar{\mathbf{y}})$, which isolates the features that distinguish the two responses.
 232 Here, with slight abuse of notation, for each input preference pair $(\mathbf{x}_i, \mathbf{y}_i)$, we use $\mathbf{h}_i = r_{\phi_{\text{base}}}(\mathbf{x}_i, \mathbf{y}_i)$
 233 to denote the final hidden-state representation of the last valid token from the transformer base $r_{\phi_{\text{base}}}$
 234 of the reward model r_ϕ .

235 Correspondingly, we define a *relative bias attribute*, $\mathbf{b}^{\text{rel}} \in \{0, 1\}$, for each pair, indicating which
 236 response exhibits more of the bias (e.g., $\mathbf{b}^{\text{rel}} = 1(\text{length}(\mathbf{y}) > \text{length}(\bar{\mathbf{y}}))$). This transforms our
 237 practical debiasing goal into minimizing $I(\Delta\mathbf{h}; \mathbf{b}^{\text{rel}})$, where the variational network q_ψ is thus trained
 238 as a binary classifier on this more focused input-target pair: $q_\psi(\mathbf{b}^{\text{rel}} | \Delta\mathbf{h})$. By minimizing the CLUB
 239 objective within this framework, we encourage the reward model to learn representations whose
 240 differences are informative about true preference but are invariant to relative differences in the bias
 241 attribute. In summary, for a batch training data of size B , $\mathcal{L}_{\text{debias}} = \frac{1}{B} \sum_{i=1}^B [\log q_\psi(\mathbf{b}_i^{\text{rel}} | \Delta\mathbf{h}_i) -$
 242 $\frac{1}{B} \sum_{j=1}^B \log q_\psi(\mathbf{b}_j^{\text{rel}} | \Delta\mathbf{h}_i)]$.

243
 244 **Final Objective.** Finally, we jointly optimize the reward model parameters ϕ and the variational
 245 parameters ψ by minimizing the complete training objective:

$$\mathcal{L}_{\text{total}}(\phi, \psi) = \mathcal{L}_{\text{pref}}(\phi) + \lambda \mathcal{L}_{\text{debias}}(\phi_{\text{base}}, \psi), \quad (12)$$

246 Parameters of the transformer base $\phi_{\text{base}} \subset \phi$ are updated by gradients from both losses, while the
 247 RM’s prediction head and the variational network q_ψ are updated by their respective objectives. Dur-
 248 ing inference, the variational network is discarded, allowing the debiased reward model r_ϕ to be used
 249 without any overhead. Given a pre-collected human preference dataset $\mathcal{D}_{\text{Pref}} = \{(\mathbf{x}_i, \mathbf{y}_i^w, \mathbf{y}_i^l)\}_{i=1}^N$,
 250 we highlight the training process in Algorithm 1 and visualize our framework in Appendix D.

251 3.2 DISCUSSION

252 Our final training $\mathcal{L}_{\text{total}}$ in equation 17 optimizes a tractable objective of the ideal information-theoretic
 253 objective in equation 8, which is theoretically grounded by several reasons. First, by targeting
 254 $I(\mathbf{H}; \mathbf{b})$, we enforce a stricter constraint on the bias information than targeting the final prediction,
 255 as justified by the DPI. Second, our comparative framework, which minimizes $I(\Delta\mathbf{h}; \mathbf{b}^{\text{rel}})$, serves as
 256 a principled and targeted implementation of this constraint, directly addressing the representational
 257 differences that drive biased decisions. Finally, using the CLUB estimator is an empirically validated
 258 technique for minimizing a tight upper bound on mutual information. Therefore, our practical loss
 259 function guides the reward model towards the ideal objective of being maximally informative about
 260 preferences while remaining invariant to the specified bias.

261 4 RELATED WORK

262 **Reward Hacking.** The issue of reward hacking, or specification gaming, has been increasingly
 263 recognized as a significant challenge for the stable and effective post-training of LLMs via RLHF (Lan-
 264 gosco et al., 2023; Amodei et al., 2016; Hurst et al., 2024; Kaufmann et al., 2024; Skalse et al.,

270 2025; Zhang et al., 2025; Li et al., 2025). It occurs when an agent exploits unforeseen loopholes
 271 or proxies in a misspecified reward function to achieve high scores without fulfilling the intended
 272 goal (Pan et al., 2022). In RLHF, the learned RM serves as a proxy for true human preferences.
 273 If this RM inadvertently learns inductive bias from the preference data (e.g., a bias towards more
 274 verbose (Singhal et al., 2023), or sycophantic responses (Sharma et al., 2023)), the LLM being
 275 optimized will learn to exploit these flaws, leading to a degradation in true performance (Hurst et al.,
 276 2024). Prior work has sought to mitigate reward hacking by empowering RMs, including better data
 277 curation (Liu et al., 2024a; Wang et al., 2025b; Dubois et al., 2024), model scaling up (Wang et al.,
 278 2025b) and ensembling (Wang et al., 2024), reward post-hoc calibration (Huang et al., 2024), causal
 279 inference (Shen et al., 2023; Wang et al., 2025a), disentangled reward learning (Bu et al., 2025; Chen
 280 et al., 2024) and other additional constraints (Miao et al., 2024).

281 More related to our work, several recent efforts have sought to mitigate biases in reward modeling.
 282 A prominent line of work focuses on minimizing simple statistical correlations. For instance,
 283 methods like ODIN (Chen et al., 2024), ALBM (Bu et al., 2025), and the approach by Zhang et al.
 284 (2025) aim to reduce length or format bias by directly penalizing the Pearson correlation coefficient
 285 between the reward score and the bias attribute. While effective for simple associations, these
 286 methods are fundamentally limited as they only capture linear relationships, failing to address more
 287 complex, non-linear dependencies. Similarly, PoE (Shen et al., 2023) employs a specialized two-head
 288 architecture for length bias, but its attempt at causal disentanglement is purely heuristic. PoE does
 289 not explicitly model the preference-bias relationship, relying instead on the network to implicitly
 290 learn this separation from data, which offers neither formal guarantees nor generality.

291 In contrast, more principled frameworks have been proposed. CRM (Wang et al., 2025a) uses
 292 counterfactual invariance enforced by MMD, which may be overly restrictive and risk distorting
 293 the reward landscape. Closer to our approach, InfoRM (Miao et al., 2024) employs an information-
 294 theoretic framework to compress the entire latent representation, indirectly removing spurious
 295 information. Distinct from all these methods, our work is also motivated by information theory (Tishby
 296 et al., 2000) but introduces a more direct and targeted mechanism. By explicitly minimizing the
 297 mutual information that is capable of capturing arbitrary non-linear dependencies between the model’s
 298 internal representation and the known bias attribute, DIR provides a principled and robust debiasing
 299 framework that is both general and effective, avoiding the limitations of linear metrics and the risks
 300 of purely heuristic, data-driven approaches.

301 **Debias Methods** aims at preventing models from learning and perpetuating undesirable biases
 302 present in training data (He et al., 2019; Nam et al., 2020; Blodgett et al., 2020). A prominent line of
 303 work involves learning representations that are invariant to sensitive or spurious attributes (Chuang
 304 et al., 2020). Methodologies to achieve this include adversarial training, where a discriminator
 305 attempts to predict the bias attribute from the model’s representation (Nam et al., 2020); causal
 306 inference techniques that aim to disentangle causal factors from spurious ones (Zhou et al., 2023a);
 307 and information-theoretic approaches (Liu et al., 2023; Tartaglione et al., 2021). Our work falls into
 308 the latter category, where we introduce a novel and principled information-theoretic debiasing method
 309 for eliminating inductive bias in reward modeling.

310 5 EXPERIMENT

311 We evaluate the effectiveness of our debiased reward modeling framework on three practical bias
 312 settings, length, sycophancy, and format, by applying the method separately to each. Then we explore
 313 whether our method can alleviate the concurrent multi-bias situation.

314 5.1 LENGTH BIAS

315 Previous work demonstrates that reward models often tend to favor longer responses, leading them
 316 to assign higher reward scores for verbose completions rather than for substantive content (Singhal
 317 et al., 2023; Dubois et al., 2024). As a result, the aligned policy model would in turn learn to exploit
 318 this inductive bias, which is incentivized to generate unnecessarily verbose, repetitive, or circuitous
 319 text to maximize its expected reward, a behavior that directly contradicts the goal of aligning with
 320 nuanced human preferences for quality and conciseness. See detailed settings in Appendix E.1.

Figure 1: Evaluation of length bias in Reward Models on the RM-Bench. We compare the correlation between response length and reward score for RMs trained with different methods. Our approach yields the lowest Pearson correlation coefficient (0.468), proving its effective ability in assigning more uniform reward scores.

Table 1: We adopt the official evaluation implementation of the evalscope package by using 0-Shot, except for GSM8K, Race, and TriviaQA. Baseline: Llama3.1-8B-Instruct / OpenRLHF-Llama3-8B-SFT. **Bold** is the best. underline is the second-best. The Δ row indicates the performance change relative to the respective Baseline.

Benchmark	Llama3.1-8B-Instruct							OpenRLHF-Llama3-8B-SFT						
	Base	SK	PoE	LP	ALBM	InfoRM	Ours	Base	SK	PoE	LP	ALBM	InfoRM	Ours
GSM8K _{acc} -4shots	83.93	84.61	83.62	75.97	84.08	83.78	84.84	74.83	78.17	77.79	77.18	78.85	76.74	79.08
Hellaswag _{acc}	77.21	76.42	77.08	73.15	<u>77.21</u>	76.78	77.33	72.51	74.76	72.51	72.51	74.63	72.12	74.52
IFeval _{acc}	72.83	70.06	71.72	65.47	<u>73.57</u>	<u>74.12</u>	78.00	44.92	45.10	<u>49.72</u>	46.21	<u>46.21</u>	46.21	52.31
MMLU _{acc}	72.31	72.33	71.97	65.13	<u>72.55</u>	72.22	72.64	54.45	52.40	<u>54.77</u>	54.45	55.25	54.97	54.30
ProcessBench _{acc}	25.39	29.49	<u>28.50</u>	24.91	26.12	26.25	27.73	4.46	10.31	9.68	7.84	<u>10.85</u>	3.24	13.82
Race _{acc} -3shots	66.50	53.89	60.03	78.90	59.00	65.20	62.02	79.21	78.82	81.39	80.30	<u>80.69</u>	78.72	80.32
BBH _{acc}	64.52	<u>65.69</u>	60.50	61.10	64.84	66.13	67.27	61.20	62.68	<u>62.69</u>	62.28	61.10	61.62	62.99
Humaneval _{pass@1}	70.12	<u>68.29</u>	66.46	60.37	65.85	70.12	70.12	<u>60.98</u>	57.32	59.76	59.76	60.37	57.32	63.41
TriviaQA _{acc} -5shots	32.64	49.01	48.41	47.20	<u>52.09</u>	30.56	55.86	48.53	<u>52.86</u>	52.34	48.32	51.52	48.16	<u>52.52</u>
Avg. Performance	62.83	63.31	63.14	61.36	<u>63.92</u>	62.80	66.20	55.68	56.94	<u>57.85</u>	56.54	<u>57.72</u>	55.34	59.25
Δ	-	$\uparrow 0.48$	$\uparrow 0.31$	$\downarrow 1.47$	$\uparrow 1.09$	$\downarrow 0.03$	$\uparrow 3.37$	-	$\uparrow 1.26$	$\uparrow 2.17$	$\uparrow 0.86$	$\uparrow 2.04$	$\downarrow 0.34$	$\uparrow 3.57$

Reward Model Evaluation, Results and Analysis. We first evaluate the inherent length bias of RMs by analyzing the correlation between their scores and response lengths on the RM-Bench (Liu et al., 2024b). As visualized in Figure 1, the standard BT RM exhibits a strong, undesirable positive correlation between length and reward ($\text{Pearson } r = 0.533$). This confirms that even without an explicit preference for length in the training data², the model still learns a spurious “longer is better” heuristic, highlighting a fundamental issue in standard BT: the objective itself is susceptible to capturing such simple, non-causal patterns. While other debiasing methods show some improvement, our approach demonstrates an effective ability to mitigate this bias. Our RM achieves a Pearson correlation of just 0.468, the lowest among all evaluated methods. This quantitative advantage is further illustrated in the binned mean reward plots; the curve for our model is visibly flatter, confirming that it does not disproportionately reward longer responses. By learning to assign scores more uniformly across different lengths, our method produces a more reliable RM, preventing the policy from being misguided into generating unnecessarily verbose outputs during subsequent fine-tuning. We report the performance on RM-Bench in Appendix E.1

PPO Evaluation, Results and Analysis. We compare the performance of different PPO-optimized policies based on the corresponding RMs across several popular benchmarks. Table 1 demonstrates that mitigating length bias does not compromise, and ideally enhances, the policy’s core reasoning and knowledge-based capabilities. On the Llama3.1-8B-Instruct backbone, our model (“OURS”) achieves the highest average performance of 66.20, significantly outperforming strong baselines. This trend of improved performance is consistent across different base models, as our method also secures the top average score (59.25) on the OpenRLHF-Llama3-8B-SFT backbone, which shows that our fine-tuning strategy successfully improves objective performance by alleviating the length bias.

We also assess the user preference for policies fine-tuned using different reward models and compare average response length on the ArenaHard-v0.1 benchmark (Li et al., 2024). Figure 2 shows the head-to-head win rates of these challenger policies against strong opponents, as judged by Qwen3-

²Average token number of $(\mathbf{x}, \mathbf{y}^w)$ in the SK training set is less than $(\mathbf{x}, \mathbf{y}^l)$ ones (622.86 vs. 707.24).

Figure 2: Evaluation on ArenaHard-v0.1 for policies fine-tuned with different RMs. (a) Head-to-head win rates. Policies are PPO fine-tuned from specified base models (from left to right: OpenLlama3-8B-SFT, Llama3.1-8B-Instruct, and Llama3.1-8B-Instruct, respectively) using five different RMs, which then act as challengers against opponents. (b) Average response length comparison.

235B-A22B-2507³. The policy trained with our RM (“Ours”) consistently demonstrates the highest win rate across all conditions. For instance, in Figure 2 (a), when fine-tuned on Llama3.1-8B-Instruct, it achieves a remarkable 54.3% win rate against the baseline and 41.9% against GPT-4o-0314. Crucially, Figure 2 (b) reveals that this improved preference is achieved with expected conciseness. The policy guided by our RM produces shorter responses (e.g., 679 tokens on the Llama3.1 base) compared to policies guided by other RMs like ALBM (722 tokens) and the verbose original baseline (754 tokens). This combination of a relatively higher win rate and lower verbosity provides definitive evidence that our length-debiased reward model successfully guides PPO to produce a more efficient and human-aligned policy, effectively overcoming the common “longer is better” bias. Moreover, by directly targeting the known bias, DIR can effectively remove the spurious component while preserving preference-relevant information, thereby achieving both better direct debiasing and higher preference quality. In contrast, unsupervised debiased approaches like InfoRM do not consistently improve over the base models on either backbone and shows noticeably lower win rates, indicating a weaker trade-off between debiasing and performance.

In addition, we report the Win Rate performance on MT-Bench (Zheng et al., 2023) and Length Control Alpaca (Dubois et al., 2025) in Appendix E.1, from which we observe that DIR can yield policies that are preferred more often.

RM Training Cost Analysis. We analyze the computational overhead in terms of GPU memory consumption and training time, with a detailed comparison presented in Table 2. We use 8 GPU cards with full parameter training and DeepSpeed Zero-1(Rajbhandari et al., 2020). Our approach demonstrates highly comparable resource efficiency to existing methods. Specifically, the GPU memory usage of our method (57.22GB) is only marginally higher than the baseline (56.80GB) and on par with other techniques like ALBM (56.88GB). Regarding training time, while our method (67.09 minutes) requires a moderate increase compared to the simpler baseline (50.46 minutes), it remains competitive and aligns closely with other advanced methods such as ALBM (68.21 minutes). This analysis confirms that the significant performance improvements offered by our approach do not come at the expense of prohibitive computational costs, establishing it as a practical and efficient solution.

PPO Monitoring, Ablation Study, and Case Study. We visualize the PPO training dynamics metrics like RLHF Reward, KL divergence between the policy and the base, and KL divergence between following updated policies in Appendix E.1, which demonstrates that our RM helps make PPO training more stable with higher reward. In addition, we give a detailed ablation study on λ and representation difference in Appendix E.2, where the performance demonstrates the trade-off effects between preference learning and debiasing, and shows the effectiveness of representation difference than concatenation. We also provide specific case analysis in Appendix G.

Combination with Direct Preference Optimization (DPO) In addition to PPO, DPO (Rafailov et al., 2024a) has emerged as a powerful post-alignment method that directly trains the policy to increase the log-probability of the preferred response relative to the rejected one. Here, we explore whether our DIR can be effectively combined with DPO. Conceptually, DIR operates at the reward

Table 2: Training cost comparison.

Method	GPU Memory	Training Time
Baseline	55.08GB	50.46m
PoE	56.80GB	55.35m
ALBM	57.22GB	78.21m
InfoRM	57.99GB	75.21m
Ours	56.88GB	67.09m

³<https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507>

432 Table 3: Evaluation on
 433 ArenaHard-v0.1 for policies
 434 fine-tuned with DPO, DPO+LC
 435 and DPO+OURS.

		OpenRLHF-Llama-3-8B-SFT	
vs Base		Win Rate (%)	Length
DPO	38.63	436.55	
	+LC	40.96	407.23
	+OURS	45.27	404.61
		Meta-Llama3.1-8B-Instruct	
vs Base		Win Rate (%)	Length
DPO	44.06	700.87	
	+LC	46.57	691.43
	+OURS	49.09	684.67

436 Table 4: Benchmark Performance under DPO training. Evaluation
 437 setting is the same as Table 1.

Benchmark	Meta-Llama3.1-8B-Instruct			OpenRLHF-Llama3-8B-SFT		
	DPO	+LC	+OURS	DPO	+LC	+OURS
GSM8K _{acc} -4shots	82.11	81.43	82.56	75.89	76.35	77.26
Hellaswag _{acc}	74.84	75.17	75.10	66.56	66.41	73.91
IFEval _{acc}	73.57	74.12	74.68	38.26	35.86	41.59
MMLU _{acc}	71.36	71.58	71.54	48.92	48.92	57.01
ProcessBench _{acc}	26.75	26.70	27.60	4.28	4.95	6.93
Race _{acc} -3shots	69.98	70.14	70.29	79.27	78.68	79.97
BBH _{acc}	67.22	66.81	66.99	59.73	60.36	62.34
Humaneval _{pass@1}	62.80	65.24	69.51	59.15	60.37	59.15
TriviaQA _{acc} -5shots	55.12	55.15	55.29	47.45	47.69	48.93
Avg. Performance	64.86	65.04	65.95	53.28	53.29	60.12
Δ	-	$\uparrow 0.18$	$\uparrow 1.09$	-	$\uparrow 0.01$	$\uparrow 6.84$

438
 439
 440
 441
 442
 443
 444 modeling stage and should not modify the DPO objective: DPO still optimizes the standard log-
 445 sigmoid preference loss, and our method only modifies preference signals by making them less
 446 correlated with inductive bias. Specifically, we add $\lambda \mathcal{L}_{\text{debias}}(\phi_{\text{base}}, \psi)$ to DPO loss. Empirically,
 447 we conduct the corresponding experiments, which show that our method can also improve DPO’s
 448 performance with controlled length. We provide training details in Appendix E.3. Results in Table 3
 449 indicate that our method leads to a final policy with both a better win-rate and more effective length
 450 control, effectively boosting vanilla DPO and also outperforming a specialized Length Controlled
 451 DPO (DPO+LC) variant Park et al. (2024). Results in Table 4 indicate that our method also leads
 452 to a final policy with performance gains, especially for the SFT model, which has not undergone a
 453 preference alignment. In summary, experiments on Table 3 and Table 4 suggest that debiased reward
 454 signals from DIR interact smoothly with DPO and effectively remove spurious gradients induced by
 455 length bias.

5.2 SYCOPHANCY BIAS

456
 457 Sycophancy bias occurs when an RM learns to favor responses that agree with or flatter the user, rather
 458 than prioritizing factual accuracy and helpfulness Sharma et al. (2023); Wang et al. (2025a), which
 459 arises from inductive bias in preference data, where agreeable language is incorrectly associated
 460 with higher quality. Consequently, the policy model is misguided during RL fine-tuning to produce
 461 superficially pleasing but substantively poor outputs, undermining genuine alignment. Detailed
 462 experimental settings can be found in Appendix E.4.

463 Table 5: Reward model accuracy (%) on the sycophancy bias under varying contamination settings,
 464 where our method consistently achieves higher accuracy across most settings.

Settings		All.			Nat.			Adv.		
γ	α	BT	InfoRM	Ours	BT	InfoRM	Ours	BT	InfoRM	Ours
20%	30%	86.6	89.4	90.2	85.5	88.9	89.8	91.0	91.2	93.6
20%	50%	85.6	89.8	88.7	85.7	90.3	88.2	84.9	87.9	90.9
20%	70%	84.8	86.1	87.1	85.2	86.0	87.5	83.1	86.6	85.1
40%	30%	87.4	89.0	90.9	86.0	88.1	87.4	88.9	90.3	93.9
40%	50%	86.1	87.9	88.7	87.0	87.7	89.8	84.8	88.3	89.1
40%	70%	83.6	86.6	88.0	84.4	86.3	87.4	82.6	87.2	88.6
80%	30%	89.0	90.4	91.3	82.3	89.5	88.0	90.7	91.9	92.2
80%	50%	85.5	87.2	88.1	86.3	86.3	86.2	85.3	87.5	90.3
80%	70%	81.2	84.5	86.2	86.4	86.4	87.2	79.7	84.0	86.2

479 **Evaluation, Results, and Analysis.** To evaluate the models’ susceptibility to sycophancy, we
 480 conduct an adversarial test. We take a clean evaluation set and create two versions: a “natural”
 481 version and a “sycophantic” version where the undesirable prefix is added to the rejected responses.
 482 We then measure the model’s accuracy in correctly identifying the preferred response in both scenarios.
 483 A robust model should maintain its accuracy, whereas a biased model’s performance will degrade
 484 when faced with the “flattering but wrong” responses. As shown in Table 5, the performance of
 485 the reward models varies under different settings. The BT model shows vulnerability to bias, as its
 486 accuracy on natural examples is generally the lowest, particularly under high contamination. While

486 InfoRM also shows a clear improvement and greater resilience than the BT baseline, our method
 487 demonstrates overall higher performance improvements across natural, adversarial, and overall
 488 settings, even under high contamination ratios. This pattern indicates that our explicit debiasing
 489 mechanism is effective at mitigating the influence of sycophantic signals, enabling the model to focus
 490 more on the intrinsic quality of the response.

492 5.3 FORMAT BIAS

494 Zhang et al. (2025); Long et al. (2024) have indicated that format biases (e.g., lists, emoji, and bold)
 495 widely exist in human and powerful preference models, and reward modeling can be easily attacked
 496 by a small amount of biased data and leads to significant format biases in downstream alignment
 497 tasks. We test DIR’s ability to resist such bias and detailed experimental settings are in Appendix E.5.

498 **Baseline, Evaluation, Results, and Analysis.** By following
 499 LE (Zhang et al., 2025), we evaluate Ours against three base-
 500 lines: a standard BT model, BT^\dagger (trained on data with format-
 501 biased samples removed), and LE. As shown in Table 6, the
 502 standard BT model exhibits a profound format bias, with win-
 503 rates of 89.0% and 92.5% for Bold and List formats respectively,
 504 confirming it has learned to associate these formats with higher
 505 quality. The naive BT^\dagger approach proves to be a suboptimal
 506 strategy; while it lowers the format preference, its downstream
 507 performance on RewardBench degrades significantly. Both LE
 508 and Ours effectively neutralize the format bias, bringing the
 509 win-rates close to the ideal 50% mark. The key distinction,
 510 however, emerges in the downstream RewardBench evaluation.
 511 While LE shows competent generalization, Ours demonstrates
 512 notably stronger performance across the more demanding Chat Hard, Safety, and Reasoning. This
 513 indicates that our approach strikes a better trade-off, successfully eliminating the format preference
 514 while simultaneously enhancing the model’s core competencies in critical areas.

515 5.4 CONCURRENT MULTI-BIASES

516 Real datasets often exhibit multiple concurrent biases. In this section, we explore whether DIR can
 517 simultaneously deal with concurrent multi-biases, i.e., length and sycophantic biases. Overall, we
 518 find that the multi-bias DIR reduces both biases compared to the BT baseline, and even brings better
 519 generalization in some cases, indicating that multiple debiasing terms can be combined without
 520 significant destructive optimization conflicts. We give the details in Appendix E.6.

521 6 CONCLUSION

524 In this work, we introduce DIR, a novel framework designed to mitigate reward hacking caused by
 525 inductive biases in RLHF by applying information-theoretic principles to reward modeling. Unlike
 526 existing methods that target single biases (e.g., length or format) or only address simple linear
 527 correlations (e.g., Pearson Coefficient), DIR directly confronts the root cause of reward hacking,
 528 inductive bias in preference data, by implementing a dual-objective to explicitly disentangle these
 529 signals. DIR guides the reward model to learn representations that are predictive of true human
 530 preference while remaining invariant to the influence of known biases. Experiments across three
 531 distinct scenarios (i.e., length, sycophancy, and format bias) demonstrate DIR’s effectiveness not
 532 only in neutralizing the target biases but also in enhancing downstream RLHF performance and
 533 generalization, validating our approach as a general and practical tool for building more robustly
 534 aligned models.

535 ETHICS STATEMENT

538 This work aims to enhance the fairness and reliability of LLMs by mitigating format biases, pre-
 539 venting models from “gaming” evaluations based on style over substance. Our method encourages
 a more accurate assessment of a model’s true capabilities. We acknowledge that our method only

Table 6: Performance on both Bold and List format debiasing and downstream evaluation tasks. BT^\dagger indicates that deleting the samples with specific patterns.

Metric	BT	BT^\dagger	LE	Ours
<i>Win-Rate (%)</i>				
Bold	89.0	49.0	50.5	51.2
List	92.5	52.5	53.0	52.0
<i>RewardBench (Filtered)</i>				
Chat	98.3	92.2	97.2	93.0
Chat Hard	71.4	64.4	72.8	80.1
Safety	83.1	75.5	82.9	89.6
Reasoning	85.1	81.4	89.7	92.2

540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 addresses the specific format biases targeted during training and does not mitigate broader societal or demographic biases. Furthermore, our ablation studies show that an overly aggressive debiasing coefficient (λ) can create a trade-off, potentially harming performance on simpler tasks. While we use public models and datasets, we recognize they may contain their own inherent biases. We believe our contribution is a positive step towards more robust and transparent AI alignment.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we provide all necessary artifacts in both the Section Experiment, the Appendix, and the Supplementary Materials.

The complete source code, including training and evaluation scripts, is provided in the supplementary material. All datasets and base models we used in this manuscript are public, and we provide download scripts (`scripts/auto_download_data.sh` and `scripts/auto_download_model.sh`) for automated setup. Key hyperparameters are detailed in the paper. The exact commands for reproducing our main results are available in the provided shell scripts (e.g., `scripts/train_debias_rm.sh`).

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete problems in ai safety, 2016. URL <https://arxiv.org/abs/1606.06565>.

David Barber and Felix Agakov. The im algorithm: a variational approach to information maximization. *Advances in neural information processing systems*, 16(320):201, 2004.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, and Devon Hjelm. Mutual information neural estimation. In *International conference on machine learning*, pp. 531–540. PMLR, 2018.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, and R Devon Hjelm. Mine: Mutual information neural estimation, 2021. URL <https://arxiv.org/abs/1801.04062>.

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. In *Noise reduction in speech processing*, pp. 1–4. Springer, 2009.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. Language (technology) is power: A critical survey of “bias” in NLP. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 5454–5476, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.485. URL <https://aclanthology.org/2020.acl-main.485/>.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

Yuyan Bu, Liangyu Huo, Yi Jing, and Qing Yang. Beyond excess and deficiency: Adaptive length bias mitigation in reward models for rlhf. In *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 3091–3098, 2025.

Lichang Chen, Chen Zhu, Davit Soselia, Juhai Chen, Tianyi Zhou, Tom Goldstein, Heng Huang, Mohammad Shoeybi, and Bryan Catanzaro. Odin: Disentangled reward mitigates hacking in rlhf, 2024. URL <https://arxiv.org/abs/2402.07319>.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Karpman, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas

594 Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
 595 Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
 596 Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
 597 Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
 598 models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>.

599
 600 Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Info-
 601 gan: Interpretable representation learning by information maximizing generative adversarial nets.
 602 *Advances in neural information processing systems*, 29, 2016.

603 Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. Club: A
 604 contrastive log-ratio upper bound of mutual information. In *International conference on machine
 605 learning*, pp. 1779–1788. PMLR, 2020.

606
 607 Pengyu Cheng, Weituo Hao, Siyang Yuan, Shijing Si, and Lawrence Carin. Fairfil: Contrastive
 608 neural debiasing method for pretrained text encoders, 2021. URL <https://arxiv.org/abs/2103.06413>.

609
 610 Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka. De-
 611 biased contrastive learning. *Advances in neural information processing systems*, 33:8765–8775,
 612 2020.

613
 614 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 615 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 616 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

617
 618 Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
 619 mitigate overoptimization. *arXiv preprint arXiv:2310.02743*, 2023.

620
 621 Imre Csiszár. I-divergence geometry of probability distributions and minimization problems. *The
 622 annals of probability*, pp. 146–158, 1975.

623
 624 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
 625 Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Ultrafeedback: Boosting language
 626 models with scaled ai feedback, 2024. URL <https://arxiv.org/abs/2310.01377>.

627
 628 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
 629 2025. URL <https://arxiv.org/abs/2501.12948>.

630
 631 Carson Denison, Monte MacDiarmid, Fazl Barez, David Duvenaud, Shauna Kravec, Samuel Marks,
 632 Nicholas Schiefer, Ryan Soklaski, Alex Tamkin, Jared Kaplan, et al. Sycophancy to subterfuge:
 633 Investigating reward-tampering in large language models. *arXiv preprint arXiv:2406.10162*, 2024.

634
 635 Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
 636 Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf,
 637 2024. URL <https://arxiv.org/abs/2405.07863>.

638
 639 Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
 640 Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for methods that
 641 learn from human feedback, 2024. URL <https://arxiv.org/abs/2305.14387>.

642
 643 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled
 644 alpacaeval: A simple way to debias automatic evaluators, 2025. URL <https://arxiv.org/abs/2404.04475>.

645
 646 Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
 647 representations via multi-view information bottleneck. *arXiv preprint arXiv:2002.07017*, 2020.

648
 649 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
 650 *International Conference on Machine Learning*, pp. 10835–10866. PMLR, 2023.

648 Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
 649 A kernel two-sample test. *Journal of Machine Learning Research*, 13(25):723–773, 2012. URL
 650 <http://jmlr.org/papers/v13/gretton12a.html>.

651
 652 He He, Sheng Zha, and Haohan Wang. Unlearn dataset bias in natural language inference by fitting
 653 the residual, 2019. URL <https://arxiv.org/abs/1908.10763>.

654 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 655 Steinhardt. Measuring massive multitask language understanding, 2021. URL <https://arxiv.org/abs/2009.03300>.

656
 657 R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
 658 Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
 659 and maximization, 2019. URL <https://arxiv.org/abs/1808.06670>.

660
 661 Zeyu Huang, Zihan Qiu, Zili Wang, Edoardo M. Ponti, and Ivan Titov. Post-hoc reward calibration:
 662 A case study on length bias, 2024. URL <https://arxiv.org/abs/2409.17407>.

663
 664 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 665 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 666 *arXiv:2410.21276*, 2024.

667
 668 Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 669 supervised challenge dataset for reading comprehension, 2017. URL <https://arxiv.org/abs/1705.03551>.

670
 671 Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
 672 learning from human feedback. 2024.

673
 674 Solomon Kullback. *Information theory and statistics*. Courier Corporation, 1997.

675
 676 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
 677 comprehension dataset from examinations, 2017. URL <https://arxiv.org/abs/1704.04683>.

678
 679 Lauro Langosco, Jack Koch, Lee Sharkey, Jacob Pfau, Laurent Orseau, and David Krueger. Goal
 680 misgeneralization in deep reinforcement learning, 2023. URL <https://arxiv.org/abs/2105.14111>.

681
 682 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E. Gonzalez,
 683 and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
 684 pipeline, 2024. URL <https://arxiv.org/abs/2406.11939>.

685
 686 Zhuo Li, Yuege Feng, Dandan Guo, Jinpeng Hu, Anningzhe Gao, and Xiang Wan. Aplot: Robust
 687 reward modeling via adaptive preference learning with optimal transport, 2025. URL <https://arxiv.org/abs/2510.10963>.

688
 689 Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
 690 Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms, 2024a. URL
 691 <https://arxiv.org/abs/2410.18451>.

692
 693 Dugang Liu, Pengxiang Cheng, Hong Zhu, Zhenhua Dong, Xiuqiang He, Weike Pan, and Zhong
 694 Ming. Debiased representation learning in recommendation via information bottleneck. *ACM*
 695 *Transactions on Recommender Systems*, 1(1):1–27, 2023.

696
 697 Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Rm-bench: Benchmarking
 698 reward models of language models with subtlety and style, 2024b. URL <https://arxiv.org/abs/2410.16184>.

699
 700 Do Xuan Long, Hai Nguyen Ngoc, Tiviatis Sim, Hieu Dao, Shafiq Joty, Kenji Kawaguchi, Nancy F
 701 Chen, and Min-Yen Kan. Llms are biased towards output formats! systematically evaluating and
 mitigating output format bias of llms. *arXiv preprint arXiv:2408.08656*, 2024.

702 Yuchun Miao, Sen Zhang, Liang Ding, Rong Bao, Lefei Zhang, and Dacheng Tao. Inform: Mitigating
 703 reward hacking in rlhf via information-theoretic reward modeling. *Advances in Neural Information
 704 Processing Systems*, 37:134387–134429, 2024.

705 Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from failure:
 706 Training debiased classifier from biased classifier, 2020. URL <https://arxiv.org/abs/2007.02561>.

707 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 708 coding. *arXiv preprint arXiv:1807.03748*, 2018.

709 OpenAI. Gpt-4 technical report, 2024.

710 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 711 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
 712 Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
 713 Ryan Lowe. Training language models to follow instructions with human feedback, 2022a.

714 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 715 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 716 instructions with human feedback. *Advances in Neural Information Processing Systems*, 35:
 717 27730–27744, 2022b.

718 Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The effects of reward misspecification: Mapping
 719 and mitigating misaligned models, 2022. URL <https://arxiv.org/abs/2201.03544>.

720 Ryan Park, Rafael Rafailov, Stefano Ermon, and Chelsea Finn. Disentangling length from quality in
 721 direct preference optimization. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings
 722 of the Association for Computational Linguistics: ACL 2024*, pp. 4998–5017, Bangkok, Thailand,
 723 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.297.
 724 URL <https://aclanthology.org/2024.findings-acl.297/>.

725 Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
 726 gpt-4. *arXiv preprint arXiv:2304.03277*, 2023.

727 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
 728 Finn. Direct preference optimization: Your language model is secretly a reward model, 2024a.
 729 URL <https://arxiv.org/abs/2305.18290>.

730 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 731 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 732 in Neural Information Processing Systems*, 36, 2024b.

733 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
 734 toward training trillion parameter models, 2020. URL <https://arxiv.org/abs/1910.02054>.

735 Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D
 736 Tracey, and David D Cox. On the information bottleneck theory of deep learning. *Journal of
 737 Statistical Mechanics: Theory and Experiment*, 2019(12):124020, 2019.

738 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 739 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

740 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 741 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 742 mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

743 Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R Bowman,
 744 Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R Johnston, et al. Towards understanding
 745 sycophancy in language models. *arXiv preprint arXiv:2310.13548*, 2023.

756 Wei Shen, Rui Zheng, Wenyu Zhan, Jun Zhao, Shihan Dou, Tao Gui, Qi Zhang, and Xuanjing Huang.
 757 Loose lips sink ships: Mitigating length bias in reinforcement learning from human feedback.
 758 *arXiv preprint arXiv:2310.05199*, 2023.

759

760 Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating
 761 length correlations in rlhf. *arXiv preprint arXiv:2310.03716*, 2023.

762

763 Joar Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
 764 characterizing reward hacking, 2025. URL <https://arxiv.org/abs/2209.13085>.

765

766 Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 767 Akanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
 768 bench tasks and whether chain-of-thought can solve them, 2022. URL <https://arxiv.org/abs/2210.09261>.

769

770 Enzo Tartaglione, Carlo Alberto Barbano, and Marco Grangetto. End: Entangling and disentangling
 771 deep representations for bias correction. In *2021 IEEE/CVF Conference on Computer Vision and
 772 Pattern Recognition (CVPR)*, pp. 13503–13512. IEEE, June 2021. doi: 10.1109/cvpr46437.2021.
 01330. URL <http://dx.doi.org/10.1109/CVPR46437.2021.01330>.

773

774 Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method, 2000.
 775 URL <https://arxiv.org/abs/physics/0004057>.

776

777 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 778 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
 779 Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
 780 models, 2023.

781

Zhibin Wan, Changqing Zhang, Pengfei Zhu, and Qinghua Hu. Multi-view information-bottleneck
 782 representation learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35,
 783 pp. 10085–10092, 2021.

784

Chaoqi Wang, Zhuokai Zhao, Yibo Jiang, Zhaorun Chen, Chen Zhu, Yuxin Chen, Jiayi Liu, Lizhu
 785 Zhang, Xiangjun Fan, Hao Ma, et al. Beyond reward hacking: Causal rewards for large language
 786 model alignment. *arXiv preprint arXiv:2501.09620*, 2025a.

787

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
 788 via multi-objective reward modeling and mixture-of-experts. In Yaser Al-Onaizan, Mohit Bansal,
 789 and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP
 790 2024*, pp. 10582–10592, Miami, Florida, USA, November 2024. Association for Computational
 791 Linguistics. doi: 10.18653/v1/2024.findings-emnlp.620. URL <https://aclanthology.org/2024.findings-emnlp.620/>.

792

Zhilin Wang, Jiaqi Zeng, Olivier Delalleau, Hoo-Chang Shin, Felipe Soares, Alexander Bukharin,
 793 Ellie Evans, Yi Dong, and Oleksii Kuchaiev. Helpsteer3-preference: Open human-annotated
 794 preference data across diverse tasks and languages, 2025b. URL <https://arxiv.org/abs/2505.11475>.

795

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 796 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 797 arXiv:2412.15115*, 2024.

800

Siyang Yuan, Pengyu Cheng, Ruiyi Zhang, Weituo Hao, Zhe Gan, and Lawrence Carin. Improving
 801 zero-shot voice style transfer via disentangled representation learning. In *International Conference
 802 on Learning Representations*, 2021.

803

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 804 really finish your sentence?, 2019. URL <https://arxiv.org/abs/1905.07830>.

805

Xuanchang Zhang, Wei Xiong, Lichang Chen, Tianyi Zhou, Heng Huang, and Tong Zhang. From lists
 806 to emojis: How format bias affects model alignment. In Wanxiang Che, Joyce Nabende, Ekaterina
 807 Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the
 808 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 26940–26961, Vienna,
 809 2024.

810 Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi:
811 10.18653/v1/2025.acl-long.1308. URL [https://aclanthology.org/2025.acl-long.](https://aclanthology.org/2025.acl-long.1308/)
812 1308/.

813

814 Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
815 gren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning,
816 2025. URL <https://arxiv.org/abs/2412.06559>.

817

818 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
819 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
820 Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL <https://arxiv.org/abs/2306.05685>.

821

822 Fan Zhou, Yuzhou Mao, Liu Yu, Yi Yang, and Ting Zhong. Causal-debias: Unifying debiasing
823 in pretrained language models and fine-tuning via causal invariant learning. In Anna Rogers,
824 Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the*
825 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 4227–4241, Toronto,
826 Canada, July 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
827 232. URL [https://aclanthology.org/2023.acl-long.232/](https://aclanthology.org/2023.acl-long.232).

828

829 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
830 Zhou, and Le Hou. Instruction-following evaluation for large language models, 2023b. URL
<https://arxiv.org/abs/2311.07911>.

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A USAGE OF LLMS**
865866 In the preparation of this paper, we utilized Large Language Models (LLMs) solely for the purpose
867 of grammatical polishing and text refinement of the manuscript content. Specifically, the LLMs were
868 only used to optimize the clarity, fluency, and grammatical accuracy of the written text.
869870 All content polished by LLMs underwent thorough manual review and verification by the authors.
871 We carefully checked the polished text to ensure its consistency with the original research intent,
872 accuracy of scientific facts, and compliance with academic integrity standards. We confirm that
873 we take full responsibility for all contents of the paper under our names, including the parts that
874 underwent LLM-assisted grammatical polishing.
875876 **B BOUND PROOF**
877878 **B.1 PROOF OF THE BARBER-AGAKOV (BA) BOUND.**
879880 The goal is to prove that for any variational distribution $q_\theta(\mathbf{y}|\mathbf{x})$, the mutual information $I(\mathbf{x}; \mathbf{y})$ is
881 lower-bounded by $\mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\log q_\theta(\mathbf{y}|\mathbf{x})] + H(\mathbf{y})$, for any two random variables \mathbf{x} and \mathbf{y} . We begin
882 with the definition of mutual information:
883

884
$$I(\mathbf{x}; \mathbf{y}) = H(\mathbf{y}) - H(\mathbf{y}|\mathbf{x}),$$

885

886 where $H(\mathbf{y})$ is the marginal entropy of \mathbf{y} , and $H(\mathbf{y}|\mathbf{x})$ is the conditional entropy. The conditional
887 entropy is defined as:
888

889
$$H(\mathbf{y}|\mathbf{x}) = -\mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\log p(\mathbf{y}|\mathbf{x})].$$

890

891 Substituting this into the definition of MI, we get:
892

893
$$\begin{aligned} I(\mathbf{x}; \mathbf{y}) &= H(\mathbf{y}) - (-\mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\log p(\mathbf{y}|\mathbf{x})]) \\ &= H(\mathbf{y}) + \mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\log p(\mathbf{y}|\mathbf{x})]. \end{aligned} \quad (13)$$

894

895 Now, we introduce the variational approximation $q_\theta(\mathbf{y}|\mathbf{x})$ by considering the Kullback-Leibler (KL)
896 divergence between the true conditional distribution $p(\mathbf{y}|\mathbf{x})$ and our approximation $q_\theta(\mathbf{y}|\mathbf{x})$, averaged
897 over all $\mathbf{x} \sim p(\mathbf{x})$:
898

899
$$\mathbb{E}_{p(\mathbf{x})}[\text{KL}(p(\mathbf{y}|\mathbf{x}) \parallel q_\theta(\mathbf{y}|\mathbf{x}))] \geq 0.$$

900

901 By expanding the definition of KL divergence, we have:
902

903
$$\begin{aligned} 0 &\leq \mathbb{E}_{p(\mathbf{x})} \left[\sum_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) \log \frac{p(\mathbf{y}|\mathbf{x})}{q_\theta(\mathbf{y}|\mathbf{x})} \right], \\ 0 &\leq \sum_{\mathbf{x}} p(\mathbf{x}) \sum_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) \log \frac{p(\mathbf{y}|\mathbf{x})}{q_\theta(\mathbf{y}|\mathbf{x})}, \\ 0 &\leq \sum_{\mathbf{x}, \mathbf{y}} p(\mathbf{x}, \mathbf{y}) (\log p(\mathbf{y}|\mathbf{x}) - \log q_\theta(\mathbf{y}|\mathbf{x})), \\ 0 &\leq \mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\log p(\mathbf{y}|\mathbf{x})] - \mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\log q_\theta(\mathbf{y}|\mathbf{x})]. \end{aligned}$$

904

905 Rearranging this inequality gives us a lower bound for the expected log-likelihood under the true
906 distribution:
907

908
$$\mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\log p(\mathbf{y}|\mathbf{x})] \geq \mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\log q_\theta(\mathbf{y}|\mathbf{x})]. \quad (14)$$

909

910 Finally, by substituting this inequality equation 14 back into our expanded definition of mutual
911 information equation 13, we obtain the Barber-Agakov bound:
912

913
$$\begin{aligned} I(\mathbf{x}; \mathbf{y}) &= H(\mathbf{y}) + \mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\log p(\mathbf{y}|\mathbf{x})] \\ &\geq H(\mathbf{y}) + \mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\log q_\theta(\mathbf{y}|\mathbf{x})]. \end{aligned}$$

914

915 Let $H[p]$ to represent the marginal entropy $H(\mathbf{y})$, we arrive at the final expression:
916

917
$$I(\mathbf{x}; \mathbf{y}) \geq \mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\log q_\theta(\mathbf{y}|\mathbf{x})] + H[p] =: I_{\text{BA}}(\mathbf{x}; \mathbf{y}),$$

918

919 which completes the proof. The bound becomes tight (i.e., the inequality becomes an equality)
920 if and only if the variational approximation perfectly matches the true conditional distribution,
921 $q_\theta(\mathbf{y}|\mathbf{x}) = p(\mathbf{y}|\mathbf{x})$ for all \mathbf{x}, \mathbf{y} .
922

918 B.2 PROOF OF THE CLUB UPPER BOUND
919920 We aim to prove that for any variational distribution $q_\theta(\mathbf{y}|\mathbf{x})$, the mutual information $I(\mathbf{x}; \mathbf{y})$ is
921 upper-bounded by $I_{\text{CLUB}}(\mathbf{x}; \mathbf{y})$. We begin with the definition of mutual information:
922

923
$$I(\mathbf{x}; \mathbf{y}) = \mathbb{E}_{p(\mathbf{x}, \mathbf{y})} [\log p(\mathbf{y}|\mathbf{x})] - \mathbb{E}_{p(\mathbf{y})} [\log p(\mathbf{y})] \quad (15)$$

924 Let's focus on the second term, which is the negative marginal entropy $-H(\mathbf{y})$. We can express the
925 marginal distribution $p(\mathbf{y})$ by marginalizing out \mathbf{x} :
926

927
$$p(\mathbf{y}) = \mathbb{E}_{p(\mathbf{x}')} [p(\mathbf{y}|\mathbf{x}')] \quad (16)$$

928 where \mathbf{x}' is a random variable drawn from the same distribution as \mathbf{x} , but is independent of the \mathbf{x} in
929 the first term of equation 15. Substituting this into the entropy term:
930

931
$$-\mathbb{E}_{p(\mathbf{y})} [\log p(\mathbf{y})] = -\mathbb{E}_{p(\mathbf{y})} [\log \mathbb{E}_{p(\mathbf{x}')} [p(\mathbf{y}|\mathbf{x}')]].$$

932 Since the logarithm is a concave function, we can apply Jensen's inequality, which states that
933 $\mathbb{E}[\log(Z)] \leq \log(\mathbb{E}[Z])$. This implies $-\log(\mathbb{E}[Z]) \leq -\mathbb{E}[\log(Z)]$. Applying this, we get:
934

935
$$\begin{aligned} -\mathbb{E}_{p(\mathbf{y})} [\log \mathbb{E}_{p(\mathbf{x}')} [p(\mathbf{y}|\mathbf{x}')]] &\leq -\mathbb{E}_{p(\mathbf{y})} [\mathbb{E}_{p(\mathbf{x}')} [\log p(\mathbf{y}|\mathbf{x}')]] \\ &= -\mathbb{E}_{p(\mathbf{x}')p(\mathbf{y})} [\log p(\mathbf{y}|\mathbf{x}')]. \end{aligned}$$

936 Now, substituting this inequality back into our original MI expression equation 15, we obtain an
937 upper bound on the mutual information:
938

939
$$I(\mathbf{x}; \mathbf{y}) \leq \mathbb{E}_{p(\mathbf{x}, \mathbf{y})} [\log p(\mathbf{y}|\mathbf{x})] - \mathbb{E}_{p(\mathbf{x})p(\mathbf{y})} [\log p(\mathbf{y}|\mathbf{x})]. \quad (16)$$

940 Note that the second expectation is over the product of marginals $p(\mathbf{x})p(\mathbf{y})$. The inequality equation
941 16 holds for the true conditional distribution $p(\mathbf{y}|\mathbf{x})$. The CLUB bound replaces $p(\mathbf{y}|\mathbf{x})$ with the
942 variational approximation $q_\theta(\mathbf{y}|\mathbf{x})$. The key insight from Cheng et al. (2020) is that the difference
943 between the true bound and the variational bound is an expectation of KL-divergences, and this
944 variational form serves as a practical, sample-based upper bound for minimization. Therefore, we use
945 the variational form as our tractable objective:
946

947
$$I(\mathbf{x}; \mathbf{y}) \leq \mathbb{E}_{p(\mathbf{x}, \mathbf{y})} [\log q_\theta(\mathbf{y}|\mathbf{x})] - \mathbb{E}_{p(\mathbf{x})p(\mathbf{y})} [\log q_\theta(\mathbf{y}|\mathbf{x})] =: I_{\text{CLUB}}(\mathbf{x}; \mathbf{y}).$$

948 This completes the justification for using I_{CLUB} as an upper bound for mutual information minimization.
949950 C IMPLEMENTATION DETAILS OF q_ψ
951952 Our variational network q_ψ for estimating the mutual information is implemented as a lightweight
953 two-layer Multi-Layer Perceptron (MLP). Its architecture is as follows:
954955

```
self.variational_net = nn.Sequential(
    nn.Linear(input_dim, hidden_size),
    nn.ReLU(),
    nn.Linear(hidden_size, label_num)
)
```

956 The dimensions are chosen based on the following principles: **input_dim**: This is dynamically set to
957 match the dimension of the final hidden state representation from the backbone LLM. For instance,
958 in our experiments with Llama-3.1-8B-Instruct, the **input_dim** is 4096.
959960 **label_num**: The output dimension is set to 2. This is a direct and necessary consequence of our
961 theoretical formulation, as the relative bias attribute b_{rel} is defined as a binary variable (0, 1) indicating
962 which of the two responses in a pair exhibits a stronger bias.
963964 **hidden_size**: For the intermediate hidden layer size, we conducted an ablation study over the values
965 [512, 1024, 2048]. We observed that **hidden_size**=1024 offered the best trade-off between debiasing
966 performance and minimal computational overhead.
967968 We intentionally designed q_ψ to be a simple and efficient network. This ensures that the observed
969 performance gains are attributable to our method itself, rather than to the introduction of a large
970 number of additional parameters.
971

972 **D VISUALIZATION OF DIR**
973974 We visualize our DIR framework as shown in Figure 3.
975988 Figure 3: An overview of our DIR framework, which disentangles reward modeling into two
989 competing pathways. A **Preference** Path is optimized to maximize mutual information with the true
990 preference label. Concurrently, a **Debias** Path, regularized by an information bottleneck, is optimized
991 to minimize mutual information with the bias attributes. This dual-objective forces the shared RM
992 Base to learn representations that are sensitive to preference but invariant to bias.
993
994995 **E EXPERIMENT**
996997 **E.1 LENGTH BIAS**
998999 **Dataset, and Model.** We train reward models on Skywork-Preference-80K-v0.2 (SK) dataset⁴
1000 based on Llama3.1-8B-Instruct. With the reward model, we then train Llama3.1-8B-Instruct and
1001 OpenRLHF-Llama3-8B-SFT polices with the PPO implementation for one epoch.
10021003 **Training Settings.** For our reward model training, we adopt a full parameter tuning strategy by
1004 using HuggingFace Trainer with DeepSpeed Zero1 on 8 GPU cards. Global batch size is set to 128,
1005 initialization learning rate is 2e-6 with Cosine scheduler. For our PPO experiment, we fine-tune
1006 two distinct models using 20,000 samples from the alpaca-gpt4-data-en dataset (Peng et al., 2023).
1007 The first model, Llama3.1-8B-Instruct⁵, has undergone post-training that includes both DPO and
1008 RLHF. The second, OpenRLHF-Llama3-8B-SFT⁶, is an instruction-following version built upon
1009 Llama3-8B-Base, without the RLHF post-training stage. We conduct the PPO training using the
1010 ms-swift framework⁷ with its default training configuration.
10111012 **Baselines.** We mainly consider the following baselines due to the reproducibility: 1) Vanilla BT
1013 Baseline and popular open-source RM Skywork-Reward-Llama-3.1-8B-v0.2⁸; 2) Length Debiased
1014 RMs, including PoE (Shen et al., 2023) and ALBM (Bu et al., 2025); 3) Length Penalty that directly
1015 resharpes the reward during PPO by $\tilde{r}(\mathbf{x}, \mathbf{y}) = r(\mathbf{x}, \mathbf{y}) - 0.001 * \text{len}(\mathbf{y})$ (Dong et al., 2024); 4)
1016 InfoRM (Miao et al., 2024) that is also designed from the information theory perspective.
10171018 **Evaluations.** All benchmark evaluations are subsequently performed using the ms-evalscope
1019 framework⁹. Our evaluation protocol utlize few-shot settings for GSM8K (4-shot) (Cobbe et al.,
2021), Race (3-shot) (Lai et al., 2017), and TriviaQA (5-shot) (Joshi et al., 2017), while all other
10201021 ⁴<https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.2>
10221023 ⁵<https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>
1024 ⁶<https://huggingface.co/OpenRLHF/Llama-3-8b-sft-mixture>
1025 ⁷<https://github.com/modelscope/ms-swift>
1026 ⁸<https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2>
1027 ⁹<https://github.com/modelscope/evalscope>

1026 benchmarks (i.e., Hellaswag (Zellers et al., 2019), IFeval (Zhou et al., 2023b), MMLU (Hendrycks
 1027 et al., 2021), ProcessBench (Zheng et al., 2025), BBH (Suzgun et al., 2022), and Humaneval (Chen
 1028 et al., 2021)) are assessed in a zero-shot setting. We report accuracy as the primary metric for all
 1029 tasks, with the exception of Humaneval, for which we report the Pass@1 score.
 1030

1031 **Performance on RM-Bench.** We further evaluate our debiased reward models on the RM-Bench,
 1032 which assesses capabilities across various domains (Chat, Math, Code, Safety) and difficulty levels
 1033 (Hard, Normal, Easy). The results, presented in Table 7, demonstrate that our DIR framework
 1034 outperforms several baseline methods in terms of overall performance.
 1035

1036 Our primary model, Ours-1.0, which corresponds to the optimal trade-off point ($\lambda = 1.0$) identified
 1037 in our ablation study, achieves the second-highest total score (69.35). It exhibits a well-balanced
 1038 profile, securing the top performance on the ‘Math’ subset (61.81) and the ‘Normal’ difficulty subset
 1039 (73.59), while remaining highly competitive in ‘Chat’ (68.91). This confirms that our method can
 1040 enhance the reward model’s core capabilities without compromising its general performance.
 1041

1042 When we increase the debiasing strength to $\lambda = 10.0$, the Ours-10.0 model achieves the best overall
 1043 performance (70.18). The most significant improvement is observed on the ‘Hard’ subset, where our
 1044 model’s score dramatically jumps to 64.41, surpassing the next-best method by a large margin of over
 1045 16 points. This strongly suggests that by forcing the model to ignore superficial format cues, DIR
 1046 enables it to focus on the more subtle and complex signals of quality inherent in difficult prompts.
 1047 This specialized model also secures the top rank in the ‘Chat’ and ‘Code’ domains. However, this
 1048 specialization comes at the cost of performance on the ‘Easy’ subset, where simpler heuristics might
 1049 be sufficient and our strong debiasing may be overly restrictive.
 1050

1051 In summary, these results demonstrate that DIR not only enhances the overall capability of the reward
 1052 model but also offers a tunable mechanism to prioritize robustness on challenging tasks over simpler
 1053 ones, showcasing the flexibility and effectiveness of our approach.
 1054

1053 Table 7: Performance comparison on RM-Bench. Best results are in **bold** and Second-performance is
 1054 in underlined. [We train the BT baseline in our own codebase](#).

Method	Chat	Math	Code	Safety	Hard	Normal	Easy	Total
BT	64.69	61.21	51.41	95.11	42.76	72.30	<u>89.24</u>	68.10
PoE	67.70	61.23	51.51	95.51	44.94	<u>73.17</u>	88.86	68.99
ALBM	64.57	58.48	<u>52.34</u>	<u>95.21</u>	47.88	71.50	90.32	67.40
Ours-1.0	<u>68.91</u>	61.81	51.56	95.13	<u>47.88</u>	73.59	88.93	<u>69.35</u>
Ours-10.0	71.23	<u>61.59</u>	52.73	94.91	64.41	71.29	74.85	70.18

1064 **Performance on MT-Bench and AlpacaEval.** For MT-Bench (Zheng et al., 2023), we report
 1065 the win rate of each RM-guided policy against its own base model, using the standard MT-Bench
 1066 LLM-as-a-judge setup. As shown in Table 8, our method (“OURS”) achieves the highest win
 1067 rates on both backbones (56.25% vs. 48.75–53.75% for OpenRLHF-Llama-3-8B-SFT, and 56.88%
 1068 vs. 50.63–51.88% for Meta-Llama3.1-8B-Instruct), indicating more improvements on open-ended,
 1069 multi-turn dialogue quality.
 1070

1072 Table 8: Win rate (%) performance comparison on MT-Bench.
 1073

Win Rate (%) (vs. Base)	Base Model	
	OpenRLHF-Llama-3-8B-SFT	Meta-Llama3.1-8B-Instruct
OURS	56.25	56.88
PoE	48.75	51.25
Skywork	49.38	51.25
ALBM	53.75	50.63
InfoRM	46.88	51.88

1080 For Length Controlled AlpacaEval, we follow the length-controlled protocol of Dubois et al. (2025)
 1081 and report both raw win rate and length-controlled win rate over the base model. On Meta-Llama3.1-
 1082 8B-Instruct, OURS achieves the highest scores on both metrics. On OpenRLHF-Llama-3-8B-SFT,
 1083 Skywork attains a slightly higher raw win rate, but OURS achieves the best length-controlled win rate.
 1084 This pattern is consistent with our goal: once the confounding effect of response length is controlled
 1085 for, our debiased RMs yield policies that are preferred more often, demonstrating better alignment
 1086 that is not driven by verbosity. We will include these MT-Bench and AlpacaEval results and their
 1087 analysis in the revised version.

1088
 1089

1090 Table 9: Win rate (%) performance comparison on Length Controlled AlpacaEval against
 1091 *gpt4_1106_preview*.

Methods	Base Model: Meta Llama3.1-8B-Instruct	
	Raw Win Rate (%)	Length Control Win Rate (%)
OURS	31.30	19.66
PoE	26.58	11.41
Skywork	29.38	13.21
ALBM	26.83	10.61
InfoRM	25.22	11.02
Methods	Base Model: OpenRLHF Llama-3-8B-SFT	
	Raw Win Rate (%)	Length Control Win Rate (%)
OURS	9.50	5.46
PoE	7.14	3.28
Skywork	10.19	3.93
ALBM	8.88	5.08
InfoRM	5.84	3.65

1100
 1101
 1102

1111 **PPO Training Monitoring.** Figure 4 presents three key metrics for monitoring the PPO training
 1112 process. The left plot (RLHF Reward) evaluates the final quality score of the model’s outputs,
 1113 with higher values being better. The middle plot (KL Divergence) measures how much the learned
 1114 policy has deviated from the initial reference model, indicating the extent of exploration. The right
 1115 plot (Approx. KL) shows the magnitude of each policy update, serving as a critical indicator of
 1116 training stability. Our policy model demonstrates a better balance across these metrics by achieving
 1117 a top reward score that significantly outperforms all baselines. Concurrently, our KL divergence
 1118 is maintained at a moderate level, suggesting effective exploration without catastrophic deviation
 1119 from the base model’s capabilities. Most importantly, our method exhibits the lowest and most stable
 1120 Approx. KL, which proves that the training process is exceptionally smooth and reliable. In summary,
 1121 our approach successfully boosts performance while ensuring unparalleled training stability.

1122

1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131

1132 Figure 4: PPO training dynamics across key metrics. Our RM obtains a higher policy score and
 1133 demonstrates better training stability.

1134 E.2 ABLATION STUDIES UNDER LENGTH DEBIAS
1135

1136 **Ablation Study on Representation for Debiasing.** A core design choice in our framework is
1137 the use of representation difference ($\Delta h = h^w - h^l$) as input to the variational network, rather
1138 than representation concatenation ($[h^w; h^l]$). We conduct an ablation study to validate this choice,
1139 evaluating both approaches on the RewardBench-v1 and RM-Bench benchmark suites. As detailed in
1140 Table 10, our empirical results strongly support the effectiveness of using representation difference.
1141

1142 Theoretically, this choice is motivated by two factors. (1) Alignment with Preference Learning:
1143 The Bradley-Terry objective itself operates on the *difference* of reward scores. By feeding the
1144 representation *difference* to the debiasing module, we align the supervisory signal for debiasing
1145 with the primary learning objective. (2) Signal Purity: The difference operator effectively cancels
1146 out redundant information from the shared prompt x , forcing the debiasing network q_ψ to focus
1147 exclusively on the features that distinguish y^w from y^l .
1148

1149 Our experiments confirm these theoretical advantages. The difference-based method shows notable
1150 performance gains across a wide range of capabilities, particularly in conversational and reasoning
1151 tasks. For instance, on RewardBench-v1, our approach improves performance on the challenging
1152 ‘Chat Hard’ subset from 78.9% to 83.6% and on ‘Reasoning’ from 88.8% to 90.0%. Similar gains are
1153 observed on RM-Bench, where the ‘chat’ score increases from 63.9% to 66.8%. While performance
1154 on other sub-categories remains largely comparable, the overall trend indicates a clear advantage for
1155 the difference-based approach.
1156

1157 Beyond performance, the difference operator offers practical benefits. Using concatenation doubles
1158 the input dimension to the variational network q_ψ (i.e., from embedding size to embedding size $\times 2$).
1159 This not only increases the number of parameters and computational complexity for the debiasing
1160 module but also leads to a slightly higher GPU memory footprint during training. Therefore, we
1161 conclude that using representation difference is more effective both in principle and in practice, and
1162 we adopt it as the default setting for our DIR framework.
1163

1164 Table 10: Ablation study on the representation format for the debiasing module. We report accuracy
1165 (%) on RewardBench-v1 and RM-Bench. The difference-based approach consistently outperforms
1166 concatenation, especially on challenging conversational and reasoning tasks. Best results are in **bold**.
1167

Method	RewardBench-v1 (Acc %)				RM-Bench (Acc %)			
	Chat	Chat Hard	Safety	Reasoning	Chat	Math	Code	Safety
Concat ($[h^w; h^l]$)	93.3	78.9	90.9	88.8	65.9	60.8	52.6	95.0
Difference (Δh)	94.1	83.6	89.7	90.0	67.8	61.1	52.4	95.2

1171
1172
1173
1174
1175 **Ablation Study on Debiasing Coefficient λ .** The hyperparameter λ in Equation 17 governs
1176 the trade-off between the standard preference learning objective ($\mathcal{L}_{\text{pref}}$) and our information-
1177 theoretic debiasing objective ($\mathcal{L}_{\text{debias}}$). To analyze its sensitivity, we tested a range of values:
1178 $\{0.1, 0.3, 0.5, 1, 2, 5, 10\}$. The results, visualized in Figure 5, reveal a clear trade-off.
1179

1180 As shown in the figure, when λ is too small (e.g., 0.1), the debiasing signal is insufficient. The
1181 model behaves similarly to a standard BT model, exhibiting a high bias metric (e.g., high Pearson
1182 correlation with a bias attribute) while achieving good performance on RewardBench. Conversely,
1183 when λ is too large (e.g., 10), the debiasing objective dominates the training. This “over-correction”
1184 successfully minimizes the bias but severely compromises the model’s ability to learn true preference
1185 signals, leading to a significant drop in RewardBench accuracy. We observe that $\lambda = 1$ strikes an
1186 optimal balance. At this value, the bias metric is substantially reduced, while the preference learning
1187 performance on RewardBench is maximized. This indicates that our method can effectively neutralize
1188 spurious correlations without damaging, and in fact enhancing, the reward model’s core capabilities.
1189 Therefore, we use $\lambda = 1$ for all main experiments in this paper.
1190

Figure 5: Ablation study on the debiasing coefficient λ . The plot shows the trade-off between preference learning performance (RewardBench Accuracy, blue) and the bias metric (e.g., Pearson r , green). $\lambda = 1$ achieves the best balance.

E.3 EXPERIMENT ON DPO

Specifically, we adopt ms-swift framework with its default DPO training configuration on Human-Like-DPO-Dataset¹⁰, based on both OpenRLHF-Llama-3-8b-SFT and Meta-Llama3.1-8B-Instruct models, where DPO $\beta = 0.1$, debias factor $\lambda = 1$. We train 1 epoch and evaluate the performance on the final checkpoint. Human-Like-DPO-Dataset is created to fine-tune LLMs toward generating more human-like responses, which includes 10,884 samples across 256 topics, containing technology, daily Life, science, history and arts. We evaluate the performance on ArenaHard-v0.1 and several popular benchmarks. For baselines, we also compare with the length-controlled DPO method Park et al. (2024), which disentangles the length from the quality to explicitly avoid the policy model from preferring the longer response DPO training.

E.4 SYCOPHANCY BIAS

Dataset and Model Motivated by Sharma et al. (2023); Wang et al. (2025a), we create a semi-sycophantic dataset by partially contaminating the HelpSteer3 dataset (Wang et al., 2025b). Specifically, we artificially inject a sycophantic prefix (i.e., “Yes, you are right.”) into a proportion γ (e.g., $\gamma = 40\%$) of responses in the training dataset. Within this contaminated subset, the prefix is added to the chosen response with an α probability (e.g., $\alpha = 70\%$) and to the rejected response with a $1 - \alpha = 20\%$ probability. The remaining $1 - \gamma = 30\%$ of the dataset is left unchanged without the sycophancy. This process creates a challenging, mixed-distribution environment where the sycophantic phrase acts as a strong but unreliable reward signal. Reward models are still built upon the Llama-3.1-8B-Instruct backbone.

Training Settings. For reward model training, we adopt a full parameter tuning strategy by using HuggingFace Trainer with DeepSpeed Zero1 on 8 GPU cards. Global batch size is set to 128, initialization learning rate is 2e-6 with Cosine scheduler.

Baselines. Since other debiasing methods are either mainly designed for length bias (e.g., PoE, ALBM, and Length-Penalty) or are not open-sourced (e.g., CRM), we primarily compare our method against two key baselines: a standard BT reward model and InfoRM.

¹⁰<https://huggingface.co/datasets/HumanLLMs/Human-Like-DPO-Dataset>

1242 E.5 FORMAT BIAS
1243

1244 **Dataset and Model** Following the data construction in LE (Zhang et al., 2025), we construct a
 1245 format-biased dataset for our experiments. We start with a clean base preference dataset of 71.6K
 1246 pairs, which is created by filtering the UltraFeedback dataset (Cui et al., 2024) to include only pairs
 1247 with a score difference greater than 1.0. To inject format bias, this clean dataset is then “attacked”
 1248 by mixing in a small, artificially generated biased dataset. Specifically, we inject 0.7% training data
 1249 where a ‘bold’ formatted response is spuriously labeled as preferred over its identical, unformatted
 1250 counterpart, and 1.4% data where a ‘list’ formatted response is similarly favored. The final reward
 1251 model training is conducted on this combined, biased dataset. The base model for our reward model
 1252 is Llama-3-8B-Instruct.
 1253

1253 **Training Settings.** For reward model training, we adopt a full parameter tuning strategy by using
 1254 HuggingFace Trainer with DeepSpeed Zero1 on 8 GPU cards. Global batch size is set to 128,
 1255 initialization learning rate is 2e-6 with Cosine scheduler.
 1256

1257 **Baselines.** By following the experimental setting of Zhang et al. (2025), we mainly consider
 1258 standard BT, BT with deleted specific format training data (BT \dagger), and LE (Zhang et al., 2025).
 1259

1260 E.6 CONCURRENT MULTI-BIAS
1261

1262 Concretely, we extend DIR to length and sycophancy biases by introducing two independent Mutual-
 1263 Information regularizers, each with its own q_ψ head. For each preference pair, we construct $b_{\text{rel}}^{\text{len}}$
 1264 (which response is longer) and $b_{\text{rel}}^{\text{syc}}$ (which response is more sycophantic), and optimize:
 1265

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{pref}} + \lambda_{\text{len}} \mathcal{L}_{\text{debias}, \text{len}} + \lambda_{\text{syc}} \mathcal{L}_{\text{debias}, \text{syc}}, \quad (17)$$

1266 where $\lambda_{\text{len}} = \lambda_{\text{syc}} = 1$. We follow the Table 5 setting, training Meta-Llama-3.1-8B-Instruct on the
 1267 HelpSteer3 dataset under two sycophancy contamination configurations ($\gamma = 40\%/80\%$, $\alpha = 70\%$),
 1268 where a larger γ indicates a more challenging setting. All models (BT, length-only DIR, and
 1269 length+syc DIR) are trained for 1 epoch on the same data, and we report results using the final
 1270 checkpoint for fairness and convenience.
 1271

1272 As shown in Table 11, on RM-Bench, the joint model (OURS-Len-Syco) achieves the best overall
 1273 performance and the largest gains on the hardest subset (e.g., at $\gamma = 40\%$, Total: 67.25 \rightarrow 69.96,
 1274 Hard: 39.88 \rightarrow 46.85 vs. BT), while still clearly reducing the Pearson correlation with length relative
 1275 to BT, confirming that length bias is mitigated even when sycophancy is also debiased. We also
 1276 observe that the length-only model (OURS-Len) attains the lowest length-reward Pearson coefficient,
 1277 but somewhat surprisingly, the joint length+sycophancy debiasing (OURS-Len-Syco) yields the best
 1278 overall RM-Bench performance, suggesting that debiasing multiple biases together may help lead to
 1279 a more balanced and effective reward model.
 1280

1281 Table 11: Performance comparison of concurrent multi-bias experiments on RM-Bench. Best results
 1282 are in **bold**.
 1283

$\gamma = 40\%, \alpha = 70\%$	Chat	Math	Code	Safety	Hard	Normal	Easy	Total	Pearson Coefficient
BT	66.58	64.17	53.70	84.53	39.88	72.82	89.04	67.25	0.4807
OURS-Len	66.93	64.59	53.12	89.14	44.25	72.43	88.65	68.44	0.4235
OURS-Len-Syco	70.80	65.07	55.26	88.71	46.85	75.08	87.96	69.96	0.4446
$\gamma = 80\%, \alpha = 70\%$	Chat	Math	Code	Safety	Hard	Normal	Easy	Total	Pearson Coefficient
BT	65.37	63.71	53.12	80.85	37.58	70.96	88.75	65.76	0.4666
OURS-Len	68.91	64.25	53.75	87.23	44.78	73.09	87.72	68.53	0.4081
OURS-Len-Syco	68.39	64.92	54.04	88.06	45.15	72.92	88.50	68.85	0.4235

1291 As shown in Table 12, on sycophancy stress tests, debiasing only sycophancy (OURS-Syco) gives
 1292 the strongest syco robustness, as expected, but the joint model (ours-Len-Syco) still substantially
 1293 outperforms BT on all sycophancy metrics (All./Nat./Adv.) across both γ settings, while additionally
 1294 reducing length bias. In summary, a second debiasing term leads to a controlled trade-off, not
 1295 conflicting gradients: both biases are improved over BT, and overall RM quality remains strong.
 1296

1296

1297 Table 12: Reward model accuracy (%) on the concurrent multi-bias under varying contamination
1298 settings.

γ	α	All.			Nat.			Adv.		
		BT	OURS-Syco	ours-Len-Syco	BT	OURS-Syco	ours-Len-Syco	BT	OURS-Syco	ours-Len-Syco
40%	70%	83.6	88.0	85.6	84.4	87.4	86.4	82.6	88.6	84.4
80%	70%	81.2	86.2	85.9	86.4	87.2	86.6	79.7	86.2	85.1

1302

1303

1304 F PROMPT-BASED JUSTIFICATION PROMPT

1305

1306 In this section, we give a Qwen3-235B-A22B-based pair-wise justification prompt shown below,
1307 which is adopted from ArenaHard’s official implementation ¹¹.

1308

1309 *Please act as an impartial judge and evaluate the quality of the responses provided by two
1310 AI assistants to the user prompt displayed below. You will be given assistant A’s answer and
1311 assistant B’s answer. Your job is to evaluate which assistant’s answer is better. Begin your
1312 evaluation by generating your own answer to the prompt. You must provide your answers
1313 before judging any answers. When evaluating the assistants’ answers, compare both
1314 assistants’ answers with your answer. You must identify and correct any mistakes or
1315 inaccurate information. Then consider if the assistant’s answers are helpful, relevant, and
1316 concise. Helpful means the answer correctly responds to the prompt or follows the
1317 instructions. Note when user prompt has any ambiguity or more than one interpretation, it is
1318 more helpful and appropriate to ask for clarifications or more information from the user than
1319 providing an answer based on assumptions. Relevant means all parts of the response closely
1320 connect or are appropriate to what is being asked. Concise means the response is clear and
1321 not verbose or excessive. Then consider the creativity and novelty of the assistant’s answers
1322 when needed. Finally, identify any missing important information in the assistants’ answers
1323 that would be beneficial to include when responding to the user prompt. After providing your
1324 explanation, you must output only one of the following choices as your final verdict with a
1325 label:*

1. Assistant A is significantly better: [[A >> B]]
2. Assistant A is slightly better: [[A>B]]
3. Tie, relatively the same: [[A=B]]
4. Assistant B is slightly better: [[B>A]]
5. Assistant B is significantly better: [[B>>A]]

1326 Example output: “My final verdict is tie: [[A=B]]”

1327 *[User Prompt]*

1328 *[Assistant A’s Answer]*

1329 *{answer A}*

1330 *[Assistant B’s Answer]*

1331 *{answer B}*

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

G CASE STUDY

1342

1343

1344

1345

1346

1347

1348

1349

In this case study, our model demonstrates its ability to generate not just a correct, but a more professionally helpful response compared to strong baselines like GPT-4o. As visualized in Figure 6 (Data UID: 95bb5011680c4ba281ad7830ffa57f92), when asked how to set up passwordless SSH, our model provided a guide that was praised by the LLM-based judge for its clear structure and organization. In this instance, GPT-4o’s response is judged to be better to all other baselines except for our response, which provides a more secure, modern, and concise solution, highlighting its advanced capabilities.

¹¹<https://github.com/lmarena/arena-hard-auto>

1350 Crucially, the judge noted that our model successfully avoids unnecessary verbosity, resulting in a
1351 response that is of higher quality and more concise. This is not merely a stylistic advantage; the
1352 substance of our model’s response was also technically useful. It recommended the more modern
1353 and secure “ed25519” encryption algorithm over the RSA suggested by GPT-4o. Furthermore, our
1354 model included the critical security best practice of disabling password authentication entirely via
1355 the sshd.config file—a vital step for server hardening that GPT-4o and other models omitted. This
1356 case exemplifies our model’s strength in producing responses that are not only accurate but also more
1357 secure, efficient, and pragmatically useful for real-world technical tasks.

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Prompt: How do I set up ssh into a server such that I don't require a password when I ssh into it?

ALBM (2486 chars): Setting up Passwordless SSH¹¹ n>To set up passwordless SSH, you'll need to generate a pair of SSH keys on your local machine and add the public key to the server. This way, you can authenticate without entering a password.¹² n# Step 1: Generate SSH Keys on Your Local Machine n#Open a terminal on your local machine and run the following command:¹³ n` bash/nssh-keygen -t rsa -b 4096` n#This will generate a pair of SSH keys the `~/.ssh` directory. n# Step 2: Copy the Public Key to the Server n#You'll need to copy the public key to the server. You can do this by running the following command:¹⁴ n` bash/nssh-copy-id user@server` n#Replace `user` with your username on the server and `server` with the hostname or IP address of the server. n# Step 3: Verify Passwordless SSH¹⁵ n#Try connecting to the server using SSH without a password:¹⁶ n` bash/nssh user@server` n#If everything is set up correctly, you should be able to connect to the server without entering a password.¹⁷ n# Step 4: Add the Public Key to the Server (Alternative Method) n#If you're using an older version of SSH or don't have `ssh-copy-id` available, you can add the public key manually. Run the following commands on your local machine:¹⁸ n` bash/nssh-keygen -t rsa -b 4096/n cat ~/.ssh/id_rsa.pub | ssh user@server "mkdir -p ~/.ssh; cat > ~/.ssh/authorized_keys" ` n#This will create the `~/.ssh` directory on the server if it doesn't exist and append the public key to the `authorized_keys` file. n# Tips and Precautions¹⁹ n# Make sure to keep your private key secure. If someone gets access to your private key, they can connect to your server without a password.²⁰ n# Use a strong passphrase for your private key to prevent unauthorized access.²¹ n# If you're using a shared server or a server with multiple users, consider using a more secure method, such as public key authentication with a keyring or a secure authentication service.²² n# Regularly update your SSH keys to ensure you're using the latest version. n# Example Use Case²³ n#Here's an example of how you can use passwordless SSH to automate a deployment script:²⁴ n` bash/n#!/bin/bash/n# Set up SSH connection/nssl -v "StrictHostKeyChecking=no" user@server <EOF# Run deployment script/n pull origin main/n npm install/n npm run build<EOF` n#In this example, the script uses passwordless SSH to connect to the server and run a deployment script without prompting for a password.

InfoRM (2422 chars): To set up SSH to not require a password, you'll need to generate a pair of SSH keys (public and private) and add the public key to the server. Here's a step-by-step guide:
1. Step 1: Generate SSH keys\n1. Open a terminal on your local machine.\n2. Run the following command to generate a new pair of SSH keys: ``bash\$ ssh-keygen -t ed25519``\n3. In the output, you will see a message like: ``Your public key is stored in /home/yourusername/.ssh/id_ed25519.pub`` and the location where the keys will be stored. By default, it will be stored in ``~/.ssh``.\n4. Step 2: Add the public key to the server\n1. Copy the public key to the clipboard: ``\$ bash\$ cat /home/yourusername/.ssh/id_ed25519.pub``\n2. Open a terminal on the server and run: ``\$ cat > authorized_keys``\n3. Paste the copied public key into the file: ``\$ cat > authorized_keys``\n4. Step 3: Restrict SSH access (optional)\n1. To add an extra layer of security, you can restrict SSH access to specific users or IP addresses. You can do this by editing the ``~/.ssh/authorized_keys`` file and adding options to the key.\n2. For example, to restrict access to a specific user and IP address, you can add the following options: ``\$ bash\$ sshrsa your-public-key-here user@ip_address``\n3. This will only allow the specified user to access the server from the specified IP address.\n4. Step 4: Update SSH configuration (optional)\n1. To use the SSH keys for passwordless login, you'll need to update the SSH configuration to allow it.\n2. Edit the SSH configuration file: ``\$ bash\$ sudo nano /etc/ssh/sshd_config``\n3. Add the following line to the end of the file: ``\$ bash\$ PubkeyAuthentication yes``\n4. Restart the SSH service: ``\$ bash\$ sudo service ssh restart``\n5. Test SSH connection: ``\$ ssh yourusername@yourpublickeyhere``\n6. If everything is set up correctly, you should be able to log in without entering a password.
In Note: Make sure to keep your private key secure and do not share it with anyone. If your private key is compromised, you'll need to generate a new pair of SSH keys.

PoE (2172 chars): **Setting up SSH Key-Based Authentication**
To set up SSH key-based authentication, you'll need to generate a pair of SSH keys on your local machine and then add the public key to the server's authorized_keys file. This way, you can access the server without entering a password.
Step 1: Generate SSH Keys on Your Local Machine
Open a terminal and run the following command to generate a new pair of SSH keys:
`ssh-keygen -t rsa -b 4096`
This will create a new pair of keys in the `~/.ssh` directory: `id_rsa` (the private key (do not share this with anyone)) and `id_rsa.pub` (the public key (share this with the server administrator)).
Step 2: Copy the Public Key to the Server**
Copy the contents of the public key file (`id_rsa.pub`) to the server's authorized_keys file using the following command:
`cat id_rsa.pub | ssh user@server 'cat > .ssh/authorized_keys'`
Replace `user` with your username on the server and `server` with the hostname or IP address of the server.
Alternative Method: Manually Copying the Public Key
If you prefer not to use `ssh-copy-id`, you can manually copy the public key to the server's authorized_keys file using the following steps:
1. Open the public key file (`id_rsa.pub`) in a text editor.
2. Connect to the server using SSH:
`ssh user@server`
3. Append the public key to the authorized_keys file:
`cat > .ssh/authorized_keys`
4. Replace `your_public_key_here` with the contents of the public key file.
Step 3: Test SSH Connection**
Try connecting to the server using SSH without a password:
`ssh user@server`
You should now be able to access the server without entering a password.
Security Considerations
Keep your private key secure and do not share it with anyone.
Limit access to the 'authorized_keys' file and the `~/.ssh` directory to prevent unauthorized access.
Regularly update your SSH keys and authorized_keys file to ensure security.
By following these steps, you can set up SSH key-based authentication and access your server without entering a password.

Skywork (2274 chars): **Setting up SSH without Password**
To set up SSH without requiring a password, you'll need to generate public-private key pairs and configure SSH on both your local machine and the server.** Step 1: Generate Public-Private Key Pair on Local Machine**
Open a terminal** on your local machine.** Generate a new key pair** using the following command:
`ssh-keygen -t ed25519 -f /root/.ssh/id_rsa`
Choose a key type: ed25519 or rsa.** Accept the default filename and location** for the key pair.**
** Step 2: Copy the Public Key to the Server**
Copy the public key** to the clipboard:
`cat /root/.ssh/id_ed25519.pub`
Log in to the server** using your existing SSH password.** Create a new directory** for SSH keys if it doesn't exist:
`mkdir -p /root/.ssh`
Append the public key** to the server's authorized keys file:
`echo "past the public key here" > /root/.ssh/authorized_keys`
Set permissions** to ensure only the owner can read the authorized keys file:
`chmod 700 /root/.ssh/authorized_keys`
** Step 3: Configure SSH on the Server**
Edit the SSH configuration file** to enable public key authentication:
`cat /etc/ssh/sshd_config`
Add or uncomment the following line**:
`PubkeyAuthentication yes`
Restart the SSH service** to apply the changes:
`systemctl restart sshd`
** Step 4: SSH into the Server**
Using the private key in `/root/.ssh/id_rsa` and the public key in `/root/.ssh/authorized_keys`, you should be able to SSH into the server without entering a password**.** Additional Tips:** Regularly update your SSH keys to ensure you're using the latest encryption algorithms.** By following these steps, you'll be able to set up SSH without a password and enjoy a more secure and convenient way to access your servers.

OURS (2052 chars): **Generating SSH Keys**\nTo set up SSH without a password, you'll need to generate a pair of SSH keys: a private key and a public key. The private key will be kept on your local machine, while the public key will be added to the server.\n**Step 1: Generate SSH Keys**\nOpen a terminal on your local machine and run the following command:\n`cd ~ bash ssh-keygen -t ed25519`
This will generate a new pair of SSH keys using the Ed25519 algorithm. You can choose a different algorithm (e.g., RSA) if you prefer.\n**Step 2: Copy the Public Key**\nOnce the keys are generated, you'll see a message indicating that the keys have been created. The public key will be stored in a file named 'id_ed25519.pub' (or 'id_rsa.pub' if you chose RSA).\n**To copy the public key to your server, run the following command:**\n`cd ~ bash ssh-copy-id user@server`
Replace 'user' with your username on the server and 'server' with the hostname or IP address of the server.\n**Step 3: Authorize the Public Key**\nOn the server, the public key will be added to the 'authorized_keys' file. You can verify this by running:\n`cd ~ bash cat .ssh/authorized_keys`
You should see the public key from your local machine listed.\n**Step 4: Test SSH without a Password**\nNow, try connecting to the server using SSH without a password:\n`cd ~ bash ssh user@server`
If everything is set up correctly, you should be logged in without being prompted for a password.\n**Tips and Considerations**\nMake sure to keep your private key secure, as it can be used to access your account on the server.\n**Consider using a passphrase for your private key to add an extra layer of security.**\nIf you're using a shared hosting environment, check with your provider to see if they have any specific requirements or restrictions for SSH key usage.\n**To disable password authentication on the server, you can edit the 'ssh_config' file and set 'PasswordAuthentication' to 'no'. Then, restart the SSH service.\nBy following these steps, you should be able to set up SSH without a password and enjoy a more convenient and secure way to access your server.

GPT4o (2008 chars): To set up SSH key-based authentication and avoid entering a password each time you SSH into a server, follow these steps:
1. Generate an SSH key pair on your local machine (if you haven't already):
Open a terminal and run the following command:
`ssh-keygen -t rsa -b 4096 -C "your_email@example.com"`
Replace `your_email@example.com` with your actual email address. This will create a 4096-bit RSA key pair.
You'll be prompted to enter a file path to save the key pair. Press Enter to use the default location (usually `~/.ssh/id_rsa`).
You'll also be prompted to enter a passphrase for the key pair. You can either enter a passphrase for added security or leave it empty for passwordless authentication.
2. Copy the public key to the remote server:
Use the `ssh-copy-id` command to copy your public key to the remote server:
`ssh-copy-id username@remote_server_ip`
Replace `username` with your remote server's username and `remote_server_ip` with the remote server's IP address or hostname.
If `ssh-copy-id` is not available, you can manually copy the public key using the following command:
`cat ~/.ssh/id_rsa.pub | ssh username@remote_server_ip "mkdir -p .ssh & chmod 700 .ssh & cat > .ssh/authorized_keys & chmod 600 .ssh/authorized_keys"`
This command will create the `~/.ssh` directory and `authorized_keys` file on the remote server if they don't exist, and append your public key to the `authorized_keys` file.
3. Test the passwordless SSH connection:
Now, try to SSH into the remote server:
`ssh username@remote_server_ip`
If everything is set up correctly, you should be able to log in without entering a password. If you set a passphrase for your key pair, you'll be prompted to enter it.
Note: Make sure to keep your private key (`~/.ssh/id_rsa`) secure and do not share it with anyone. The public key (`~/.ssh/id_rsa.pub`) is the one you copy to the remote server.

Judgment: My final verdict is [[A (OURS) >>B (GPT4o)]]\n**Explanation:**\nBoth assistants correctly outline SSH key-based authentication setup. However, Assistant A's response is superior due to:\n1. **Modern Algorithm Recommendation**: Ed25519 is more secure and efficient than RSA (Assistant B's choice).\n2. **Security Best Practices**: Explicitly mentions disabling password authentication via 'sshd_config', a critical security step Assistant B omits.\n3. **Conciseness & Structure**: Clear step-by-step formatting with helpful tips (e.g., **passphrases, provider checks without unnecessary verbosity**).

4. **Permissions Handling**: Includes explicit 'chmod' commands in examples, ensuring proper directory/file permissions.

In Assistant B's manual key-copy method is useful but lacks A's comprehensive security guidance. While both answers are technically correct, Assistant A provides a more secure, future-proof solution with better operational safety recommendations.

Figure 6: A case study on ArenaHard-v0.1 Benchmark where our model's response significantly outperforms GPT-4o on a technical question about setting up passwordless SSH.