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ABSTRACT

While recent advances in reasoning models have shown remarkable progress in
text-based domains, the development of effective reasoning capabilities in multi-
modal settings, particularly audio-visual, remains still a challenge, mainly because
of the limited availability of high-quality reasoning data in target multimodal com-
binations. To address this problem we introduce AVRT, a novel framework that
generates high-quality audio-visual reasoning data by distilling knowledge from
specialized single-modality teachers. To this end, we generate high-quality rea-
soning traces via a vision-reasoning and an audio-reasoning teacher and merge the
resulting traces with an LLM merger model. This enables a two stage training with
a supervised fine-tuning of student models as cold start followed by a reinforce-
ment learning. Our evaluation shows that the resulting models achieve superior
performance on various datasets, i.a. OmniBench, DailyOmni, and MMAR, es-
tablishing a new pipeline for an effective training of audio-visual reasoning mod-
els.

1 INTRODUCTION

Humans perceive the world by combining information from multiple modalities through diverse
sensory inputs. With the wide availability of multimodal data, such as videos, multimodal under-
standing in general and audio-visual understanding in particular has drawn more and more interest
from the research community. Recent advancements in this area, also in combination with large
language models, have shown remarkable performance in audio-visual understanding (Cheng et al.
(2024); | Xu et al.[(2025)); Liu et al.| (2025b); |Comanici et al.| (2025); |OpenAl| (2024)).

In parallel, the emergence of reasoning-capable language models has led to new capabilities with
respect to the analysis and understanding of a given scenario, exemplified by OpenAI’s o-series
(Jaech et al.| (2024)) and DeepSeek-R1 (DeepSeek-Al et al| (2025)). These advances have been
significantly driven by reinforcement learning techniques (Shao et al. (2024)). These reasoning
capabilities have successfully extended to inputs beyond text, such as vision-text models (Huang
et al.| (2025); Dong et al.[(2025)) and audio-text models (Xie et al.|(2025); Wen et al.| (2025)); (Goel
et al.| (20235), demonstrating chain-of-thought capabilities within the respective modalities. How-
ever, audio-visual reasoning has not yet seen the same level of advancement as its single-modality
counterparts, i.a. due to the challenge of integrating information and reasoning cues across dif-
ferent modalities at scale as well as the inherent lack of data for audio-visual reasoning. Existing
approaches try to address this problem e.g. by generating reference reasoning chains from large
foundation teacher models that were trained with all target modalities (Du et al.| (2025)) or try to
approach the problem by extending reinforcement learning formulations e.g. by improved credits
assignment or by context summarization (Yang et al.| (2025)); Kulkarni & Fazli| (2025)).

This paper proposes a new pipeline for Audio-Visual Reasoning Transfer (AVRT) based on single-
modality teachers. Namely, we systematically combine reasoning chains from specialized single-
modality reasoning models via a text-only LLM merger model to generate coherent multimodal
reasoning that explicitly correlates information across audio and visual channels. By using an LLM
as a merging interface between the teacher models and the resulting reasoning chain, we have the
freedom to prompt the models in the format that they were optimized for, leading to high-quality
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Figure 1: Top: Overview of the AVRT pipeline to generate reasoning chains that integrate visual
and auditory cues. We first generate reasoning chains from single-modality teacher models allowing
to prompt the models in the format that they were optimized for and, second, leverage an LLM
merger as an interface between the teacher models and the resulting reasoning chain to aggregate
the information and put it into the target format. Bottom: Zero-shot accuracy on OmniBench (Li
et al.[(2024)) during two-stage training on AVQA (Yang et al.[{(2022)): The SFT phase on the AVRT-
generated reasoning chains serves as a “cold-start” stage for the model, yielding better performance
during the RL training, when compared to the RL training alone.

modality-specific outputs. The following LLM merger then allows to aggregate the information and
converting it into the target format. To this end, as shown in Fig.[I] AVRT extracts detailed chains of
thought independently from specialized visual and audio teachers, then merges them with a text-only
aggregator into a single cross-modal reasoning trace. These merged traces are then, in the first step,
used to fine-tune a student audio-visual large language model in a cold-start manner via supervised
fine-tuning (SFT) to distill the reasoning formatting and patterns, as well as to integrate multimodal
reasoning into the student model. In a second step, the student model is trained following the GRPO
(Shao et al.| (2024)) objective.

We evaluate the proposed approach on four challenging datasets: OmniBench (Li et al.|(2024)) and
DailyOmni (Zhou et al.| (2025))), as zero-shot vision-audio downstream datasets, AVQA |Yang et al.
(2022) as in-domain validation dataset, and MMAR (Ma et al|(2025)) as audio-only downstream
task. Using only a 3B-parameter student, we achieve improved performance compared to other
3B audio-visual reasoning models and competitive performance to 7B models. Our ablation shows
that the combination of reasoning traces of two different teacher models by a language-only merger
model allows to improve audio-visual reasoning in the GRPO learning stage.

Our contribution can be summarized as follows: 1) We propose a novel method to aggregate multiple
single-modality reasoning chains into integrated multi-modal reasoning traces, creating high-quality
audio-visual reasoning data without expensive annotation. 2) We are the first to train a multimodal
reasoner based on this type of composed reasoning data, demonstrating that cross-modal under-
standing can emerge from the combination of single-modality expertise. 3) We conduct an extensive
evaluation on audio-visual benchmarks, achieving state-of-the-art results that compete with larger
models through our approach.

2 RELATED WORK

Audio-Visual Large Language Models. Audio-visual large language models have made constant
progress in addressing challenging tasks in multimodal understanding. Early works like Meerkat
(Chowdhury et al| (2024)) focus on fine-grained spatial and temporal grounding on five audio-
visual tasks, introducing optimal transport-based modality alignment and cross-attention modules
for audio-visual consistency. AVicuna (Tang et al. (2025))) proposes specifically targeting tem-
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poral referential dialogue in untrimmed videos, introducing the Audio-Visual Tokens Interleaver
for temporal alignment and developing comprehensive datasets like A5-222K and PU-VALOR.
VideoLLaMA 2 (Cheng et al.[(2024))) further advances spatial-temporal modeling through special-
ized Spatial-Temporal Convolution connectors and enhanced audio understanding via joint training,
achieving state-of-the-art performance among open-source models. Rather than developing new
models from scratch, PAVE (Liu et al.| (2025a)) introduces a lightweight adaptation framework that
extends existing video LLMs to handle diverse side-channel signals through efficient patches” that
add only 0.1% additional parameters. More recent work has moved toward comprehensive omni-
modal capabilities, with Qwen2.5-Omni (Xu et al.| (2025)) enabling end-to-end streaming multi-
modal inputs and outputs through innovations like TMRoPE for synchronizing video with audio and
the Thinker-Talker architecture for concurrent text and speech generation. Ola (Liu et al.| (2025b))
pushes these frontiers further with progressive modality alignment training strategies that use video
as a central bridge to connect modalities, achieving performance comparable to specialized mod-
els across image, video, and audio understanding tasks. Despite these advances, these existing
approaches often struggle to effectively associate information across both modalities, lacking struc-
tured reasoning processes that can explicitly capture and leverage cross-modal dependencies and
correlations for comprehensive multimodal understanding.

Audio-Visual Reasoning. The field of audio-visual reasoning with large language models has seen
rapid advancements, focusing on enabling models to comprehend and reason over complex multi-
modal inputs. AURELIA (Chowdhury et al.| (2025))) presents a novel actor-critic based reasoning
framework that distills structured, step-by-step reasoning into AVLLMs at test time without addi-
tional training. Daily-Omni (Zhou et al|(2025)) introduces a dedicated Audio-Visual QA bench-
mark of 684 videos focusing on temporally-aligned multimodal reasoning in daily life scenarios,
accompanied by Daily-Omni-Agent, a training-free agent that utilizes an open-source visual lan-
guage model (VLM), an audio language model (ALM) and an automatic speech recognition (ASR)
model to establish a baseline for this benchmark. Recent work has increasingly leveraged reinforce-
ment learning: Echolnk-R1 (Xing et al.|(2025))) proposes a framework using Group Relative Policy
Optimization (GRPO) for structured cross-modal reasoning, demonstrating emergent self-corrective
reasoning behaviors. HumanOmniV2 (Yang et al.|(2025)) addresses shortcut problems by requiring
explicit context summarization before reasoning, introducing context and logical rewards alongside
IntentBench for understanding human intentions. Omni-R1(Zhong et al.|(2025)) tackles the trade-off
between temporal coverage and spatial resolution through a two-system architecture with hierarchi-
cal rewards. Finally, AVATAR (Kulkarni & Fazli|(2025)) presentes an off-policy RL framework with
Temporal Advantage Shaping (TAS) for improved credit assignment during planning and synthesis
stages. Instead of mitigating data scarcity with increasingly complex RL frameworks, we present
a more direct paradigm. We distill knowledge from specialized open models to construct a unified
reasoning dataset, which then allows a simple supervised fine-tuning (SFT) approach, supplemented
by minimal RL, to significantly outperform these computationally burdensome methods.

Audio-Visual Datasets. AVQA (Yang et al.|(2022)) can be considered one of the foundational
audio-visual QA datset with 57, 335 question-answer pairs from daily audio-visual activities requir-
ing clues from both modalities. Omnilnstruct (Li et al.|(2024))) develops a comprehensive tri-modal
reasoning dataset combining visual, audio, and textual resources, while MUSIC-AVQA (L1 et al.
(2022)) expands to musical performance with 45, 867 question-answer pairs across 9, 288 videos.
AVQA-R1-6K (Xing et al. (2025)) provided a manually curated subset of Omnilnstruct focusing
on questions that were more likely to require audio-visual reasoning. While these datasets have
advanced the field significantly, they primarily focus on question-answer pairs without providing
explicit reasoning traces that demonstrate how models should integrate cross-modal information.
Our AVRT approach directly addresses this gap through structured reasoning chain generation, as
compared in Table

3 METHODOLOGY

In this paper, we derive audio-visual reasoning chains based on existing audio-visual question-
answering pairs as e.g. provided by AVQA (Yang et al.|(2022)). In this section, we first discuss
the generation of audio-visual reasoning chains in Sec. [3.1| and our training procedure to leverage
this data to perform audio-visual question answering in Sec. [3.2
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Table 1: Comparison of audio-visual question answering datasets. Our dataset provides rea-
soning traces that explicitly demonstrate cross-modal integration between audio (A) and visual (V)
modalities, addressing a key limitation in existing AVQA datasets which focus solely on question-
answer pairs without intermediate reasoning steps. All datasets use multiple-choice questions with
4 options (MCQ-4). The number of QA pairs is reported in thousands (K).

Dataset Modalities Answer Format # QA pairs (K)
AVQA A+V Video + question + 4-way answer 57.3
Omnilnstruct-v1 A+l Image + question + 4-way answer 96.1
MUSIC-AVQA A+V Video + question + 4-way answer (focused on music) 459
AVQA -R1-6K A+l Video + question + 4-way answer (subset of Omnilnstruct) 6.4

Ours A4V Video + question + 4-way answer + Reasoning chains 192
(generated by AVRT) incorporating audio and visual data ’

3.1 CROSS-MODAL REASONING CHAIN GENERATION

Our data generation process consists of two main stages: a single-modality reasoning extraction step
and a cross-modal aggregation step. Let a audio-visual question-answering data sample be denoted
as (X, @), where X is a video and (@ is a question. The video X comprises both an audio stream A
and a visual stream V, such that X = (A4, V).

Single-Modality Reasoning Extraction. In the first stage, we generate modality-specific reason-
ing. We select specialized teacher models for the audio (7'4) and visual (7y,) modalities. For a given
sample (X, @), we provide each teacher with the question and its corresponding modality. We use
carefully crafted prompts, P4 and Py, to elicit detailed reasoning chains. The audio reasoning chain
is generated as R4 = T4 (Q, A, P4), and the visual reasoning chain is Ry = Ty (Q, V, Py ). These
chains capture the unique characteristics and patterns of each modality.

Cross-Modal Aggregation. In the second stage, we perform cross-modal aggregation. We use a
text-only large language model, M,g44, to merge the reasoning outputs. This model takes the rea-
soning chains from both modalities and the original question to produce a unified, cross-modal rea-
soning output: Regq = Moyge(Q, Ra, Ry). This aggregation step transforms the diverse reasoning
formats into a uniform structure, correlating characteristics from both modalities and incorporating
cross-modal signals and dependencies.

Filtering. A critical consideration in our pipeline is handling cases where one or both teacher
models produce incorrect answers. For this work, we retain only samples where both modality-
specific teachers generate correct responses. This filtering strategy ensures high-quality training
data by avoiding the propagation of erroneous reasoning patterns that could introduce noise during
cross-modal aggregation (Turpin et al.| (2023); Xie| (2024)).

3.2 TRAINING

Stage 1: Supervised Fine-Tuning We fine-tune the base model on the merged audio-visual rea-
soning chains using a standard autoregressive language loss. Given a training sample (X, Q, Rqgq)
where X = (A,V) is the video with audio and visual streams, () is the question, and Rggg is the
aggregated reasoning chain, we optimize the cross-entropy loss:

[Raggl
ES’FT = - Z 1ng9(rt‘X7Q7’r<t)7 (l)
t=1

where r; represents the ¢-th token in the reasoning chain R4, and 6 are the model parameters. The
model learns to generate structured reasoning following the format established during cross-modal
aggregation: <think>...</think><answer>...</answer>, where the thinking section
contains the multimodal reasoning process and the answer section provides the final response.
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Stage 2: Reinforcement Learning In a second step, we employ Group Relative Policy Optimiza-
tion (GRPO)(Shao et al.| (2024)). GRPO eliminates the need for explicit value function estimation
by deriving advantage estimates through group-based comparisons of model outputs.

The GRPO training operates by sampling G distinct responses {01, 02, . . . , 0 } for each input ques-
tion ¢ using the current policy 7g_,,. Each response o; receives a scalar reward r; from our reward
function. The advantage for response o; is computed by normalizing rewards within the group:

p . r; —mean(r)

Ajy =715 = std(r) y )

s

where this advantage 7; is applied uniformly across all tokens ¢ in response o;.

Our reward function incorporates multiple components to ensure correctness and proper formatting:

7i = Rformat(0:) + Race(0:) ®

The reward consists of two components:

(1) Format Reward (Rformqt): A binary reward that verifies adherence to the our proposed rea-
soning format (<think>...</think><answer>...</answer>):

1, if format is correct
0, otherwise

Rformat (Oi) = { (4)

(2) Final Answer Accuracy (R,..): A simple string matching evaluation that compares the model’s
predicted answer choice against the ground truth label:

1, if answer is correct
Roce(0;) = ’ . 5
<(01) {O, otherwise )
The GRPO objective maximizes the following function:
1 G 1 =
Jarpo(0) =Ep | = Z o] > { min | ps,tAit,
i=1 t=1 (6)

Chp (piﬂfa 1- € 1+ 6) Ai7t

- BKLi,t [779H7T7'ef] }] y

o (0i,19,0i,<t)
Too1q(04,610,0i,<t)
ping range, and 3 weights the KL divergence regularization term against a reference policy . ¢.

where p; ; = represents the probability ratio between policies, € controls the clip-
Pi, P p y p p

4 EXPERIMENTS

4.1 DATASETS

4.1.1 AVRT-20K DATASET

To train our model, we introduce the AVRT-20K dataset, which is constructed using our proposed
AVRT method on a subset of the AVQA dataset. We use Kimi-VL-Thinking (Team et al.| (2025))
and Audio Flamingo 3 (think) (Goel et al.| (2025)) as the single-modality teachers 77, and 7’4 re-
spectively. These models were chosen due to their balance between achieving state-of-the-art results
in their modalities, and generating descriptive reasoning chains. We use 10-second audio input and
8 uniformly-sampled video frames from each sample as the input for the audio and visual teacher,
respectively. The full prompt templates used for each model can be found in the Appendix (A.2).
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Table 2: Statistics of the AVRT dataset showing sample counts, quality metrics, and distribution of
question types and answer options across training and validation splits.

Metric Train / Val Question Type Train/ Val (%)
Total Samples 18,279 / 945 Which 452 /1 45.7
Reasoning Format Compliance 100.0% / 100.0% Come From 30.9 / 29.8
Thinking Section Length (tokens) 165.5 = 33.9 / 163.4 £ 32.5 Happening 1557/ 14.1
Answer Section Length (tokens) 1.0+0.0/1.0+0.0 Where 8.0/9.7
Video and Audio Duration (sec) 10.0+ 0.1 /10.0£0.2 Why 02704
Primary Resolution 1280x720 (62% | 43%) Others 02703

AVRT-20K Statistics.  Table [2| presents statistics for our AVRT-20K dataset. The final collec-
tion comprises 18,279 training samples and 945 validation samples, all extracted from the original
AVQA dataset. All samples achieve 100% reasoning format compliance, ensuring consistent struc-
ture across the dataset. The thinking sections contain an average of 165.5 £ 33.9 tokens in the
training set and 163.4 & 32.5 tokens in the validation set, while answer sections are consistently sin-
gle tokens (1.0 £ 0.0), corresponding to the (A, B, C, D) options format. Videos maintain uniform
duration of approximately 10 seconds (10.0 % 0.1 for training, 10.0 £ 0.2 for validation), with the
primary resolution being 1280x 720 (62% of training samples and 43% of validation samples).

The distribution of question types closely mirrors that of the original AVQA dataset, with "Which”
questions being most prevalent (45.2% in training), followed by ”Come From” (30.9%), "Happen-
ing” (15.5%), and ”"Where” (8.0%) questions. This similarity demonstrates that our random sam-
pling successfully encompasses the distributional characteristics of the original dataset, ensuring our
subset maintains representativeness across different reasoning types and question categories.

4.1.2 BENCHMARK DATASETS

We evaluate our model on four representative datasets that span different modality combinations to
comprehensively assess cross-modal reasoning capabilities: DailyOmni (video+audio), OmniBench
(image+audio), AVQA (video+audio, in-domain) and MMAR (audio-only) to examine potential
overfitting on our training distribution.

DailyOmni (Zhou et al.| (2025))) is a benchmark for evaluating multimodal large language models
on real-life audio-visual scenarios that require joint reasoning across video, audio, and textual in-
formation. The dataset contains 684 videos and 1, 197 question-answer pairs (550 from 60-second
videos, 647 from 30-second videos) covering all 11 YouTube categories to ensure diversity of topics,
styles, and acoustic environments. The questions are deliberately designed to force integration of
modalities, moving beyond simple perception to complex reasoning tasks that require understanding
of concurrent multimodal phenomena including speech, music, and environmental sounds.

OmniBench (Li et al.|(2024))) was designed to evaluate large language models’ ability to integrate
image, audio, and text inputs for cross-modal reasoning. The benchmark contains 1, 142 question-
answer pairs organized into 8 task categories: Action & Activity, Story Description, Plot Inference,
Object Identification & Description, Contextual & Environmental, Identity & Relationship, Text &
Symbols, and Count & Quantity. Each sample includes multiple-choice questions with correspond-
ing image and audio content, with audio clips averaging 9.22 seconds in duration.

AVQA (Yang et al.| (2022)) is a large-scale benchmark containing 57,015 question-answer pairs
across 45,867 videos designed to evaluate models’ ability to reason over both audio and visual
content. The dataset features high-quality manual annotations and questions that specifically require
integration of both modalities, making it well-suited for evaluating genuine cross-modal reasoning
capabilities rather than single-modality shortcuts.

MMAR (Ma et al.| (2025)) is an audio-only reasoning benchmark designed to evaluate models’
ability to perform complex reasoning tasks using solely auditory information. We include MMAR
to assess how well our cross-modal training approach transfers to single-modality audio reasoning
scenarios. The benchmark provides a controlled evaluation environment to understand whether
the multimodal reasoning capabilities developed through our teacher aggregation methodology can
effectively generalize to audio-only inference tasks.
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Table 3: Comparison of audio-visual reasoning models on benchmark datasets. DailyOmni, Om-
niBench, and MMAR are tested in zero-shot mode without further finetuning. AVQA results are
considered fine-tuned since the training dataset is derived from AVQA’s training set. We report re-
produced baseline results for Qwen2.5 Omni marked with *.

. DailyOmni OmniBench AVQAT MMAR

Model #Params  Reasoning (Video+Audio)  (Image+Audio) | (Video+Audio) | (Audio-Only)

7B Audio-Visual Models
Qwen2.5 Omni (Xu et al.|(2025)) 7B X 44.0 44.2 - 56.7
Qwen2.5 Omni* (Xu et al.[(2025)) 7B X 51.5 50.7 84.9 56.5
Echolnk (Xing et al.|(2025)) 7B v 46.2 46.5 - -
Omni-R1 (Zhong et al.[(2025)) 7B v 46.8 46.9
HumanOmni (Zhao et al.|(2025)) 7B v 47.6 44.9
Ola-7B (Liu et al.|(2025b)) 7B X 523 45.3
AV-Reasoner (Lu et al.|(2025)) B v 53.8 48.3
AVATAR (Kulkarni & Fazli[(2025)) 7B v 47.0 49.1

Modality-Specific Teachers

Kimi-VL-Thinking (Team et al.|(2025)) - v - 335 - N/A
AF3 (think) (Goel et al.|(2025)) - v - 28.9 ‘ - ‘ 60.1

3B Audio-Visual Models
Qwen2.5 Omni (Xu et al.|(2025)) 3B X 429 424 87.9 53.8
Qwen2.5 Omni* (Xu et al.|(2025)) 3B X 43.1 50.2 88.3 53.7
AVATAR (Kulkarni & Fazli|(2025)) 3B v 44.7 (+1.8) 45.8 (+3.4) - -
Ours 3B v 45.5 +2.4 54.7 (+45) 90.1 (+1.8) 56.2 +25)

4.2 IMPLEMENTATION DETAILS

For all experiments, we use Qwen2.5-Omni-3B (Xu et al.| (2025)) as base student model with frozen
vision and audio modules. Fully supervised fine-tuning is conducted on 18,279 samples over 1
epoch with an effective batch size of 32 (1 sample per device x 8 gradient accumulation steps
x 4 H100 GPUs). We use a learning rate of 2e — 6 with cosine scheduling, AdamW optimizer
(B1 = 09,82 = 0.999,¢ = le — 8), weight decay of 0.01, and 100 warmup steps. Training
employs DeepSpeed ZeRO Stage 2 optimization with CPU offloading and bfloat16 precision. For
reinforcement learning, we use identical infrastructure with GRPO-specific hyperparameters: group
size G = 4, clipping parameter ¢ = 0.2, KL regularization coefficient 8 = 0.01, and temperature 1.

4.3 COMPARISON TO STATE-OF-THE-ART

Table [3] shows the performance of the model trained with the proposed approach against existing
audio-visual reasoning models across four benchmark datasets.

The resulting 3B parameter model achieves strong performance, both in terms of absolute accuracy
and relative improvement over our reproduced baseline. On DailyOmni, the model achieves 45.5%
accuracy, outperforming both 3B baselines and remaining competitive with 7B models.

On OmniBench, our model reaches 54.7% accuracy. Our model improves upon our reproduced
baseline by +4.5 percentage points (54.7% vs. 50.2%), whereas AVATAR-3B’s reported gain over
their baseline is +3.4 points (45.8% vs. 42.4%). Note that we were unable to replicate the accuracy
reported by [Kulkarni & Fazli| (2025)) due to unavailable code, we instead compare the relative gains
over our own Qwen2.5-Omni-3B baseline.

On AVQA, the model achieves 90.1% accuracy, representing a +1.8 percentage point improvement
over the reproduced Qwen2.5-Omni-3B baseline (90.1% vs. 88.3%). While this improvement is
more modest compared to other benchmarks, it is important to note that AVQA represents a fine-
tuned evaluation scenario since the training dataset is derived from AVQA’s training set.

For MMAR, an audio-only reasoning benchmark, the model achieves 56.2% accuracy, outperform-
ing the baseline by +2.5 percentage points (56.2% vs. 53.7%). The improvement on MMAR vali-
dates that the audio reasoning capabilities developed through the teacher aggregation methodology
generalize effectively beyond the multimodal training domain approaching that of the specialized
audio teacher AF3 (think) (60.1%), suggesting that multimodal training with aggregated reasoning
chains can develop strong single-modality capabilities as a byproduct of audio-visual learning.

Overall, the results show that reasoning-capable models outperform their non-reasoning counterparts
across parameter sizes, validating the importance of structured reasoning in audio-visual tasks.
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Table 4: Impact of training stages and evalua-
tion on single modality performance. We eval-
uate using only audio (A), only vision (V), and

Table 5: Ablation on merger models. Using an
LLM merger with the same backbone as the stu-
dent model enhances performance.

both modalities (AV) on OmniBench. LLM Merger Model Student Model ~ OmniBench
Model SFT RL Mod. OmniBench Gemma3-12B-It Qwen2.5-Omni-3B 48.1
Qwen2.5-14B-Instruct Qwen2.5-Omni-3B 54.7
. X x A 39.4
Qwen2.5-Omni % % v 42.7
3B x  x AV 502 Table 6: Performance on different OmniBench
difficulty subsets. Our model outperforms the
. X v A 40.5 .
Qwen2.5-Omni base model on all difficulty levels.
B RLomy, X YV 43.1
x v A 53.0 Model Easy Medium Hard
A 407 Qwen2.5-Omni  62.5 46,5 289
Ours v v v 443
v v AV 54.7 Ours 72.9 50.7 32.8

4.4 ABLATION STUDIES

Evaluation of SFT fine-tuning. We first asses the impact of the supervised fine-tuning step on
the generated reasoning traces compared to the Qwen2.5-Omni 3B baseline, as well as to the same
model trained only with an RL objective. As shown in Table[d} simply training the model with an RL
objective leads to an improvement of 2.8% which is consistent with improvements reported by other
approaches (see Table [3). It further shows that the proposed 2-stage training with a SFT cold-start
phase based on the generated reasoning traces is able to improve over this baseline by another 1.7%.

Single Modality Performance. To investigate the impact of training exclusively on multimodal
data, we evaluate the model using only one modality at a time. As shown in Table ] the proposed
training strategy also leads to a modest improvement in the single-modality settings: compared
to the Qwen2.5-Omni 3B baseline, our model achieves a +1.3 point improvement in the audio-
only setting (40.7% vs. 39.4%) and a +1.6 point improvement in the vision-only setting (44.3%
vs. 42.7%). This can be considered as an indication for reasoning transfer learning as the SFT
dataset is composed mainly of questions that require both audio and vision (99.0%) (see Appendix
Table[7) and as both our supervised fine-tuning (SFT) with reasoning chains plus RL and the RL-only
baseline are trained solely on audiovisual inputs, without any modality dropout or single-modality
augmentation.

Different merger models. We investigate the impact of using different teacher models for cross-
modal aggregation in our pipeline. As shown in Table[5] we compare two merger models: Gemma3-
12B-It and Qwen2.5-14B-Instruct. The results show a substantial performance difference, with
Qwen2.5-14B-Instruct achieving 54.7% accuracy on OmniBench compared to 48.1% for Gemma3-
12B-It. Notably, during training, we observe that the model fine-tuned with reasoning chains gener-
ated by Qwen?2.5-14B-Instruct converged significantly faster to the multiple-choice question (MCQ)
format compared to the Gemma3-based merger. This suggests that using a teacher model from the
same architectural family as the student model facilitates more efficient knowledge transfer, as the
student model does not need to adapt to a substantially different token distribution during fine-tuning.

Omnibench Subsets. To further analyses the impact of the reasoning capabilities, we categorize
OmniBench questions into difficulty subsets based on teacher model performance: easy (both teach-
ers correct, 64 questions), medium (one teacher correct, 456 questions), and hard (neither correct,
619 questions). As shown in Table[6} our model outperforms the Qwen2.5-Omni baseline across all
difficulty levels: easy (72.9% vs. 62.5%, +10.4 points), medium (50.7% vs. 46.5%, +4.2 points),
and hard (32.8% vs. 28.9%, +3.9 points). The easy subset shows the largest improvement but ex-
hibits greater variability due to its smaller sample size. The predominance of hard questions (54%)
demonstrates that OmniBench is well-suited for evaluating cross-modal reasoning.
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"Bassy
resonant
sound"

What is the acoustic reason why the place in the
image would give rise to the art form heard in the
audio?

[.]

D. The image shows a meadow. The audio is a bass
hootenanny. Such a place is suitable for this art form
because the long wavelengths of the bass sound can be
diffracted around the hill, thus allowing others in the
distance to hear the sound.

<think>The image depicts a vast, open meadow with
rolling hills and a winding river, suggesting a natural,
open environment. The audio clip contains a deep,
resonant sound, which is characteristic of a bass

ny. Given the of the , the
sound waves are likely to be reflected and diffracted,
creating a rich, resonant quality that can be heard
from a distance. This aligns well with the idea that
the long wavelengths of the bass sound can be
diffracted around the hills, allowing others in the

"Male voice
Screaming
‘Jenny!"

What is this man doing?

A. Pursuing fugitives.

B. Searching for someone on an empty square.
C. Shooting with a gun.

D. Searching for people in the crowd. {74

<think>The image shows a man in military attire
standing in a crowd, with several people around
him. The man appears to be looking intently at
something or someone within the crowd. Given the
options, the most plausible scenario is that he is
searching for people in the crowd. The presence of a
crowd and the man's focused gaze suggest that he is
looking for specific individuals among the many
people present. The other options do not fit the
context: there is no indication of pursuit, searching
for someone on an empty square, or shooting with a
gun. The audio clip includes a shout of "Jenny!"
which could be a clue that the man is searching for

"Sudden
firework
sounds"

Why did the red wine spill on her face?

A. Awoman who dislikes her threw red wine on her
face.

B. Her husband threw red wine on her face.

C. The woman with golden long hair was startled by a
firework sound.

D. The woman with golden short hair was startled by a
firework sound. ["4

<think>The image shows a woman with golden short
hair, wearing a sparkling necklace and red lipstick,
with wine on her face. The background is a dark,
possibly indoor setting with shelves, suggesting a
library or similar environment. The audio clip
includes a loud, sharp sound followed by a "pop,"
which could be interpreted as a firework or similar
explosive event. Given the visual context of the
woman's appearance and the audio of a loud, sharp
sound, the most plausible scenario is that the
woman was startled by a firework sound and the

someone named Jenny within the crowd. However,
without additional context, the most
straightforward interpretation is that he is
searching for people in the crowd.
</think><answer>D</answer>

wine on her face is a result of being startled rather
than any deliberate action.Therefore, the most
logical conclusion based on the combined audio and
visual evidence is that the woman was startled by a
firework sound.</think><answer>D</answer>

distance to hear the sound clearly. The combination
of the open, natural setting and the deep, resonant
sound of the bass hootenanny makes this scenario
plausible.

</think><answer>D</answer>

Legend: = Input Image; (####) = Input Audio; = Student Model's Reasoning Chain; text = Visual Cues; text = Auditory Cues

Figure 2: Qualitative results of the AVRT-trained model on OmniBench. The model trained on our
collected AVRT dataset is able to integrate audio and visual content to answer the question and
generate high-quality reasoning chains. Best viewed in color and zoomed in.

4.5 QUALITATIVE RESULTS

We finally provide qualitative results of reasoning chains produced by the student model after fine-
tuning on the proposed AVRT reasoning traces on OmniBench in Fig. 2] The results show that with
only SFT on the generated reasoning chains, the model is able to reason about the image and audio
content to answer the question. In the first example, the model correctly associates the acoustic prop-
erties of a bass “hootenanny” with the open meadow environment, demonstrating understanding of
how sound propagates differently in open versus enclosed spaces. The second example showcases
more sophisticated multi-modal reasoning, where the model uses visual cues (people around the
main character) to contextualize the audio (male voice calling “Jenny!”) and correctly identifies the
scenario as searching for people in a crowd among multiple plausible options. The third example il-
lustrates the model’s ability to connect temporal audio events (firework sounds) with visual evidence
(wine spill on face). As shown in the figure, the model learns to incorporate both visual and auditory
cues to arrive at correct answers. These results are on OmniBench, which is a particularly chal-
lenging dataset, and demonstrate the model’s ability to generalize from its training domain (AVQA
videos with 8 frames and audio) to a different evaluation domain (single image and audio inputs).

5 CONCLUSION

We introduced AVRT, a novel framework that generates high-quality audio-visual reasoning data
by distilling knowledge from specialized single-modality teachers, enabling effective supervised
fine-tuning of student models with minimal reinforcement learning post-training. To this end, the
pipeline uses two specialized reasoning teachers, one for audio and one for vision, to extract expert
reasoning traces of each modality separately. The resulting traces are then merged and formatted
by an LLM merger model into a single, multimodal reasoning trace. We then use those reasoning
traces as cold-start in a two stage training pipeline. The resulting 3B parameter model achieves
state-of-the-art performance: 54.7% on OmniBench, 45.5% on DailyOmni, and 56.2% on MMAR,
establishing new benchmarks for efficient audio-visual understanding.
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A APPENDIX

A.1 ADDITIONAL DATASET STATISTICS

Table 7: Additional statistics for the AVRT-20K dataset showing answer option distribution and
question modality requirements.

Answer Option Train/ Val (%)
245/ 27.1

Question Relations Train / Val (%)

A —
Both (Audio + Visual) 99.0 / 98.9
B 2527273 Sound Only 0.7 /07
C 24.9 /233 Vi onl 03703
D 2547223 1sual Uty 2

The AVRT-20K dataset has balanced answer choices with each option (A-D) appearing roughly
25% of the time. Nearly all questions (99%) require both audio and visual information to answer
correctly, with less than 1% being answerable using only one modality.

A.2 PROMPTS

In this section, we provide the prompts used in this work for both teacher models (Kimi-VL-
Thinking and Audio Flamingo 3 (think)), the merger model (Qwen2.5-14B-Instruct), and the student
model (Qwen2.5-Omni-3B).

A.2.1 VISUAL TEACHER PROMPT

You are an intelligent vision agent. I will provide you with 8 representative frames from a video
(evenly distributed across the video duration) and a question about the video content in MCQ format.
You need to first provide a thorough description of what you’re seeing across these video frames, then
add Chain-of-Thought-type reasoning to analyze the visual content, and finally provide your answer.
Here is an example:

Input Question: What type of activity is happening in this video? Choose one among the following op-
tions:(A) Crime thriller scene (B) Documentary narration\n(C) Romantic comedy scene\n(D) Action
movie or racing scene\n

Expected response format:\n

Visual Description: Across these video frames, I can see a progression of high-speed chase scenes
with vehicles moving rapidly through an urban environment. The frames show consistent dynamic
motion, intense lighting, and what appears to be an ongoing action sequence with cars and possibly
motorcycles. The temporal progression across frames reveals the continuous high-energy nature of the
content.\n

Reasoning: Based on the consistent high-speed vehicle movement visible across multiple frames, the
sustained dynamic camera work, intense lighting throughout the sequence, and the overall action-
oriented visual elements that persist across the video timeline, this content would be most suitable for
action-focused scenarios that require high-energy sequences. The visual elements strongly suggest this
is an action movie or racing scene rather than other genres like crime thriller, documentary, or romantic
comedy.\n

Answer: (D) Action movie or racing scene\n

Follow this format: provide a detailed visual description analyzing the temporal progression across
frames, then your reasoning considering the full video context and evaluating each option, then the
final answer. For answers that do not require complex reasoning (e.g., for a question like ”What color
is the object?” or "How many people are in the image?”” where the answer is direct), still provide the
visual description but keep the reasoning brief.\n

Here is the input question:

A.2.2 AuDIO TEACHER PROMPT

We use the same prompts that are available in the Audio Flamingo 3 paper for their teacher models
during the training pipeline. We adopted these prompts to ensure optimal performance from the
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model and generate descriptive reasoning chains that maintain consistency with the original model’s
training methodology.

You are an intelligent audio agent. I will provide you with an audio and a question about the audio
in MCQ format. You need to first provide a thorough description of what you’re hearing in the audio,
then add Chain-of-Thought-type reasoning to analyze the audio content and evaluate each option, and
finally provide your answer. Here is an example:

Input Question: What type of soundtrack would this piece be most suitable for? Choose one among
the following options:(A) Crime thriller movie (B) Documentary narration\n(C) Romantic comedy
movie\n(D) Futuristic movie or car racing video game\n

Expected response format:\n

Audio Description: This audio features a high-energy electronic track with a driving beat, synthesized
sounds, and confident rap vocals. The lyrics mention themes of speed and success, including phrases
like ’living automatic’ and references to new cars. The production has a modern, polished sound with
heavy use of electronic elements.\n

Reasoning: Based on the driving beat, confident rap vocals, mentions of speed and success, and overall
high-energy modern production with electronic elements, this piece would be most suitable for high-
octane, modern scenarios that require energetic background music. Evaluating the options: (A) Crime
thriller movies typically use more suspenseful, darker soundtracks; (B) Documentary narration usually
requires more neutral, informative background music; (C) Romantic comedy movies generally feature
lighter, more melodic soundtracks; (D) Futuristic movies or car racing video games would benefit from
exactly this type of high-energy electronic music with themes of speed and technology.\n

Answer: (D) Futuristic movie or car racing video game\n

Follow this format: provide a detailed audio description first, then your reasoning that evaluates each
option, then the final answer. For answers that do not require complex reasoning (e.g., for a question
like "Who performs the vocals in this song?” or "What primary instrument is featured in this piece?”
where the answer is direct), still provide the audio description but keep the reasoning brief.\n

Here is the input question:

A.2.3 MERGER PROMPT

You are an intelligent multimodal agent. I will provide you with a question in MCQ format, along with
separate audio and visual analyses from specialized models. Your task is to merge these analyses into
a coherent reasoning chain that integrates both modalities to arrive at the correct answer.

Question: {question}{formatted_choices}

Correct Answer: {correct_answer}

Audio Analysis: {audio_reasoning}

Visual Analysis: {vision_reasoning}

Instructions:

- Don’t acknowledge that you already know the answer!

- Act as if you generated the reasoning and then you came across the right answer by yourself!

- Write plain English, but this time, format your merged reasoning inside <think>... </think>

- At the end, output your final answer (just the letter, e.g., A, B, C, or D) inside <answer>...
</answer>

- Write sentences that integrate both audio and visual evidence

- Explain how the audio and visual clues work together to lead you to the conclusion

- Make the explanation thorough but succint

Combined Analysis:
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