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ABSTRACT

Reward models (RMs) are crucial in reinforcement learning from human feedback
(RLHF) to align large language models (LLMs) with human values. However, RM
training data is commonly recognized as low-quality, always containing preference
conflicts and inductive biases, such as response length or speaking style, which can
easily lead to reward overfitting and hacking. A few recent RM debiasing methods
either target merely a single specific type of preference bias or only address simple
linear bias relations such as Pearson coefficients. To mitigate more complicated
inductive bias of reward modeling, inspired by the information bottleneck, we
introduce a novel information-theoretic debiasing method called Debiasing via
Information optimization for RM (DIR). More specifically, our method trains RMs
by maximizing the mutual information (MI) between preference prediction and
input response pairs, while minimizing the MI between RM outputs and biased
attributes of preference inputs. With the theoretical justification of information
theory, DIR can handle different types of bias with more comprehensive non-linear
correlations, enlarging its real-world application scenarios. In experiments, we
verify the effectiveness of DIR with three types of inductive biases: response length,
sycophancy, and format. Based on the numerical results, we discover that DIR
can not only effectively diminish target inductive biases but also improve RLHF
performances on various benchmarks with better generalization abilities.

1 INTRODUCTION

Aligning Large Language Models (LLMs) (OpenAl, 2024; [Touvron et al.| 2023} |Yang et al., [2024)
with human values is paramount for ensuring their safe and reliable deployment, especially in open-
domain conversational applications, where models must be helpful and harmless (Ouyang et al.,
2022b)). To this end, reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022b;
Rafailov et al.| [2024b; DeepSeek-AlL 2025)) has become the fundamental technique for encouraging
LLM behavior toward human preferences, which operates by first training a reward model (RM) on
a collection of human preference judgments, and then using this RM as a proxy for human values
to guide the policy LLM’s optimization via reinforcement learning (RL). However, the robustness
and efficacy of RLHF have been continuously challenged by reward hacking, a phenomenon where
the policy model exploits vulnerabilities in the reward model (RM) to achieve high rewards without
satisfying the intended human objectives (Skalse et al., 2025} |Gao et al., [2023;|Amodei et al., [2016).

The vulnerabilities of RMs are commonly derived from the low quality of the human feedback
annotation, which contains various toxic inductive biases. For example, annotators have always
been instructed to choose more informative responses, whereas more detailed responses usually have
longer response lengths. Learning on this biased human feedback dataset can lead the reward model
to ignore the true response quality and only favor responses with longer lengths (Singhal et al., 2023).
Besides the response length bias, stylistic and format patterns (Zhang et al.l 2025)), and sycophantic
phrasing (Sharma et al., [2023; [Denison et al., |2024) have been gradually recognized as typical
inductive bias in reward modeling, which critically hinders reliability and safety of RLHF (Gao et al.,
2023 |Coste et al., [2023)).

To mitigate inductive biases in reward modeling, recent studies have made some preliminary ex-
plorations. Bu et al.|(2025)), |Chen et al.| (2024) and [Zhang et al.| (2025)) consider Pearson Coeffi-
cient (Benesty et al.|[2009) as the bias measurement and minimize it jointly with the reward modeling
loss. However, the Pearson Coefficient only captures the simplest linear correlation between RM
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and the bias attributes, which are not sufficiently applicable in more general scenarios. Shen et al.
(2023) adds another RM head to predict response length score, which lacks theoretical justifica-
tion, and is only applicable with scalar types of inductive biases. |Wang et al. (2025a) imposes
overly-restrictive external constraints, such as enforcing distributional invariance via Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012)), risk distorting the reward landscape by collapsing the
scores of functionally disparate response groups. On the other hand, approaches relying on unreliable
indirect internal compression, like the standard information bottleneck (Tishby et al.,|2000) used in
InfoRM (Miao et al., [2024), offer no guarantee of discarding a bias attribute, especially when it is
strongly correlated with the true preference signal.

To address the inductive biases of RM generally with theoretical guarantees, we proposed an
information-theoretic bias-disentangling framework called Debiasing via Information optimiza-
tion for RM (DIR). More specifically, we model the complicated inductive biases in human feedback
with the concept of mutual information (MI) from the perspective of information theory (Kullbackl,
1997). Then we maximize the mutual information between the RM prediction and the preference
data inputs, and minimize the mutual information between the bias attributes and the RM scores,
simultaneously. To make the above objective tractable, we employ a dual-bound optimization strategy:
a variational lower bound preserves essential preference information, while another variational upper
bound actively suppresses information related to the bias. Furthermore, to ensure broad applicability,
we design a comparative regularizer that operates on relative bias attributes between response pairs,
rather than absolute values. This unique design allows DIR to robustly handle diverse and complex
biases without distorting the underlying reward landscape, leading to a debiased RM that demonstrates
better generalization and performance in downstream RLHF tasks. We summarize our contributions
as follows:

1. We propose a novel, explicit information-theoretic framework that transforms debiasing from
an indirect hope into a direct, supervised optimization objective, offering a more principled and
targeted solution.

2. We design a practical and generalizable implementation that is computationally efficient and can be
seamlessly adapted to mitigate diverse forms of bias without requiring architectural modifications
to the base RM.

3. Extensive experiments demonstrate that our method significantly outperforms existing approaches
in reducing reward hacking, leading to more robustly aligned LLMs that achieve better perfor-
mance on both academic and preference-based benchmarks.

2 BACKGROUND

Reinforcement Learning from Human Feedback (RLHF) has become the essential training
process to align LLMs with human values (Ouyang et al.,|2022a)). With a well-learned reward model
(RM) 74(x, y) scoring the degree of human preference of generated response y € ) given input
prompt & € X, RLHF optimizes the LLM policy 7y (y|x) with the follow objective:

Em~D,y~w9(~|w) T(:IZ, y) - B : KL[T‘—Q(y‘m)”Wref(y‘m)]] ) ()

where T(y|x) is the initial model policy served as a reference, 8 > 0 controls the strength of a
Kullback-Leibler (KL) divergence (Csiszar, |1975) between the reference model m(y|x) and the
current policy 7y (y|x). To train LLMs with the above objective, Proximal Policy Optimization
(PPO) (Schulman et al.| [2017) has been recognized as the mainstream optimization approach. Group
Relative Policy Optimization (GRPO) further removes the critic model in PPO and uses a simplified
group-related advantage approximation instead, which has shown competitive performance with
practically simpler infrastructures (Shao et al., 2024)).

Reward Modeling targets learning the human preference distribution via a parameterized reward
model (RM) 7 : X x Y — R, where ry(x,y) is the predicted reward score of the input prompt
@ and the corresponding response y. For every input @, given a pair of response (y,y), we can
calculate the “preference” by comparing the reward scores: if r(x,y) > r(x, y), then y is predicted
as a more “preferred” response than y (denote as y > y) and vice versa. We use a binary indicator
1,. 5 to representation the event of “human preference”: 1,, 4 = 1,if y > y; and 1, 4 = 0, if
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y < y. Then reward model predicts the preference 1 4 as a conditional Bernoulli variable:

exp(rg(z, y))
exp(ry(x,y)) + exp(ry(z, y

where o(-) is a Sigmoid function. Note that the ground-truth human preference distribution
p*(lysgl®,y, ) is unknown. Instead, we can maximize the log-likelihood of ¢4 with a group
of human preference data Dprer = {(z;, ¥y, y!)}¥,, where each y* = y' is annotated by human

judgment w.r.t. the response quality:

45 (1yy = 1|2 y.9) = 5 =o(r@y) @), @

N
_ 1 w
Lrm(¢) = —E1,y ympe [log 4 (1y>g‘w,y7y)} ~ = 2 [logas(yi” >~ THETRTENTH)
i=1
1 N
== Z[log o(re(xi, yl") — ro(xi,yh))].  (by equation[2) 3)
=1

Equation [3]is commonly recongized as the Bradley-Terry (Bradley & Terry} [1952) ranking loss.

Information-theoretic Methods optimize deep models from the perspective of information the-
ory (Chen et al.,[2016; Hjelm et al.,|2019;|Yuan et al.,|2021; |Cheng et al.,|2021). The core methodology
of information-theoretic methods is to regard the feed-forward process of neural networks as an
information channel transmission, where the correlation between different neural embeddings is
measured by mutual information (MI) as:

I (z;y) = Ep(a,y) [bg m

where p(x, y) is the joint distribution, and p(x) and p(y) are the marginal distributions. Due to its
general ability to capture arbitrary non-linear correlations, MI has achieved considerable success as a
learning objective in various deep learning tasks (Chen et al.|[2016; Belghazi et al., 2018} Hjelm et al.|
2019). However, the exact MI value in equation {]is challenging to compute, due to the intractable
expectation w.r.t. p(x,y), especially when only samples from p(x, y) are provided. To address this,
several approximation methods have been proposed to estimate MI from samples using tractable
variational bounds (Oord et al., 2018}, [Cheng et al.,[2020; Belghazi et al., 2021). Barber-Agakov (BA)
bound (Barber & Agakov, 2004) provides a simple lower bound approximation of MI, by introducing
a variational approximation gy (y|x):

I(x;y) > Epzy)[log go(y|x)] + H[p] =: Ipa(z;y), (5)

where H [p] is the entropy of the ground-truth distribution p(x, y). Besides, Cheng et al.| (2020)
proposed a variational contrastive log-ratio upper bound (CLUB) also utilizing the variational
approximation gg(y|x):

] =KL {p(w’ y)Hp(w)p(y)}, )

I (iL’; y) < ]Ep(m,y) [IOg qg(y|£lf)] - IEp(m)p(y) [IOg qg(y|$)] = ICLUB(w; y)7 (6)

By minimizing equation [6] the amount of information between @ and y is effectively reduced. We
give the proof of BA bound and CLUB in Appendix [B.I]and Appendix [B.1] respectively.

A well-known application of information-theoretic methods is the information bottleneck (IB) (Tishby
et al.;,2000), which aims to learn a compressed but informative representation h of an input x to the
output y as a trade-off between two MI terms:

min 7 (z;h) = A- 1 (hiy), ™

where hyperparameter A > 0 controls the balance between compressing the input « and retaining
relevant information for the prediction y. IB has been recognized as a powerful tool for representation
learning and widely applied to diverse deep learning scenarios (Saxe et al.,[2019; (Wan et al.| 2021}
Federici et al.| [2020).

3 METHODOLOGY

We begin by revisiting reward modeling from a perspective of information theory. Motivated by the
information bottleneck, our core idea is learning a reward model r4(x, y) parameterized by ¢ that is
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maximally informative compressed about the true preference relation, while simultaneously being
minimally informative about an inductive bias with a pre-defined bias attribute b. Formally, we define
our objective as follows:

m(?XI(ly»g?wa%g) _)"I(ly>?§;b)7 (8)

Preference Term Debias Term

where ) is a hyperparameter balancing the trade-off between preference learning and debiasing. Ide-
ally, minimizing this objective should encourage the reward model 4 to capture the true performance
signal from the input triplet (x, y, y), while decreasing the reliance on the bias attribute b. However,
directly optimizing this mutual information-based objective is computationally intractable due to the
difficulty in estimating mutual information in high-dimensional spaces.

3.1 PRACTICAL IMPLEMENTATION WITH DIFFERENTIABLE LOSSES

To render equation [§] tractable, we derive differentiable surrogate losses that approximate its con-
stituent terms. Specifically, we minimize a total loss Lo composed of a preference loss Lyt and a
debiasing 108s Lgebias-

Preference Term. Instead of directly maximizing I (1, 4;«,y,y), we can use its lower bound
approximation by introducing a BA estimator of equation [5as follows:

max [ (1y>-ya T,Y, g) Z max ]Ep* (,9,9,1y>3) [log Q¢(1y>-g|wa Yy, g)] + HLP*]» (9)

which is guaranteed by the non-negative nature of the KL term, and H[p*] is a constant of the
ground-truth human preference distribution p*. By equation [3| we know the other term is exactly the
RM BT ranking loss. Therefore, by minimizing the RM BT ranking loss, we actually maximize the
mutual information between the preference variable 1, 5 and the input triplet (x, y, §), encouraging
the reward model 74 to assign a higher score to the preferred response y. Therefore, we have

Lot = — 3 21‘8:1 logo(re(w;, gi) — re(x;, g;))] with B samples.

Debiasing Term. For maximizing the debias term —I (1, 4; b), since (y, y) contains sufficient
information to determine bias b, we notice that b — (x,y,y) — H — 1.4 is a Markov Chain,
where H = [h(x,y), h(x,y)] is the last hidden state of the reward model transformer architecture.
According to the data processing inequality (DPI) and the CLUB upper bound estimator, we have

I(1ysy:b) <I(H;b) < IcLus(H;b), (10)
where
B
IcLus(H; b) Z log gy (b;| H;) — Zlong bj|H,)| . (11)
Z:]. ] 1

This allows us to minimize a tighter upper bound, Ic ug (H; b), shifting the debiasing pressure to the
information-rich representation H. Therefore, minimizing Icpyp serves an effective approximation
of maximizing —I (1, 4; b), which minimizes mutual information by training a variational network
qy(b|H )E] in an adversarial manner, encouraging the reward model r to produce representations H
that are statistically independent of the bias attribute b, thus the final predicted preference relation
should be non-predictive of the b. Moreover, as proved in|Cheng et al.[(2020), the better ¢, (b;| H;)
approximates real p(b;| H;), the more accurate Icpyp serves as the MI upper bound. Therefore, we
also maximize the log-likelihood of gy, (b;|H;) with samples {(H;, b;)}Z , in addition.

A Unified Comparative Framework for Debiasing. To make the debiasing mechanism more
targeted and align it with the comparative nature of preference learning, we introduce a unified
comparative framework, which also handles various types of biases in a consistent and unified
manner. Note that the preference task itself relies on the difference in rewards, which stems from
the difference in representations. Therefore, instead of using the concatenated representation H,
which may contain redundant information from the shared prompt &, we focus on the representation

"Practically, we find a simple Linear-ReLU-Linear network is enough to serve as ¢y that is detailed in
Appendix[C}
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Algorithm 1: Our DIR Training Process Within Mini-Batch.

Input :RM Dataset Dper = { (2, ¥, yi) }IL 1, hyper-parameter A, pre-defined bias attribute b.
Output : Trained reward model r

Initialize a reward model r with parameters ¢;

Initialize a variational model ¢ with parameters 1;

while each training iteration do
Sample a mini-batch of triplets {(x;, ¥, y) Y21 ~ Dprer;
Encode each (z;, y") and (z;, y!) into embeddings hY = 74, (i, y"), b} = 14, (@i, Y});
Calculate each representation difference Ah; = h’ — h! and obtain b7 through (y°, y!) with b;
Update the variational approximation g, (b¥'|Ah;) by maximizing log-likelihood with {(Ah;, b))}
Calculate Lyepias With gy (5™ |AR) and {(Ah;, bF)YE |, and Lywer with { (2, ¥, y}) } 21
Learning 1oss Liotal = Lpref + A - Laebias;
Update reward model 7 and variational network ¢ by gradient descent with respect to Liotar;

end

difference, Ah = h(x,y) — h(x,y), which isolates the features that distinguish the two responses.
Here, with slight abuse of notation, for each input preference pair (x;, y;), we use h; = g, ... (€, Y:)
to denote the final hidden-state representation of the last valid token from the transformer base 74,
of the reward model 7.

Correspondingly, we define a relative bias attribute, b € {0, 1}, for each pair, indicating which
response exhibits more of the bias (e.g., b® = 1(length(y) > length(%))). This transforms our
practical debiasing goal into minimizing / (Ah; brel), where the variational network gy, is thus trained
as a binary classifier on this more focused input-target pair: g, (b'|Ah). By minimizing the CLUB
objective within this framework, we encourage the reward model to learn representations whose
differences are informative about true preference but are invariant to relative differences in the bias
attribute. In summary, for a batch training data of size B, Lgcpias = % Zf;l [log gy (b™'|AR;) —

L7 log gy (b ARy)).

Final Objective. Finally, we jointly optimize the reward model parameters ¢ and the variational
parameters v by minimizing the complete training objective:

£t0tal(¢a w) = Eprcf(¢) + Aﬁdebias(¢base; ¢), (12)

Parameters of the transformer base ¢y, C ¢ are updated by gradients from both losses, while the
RM’s prediction head and the variational network ¢, are updated by their respective objectives. Dur-
ing inference, the variational network is discarded, allowing the debiased reward model r to be used
without any overhead. Given a pre-collected human preference dataset Dprer = { (i, ¥, y}) YV,
we highlight the training process in Algorithm [T]and visualize our framework in Appendix D]

3.2 DISCUSSION

Our final training Lo in equation|[I7]optimizes a tractable objective of the ideal information-theoretic
objective in equation [§] which is theoretically grounded by several reasons. First, by targeting
I (H;b), we enforce a stricter constraint on the bias information than targeting the final prediction,
as justified by the DPI. Second, our comparative framework, which minimizes / (Ah; bre'), Serves as
a principled and targeted implementation of this constraint, directly addressing the representational
differences that drive biased decisions. Finally, using the CLUB estimator is an empirically validated
technique for minimizing a tight upper bound on mutual information. Therefore, our practical loss
function guides the reward model towards the ideal objective of being maximally informative about
preferences while remaining invariant to the specified bias.

4 RELATED WORK

Reward Hacking. The issue of reward hacking, or specification gaming, has been increasingly
recognized as a significant challenge for the stable and effective post-training of LLMs via RLHF (Lan-
gosco et al., 2023} |[Amodei et al., [2016; Hurst et al., [2024; |[Kaufmann et al., 2024} |Skalse et al.,
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2025; |Zhang et al.} 2025} [Li et al.| [2025). It occurs when an agent exploits unforeseen loopholes
or proxies in a misspecified reward function to achieve high scores without fulfilling the intended
goal (Pan et al.| [2022)). In RLHF, the learned RM serves as a proxy for true human preferences.
If this RM inadvertently learns inductive bias from the preference data (e.g., a bias towards more
verbose (Singhal et al., |2023)), or sycophantic responses (Sharma et al., 2023)), the LLM being
optimized will learn to exploit these flaws, leading to a degradation in true performance (Hurst et al.,
2024)). Prior work has sought to mitigate reward hacking by empowering RMs, including better data
curation (Liu et al.| 2024a; Wang et al., 2025b; [Dubois et al.,2024)), model scaling up (Wang et al.,
2025b) and ensembling (Wang et al.| 2024), reward post-hoc calibration (Huang et al.| 2024), causal
inference (Shen et al.,[2023; Wang et al.,2025a), disentangled reward learning (Bu et al., [2025} [Chen
et al.l |2024) and other additional constraints (Miao et al., |[2024).

More related to our work, several recent efforts have sought to mitigate biases in reward modeling.
A prominent line of work focuses on minimizing simple statistical correlations. For instance,
methods like ODIN (Chen et al.,|2024), ALBM (Bu et al., [2025), and the approach by Zhang et al.
(2025) aim to reduce length or format bias by directly penalizing the Pearson correlation coefficient
between the reward score and the bias attribute. While effective for simple associations, these
methods are fundamentally limited as they only capture linear relationships, failing to address more
complex, non-linear dependencies. Similarly, PoE (Shen et al.l|2023)) employs a specialized two-head
architecture for length bias, but its attempt at causal disentanglement is purely heuristic. PoE does
not explicitly model the preference-bias relationship, relying instead on the network to implicitly
learn this separation from data, which offers neither formal guarantees nor generality.

In contrast, more principled frameworks have been proposed. CRM (Wang et al., [2025a) uses
counterfactual invariance enforced by MMD, which may be overly restrictive and risk distorting
the reward landscape. Closer to our approach, InfoRM (Miao et al.| 2024) employs an information-
theoretic framework to compress the entire latent representation, indirectly removing spurious
information. Distinct from all these methods, our work is also motivated by information theory (Tishby:
et al., |2000) but introduces a more direct and targeted mechanism. By explicitly minimizing the
mutual information that is capable of capturing arbitrary non-linear dependencies between the model’s
internal representation and the known bias attribute, DIR provides a principled and robust debiasing
framework that is both general and effective, avoiding the limitations of linear metrics and the risks
of purely heuristic, data-driven approaches.

Debias Methods aims at preventing models from learning and perpetuating undesirable biases
present in training data (He et al., [2019; Nam et al.| 2020; |Blodgett et al.,|2020). A prominent line of
work involves learning representations that are invariant to sensitive or spurious attributes (Chuang
et al., 2020). Methodologies to achieve this include adversarial training, where a discriminator
attempts to predict the bias attribute from the model’s representation (Nam et al., |2020); causal
inference techniques that aim to disentangle causal factors from spurious ones (Zhou et al.| [2023a);
and information-theoretic approaches (Liu et al., 2023} Tartaglione et al.,|2021)). Our work falls into
the latter category, where we introduce a novel and principal information-theoretic debiasing method
for eliminating inductive bias in reward modeling.

5 EXPERIMENT

We evaluate the effectiveness of our debiased reward modeling framework on three practical bias
settings, length, sycophancy, and format, by applying the method separately to each. Then we explore
whether our method can alleviate the concurrent multi-bias situation.

5.1 LENGTH BIAS

Previous work demonstrates that reward models often tend to favor longer responses, leading them
to assign higher reward scores for verbose completions rather than for substantive content (Singhal
et al.;,2023; Dubois et al.,|2024). As a result, the aligned policy model would in turn learn to exploit
this inductive bias, which is incentivized to generate unnecessarily verbose, repetitive, or circuitous
text to maximize its expected reward, a behavior that directly contradicts the goal of aligning with
nuanced human preferences for quality and conciseness. See detailed settings in Appendix
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Figure 1: Evaluation of length bias in Reward Models on the RM-Bench. We compare the correlation
between response length and reward score for RMs trained with different methods. Our approach
yields the lowest Pearson correlation coefficient (0.468), proving its effective ability in assigning
more uniform reward scores.

Table 1: We adopt the official evaluation implementation of the evalscope package by using 0-Shot,
except for GSMS8K, Race, and TriviaQA. Baseline: Llama3.1-8B-Instruct / OpenRLHF-Llama3-8B-
SFT. Bold is the best. underline is the second-best. The A row indicates the performance change
relative to the respective Baseline.
Benchmark | Llama3.1-8B-Instruct
\ Base SK PoE LP ALBM InfoRM  Ours
GSMBK,.-4shots | 83.93 8461 8362 7597 8408 8378  84.84

OpenRLHF-Llama3-8B-SFT
Base SK PoE LP ALBM InfoRM  Ours
7483 78.17 7779 77.18  78.85 76.74 79.08

Hellaswag,c. 77.21 7642 7108 73.15 77.21 76.78 77.33 | 7251 7476 7251 7251 74.63 72.12 74.52
TFeval,cc 7283 7006 7172 6547  73.57 74.12 78.00 | 4492 4510 49.72 46.21 46.21 46.21 52.31
MMLU;, 7231 7233 7197 6513  72.55 72.22 72.64 | 5445 5240 5477 5445 5525 54.97 54.30
ProcessBenchy. 2539 2949 2850 2491  26.12 26.25 27.73 | 446 1031 9.68 7.84 10.85 3.24 13.82
Race,c-3shots 66.50 53.89 60.03 7890  59.00 65.20 6202 | 7921 7882 8139 8030  80.69 78.72 80.32
BBH;c 64.52  65.69 60.50 61.10 64.84 66.13 67.27 | 6120 6268 62.69 6228  61.10 61.62 62.99

Humanevalyuss@1 7012 68.29 6646 6037  65.85 7012 70.12 | 60.98 5732 59.76 59.76  60.37 5732 6341
TriviaQA,.-5shots | 32.64 49.01 4841 4720 52.09 30.56  55.86 | 48.53 52.86 5234 4832 51.52 48.16  52.52

Avg. Performance | 62.83 6331 63.14 6136  63.92 62.80 66.20 | 55.68 5694 57.85 56.54 57.72 55.34 59.25
A - +0.48 1031 |147 711.09 10.03 1337 - 1126 1217 1086 12.04 1034 1357

Reward Model Evaluation, Results and Analysis. We first evaluate the inherent length bias of
RMs by analyzing the correlation between their scores and response lengths on the RM-Bench (Liu
et al., 2024b)). As visualized in Figure[l] the standard BT RM exhibits a strong, undesirable positive
correlation between length and reward (Pearson r = 0.533). This confirms that even without an
explicit preference for length in the training dataﬂ the model still learns a spurious “longer is better”
heuristic, highlighting a fundamental issue in standard BT: the objective itself is susceptible to
capturing such simple, non-causal patterns. While other debiasing methods show some improvement,
our approach demonstrates an effective ability to mitigate this bias. Our RM achieves a Pearson
correlation of just 0.468, the lowest among all evaluated methods. This quantitative advantage
is further illustrated in the binned mean reward plots; the curve for our model is visibly flatter,
confirming that it does not disproportionately reward longer responses. By learning to assign scores
more uniformly across different lengths, our method produces a more reliable RM, preventing
the policy from being misguided into generating unnecessarily verbose outputs during subsequent
fine-tuning. We report the performance on RM-Bench in Appendix [E.T]

PPO Evaluation, Results and Analysis. We compare the performance of different PPO-optimized
policies based on the corresponding RMs across several popular benchmarks. Table [I|demonstrates
that mitigating length bias does not compromise, and ideally enhances, the policy’s core reasoning
and knowledge-based capabilities. On the Llama3.1-8B-Instruct backbone, our model (“OURS”)
achieves the highest average performance of 66.20, significantly outperforming strong baselines. This
trend of improved performance is consistent across different base models, as our method also secures
the top average score (59.25) on the OpenRLHF-Llama3-8B-SFT backbone, which shows that our
fine-tuning strategy successfully improves objective performance by alleviating the length bias.

We also assess the user preference for policies fine-tuned using different reward models and compare
average response length on the ArenaHard-v0.1 benchmark (Li et al.| [2024). Figure 2] shows the
head-to-head win rates of these challenger policies against strong opponents, as judged by Qwen3-

2 Average token number of (2, y™) in the SK training set is less than (z, y') ones (622.86 vs. 707.24).
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(a) Win Rate vs. Baselines (b) Response Length Comparison
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Figure 2: Evaluation on ArenaHard-v0.1 for policies fine-tuned with different RMs. (a) Head-to-head
win rates. Policies are PPO fine-tuned from specified base models (from left to right: OpenLlama3-
8B-SFT, Llama3.1-8B-Instruct, and Llama3.1-8B-Instruct, respectively) using five different RMs,
which then act as challengers against opponents. (b) Average response length comparison.

235B—A22B—2507El The policy trained with our RM (“Ours”) consistently demonstrates the highest
win rate across all conditions. For instance, in Figure |Z| (a), when fine-tuned on Llama3.1-8B-Instruct,
it achieves a remarkable 54.3% win rate against the baseline and 41.9% against GPT-40-0314.
Crucially, Figure 2] (b) reveals that this improved preference is achieved with expected conciseness.
The policy guided by our RM produces shorter responses (e.g., 679 tokens on the Llama3.1 base)
compared to policies guided by other RMs like ALBM (722 tokens) and the verbose original baseline
(754 tokens). This combination of a relatively higher win rate and lower verbosity provides definitive
evidence that our length-debiased reward model successfully guides PPO to produce a more efficient
and human-aligned policy, effectively overcoming the common “longer is better” bias. Moreover,
by directly targeting the known bias, DIR can effectively remove the spurious component while
preserving preference-relevant information, thereby achieving both better direct debiasing and higher
preference quality. In contrast, unsupervised debiased approaches like InfoRM do not consistently
improve over the base models on either backbone and shows noticeably lower win rates, indicating a
weaker trade-off between debiasing and performance.

In addition, we report the Win Rate performance on MT-Bench (Zheng et al., [2023) and Length
Control Alpaca (Dubois et al.}|2025) in Appendix @ from which we observe that DIR can yield
policies that are preferred more often.

RM Training Cost Analysis. We analyze the computational  Typle 2: Training cost comparison.
overhead in terms of GPU memory consumption and training  ~Nicinod | GPU Memory  Training Time
time, with a detailed comparison presented in Table[2] We use

. e Baseline 55.08GB 50.46m

8 GPU cards with full parameter training and DeepSpeed Zero- PoE 56.80GB 55.35m
1(Rajbhandari et al.} [2020). Our approach demonstrates highly =~ ALBM 57.22GB 78.21m
. . . InfoRM |  57.99GB 75.21m

comparable resource efficiency to existing methods. Specif- Ours 56.88GB 67.09m

ically, the GPU memory usage of our method (57.22GB) is
only marginally higher than the baseline (56.80GB) and on par with other techniques like ALBM
(56.88GB). Regarding training time, while our method (67.09 minutes) requires a moderate increase
compared to the simpler baseline (50.46 minutes), it remains competitive and aligns closely with
other advanced methods such as ALBM (68.21 minutes). This analysis confirms that the significant
performance improvements offered by our approach do not come at the expense of prohibitive
computational costs, establishing it as a practical and efficient solution.

PPO Monitoring, Ablation Study, and Case Study. We visualize the PPO training dynamics
metrics like RLHF Reward, KL divergence between the policy and the base, and KL divergence
between following updated policies in Appendix [E-I] which demonstrates that our RM helps make
PPO training more stable with higher reward. In addition, we give a detailed ablation study on A and
representation difference in Appendix [E.2} where the performance demonstrates the trade-off effects
between preference learning and debiasing, and shows the effectiveness of representation difference
than concatenation. We also provide specific case analysis in Appendix [G]

Combination with Direct Preference Optimization (DPQO) In addition to PPO, DPO (Rafailov
et al.| |2024a) has emerged as a powerful post-alignment method that directly trains the policy to
increase the log-probability of the preferred response relative to the rejected one. Here, we explore
whether our DIR can be effectively combined with DPO. Conceptually, DIR operates at the reward

Shttps://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507
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Table 3: Evaluation on Table 4: Benchmark Performance under DPO training. Evaluation
ArenaHard-v0.1 for policies setting is the same as Table[T}

fine-tuned with DPO, DPO+LC hmark | Meta-Llama3.1-8B-Instruct | OpenRLHF-Llama3-8B-SFT
and DPO+OURS. Benchmar

| DPO  +LC +OURS | DPO  +LC +OURS

ve Base %‘;ﬁ“ﬁ;{f‘&?dmﬁ'iﬁzﬁ” GSM8K,-dshots | 8211 8143  82.56 | 7589 17635  77.26
S bas Hellaswag,cc 7484 7517 7510 | 66.56 66.41 73.91
DPO 38.63 436.55 IFeval,ee 7357 7412 74.68 | 3826 35.86 41.59
+LC 40.96 407.23 MMLU, 7136 7158 7154 | 48.92 4892 57.01
+OURS 45.27 404.61 ProcessBenchgc. 26.75 26.70 27.60 428 495 6.93
Meta-Llama3.1-8B-Instract Raceyce-3shots 69.98 70.14 7029 | 7927 78.68 79.97

vs Base | Win Rate (%) Length BBH, 6722 6681  66.99 | 5973 60.36 62.34
Humanevalyser | 6280 6524  69.51 | 59.15  60.37 59.15

1358 3222 Zg(l)% TriviaQA,c-5shots | 55.12 5515 5529 | 4745 47.69 48.93
+OURS 49.09 684.67 Avg. Performance | 64.86 65.04 65.95 53.28 53.29 60.12
A - 10.18 11.09 ‘ - 10.01 16.84

modeling stage and should not modify the DPO objective: DPO still optimizes the standard log-
sigmoid preference loss, and our method only modifies preference signals by making them less
correlated with inductive bias. Specifically, we add \Lgepias(@Pbase, ¢) to DPO loss. Empirically,
we conduct the corresponding experiments, which show that our method can also improve DPO’s
performance with controlled length. We provide training details in Appendix [E.3] Results in Table 3]
indicate that our method leads to a final policy with both a better win-rate and more effective length
control, effectively boosting vanilla DPO and also outperforming a specialized Length Controlled
DPO (DPO+LC) variant [Park et al| (2024). Results in Table ] indicate that our method also leads
to a final policy with performance gains, especially for the SFT model, which has not undergone a
preference alignment. In summary, experiments on Table [3]and Table ] suggest that debiased reward
signals from DIR interact smoothly with DPO and effectively remove spurious gradients induced by
length bias.

5.2 SYCOPHANCY BIAS

Sycophancy bias occurs when an RM learns to favor responses that agree with or flatter the user, rather
than prioritizing factual accuracy and helpfulness Sharma et al.|(2023)); Wang et al.| (2025a), which
arises from inductive bias in preference data, where agreeable language is incorrectly associated
with higher quality. Consequently, the policy model is misguided during RL fine-tuning to produce
superficially pleasing but substantively poor outputs, undermining genuine alignment. Detailed
experimental settings can be found in Appendix [E.4]

Table 5: Reward model accuracy (%) on the sycophancy bias under varying contamination settings,
where our method consistently achieves higher accuracy across most settings.

Settings | AlL \ Nat. \ Adv.
~ a | BT InfoRM Ours | BT InfoRM Ours | BT InfoRM Ours

20% 30% | 86.6 89.4 90.2 | 855 88.9 89.8 | 91.0 91.2 93.6
20% 50% | 85.6 89.8 88.7 | 85.7 90.3 88.2 | 84.9 87.9 90.9
20% 70% | 84.8 86.1 87.1 | 85.2 86.0 87.5 | 83.1 86.6 85.1

40% 30% | 87.4 89.0 90.9 | 86.0 88.1 87.4 | 88.9 90.3 93.9
40% 50% | 86.1 87.9 88.7 | 87.0 87.7 89.8 | 84.8 88.3 89.1
40% 70% | 83.6 86.6 88.0 | 84.4 86.3 87.4 | 82.6 87.2 88.6

80% 30% | 89.0 904 91.3 | 82.3 89.5 88.0 | 90.7 91.9 92.2
80% 50% | 85.5 87.2 88.1 | 86.3 86.3 86.2 | 85.3 87.5 90.3
80% T70% | 81.2 84.5 86.2 | 86.4 86.4 87.2 | 79.7 84.0 86.2

Evaluation, Results, and Analysis. To evaluate the models’ susceptibility to sycophancy, we
conduct an adversarial test. We take a clean evaluation set and create two versions: a “natural”
version and a “sycophantic” version where the undesirable prefix is added to the rejected responses.
We then measure the model’s accuracy in correctly identifying the preferred response in both scenarios.
A robust model should maintain its accuracy, whereas a biased model’s performance will degrade
when faced with the “flattering but wrong” responses. As shown in Table [5] the performance of
the reward models varies under different settings. The BT model shows vulnerability to bias, as its
accuracy on natural examples is generally the lowest, particularly under high contamination. While
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InfoRM also shows a clear improvement and greater resilience than the BT baseline, our method
demonstrates overall higher performance improvements across natural, adversarial, and overall
settings, even under high contamination ratios. This pattern indicates that our explicit debiasing
mechanism is effective at mitigating the influence of sycophantic signals, enabling the model to focus
more on the intrinsic quality of the response.

5.3 FORMAT BIAS

Zhang et al.|(2025); Long et al.| (2024) have indicated that format biases (e.g., lists, emoji, and bold)
widely exist in human and powerful preference models, and reward modeling can be easily attacked
by a small amount of biased data and leads to significant format biases in downstream alignment
tasks. We test DIR’s ability to resist such bias and detailed experimental settings are in Appendix

Baseline, Evaluation, Results, and Analysis. By following Tgple 6: Performance on both
LE (Zhang et al., 2025), we evaluate Ours against three base- Bold and List format debiasing and
lines: a standard BT model, BTT (trained on data with format-  jownstream evaluation tasks. BT}
biased samples removed), and LE. As shown in Table[6] the jpdicates that deleting the samples
standard BT model exhibits a profound format bias, with win-  with specific patterns.

rates of 89.0% and 92.5% for Bold and List formats respectively, g | BT BT| LE Ous
confirming it has learned to associate these formats with higher ~ — =" %)
quality. The naive BT{ approach proves to be a suboptimal Bold 89.0 490 50.5 512
strategy; while it lowers the format preference, its downstream List 92.5 525 530 520
performance on RewardBench degrades significantly. Both LE ~ RewardBench (Filtered)

: ; . o Chat 983 922 972 930
aqd Ours effectively nf:utrahze the format bias, brlpg}ng 'the ChatHard | 714 644 128 801
win-rates close to the ideal 50% mark. The key distinction, Safety 831 755 829 89.6

however, emerges in the downstream RewardBench evaluation. Reasoning | 85.1 814 89.7 922
While LE shows competent generalization, Ours demonstrates

notably stronger performance across the more demanding Chat Hard, Safety, and Reasoning. This
indicates that our approach strikes a better trade-off, successfully eliminating the format preference
while simultaneously enhancing the model’s core competencies in critical areas.

5.4 CONCURRENT MULTI-BIASES

Real datasets often exhibit multiple concurrent biases. In this section, we explore whether DIR can
simultaneously deal with concurrent multi-biases, i.e., length and sycophantic biases. Overall, we
find that the multi-bias DIR reduces both biases compared to the BT baseline, and even brings better
generalization in some cases, indicating that multiple debiasing terms can be combined without
significant destructive optimization conflicts. We give the details in Appendix

6 CONCLUSION

In this work, we introduce DIR, a novel framework designed to mitigate reward hacking caused by
inductive biases in RLHF by applying information-theoretic principles to reward modeling. Unlike
existing methods that target single biases (e.g., length or format) or only address simple linear
correlations (e.g., Pearson Coefficient), DIR directly confronts the root cause of reward hacking,
inductive bias in preference data, by implementing a dual-objective to explicitly disentangle these
signals. DIR guides the reward model to learn representations that are predictive of true human
preference while remaining invariant to the influence of known biases. Experiments across three
distinct scenarios (i.e., length, sycophancy, and format bias) demonstrate DIR’s effectiveness not
only in neutralizing the target biases but also in enhancing downstream RLHF performance and
generalization, validating our approach as a general and practical tool for building more robustly
aligned models.

ETHICS STATEMENT

This work aims to enhance the fairness and reliability of LLMs by mitigating format biases, pre-
venting models from “gaming” evaluations based on style over substance. Our method encourages
a more accurate assessment of a model’s true capabilities. We acknowledge that our method only
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addresses the specific format biases targeted during training and does not mitigate broader societal
or demographic biases. Furthermore, our ablation studies show that an overly aggressive debiasing
coefficient (\) can create a trade-off, potentially harming performance on simpler tasks. While we
use public models and datasets, we recognize they may contain their own inherent biases. We believe
our contribution is a positive step towards more robust and transparent Al alignment.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we provide all necessary artifacts in both the Section Experiment, the
Appendix, and the Supplementary Materials.

The complete source code, including training and evaluation scripts, is provided in the supplementary
material. All datasets and base models we used in this manuscript are public, and we provide download
scripts (scripts/auto_download data.shand scripts/auto_download model. sh)
for automated setup. Key hyperparameters are detailed in the paper. The exact com-
mands for reproducing our main results are available in the provided shell scripts (e.g.,
scripts/train_debias_rm.sh).
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A USAGE OF LLMs

In the preparation of this paper, we utilized Large Language Models (LLMs) solely for the purpose
of grammatical polishing and text refinement of the manuscript content. Specifically, the LLMs were
only used to optimize the clarity, fluency, and grammatical accuracy of the written text.

All content polished by LLMs underwent thorough manual review and verification by the authors.
We carefully checked the polished text to ensure its consistency with the original research intent,
accuracy of scientific facts, and compliance with academic integrity standards. We confirm that
we take full responsibility for all contents of the paper under our names, including the parts that
underwent LLM-assisted grammatical polishing.

B BOUND PROOF

B.1 PROOF OF THE BARBER-AGAKOV (BA) BOUND.

The goal is to prove that for any variational distribution gg(y|x), the mutual information I (x;y) is
lower-bounded by E,, (5 ) [log go(y|x)] + H (y), for any two random variables x and y. We begin
with the definition of mutual information:

I(z;y) = H(y) — H(ylz),
where H (y) is the marginal entropy of y, and H (y|x) is the conditional entropy. The conditional
entropy is defined as:

H(ylz) = —Epa.yllog p(y|z)).
Substituting this into the definition of MI, we get:
I(z;y) = H(y) = (—Ep@.y[log p(ylz)])
= H(y) + ]Ep(a:,y) [logp(y\m)]. (13)
Now, we introduce the variational approximation gg(y|x) by considering the Kullback-Leibler (KL)

divergence between the true conditional distribution p(y|x) and our approximation gy (y|x), averaged
over all x ~ p(x):

Ep(a) [KL(p(y|) || g6 (y]2))] = 0.
By expanding the definition of KL divergence, we have:

p(ylx)
q0(y|x)

0<Y p(@)) plylz)log plylz)

0< IEp(m) Zp(y|x) log

)

90 (y|)

0< ) p@,y) (logp(ylz) —logga(ylz)),

x,y
0 < Ep(a,y) llog p(y|z)] — Epa,y)[log go(y|)].

Rearranging this inequality gives us a lower bound for the expected log-likelihood under the true
distribution:

Ep@.ylogp(y|z)] = Epa,y)[log g (ylz)]- (14)
Finally, by substituting this inequality equation |14 back into our expanded definition of mutual
information equation[I3] we obtain the Barber-Agakov bound:

I(z;y) = H(y) + Epay)[log p(y|z)]
> H(y) + Ep(a.y)[l0g 90 (yl2)].
Let H|[p] to represent the marginal entropy H (y), we arrive at the final expression:
I(z;y) > Ep(a,y) log g0 (y|z)] + Hp] =: Ipa(z;y),

which completes the proof. The bound becomes tight (i.e., the inequality becomes an equality)
if and only if the variational approximation perfectly matches the true conditional distribution,

90 (y|x) = p(y|z) forall z, y.
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B.2 PROOF OF THE CLUB UPPER BOUND

We aim to prove that for any variational distribution gy (y|x), the mutual information I (x;y) is
upper-bounded by Icpug(x; ¥). We begin with the definition of mutual information:
I(@;y) = Ep(ay) logp(yl@)] — Eyy) [log p(y)] (15)

Let’s focus on the second term, which is the negative marginal entropy +H (y). We can express the
marginal distribution p(y) by marginalizing out x:

p(y) = Ep(m’)[p(y|w/)]
where ' is a random variable drawn from the same distribution as @, but is independent of the x in
the first term of equation[I5] Substituting this into the entropy term:
~Epy) l0gp(y)] = —Ep(y) [l0g Byar) [p(yl2")]
Since the logarithm is a concave function, we can apply Jensen’s inequality, which states that
Ellog(Z)] < log(E[Z]). This implies — log(E[Z]) < —E[log(Z)]. Applying this, we get:
~Epy) (108 Ep(a) [p(y|2)]] < ~Ep(y) [Epnlogplyla)]]
= —Ep@)p( log p(ylz')]-

Now, substituting this inequality back into our original MI expression equation [I5} we obtain an
upper bound on the mutual information:

I (CE; y) < IE‘p(a),y) [1ng(y‘w)} - IE:p(m)p(y) [logp(y|w)] (16)

Note that the second expectation is over the product of marginals p(x)p(y). The inequality equa-
tion [T6]holds for the true conditional distribution p(y|x). The CLUB bound replaces p(y|x) with the
variational approximation ¢y (y|x). The key insight from |Cheng et al.|(2020) is that the difference
between the true bound and the variational bound is an expectation of KL-divergences, and this
variational form serves as a practical, sample-based upper bound for minimization. Therefore, we use
the variational form as our tractable objective:

I(z;9) < Epzy)log go(y|2)] — Ep)py)log g6 (y|2)] =: IcLus(x; y).

This completes the justification for using Icryp as an upper bound for mutual information minimiza-
tion.

C IMPLEMENTATION DETAILS OF Qy

Our variational network ¢, for estimating the mutual information is implemented as a lightweight
two-layer Multi-Layer Perceptron (MLP). Its architecture is as follows:

self.variational_net = nn.Sequential (
nn.Linear (input_dim, hidden_size),
nn.RelLU(),

nn.Linear (hidden_size, label_num)

)

The dimensions are chosen based on the following principles: input_dim: This is dynamically set to
match the dimension of the final hidden state representation from the backbone LLM. For instance,
in our experiments with Llama-3.1-8B-Instruct, the input_dim is 4096.

label_num: The output dimension is set to 2. This is a direct and necessary consequence of our
theoretical formulation, as the relative bias attribute b, is defined as a binary variable (0, 1) indicating
which of the two responses in a pair exhibits a stronger bias.

hidden_size: For the intermediate hidden layer size, we conducted an ablation study over the values
[512, 1024, 2048]. We observed that hidden_size=1024 offered the best trade-off between debiasing
performance and minimal computational overhead.

We intentionally designed gy, to be a simple and efficient network. This ensures that the observed
performance gains are attributable to our method itself, rather than to the introduction of a large
number of additional parameters.
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D VISUALIZATION OF DIR

We visualize our DIR framework as shown in Figure

Maximize Preference Information

Minimize Bias Information <€=== Backward

Figure 3: An overview of our DIR framework, which disentangles reward modeling into two
competing pathways. A Preference Path is optimized to maximize mutual information with the true
preference label. Concurrently, a Debias Path, regularized by an information bottleneck, is optimized
to minimize mutual information with the bias attributes. This dual-objective forces the shared RM
Base to learn representations that are sensitive to preference but invariant to bias.

E EXPERIMENT

E.1 LENGTH BIAS

Dataset, and Model. We train reward models on Skywork-Preference-80K-v0.2 (SK) dataseﬂ
based on Llama3.1-8B-Instruct. With the reward model, we then train Llama3.1-8B-Instruct and
OpenRLHF-Llama3-8B-SFT polices with the PPO implementation for one epoch.

Training Settings. For our reward model training, we adopt a full parameter tuning strategy by
using HuggingFace Trainer with DeepSpeed Zerol on 8 GPU cards. Global batch size is set to 128,
initialization learning rate is 2e-6 with Cosine scheduler. For our PPO experiment, we fine-tune
two distinct models using 20,000 samples from the alpaca-gpt4-data-en dataset (Peng et al., |2023)).
The first model, Llama3.1-8B—InstruclEl has undergone post-training that includes both DPO and
RLHF. The second, OpenRLHF-Llama3-8B-SFI]} is an instruction-following version built upon
Llama3-8B-Base, without the RLHF post-training stage. We conduct the PPO training using the
ms-swift frameworklz] with its default training configuration.

Baselines. We mainly consider the following baselines due to the reproducibility: 1) Vanilla BT
Baseline and popular open-source RM Skywork-Reward-Llama-3. 1-8B-V0.2E]; 2) Length Debiased
RM:s, including PoE (Shen et al.,[2023)) and ALBM (Bu et al.,2025)); 3) Length Penalty that directly
resharps the reward during PPO by 7(x,y) = r(x,y) — 0.001 = len(y) (Dong et al.l [2024); 4)
InfoRM (Miao et al., [2024) that is also designed from the information theory perspective.

Evaluations. All benchmark evaluations are subsequently performed using the ms-evalscope
frameworkﬂ Our evaluation protocol utlize few-shot settings for GSM8K (4-shot) (Cobbe et al.,
2021)), Race (3-shot) (Lai et al.l[2017), and TriviaQA (5-shot) (Joshi et al., [2017), while all other

‘nttps://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.
2

*https://huggingface.co/meta-1llama/Llama-3.1-8B-Instruct

®https://huggingface.co/OpenRLHF/Llama-3-8b-sft-mixture

"nttps://github.com/modelscope/ms-swift

$https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.?2

https://github.com/modelscope/evalscope
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benchmarks (i.e., Hellaswag (Zellers et al.| |2019), IFeval (Zhou et al., 2023b), MMLU (Hendrycks
et al.,[2021)), ProcessBench (Zheng et al., 2025), BBH (Suzgun et al.,|2022), and Humaneval (Chen
et al., 2021)) are assessed in a zero-shot setting. We report accuracy as the primary metric for all
tasks, with the exception of Humaneval, for which we report the Pass@1 score.

Performance on RM-Bench. We further evaluate our debiased reward models on the RM-Bench,
which assesses capabilities across various domains (Chat, Math, Code, Safety) and difficulty levels
(Hard, Normal, Easy). The results, presented in Table [/} demonstrate that our DIR framework
outperforms several baseline methods in terms of overall performance.

Our primary model, Ours-1.0, which corresponds to the optimal trade-off point (A = 1.0) identified
in our ablation study, achieves the second-highest total score (69.35). It exhibits a well-balanced
profile, securing the top performance on the ‘Math* subset (61.81) and the ‘Normal® difficulty subset
(73.59), while remaining highly competitive in ‘Chat‘ (68.91). This confirms that our method can
enhance the reward model’s core capabilities without compromising its general performance.

When we increase the debiasing strength to A = 10.0, the Ours-10.0 model achieves the best overall
performance (70.18). The most significant improvement is observed on the ‘Hard* subset, where our
model’s score dramatically jumps to 64.41, surpassing the next-best method by a large margin of over
16 points. This strongly suggests that by forcing the model to ignore superficial format cues, DIR
enables it to focus on the more subtle and complex signals of quality inherent in difficult prompts.
This specialized model also secures the top rank in the ‘Chat and ‘Code‘ domains. However, this
specialization comes at the cost of performance on the ‘Easy‘ subset, where simpler heuristics might
be sufficient and our strong debiasing may be overly restrictive.

In summary, these results demonstrate that DIR not only enhances the overall capability of the reward
model but also offers a tunable mechanism to prioritize robustness on challenging tasks over simpler
ones, showcasing the flexibility and effectiveness of our approach.

Table 7: Performance comparison on RM-Bench. Best results are in bold and Second-performance is
in underlined. We train the BT baseline in our own codebase.

Method | Chat Math Code Safety | Hard Normal Easy | Total
BT 64.69 6121 5141 95.11 | 42776 7230 89.24 | 68.10

PoE 67.70 6123 51.51 95.51 | 4494 73.17 88.86 | 68.99
ALBM 64.57 5848 5234 9521 | 47.88 71.50 90.32 | 67.40

Ours-1.0 | 6891 61.81 5156 95.13 | 47.88 73.59  88.93 | 69.35
Ours-10.0 | 71.23 61.59 52.73 9491 | 6441 7129 7485 | 70.18

Performance on MT-Bench and AlpaceEval. For MT-Bench (Zheng et al.| [2023)), we report
the win rate of each RM-guided policy against its own base model, using the standard MT-Bench
LLM-as-a-judge setup. As shown in Table [§] our method (“OURS”) achieves the highest win
rates on both backbones (56.25% vs. 48.75-53.75% for OpenRLHF-Llama-3-8B-SFT, and 56.88%
vs. 50.63-51.88% for Meta-Llama3.1-8B-Instruct), indicating more improvements on open-ended,
multi-turn dialogue quality.

Table 8: Win rate (%) performance comparison on MT-Bench.

. Base Model
Win Rate (%) (vs. Base) OpenRLHF-Llama-3-8B-SFT  Meta-Llama3.1-8B-Instruct
OURS 56.25 56.88
PoE 48.75 51.25
Skywork 49.38 51.25
ALBM 53.75 50.63
InfoRM 46.88 51.88
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For Length Controlled AlpacaEval, we follow the length-controlled protocol of Dubois et al.|(2025)
and report both raw win rate and length-controlled win rate over the base model. On Meta-Llama3.1-
8B-Instruct, OURS achieves the highest scores on both metrics. On OpenRLHF-Llama-3-8B-SFT,
Skywork attains a slightly higher raw win rate, but OURS achieves the best length-controlled win rate.
This pattern is consistent with our goal: once the confounding effect of response length is controlled
for, our debiased RMs yield policies that are preferred more often, demonstrating better alignment
that is not driven by verbosity. We will include these MT-Bench and AlpacaEval results and their
analysis in the revised version.

Table 9: Win rate (%) performance comparison on Length Controlled AlpacaEval against
gpt4_1106_preview.

Base Model: Meta Llama3.1-8B-Instruct
Methods Raw Win Rate (%) Length Control Win Rate (%)

OURS 31.30 19.66
PoE 26.58 11.41
Skywork 29.38 13.21
ALBM 26.83 10.61
InfoRM 25.22 11.02

Base Model: OpenRLHF Llama-3-8B-SFT
Methods Raw Win Rate (%) Length Control Win Rate (%)

OURS 9.50 5.46
PoE 7.14 3.28
Skywork 10.19 3.93
ALBM 8.88 5.08
InfoRM 5.84 3.65

PPO Training Monitoring. Figure E| presents three key metrics for monitoring the PPO training
process. The left plot (RLHF Reward) evaluates the final quality score of the model’s outputs,
with higher values being better. The middle plot (KL Divergence) measures how much the learned
policy has deviated from the initial reference model, indicating the extent of exploration. The right
plot (Approx. KL) shows the magnitude of each policy update, serving as a critical indicator of
training stability. Our policy model demonstrates a better balance across these metrics by achieving
a top reward score that significantly outperforms all baselines. Concurrently, our KL divergence
is maintained at a moderate level, suggesting effective exploration without catastrophic deviation
from the base model’s capabilities. Most importantly, our method exhibits the lowest and most stable
Approx. KL, which proves that the training process is exceptionally smooth and reliable. In summary,
our approach successfully boosts performance while ensuring unparalleled training stability.

RLHF Reward = KL Divergence Approx. KL (Update Step)
Q
20 H//WM g o 0.0014
[
(9] E) i
Q .
g0 —40 8 0.0012
& > g
0 5 20 <
= 0.0010
<
0 0.2k 0.5k 0.8k 1.0k 1.2k 0 0.2k 0.5k 0.8k 1.0k 1.2k 0 0.2k 0.5k 0.8k 1.0k 1.2k
Training Steps Training Steps Training Steps
—— Ours InfoRM PoE SK ALBM

Figure 4: PPO training dynamics across key metrics. Our RM obtains a higher policy score and
demonstrates better training stability.
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E.2 ABLATION STUDIES UNDER LENGTH DEBIAS

Ablation Study on Representation for Debiasing. A core design choice in our framework is
the use of representation difference (Ah = h™ — h!) as input to the variational network, rather
than representation concatenation ([h*; h!]). We conduct an ablation study to validate this choice,
evaluating both approaches on the RewardBench-v1 and RM-Bench benchmark suites. As detailed in
Table[T0] our empirical results strongly support the effectiveness of using representation difference.

Theoretically, this choice is motivated by two factors. (1) Alignment with Preference Learning:
The Bradley-Terry objective itself operates on the difference of reward scores. By feeding the
representation difference to the debiasing module, we align the supervisory signal for debiasing
with the primary learning objective. (2) Signal Purity: The difference operator effectively cancels
out redundant information from the shared prompt @, forcing the debiasing network ¢, to focus
exclusively on the features that distinguish y* from z'.

Our experiments confirm these theoretical advantages. The difference-based method shows notable
performance gains across a wide range of capabilities, particularly in conversational and reasoning
tasks. For instance, on RewardBench-v1, our approach improves performance on the challenging
‘Chat Hard’ subset from 78.9% to 83.6% and on ‘Reasoning’ from 88.8% to 90.0%. Similar gains are
observed on RM-Bench, where the ‘chat’ score increases from 63.9% to 66.8%. While performance
on other sub-categories remains largely comparable, the overall trend indicates a clear advantage for
the difference-based approach.

Beyond performance, the difference operator offers practical benefits. Using concatenation doubles
the input dimension to the variational network g, (i.e., from embedding size to embedding size x 2).
This not only increases the number of parameters and computational complexity for the debiasing
module but also leads to a slightly higher GPU memory footprint during training. Therefore, we
conclude that using representation difference is more effective both in principle and in practice, and
we adopt it as the default setting for our DIR framework.

Table 10: Ablation study on the representation format for the debiasing module. We report accuracy
(%) on RewardBench-v1 and RM-Bench. The difference-based approach consistently outperforms
concatenation, especially on challenging conversational and reasoning tasks. Best results are in bold.

RewardBench-v1 (Acc %) RM-Bench (Acc %)
Method Chat Chat Hard Safety Reasoning Chat Math Code Safety
Concat ([h”; h!])  93.3 78.9 90.9 88.8 659 60.8 52.6 95.0
Difference (Ah)  94.1 83.6 89.7 90.0 67.8 611 524 952

Ablation Study on Debiasing Coefficient \. The hyperparameter A in Equation [17| governs
the trade-off between the standard preference learning objective (L,f) and our information-
theoretic debiasing objective (Lgepias). To analyze its sensitivity, we tested a range of values:
{0.1,0.3,0.5,1,2,5,10}. The results, visualized in Figure reveal a clear trade-off.

As shown in the figure, when A is too small (e.g., 0.1), the debiasing signal is insufficient. The
model behaves similarly to a standard BT model, exhibiting a high bias metric (e.g., high Pearson
correlation with a bias attribute) while achieving good performance on RewardBench. Conversely,
when A is too large (e.g., 10), the debiasing objective dominates the training. This “over-correction”
successfully minimizes the bias but severely compromises the model’s ability to learn true preference
signals, leading to a significant drop in RewardBench accuracy. We observe that A = 1 strikes an
optimal balance. At this value, the bias metric is substantially reduced, while the preference learning
performance on RewardBench is maximized. This indicates that our method can effectively neutralize
spurious correlations without damaging, and in fact enhancing, the reward model’s core capabilities.
Therefore, we use A = 1 for all main experiments in this paper.

22



Under review as a conference paper at ICLR 2026

Trade-off Analysis for Debiasing Coefficient A
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Figure 5: Ablation study on the debiasing coefficient . The plot shows the trade-off between
preference learning performance (RewardBench Accuracy, blue) and the bias metric (e.g., Pearson r,
green). A = 1 achieves the best balance.

E.3 EXPERIMENT ON DPO

Specifically, we adopt ms-swift framework with its default DPO training configuration on Human-
Like-DPO-Datase('"| based on both OpenRLHF-Llama-3-8b-SFT and Meta-Llama3.1-8B-Instruct
models, where DPO 8 = 0.1, debias factor A = 1. We train 1 epoch and evaluate the performance
on the final checkpoint. Human-Like-DPO-Dataset is created to fine-tune LLMs toward generating
more human-like responses, which includes 10,884 samples across 256 topics, containing technology,
daily Life, science, history and arts. We evaluate the performance on ArenaHard-v0.1 and several
popular benchmarks. For baselines, we also compare with the length-controlled DPO method Park
et al.| (2024)), which disentangles the length from the quality to explicitly avoid the policy model from
preferring the longer response DPO training.

E.4 SYCOPHANCY BIAS

Dataset and Model Motivated by Sharma et al|(2023)); |Wang et al.| (2025a), we create a semi-
sycophantic dataset by partially contaminating the HelpSteer3 dataset (Wang et al.| 2025b). Specif-
ically, we artificially inject a sycophantic prefix (i.e., “Yes, you are right.”’) into a proportion ~y
(e.g., v = 40%) of responses in the training dataset. Within this contaminated subset, the prefix is
added to the chosen response with an « probability (e.g., & = 70%) and to the rejected response
with a 1 — o = 20% probability. The remaining 1 — v = 30% of the dataset is left unchanged
without the sycophancy. This process creates a challenging, mixed-distribution environment where
the sycophantic phrase acts as a strong but unreliable reward signal. Reward models are still built
upon the Llama-3.1-8B-Instruct backbone.

Training Settings. For reward model training, we adopt a full parameter tuning strategy by using
HuggingFace Trainer with DeepSpeed Zerol on 8 GPU cards. Global batch size is set to 128,
initialization learning rate is 2e-6 with Cosine scheduler.

Baselines. Since other debiasing methods are either mainly designed for length bias (e.g., PoE,
ALBM, and Length-Penalty) or are not open-sourced (e.g., CRM), we primarily compare our method
against two key baselines: a standard BT reward model and InfoRM.

Uhttps://huggingface.co/datasets/HumanLLMs/Human-Like-DPO-Dataset
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E.5 FORMAT BIAS

Dataset and Model Following the data construction in LE (Zhang et al.| [2025)), we construct a
format-biased dataset for our experiments. We start with a clean base preference dataset of 71.6K
pairs, which is created by filtering the UltraFeedback dataset (Cui et al., 2024)) to include only pairs
with a score difference greater than 1.0. To inject format bias, this clean dataset is then “attacked”
by mixing in a small, artificially generated biased dataset. Specifically, we inject 0.7% training data
where a ’bold’ formatted response is spuriously labeled as preferred over its identical, unformatted
counterpart, and 1.4% data where a ’list’ formatted response is similarly favored. The final reward
model training is conducted on this combined, biased dataset. The base model for our reward model
is Llama-3-8B-Instruct.

Training Settings. For reward model training, we adopt a full parameter tuning strategy by using
HuggingFace Trainer with DeepSpeed Zerol on 8 GPU cards. Global batch size is set to 128,
initialization learning rate is 2e-6 with Cosine scheduler.

Baselines. By following the experimental setting of [Zhang et al. (2025), we mainly consider
standard BT, BT with deleted specific format training data (BTt), and LE (Zhang et al., [2025).

E.6 CONCURRENT MULTI-BIAS

Concretely, we extend DIR to length and sycophancy biases by introducing two independent Mutual-
Information regularizers, each with its own g, head. For each preference pair, we construct b/

rel
(which response is longer) and b’ (which response is more sycophantic), and optimize:

Elotal = Epref + /\lenﬁdebias,len + Asycoﬁdebias,sycm (17)

where A\ien = Agyeo = 1. We follow the Table|§| setting, training Meta-Llama-3.1-8B-Instruct on the
HelpSteer3 dataset under two sycophancy contamination configurations (v = 40%/80%, a = 70%),
where a larger 7 indicates a more challenging setting. All models (BT, length-only DIR, and
length+syco DIR) are trained for 1 epoch on the same data, and we report results using the final
checkpoint for fairness and convenience.

As shown in Table[TT] on RM-Bench, the joint model (OURS-Len-Syco) achieves the best overall
performance and the largest gains on the hardest subset (e.g., at v = 40%, Total: 67.25 — 69.96,
Hard: 39.88 — 46.85 vs. BT), while still clearly reducing the Pearson correlation with length relative
to BT, confirming that length bias is mitigated even when sycophancy is also debiased. We also
observe that the length-only model (OURS-Len) attains the lowest length—reward Pearson coefficient,
but somewhat surprisingly, the joint length+sycophancy debiasing (OURS-Len-Syco) yields the best
overall RM-Bench performance, suggesting that debiasing multiple biases together may help lead to
a more balanced and effective reward model.

Table 11: Performance comparison of concurrent multi-bias experiments on RM-Bench. Best results
are in bold.
v = 40%, a = 70%

Chat Math Code Safety | Hard Normal Easy | Total Pearson Coefficient

BT 66.58 64.17 53.70 84.53 | 3988 72.82 89.04 | 67.25 0.4807
OURS-Len 66.93 6459 53.12 89.14 | 4425 7243 88.65 | 68.44 0.4235
OURS-Len-Syco 70.80 65.07 55.26 88.71 | 46.85 75.08 87.96 | 69.96 0.4446
v =80%,a=70% | Chat Math Code Safety | Hard Normal Easy | Total Pearson Coefficient
BT 65.37 63.71 53.12 80.85 | 37.58 70.96 88.75 | 65.76 0.4666
OURS-Len 6891 6425 5375 8723 | 4478 73.09 87.72 | 68.53 0.4081
OURS-Len-Syco 68.39 64.92 54.04 88.06 | 45.15 7292 88.50 | 68.85 0.4235

As shown in Table[T2] on sycophancy stress tests, debiasing only sycophancy (OURS-Syco) gives
the strongest syco robustness, as expected, but the joint model (ours-Len-Syco) still substantially
outperforms BT on all sycophancy metrics (All./Nat./Adv.) across both ~ settings, while additionally
reducing length bias. In summary, a second debiasing term leads to a controlled trade-off, not
conflicting gradients: both biases are improved over BT, and overall RM quality remains strong.
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Table 12: Reward model accuracy (%) on the concurrent multi-bias under varying contamination
settings.

All Nat. Adv.
v «a BT OURS-Syco ours-Len-Syco \ BT OURS-Syco ours-Len-Syco \ BT OURS-Syco ours-Len-Syco
40% 70% | 83.6 88.0 85.6 84.4 87.4 86.4 82.6 88.6 84.4
80% 70% | 81.2 86.2 85.9 86.4 87.2 86.6 79.7 86.2 85.1

F PROMPT-BASED JUSTIFICATION PROMPT

In this section, we give a Qwen3-235B-A22B-based pair-wise justification prompt shown below,
which is adopted from ArenaHard’s official implementation

s ~

Please act as an impartial judge and evaluate the quality of the responses provided by two
Al assistants to the user prompt displayed below. You will be given assistant A’s answer and
assistant B’s answer. Your job is to evaluate which assistant’s answer is better. Begin your
evaluation by generating your own answer to the prompt. You must provide your answers
before judging any answers. When evaluating the assistants’ answers, compare both
assistants’ answers with your answer. You must identify and correct any mistakes or
inaccurate information. Then consider if the assistant’s answers are helpful, relevant, and
concise. Helpful means the answer correctly responds to the prompt or follows the
instructions. Note when user prompt has any ambiguity or more than one interpretation, it is
more helpful and appropriate to ask for clarifications or more information from the user than
providing an answer based on assumptions. Relevant means all parts of the response closely
connect or are appropriate to what is being asked. Concise means the response is clear and
not verbose or excessive. Then consider the creativity and novelty of the assistant’s answers
when needed. Finally, identify any missing important information in the assistants’ answers
that would be beneficial to include when responding to the user prompt. After providing your
explanation, you must output only one of the following choices as your final verdict with a
label:

1. Assistant A is significantly better: [[A >> B]]

2. Assistant A is slightly better: [[A>B]]

3. Tie, relatively the same: [[A=B]]

4. Assistant B is slightly better: [[B>A]]

5. Assistant B is significantly better: [[B>>A]]
Example output: “My final verdict is tie: [[A=B]]”

[User Prompt]

[Assistant A’s Answer]
{answer A}

[Assistant B’s Answer]
{answer B}

G CASE STUDY

In this case study, our model demonstrates its ability to generate not just a correct, but a more
professionally helpful response compared to strong baselines like GPT-40. As visualized in Figure [f]
(Data UID: 95bb5011680c4ba281ad7830££fa57£92), when asked how to set up passwordless
SSH, our model provided a guide that was praised by the LLM-based judge for its clear structure
and organization. In this instance, GPT-40’s response is judged to be better to all other baselines
except for our response, which provides a more secure, modern, and concise solution, highlighting its
advanced capabilities.

"https://github.com/lmarena/arena-hard-auto
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Crucially, the judge noted that our model successfully avoids unnecessary verbosity, resulting in a
response that is of higher quality and more concise. This is not merely a stylistic advantage; the
substance of our model’s response was also technically useful. It recommended the more modern
and secure “ed25519” encryption algorithm over the RSA suggested by GPT-40. Furthermore, our
model included the critical security best practice of disabling password authentication entirely via
the sshd_config file—a vital step for server hardening that GPT-40 and other models omitted. This
case exemplifies our model’s strength in producing responses that are not only accurate but also more
secure, efficient, and pragmatically useful for real-world technical tasks.
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Prompt: How do I set up ssh into a server such that I don't require a password when I ssh into it?
/ LI L2 Lo Gl B i SS“**\"\"\ InfoRM (2422 chars): toseup s o notequie \

set up passwordless SSH, you'll need to generate a pair of SSH keys } : . :
;gc:l”""’;‘z;:’;‘:an?; dd mey‘;‘;ﬂic“;z 12 ﬁ]‘:::v Ce;’ ?r':;‘;a Quczzn"" your password, you'll need to generate a pair of SSH keys (public and private) and add

‘ é P 4 server. TIis way, y the public key to the server. Here's a step-by-step guide:\n\n### Step 1: Generate
authenticate without entering a password.\n\n### Step 1: Generate SSH Keys on ; ;
Your Local MachineinOpen a terminal on you localmachine and run the SSH keys\n\nl. Open a terminal on your local machine.\n2. Run the following

p 1 b4 t rsa -b 4096\n" \m\nThis will command to generate a new pair of SSH keys:\n ***bash\nssh-keygen -t
generate a pair of SSH keys in the *~/.ssh® directory.\n\n### Step 2: Copy the CORTBIT RGN Lt amit AR eElE D MDDy
Public Key to the ServerianYou'll need to copy the public key t6 the server. You key (RSA or Ed25519) and the location where the keys will be stored. By default,
can do this by running the following command-nn' “bash\nssh-copy-id it will be stored in *~/.ssh™.\n\n### Step 2: Add the public key to the server\n\nl.
user@serverin\n\nReplace ‘user" with your username on the server and Copy the public key to the clipboard:\n **'bashincat ~/.ssh/id_ed25519.publn™""\n
“server' with the hostname or IP address of the server.\n\n### Step 3: Verify G B e = W] e R Clp foe D e g
SSH\nnTh ing to the server using SSH without a your server using your current password.\n3. Create a new directory for the SSH

———- A b e %. A keys if it doesn't exist:\n " bash\nmkdir -p ~/.ssh\n"""\n4. Add the public key to
LtEEbA 25 S ok g the authorized_keys file:\n *bash\necho \"your-public-key-here\" >>
~/.ssh/authorized_keys\n'*"\n Replace ‘your-public-key-here’ with the public key

you should be able to connect to the server without entering a password.\n\n###
e e BbliclK ey ot envey (Glemativ et ho D SuTchising you copied earlier\n\n### Step 3: Restrict SSH access (optional)\n\nTo add an
extra layer of security, you can restrict SSH access to specific users or IP

an older version of SSH or don't have "ssh-copy-id" available, you can add the
e einojcemmundSfoop ol el addresses. You can do this by editing the ‘~/.ssh/authorized_keys" file and adding
machine:\n\n"*"bash\nssh-keygen -t rsa -b 4096\ncat ~/-ssh/id_rsa.pub | ssh ! ’ :
user@server \"mkdir -p ~/.ssh; cat >> ~/.ssh/authorized_keys\"\n"\n\nThis will options to the key.\n\nFor example, to restrict access to a specific user and IP
HE Et * S * address, you can add the following options:\n***bash\nssh-rsa your-public-key-
here user@ip_address\n'"\nThis will only allow the specified user to access the

create the *~/.ssh directory on the server if it doesn't exist and append the public
Ly o Ttitoni e AL T et e e ® server from the specified IP address.\n\n### Step 4: Update SSH configuration
(optional)\n\nTo use the SSH keys for passwordless login, you'll need to update

keep your private key secure. If someone gets access to your private key, they can
the SSH configuration to allow it.\n\n1. Edit the SSH configuration file:\n

connect to your server without a password.\n* Use a strong passphrase for your
***bash\nsudo nano /etc/ssh/sshd_config\n"*"\n2. Add the following line to the

private key to prevent unauthorized access.\n* If you're using a shared server or a
end of the file:\n **bash\nPubkeyAuthentication yes\n'"\n3. Restart the SSH

server with multiple users, consider using a more secure method, such as public
key authentication with a keyring or a secure authentication service.\n* Regularly service:n " bash\nsudo service ssh restartn™"\n or\n **"bash\nsudo systemet]
restart sshd\n™*"\n\n### Step 5: Test SSII connecuon\n\uTry to SSH into the

update your SSH keys to ensure you're using the latest version.\n\n### Example

Use Case\n\nHere's an example of how you can use passwordless SSH to .
server using the following n' user@server\n'"\nlf
everything is set up correctly, you should be able to log in without entering a

automate a deployment script:in\n""bash\n#!/bin/bash\n\n# Set up SSH
password.\n\nNote: Make sure to keep your private key secure and do not share it

connection\nssh -0 \"StrictHostKeyChecking=no\" user@server <<EOF\n # Run
w\nﬁom‘“\n\nln this example, the script uses passwordless SSH to comy &“:‘ :}‘g;;ek Iefy?’“f private key is compromised, you'll need to generate a ney

deployment script\n git pull origin main\n npm install\n npm run
to the server and run a deployment script without prompting for a password.

\@ywork (2274 chars): *»setting up SSH without \

PoE (2172 chars): ssetting up SSH Key-Based Password**\n\nTo set up SSH without requiring a password, you'll need to
generate public-private key pairs and configure SSH on both your local machine

and the server.\n\n### Step 1: Generate Public-Private Key Pair on Local
Machine\n\n1. **Open a terminal** on your local machine.\n2. **Generate a
new key pair** using the following command:\n **“bash\nssh-keygen -t
d25519\n"""\n or\n " bash\nssh-keygen -t rsa\n"""\n (Choose a key type:
"ed25519" or 'rsa’)\n\n3. **Accept the default filename and location** for the
key pair.\n\n## Step 2: Copy the Public Key to the Server\n\nl. **Copy the
public key** to the clipboard:\n **bash\ncat ~/.ssh/id_ed25519.pub\n"""\n or\n
"“bash\ncat ~/.ssh/id_rsa.pub\n’""\n\n2. **Log in to the server** using your
existing SSH password.\n\n3. **Create a new directory** for SSH keys if it
doesn't exist:\n **"bash\nmkdir -p ~/.ssh\n"*"\n\n4. ** Append the public key** to
the server's authorized_keys file:\n ***bash\necho \"<paste the public key here>\"
>> ~/.ssh/authorized_keys\n'"\n\n3. **Set permissions** to ensure only the
owner can read the authorized_keys file:\n *"bash\nchmod 700 ~/.ssh\nchmod

Authentication**\n\nTo set up SSH key-based authentication, you'll need to
generate a pair of SSH keys on your local machine and then add the public key to
the server's authorized_keys file. This way, you can access the server without
entering a password.\n\n**Step 1: Generate SSH Keys on Your Local
Machine**\n\nOpen a terminal and run the following command to generate a
new pair of SSH keys:\n"*"bash\nssh-keygen -t rsa -b 4096\n"*\nThis will create
anew pair of keys in the "~/.ssh’ directory:\n\n* “id_rsa': the private key (do not
share this with anyone)\n* "id_rsa.pub’: the public key (share this with the server
administrator)\n\n**Step 2: Copy the Public Key to the Server**\n\nCopy the
contents of the public key file ('id_rsa.pub’) to the server's authorized_keys file
using the following ™y py-id user@servern’ "\nRepl
‘user’ with your username on the server and “server’ with the hostname or IP
address of the server.\n\n**Alternative Method: Manually Copying the Public
Key**\n\nIf you prefer not to use “ssh-copy-id', you can manually copy the 3 A
public key to the server's authorized_keys file using the following steps:\n\nl. SO0 ssh/aui}:on;ed Lepp i Bz %*Sonﬁgure Eilleanle
Open the public key file ('id_rsa.pub") in a text editor-\n **bashincat Bl LIS el i (o °“"fb'\° P‘ft’:“\‘ ;‘ﬂy‘ w
~/.ssh/id_rsa.pub\n’*"\n2. Connect to the server using SSH:\n **bashinssh O pang Jetess LT AT, et o
woen@scrvert- 3. Append the public key to the athorized._keye filen uncomment the fol]owlng ll:e “in " \nPubkeyAuthentication yes\n®"\nn3,
***bash\necho \"your_public_key_here\" >> ~/.ssh/authorized_keys\n""\nReplace Restart the“S,SH evicy u‘.) Eoplythechanees wptasosudolystomer!
“your_public_key_here’ with the contents of the public key file.\n\n**Step 3: ff]‘f‘" 55};%\?1 ) \:‘\’::## SEpREN “|‘J‘1" e waker ‘f’\“}?f’f‘; a:\:ss‘l’“’.'d\“\“l'
Test SSH Connection**\n\nTry connecting to the server using SSH without a o s:g/ig cd2515nlg = ilsjvjr = u‘spli‘n“g\‘s‘ l::\‘:]ae ey 7::5»/ sii/‘i(‘ll .
password:\n"""bash\nssh user@server\n'""\nYou should now be able to access the ) T v - . N _—
et o o R o . S e user(z.l;serverim\n y\n\n\’(’(:‘u sth{]d now be.*a:yle t:i SSH into the server without
your private key secure and do not share it with anyone.\n* Limit access to the it T e "fake e lkecr o
“authorized_keys' file and the *~/.ssh’ directory to prevent unauthorized e and ol ha i it lanyonelin f’"“s‘d“ using a
access.\n* ﬁegu]arly update your SSH keys and authorized_keys file to ensure eSS reced pr{vale lféy oradde secunl.y.\n Regularly g
secuty\ninby, folloorin these steps, you eam set up SSH key based SSH keys to ensure you're using the laest encryption algorithms \nnBy
authentication and aceecs your semses without enforing a pasarord, following these steps, you'll be able to set up SSH without a password and enjoy

/Q"e secure and convenient way to access your servers. /

6URS (2052 chars): Generating SSH Keys*\nnTo set up GPT40 (2008 chars): toseu ssi key-based

SSH without a password, you'll need to generate a pair of SSH keys: a private - . . . .

Key and a public key. The private key will be kept on your local machine, while authentication and avoid entering a password each time you SSH into a server,

they ublicrlie will l}a,e add:d to the szrver \n\n"l;le ly Generate SSH g follow these steps:\n\nl. Generate an SSH key pair on your local machine (if

Keyl;**\n\nol;en izl e gane local’ machine :n d o g it you haven't already):\n\n Open a terminal and run the following command:\n\n

S ¥ Lt e ] o\ i@ gy

command:\n**"bash\nssh-keygen -t ed25519\n"\nThis will generate a new pair \neiipn-dEaHARD L\ crll@Ermpbermiin n

of SSH keys using the Ed25519 algorithm. You can choose a different algorithm Replacepisouenail Gepampleeon nitlyougcilenailodt s LoRil

(2, RSA) if you prefer\n\n**Step 2: Copy the Public Key**\n\nOnce the keys create a 4096-b!l RSA key pair.\n\n You'll be promplfed to enter a file path to

are generated, you'll see a message indicating that the keys have been created. §ave |l1e: key l?a“' resy l;nler DuEsindgitlneim (usuall){

The public key will be stored in a file named 'id_ed25519.pub’ (or “id. rsa.pub’ if ~/.ssh/id_rsa").\n\n You'll also be prompted to enter a passphrase for the key

ou chose RSA) ninTocopy the pbic ey 1 hesever, e ol pair. You can either enter a passphrase for added security or leave it empty for

¥ Py the p 4 8 passwordless authentication.\n\n2. Copy the public key to the remote server:\n\n
n'

id user@serverin** “user’ with your : ot °
2 Use the “ssh-copy-id’ command to copy your public key to the remote
username on the server and ‘server’ with the hostname or IP address of the N W e T TR, e A i R e

server.\n\n**Step 3: Authorize the Public Key**\n\nOn the server, the public key " o . " PV
will be added to the '~/.ssh/authorized_keys' file, You can verify this b \"username\" with your remote server's username and \"remote_server_ip\" with
e v kye o \nYou should sce theypublic the remote server's IP address or hostname \n\n If *ssh-copy-id" is not available,
key ﬁ—o@ your local mac}.line listed.\n\n**Step 4: Test SSH without a ottty o o v et o s Somnand S
Password**\n\nNow, try connecting to the server using SSH without a Ol Il et st usemame@remo.leiservergp Wirglivap /g £
password:\n"*"bash\nssh user@server\n'""\nIf everything is set up correctly, you il;:l?‘c/laz‘?go:‘/zﬁ] i‘e&;‘?\f‘?‘\:{ ;iﬁ!ﬁ:‘xxﬁ;ﬁ?ﬁ]&cf;;l:::?f?gsh‘
should be logged in without being prompted for a password.\n\n**Tips and . =G P 3 p ey
Considerations**\n\n* Make sure to keep your private key secure, as it can be ety ol iRt [ {DEm Ho e D e ) i Gk, o
used to access your account on the server.\n* Consider using a pa;sphrase for et et g (o i i 7] o S i
your private key to add an extra layer of security.\n* If you're using a shared :ssei'n:z::(z\cr[::o.\lz\"s?r\?;» ;ry\nt? S\i l:] ‘1"f[ Zv‘:e {;Emie:;::r'\:g:mc '\1" ssl;u
hosting environment, check with your provider to see if they have any specific _server_ip N rything P Y ¥
S e s e S g T Ghet o e should be able to log in without entering a password. If you set a passphrase for
y your key pair, you'll be prompted to enter it.\n\nNote: Make sure to keep your

authentication on the server, you can edit the “sshd_config’ file and set 3 3 e p P 5
*PasswordAuthentication’ to 'no’. Then, restart the SSH service.\n\nBy following I gy (V] ) oo Rt Al et L f il o, o ate

Qw i gy i Tt 98 it et e a/ key ('~/.ssh/id_rsa.pub’) is the one you copy to the remote server.

more convenient and secure way to access your server.

Judgment: My final verdict is [[A (OURS) >>B (GPT40) ]]\n\n**Explanation:**\nBoth assistants correctly outline SSH key-based authentication
setup. However, Assistant A's response is superior due to:\nl. **Modern Algorithm Recommendation**: Ed25519 is more secure and efficient than
RSA (Assistant B's choice).\n2. **Security Best Practices**: Explicitly mentions disabling password authentication via “sshd_config’, a critical
security step Assistant B omits.\n3. **Conciseness & Structure**: Clear step-by-step formatting with helpful tips (e.g., passphrases, provider checks)
without unnecessary verbosity.\n4. **Permissions Handling**: Includes explicit ‘chmod’ commands in examples, ensuring proper directory/file
permissions.\n\nAssistant B's manual key-copy method is useful but lacks A's comprehensive security guidance. While both answers are technically
correct, Assistant A provides a more secure, future-proof solution with better operational safety recommendations.

Figure 6: A case study on ArenaHard-v0.1 Benchmark where our model’s response significantly
outperforms GPT-40 on a technical question about setting up passwordless SSH.
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